Global landscape of HIV–human protein complexes

Nature 481, 365-370 DOI: 10.1038/nature10719

Citation Report

#	Article	IF	CITATIONS
1	Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G. PLoS Pathogens, 2012, 8, e1003085.	2.1	55
2	Running Loose or Getting Lost: How HIV-1 Counters and Capitalizes on APOBEC3-Induced Mutagenesis through Its Vif Protein. Viruses, 2012, 4, 3132-3161.	1.5	20
3	Tagged for destruction. Nature Reviews Microbiology, 2012, 10, 81-81.	13.6	0
4	Identification of Cellular Proteins Required for Replication of Human Immunodeficiency Virus Type 1. AIDS Research and Human Retroviruses, 2012, 28, 1329-1339.	0.5	25
5	The BioGRID interaction database: 2013 update. Nucleic Acids Research, 2012, 41, D816-D823.	6.5	643
6	A catalogue of putative HIV-1 protease host cell substrates. Biological Chemistry, 2012, 393, 915-931.	1.2	32
7	Cellular Cofactors of Lentiviral Integrase: From Target Validation to Drug Discovery. Molecular Biology International, 2012, 2012, 1-16.	1.7	26
8	HIV-1 Gag co-opts a cellular complex containing DDX6, a helicase that facilitates capsid assembly. Journal of Cell Biology, 2012, 198, 439-456.	2.3	76
9	COMPUTATIONAL BIOLOGY IN THE CLOUD: METHODS AND NEW INSIGHTS FROM COMPUTING AT SCALE. , 2012, , .		5
10	An overview of intracellular interactions between immunodeficiency viruses and their hosts. Aids, 2012, 26, 1243-1254.	1.0	18
11	Exploring the human diseasome: the human disease network. Briefings in Functional Genomics, 2012, 11, 533-542.	1.3	118
12	New horizons for antiviral drug discovery from virus–host protein interaction networks. Current Opinion in Virology, 2012, 2, 606-613.	2.6	53
13	Differential network biology. Molecular Systems Biology, 2012, 8, 565.	3.2	689
14	Rules of Engagement: Molecular Insights from Host-Virus Arms Races. Annual Review of Genetics, 2012, 46, 677-700.	3.2	462
15	Reacquisition of Nef-Mediated Tetherin Antagonism in a Single InÂVivo Passage of HIV-1 through Its Original Chimpanzee Host. Cell Host and Microbe, 2012, 12, 373-380.	5.1	35
16	The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication. Virus Research, 2012, 169, 361-376.	1.1	13
17	Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Research, 2012, 170, 15-24.	1.1	87
18	Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature, 2012, 481, 371-375.	13.7	312

		CITATION REPORT		
#	ARTICLE Comprehensive Analysis of Host Cellular Interactions with Human Papillomavirus E6 Prot	eins	IF	CITATIONS
19	Identifies New E6 Binding Partners and Reflects Viral Diversity. Journal of Virology, 2012, 13174-13186.	86,	1.5	178
20	Beyond hairballs: The use of quantitative mass spectrometry data to understand proteina interactions. FEBS Letters, 2012, 586, 2723-2731.)€"protein	1.3	31
21	From base pair to bedside: molecular simulation and the translation of genomics to perso medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 585-5		6.6	11
22	Host restriction factors in retroviral infection: promises in virus-host interaction. Retroviro 2012, 9, 112.	blogy,	0.9	88
23	Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst comple in mediating enhancement of intercellular nanotube formation. Retrovirology, 2012, 9, 3	ex proteins 3.	0.9	75
24	Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirolo 65.	ngy, 2012, 9,	0.9	62
25	From promoting to inhibiting: diverse roles of helicases in HIV-1 Replication. Retrovirolog	y, 2012, 9, 79.	0.9	32
26	Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic M Modelling. Mathematical Modelling of Natural Phenomena, 2012, 7, 78-104.	Nathematical	0.9	43
27	Translation of Purâ€Î± is targeted by cellular miRNAs to modulate the differentiationâ€de susceptibility of monocytes to HIVâ€1 infection. FASEB Journal, 2012, 26, 4755-4764.	pendent	0.2	52
28	Functional genomic and high-content screening for target discovery and deconvolution. Opinion on Drug Discovery, 2012, 7, 955-968.	Expert	2.5	21
29	Prediction of Mutational Tolerance in HIV-1 Protease and Reverse Transcriptase Using Fle Backbone Protein Design. PLoS Computational Biology, 2012, 8, e1002639.	xible	1.5	21
30	Characterization of the Interaction of Full-Length HIV-1 Vif Protein with its Key Regulator CRL5 E3 Ubiquitin Ligase Components. PLoS ONE, 2012, 7, e33495.	CBFÎ ² and	1.1	47
32	Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasm for Virus Assembly. Frontiers in Microbiology, 2012, 3, 55.	na Membrane	1.5	45
33	Proteomic analysis of HIV–T cell interaction: an update. Frontiers in Microbiology, 2012	2, 3, 240.	1.5	11
34	Characterization of Staufen1 Ribonucleoproteins by Mass Spectrometry and Biochemical Reveal the Presence of Diverse Host Proteins Associated with Human Immunodeficiency Frontiers in Microbiology, 2012, 3, 367.		1.5	56
35	Toward a three-dimensional view of protein networks between species. Frontiers in Micro 2012, 3, 428.	biology,	1.5	26
36	Rendezvous with Tat: Transactivator of Transcription during Human Immunodeficiency V Pathogenesis. American Journal of Infectious Diseases, 2012, 8, 79-91.	irus	0.1	0
37	Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression. Biology, 2012, 1, 116	-133.	1.3	9

#	Article	IF	CITATIONS
38	Viral immune modulators perturb the human molecular network by common and unique strategies. Nature, 2012, 487, 486-490.	13.7	249
39	The interaction map. Nature, 2012, 484, 271-275.	13.7	29
40	Proteome-wide prediction of protein-protein interactions from high-throughput data. Protein and Cell, 2012, 3, 508-520.	4.8	36
41	<i>Inâ€fvitro</i> studies reveal that different modes of initiation on HIVâ€1 mRNA have different levels of requirement for eukaryotic initiation factorâ€f4F. FEBS Journal, 2012, 279, 3098-3111.	2.2	30
42	Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation. Virology, 2012, 429, 37-46.	1.1	43
43	HIV-1 transcription and latency: an update. Retrovirology, 2013, 10, 67.	0.9	271
44	DNA damage enhances integration of HIV-1 into macrophages by overcoming integrase inhibition. Retrovirology, 2013, 10, 21.	0.9	26
45	Proteomic changes in HEK-293 cells induced by hepatitis delta virus replication. Journal of Proteomics, 2013, 89, 24-38.	1.2	20
46	Ligand-based receptor identification on living cells and tissues using TRICEPS. Nature Protocols, 2013, 8, 1321-1336.	5.5	55
47	Genome-wide search for the genes accountable for the induced resistance to HIV-1 infection in activated CD4+ T cells: apparent transcriptional signatures, co-expression networks and possible cellular processes. BMC Medical Genomics, 2013, 6, 15.	0.7	26
48	Selective recognition of viral promoters by host cell transcription complexes: challenges and opportunities to control latency. Current Opinion in Virology, 2013, 3, 380-386.	2.6	4
49	Integrative avenues for exploring the dynamics and evolution of protein interaction networks. Current Opinion in Biotechnology, 2013, 24, 775-783.	3.3	14
50	The Lectin ERGIC-53 Goes Viral. Cell Host and Microbe, 2013, 14, 485-487.	5.1	2
52	Protein production from the structural genomics perspective: achievements and future needs. Current Opinion in Structural Biology, 2013, 23, 335-344.	2.6	37
53	High-resolution network biology: connecting sequence with function. Nature Reviews Genetics, 2013, 14, 865-879.	7.7	92
54	The Intracellular Cargo Receptor ERGIC-53 Is Required for the Production of Infectious Arenavirus, Coronavirus, and Filovirus Particles. Cell Host and Microbe, 2013, 14, 522-534.	5.1	62
55	Edgotype: a fundamental link between genotype and phenotype. Current Opinion in Genetics and Development, 2013, 23, 649-657.	1.5	129
56	Translation initiation is driven by different mechanisms on the HIV-1 and HIV-2 genomic RNAs. Virus Research, 2013, 171, 366-381.	1.1	29

#	Article	IF	CITATIONS
57	Interactions between HIV-1 Vif and human ElonginB-ElonginC are important for CBF-Î ² binding to Vif. Retrovirology, 2013, 10, 94.	0.9	24
58	Structure homology and interaction redundancy for discovering virus–host protein interactions. EMBO Reports, 2013, 14, 938-944.	2.0	39
59	High throughput strategies for probing the different organizational levels of protein interaction networks. Molecular BioSystems, 2013, 9, 2201.	2.9	13
60	Proteomic approaches to the study of papillomavirus–host interactions. Virology, 2013, 435, 57-69.	1.1	60
61	Systems biology of pathogenâ€host interaction: Networks of proteinâ€protein interaction within pathogens and pathogenâ€human interactions in the postâ€genomic era. Biotechnology Journal, 2013, 8, 85-96.	1.8	39
62	Next-generation proteomics: towards an integrative view of proteome dynamics. Nature Reviews Genetics, 2013, 14, 35-48.	7.7	656
63	Proteomics-Based Methods for Discovery, Quantification, and Validation of Protein–Protein Interactions. Analytical Chemistry, 2013, 85, 749-768.	3.2	85
64	Nucleotide embargo by SAMHD1: A strategy to block retroviral infection. Antiviral Research, 2013, 97, 180-182.	1.9	17
65	Quantifying proteomes and their post-translational modifications by stable isotope label-based mass spectrometry. Current Opinion in Chemical Biology, 2013, 17, 779-786.	2.8	20
66	Rational design of LEDGINs as first allosteric integrase inhibitors for the treatment of HIV infection. Drug Discovery Today: Technologies, 2013, 10, e517-e522.	4.0	7
67	Curing a viral infection by targeting the host: The example of cyclophilin inhibitors. Antiviral Research, 2013, 99, 68-77.	1.9	101
68	Cellular RNA helicases and HIV-1: Insights from genome-wide, proteomic, and molecular studies. Virus Research, 2013, 171, 357-365.	1.1	20
69	Genotype to phenotype via network analysis. Current Opinion in Genetics and Development, 2013, 23, 611-621.	1.5	126
71	Microfluidic large scale integration of viral–host interaction analysis. Lab on A Chip, 2013, 13, 2202.	3.1	21
72	From Systems to Structure: Bridging Networks and Mechanism. Molecular Cell, 2013, 49, 222-231.	4.5	46
73	Using Guanidine-Hydrochloride for Fast and Efficient Protein Digestion and Single-step Affinity-purification Mass Spectrometry. Journal of Proteome Research, 2013, 12, 1020-1030.	1.8	41
74	Structural and Functional Role of INI1 and LEDGF in the HIV-1 Preintegration Complex. PLoS ONE, 2013, 8, e60734.	1.1	24
75	Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Medicine, 2013, 5, 37.	3.6	124

#	ARTICLE Network Biology editorial 2013. Molecular BioSystems, 2013, 9, 1557.	IF 2.9	CITATIONS
77	A "Candidate-Interactome―Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis. PLoS ONE, 2013, 8, e63300.	1.1	66
78	The APOBEC3 Family of Retroelement Restriction Factors. Current Topics in Microbiology and Immunology, 2013, 371, 1-27.	0.7	177
79	CBFβ Stabilizes HIV Vif to Counteract APOBEC3 at the Expense of RUNX1 Target Gene Expression. Molecular Cell, 2013, 49, 632-644.	4.5	108
80	Protein interaction networks in innate immunity. Trends in Immunology, 2013, 34, 610-619.	2.9	26
81	Identification of RNA partners of viral proteins in infected cells. RNA Biology, 2013, 10, 943-956.	1.5	13
82	Fluorescence, Circular Dichroism and Mass Spectrometry as Tools to Study Virus Structure. Sub-Cellular Biochemistry, 2013, 68, 177-202.	1.0	7
83	Host Genetics of HIV Acquisition and Viral Control. Annual Review of Medicine, 2013, 64, 203-217.	5.0	29
84	Proteomic Analysis of Early HIV-1 Nucleoprotein Complexes. Journal of Proteome Research, 2013, 12, 559-572.	1.8	33
85	Novel Role of HSP40/DNAJ in the Regulation of HIV-1 Replication. Journal of Acquired Immune Deficiency Syndromes (1999), 2013, 64, 154-162.	0.9	21
86	24 Hours in the Life of HIV-1 in a T Cell Line. PLoS Pathogens, 2013, 9, e1003161.	2.1	134
87	Histone Deacetylases in Herpesvirus Replication and Virus-Stimulated Host Defense. Viruses, 2013, 5, 1607-1632.	1.5	30
88	Depletion of hnRNP A2/B1 overrides the nuclear retention of the HIV-1 genomic RNA. RNA Biology, 2013, 10, 1714-1725.	1.5	26
89	Proteomics as a novel HIV immune monitoring tool. Current Opinion in HIV and AIDS, 2013, 8, 140-146.	1.5	5
90	A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A. Human Molecular Genetics, 2013, 22, 1903-1910.	1.4	38
91	An Intronic G Run within HIV-1 Intron 2 Is Critical for Splicing Regulation of <i>vif</i> mRNA. Journal of Virology, 2013, 87, 2707-2720.	1.5	33
92	Popular Computational Methods to Assess Multiprotein Complexes Derived From Label-Free Affinity Purification and Mass Spectrometry (AP-MS) Experiments. Molecular and Cellular Proteomics, 2013, 12, 1-13.	2.5	46
93	Cell type specificity and structural determinants of IRES activity from the 5′ leaders of different HIV-1 transcripts. Nucleic Acids Research, 2013, 41, 6698-6714.	6.5	47

#	Article	IF	CITATIONS
94	Cellular Cofactors of HIV as Drug Targets. , 2013, , 1-7.		0
95	Human Immunodeficiency Virus Reverse Transcriptase. , 2013, , .		0
96	HIV Life Cycle: Overview. , 2013, , 1-9.		14
97	A sampling framework for incorporating quantitative mass spectrometry data in protein interaction analysis. BMC Bioinformatics, 2013, 14, 299.	1.2	4
98	Bringing it all together. Aids, 2013, 27, 835-838.	1.0	14
99	HIV-1 Vpr Modulates Macrophage Metabolic Pathways: A SILAC-Based Quantitative Analysis. PLoS ONE, 2013, 8, e68376.	1.1	75
100	A Viral-Human Interactome Based on Structural Motif-Domain Interactions Captures the Human Infectome. PLoS ONE, 2013, 8, e71526.	1.1	27
101	HIV-1 Vpr Induces the Degradation of ZIP and sZIP, Adaptors of the NuRD Chromatin Remodeling Complex, by Hijacking DCAF1/VprBP. PLoS ONE, 2013, 8, e77320.	1.1	23
102	Footprints of Directional Selection in Wild Atlantic Salmon Populations: Evidence for Parasite-Driven Evolution?. PLoS ONE, 2014, 9, e91672.	1.1	37
103	Proteomic Analysis of Saliva in HIV-Positive Heroin Addicts Reveals Proteins Correlated with Cognition. PLoS ONE, 2014, 9, e89366.	1.1	23
104	An Integrated Map of HIV-Human Protein Complexes that Facilitate Viral Infection. PLoS ONE, 2014, 9, e96687.	1.1	13
105	The HIVToolbox 2 Web System Integrates Sequence, Structure, Function and Mutation Analysis. PLoS ONE, 2014, 9, e98810.	1.1	6
106	RNA-directed remodeling of the HIV-1 protein Rev orchestrates assembly of the Rev–Rev response element complex. ELife, 2014, 3, e04120.	2.8	61
107	Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Matrix Proteins Specify Different Capabilities To Modulate B Cell Growth. Journal of Virology, 2014, 88, 5706-5717.	1.5	23
108	Kaposi's Sarcoma-Associated Herpesvirus ORF45 Mediates Transcriptional Activation of the HIV-1 Long Terminal Repeat via RSK2. Journal of Virology, 2014, 88, 7024-7035.	1.5	19
109	Mass spectrometry-based proteomic approaches for discovery of HIV–host interactions. Future Virology, 2014, 9, 979-992.	0.9	14
110	A Mass Spectrometry View of Stable and Transient Protein Interactions. Advances in Experimental Medicine and Biology, 2014, 806, 263-282.	0.8	31
111	HIV-1 and HIV-2 Vif Interact with Human APOBEC3 Proteins Using Completely Different Determinants. Journal of Virology, 2014, 88, 9893-9908.	1.5	31

#	Article	IF	CITATIONS
112	Determinants of Efficient Degradation of APOBEC3 Restriction Factors by HIV-1 Vif. Journal of Virology, 2014, 88, 14380-14395.	1.5	32
113	Translation initiation of the HIV-1 mRNA. Translation, 2014, 2, e960242.	2.9	16
114	Suppression of APOBEC3-mediated restriction of HIV-1 by Vif. Frontiers in Microbiology, 2014, 5, 450.	1.5	100
115	The activity of Nef on HIV-1 infectivity. Frontiers in Microbiology, 2014, 5, 232.	1.5	67
116	Dynamics of HIV Latency and Reactivation in a Primary CD4+ T Cell Model. PLoS Pathogens, 2014, 10, e1004156.	2.1	70
117	Recruitment of RED-SMU1 Complex by Influenza A Virus RNA Polymerase to Control Viral mRNA Splicing. PLoS Pathogens, 2014, 10, e1004164.	2.1	43
118	Cullin E3 Ligases and Their Rewiring by Viral Factors. Biomolecules, 2014, 4, 897-930.	1.8	78
119	In Vivo Functions of CPSF6 for HIV-1 as Revealed by HIV-1 Capsid Evolution in HLA-B27-Positive Subjects. PLoS Pathogens, 2014, 10, e1003868.	2.1	41
120	Lentivirus-mediated knockdown of eukaryotic translation initiation factor 3 subunit D inhibits proliferation of HCT116 colon cancer cells. Bioscience Reports, 2014, 34, e00161.	1.1	34
121	Vimentin—a potential biomarker for therapeutic efficiency of HAART. Acta Biochimica Et Biophysica Sinica, 2014, 46, 1001-1006.	0.9	5
122	Comprehensive Identification of Host Modulators of HIV-1 Replication using Multiple Orthologous RNAi Reagents. Cell Reports, 2014, 9, 752-766.	2.9	48
123	A Cell-penetrating Antibody Fragment against HIV-1 Rev Has High Antiviral Activity. Journal of Biological Chemistry, 2014, 289, 20222-20233.	1.6	20
124	The Impact of Mass Spectrometry–Based Proteomics on Fundamental Discoveries in Virology. Annual Review of Virology, 2014, 1, 581-604.	3.0	55
125	The Structural Basis of Substrate Recognition by the Eukaryotic Chaperonin TRiC/CCT. Cell, 2014, 159, 1042-1055.	13.5	131
126	Singleâ€molecule pullâ€down (SiMPull) for newâ€age biochemistry. BioEssays, 2014, 36, 1109-1119.	1.2	25
127	Spotlite: Web Application and Augmented Algorithms for Predicting Co-Complexed Proteins from Affinity Purification – Mass Spectrometry Data. Journal of Proteome Research, 2014, 13, 5944-5955.	1.8	18
128	Mapping orphan proteases by proteomics: Meprin metalloproteases deciphered as potential therapeutic targets. Proteomics - Clinical Applications, 2014, 8, 382-388.	0.8	6
129	Targeting Cellular Cofactors in HIV Therapy. Topics in Medicinal Chemistry, 2014, , 183-222.	0.4	8

#	Article	IF	CITATIONS
130	Human protein Staufen-2 promotes HIV-1 proliferation by positively regulating RNA export activity of viral protein Rev. Retrovirology, 2014, 11, 18.	0.9	20
131	HIV-1 protease-induced apoptosis. Retrovirology, 2014, 11, 37.	0.9	35
132	Detection of HIV-1 Matrix Protein p17 Quasispecies Variants in Plasma of Chronic HIV-1–Infected Patients by Ultra-Deep Pyrosequencing. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 66, 332-339.	0.9	8
133	Functional and Biochemical Characterization of Human Eukaryotic Translation Initiation Factor 3 in Living Cells. Molecular and Cellular Biology, 2014, 34, 3041-3052.	1.1	69
134	Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients. Autophagy, 2014, 10, 1167-1178.	4.3	70
135	Identification of molecular sub-networks associated with cell survival in a chronically SIVmac-infected human CD4+ T cell line. Virology Journal, 2014, 11, 152.	1.4	5
136	A functional conserved intronic G run in HIV-1 intron 3 is critical to counteract APOBEC3G-mediated host restriction. Retrovirology, 2014, 11, 72.	0.9	23
137	Positive selection of primate genes that promote HIV-1 replication. Virology, 2014, 454-455, 291-298.	1.1	43
138	Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature, 2014, 505, 686-690.	13.7	343
139	Next generation approaches to study virus entry and infection. Current Opinion in Virology, 2014, 4, 8-14.	2.6	17
140	A primary CD4+ T cell model of HIV-1 latency established after activation through the T cell receptor and subsequent return to quiescence. Nature Protocols, 2014, 9, 2755-2770.	5.5	46
141	eEF2 and Ras-GAP SH3 domain-binding protein (G3BP1) modulate stress granule assembly during HIV-1 infection. Nature Communications, 2014, 5, 4819.	5.8	76
142	Exploring intercellular signaling by proteomic approaches. Proteomics, 2014, 14, 498-512.	1.3	14
143	A computational analysis of the structural determinants of APOBEC3's catalytic activity and vulnerability to HIV-1 Vif. Virology, 2014, 471-473, 105-116.	1.1	23
144	Affinity purification–mass spectrometry and network analysis to understand protein-protein interactions. Nature Protocols, 2014, 9, 2539-2554.	5.5	169
145	Validation of host factors of HIV integration as novel drug targets for anti-HIV therapy. MedChemComm, 2014, 5, 314-320.	3.5	4
146	abFASP-MS: Affinity-Based Filter-Aided Sample Preparation Mass Spectrometry for Quantitative Analysis of Chemically Labeled Protein Complexes. Journal of Proteome Research, 2014, 13, 1147-1155.	1.8	16
147	Quantitative Proteomic Analysis of Host-virus Interactions Reveals a Role for Golgi Brefeldin A Resistance Factor 1 (GBF1) in Dengue Infection. Molecular and Cellular Proteomics, 2014, 13, 2836-2854.	2.5	49

		CITATION R	EPORT	
#	Article		IF	CITATIONS
148	Alterations in the nuclear proteome of HIV-1 infected T-cells. Virology, 2014, 468-470,	409-420.	1.1	15
149	Exploring mitochondrial system properties of neurodegenerative diseases through inte mapping. Journal of Proteomics, 2014, 100, 8-24.	ractome	1.2	13
150	The dual role of tetraspanin CD63 in HIV-1 replication. Virology Journal, 2014, 11, 23.		1.4	37
151	The PI3K pathway acting on alternative HIV-1 pre-mRNA splicing. Journal of General Viro 1809-1815.	ology, 2014, 95,	1.3	4
152	Viral proteins that bridge unconnected proteins and components in the human PPI net Molecular BioSystems, 2014, 10, 2448-2458.	work.	2.9	11
153	Manipulation of host pathways by human cytomegalovirus: insights from genome-wide Seminars in Immunopathology, 2014, 36, 651-658.	e studies.	2.8	13
154	A combination HIV reporter virus system for measuring post-entry event efficiency and in primary CD4+ T cell subsets. Journal of Virological Methods, 2014, 195, 164-169.	viral outcome	1.0	14
155	Proteome analysis of the HIV-1 Gag interactome. Virology, 2014, 460-461, 194-206.		1.1	46
156	Protein–protein interactions and genetic diseases: The interactome. Biochimica Et Bi Molecular Basis of Disease, 2014, 1842, 1971-1980.	iophysica Acta -	1.8	105
157	Host Factors in Retroviral Integration and the Selection of Integration Target Sites. Mic Spectrum, 2014, 2, .	crobiology	1.2	40
159	Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Future Me 2015, 7, 1055-1077.	dicinal Chemistry,	1.1	2
160	Clobal multiple protein-protein interaction network alignment by combining pairwise n alignments. BMC Bioinformatics, 2015, 16, S11.	etwork	1.2	10
161	HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the G Biomolecules, 2015, 5, 2808-2839.	enomic RNA.	1.8	52
162	HIV Tat controls RNA Polymerase II and the epigenetic landscape to transcriptionally re immune cells. ELife, 2015, 4, .	program target	2.8	47
163	From Raw Data to Biological Discoveries: A Computational Analysis Pipeline for Mass Spectrometry-Based Proteomics. Journal of the American Society for Mass Spectromet 1820-1826.	ry, 2015, 26,	1.2	17
164	Therapy of Viral Infections. Topics in Medicinal Chemistry, 2015, , .		0.4	6
165	HIV-1 IN/Pol recruits LEDGF/p75 into viral particles. Retrovirology, 2015, 12, 16.		0.9	19
166	The Mechanism and Function of Group II Chaperonins. Journal of Molecular Biology, 20 2919-2930.)15, 427,	2.0	158

#	Article	IF	CITATIONS
167	The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer. Molecular Cell, 2015, 58, 690-698.	4.5	117
168	Scoring Largeâ€Scale Affinity Purification Mass Spectrometry Datasets with MiST. Current Protocols in Bioinformatics, 2015, 49, 8.19.1-8.19.16.	25.8	58
169	Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology, 2015, 12, 41.	0.9	78
170	Histone Deacetylase Inhibitor Romidepsin Inhibits <i>De Novo</i> HIV-1 Infections. Antimicrobial Agents and Chemotherapy, 2015, 59, 3984-3994.	1.4	26
171	A review on computational systems biology of pathogenââ,¬â€œhost interactions. Frontiers in Microbiology, 2015, 6, 235.	1.5	93
172	Non-POU Domain-Containing Octamer-Binding Protein Negatively Regulates HIV-1 Infection in CD4 ⁺ T Cells. AIDS Research and Human Retroviruses, 2015, 31, 806-816.	0.5	21
173	Retroviral Integrase: Then and Now. Annual Review of Virology, 2015, 2, 241-264.	3.0	24
174	Meta- and Orthogonal Integration of Influenza "OMICs―Data Defines a Role for UBR4 in Virus Budding. Cell Host and Microbe, 2015, 18, 723-735.	5.1	868
175	Association with PAK2 Enables Functional Interactions of Lentiviral Nef Proteins with the Exocyst Complex. MBio, 2015, 6, e01309-15.	1.8	23
176	Global Mapping of Herpesvirus-Host Protein Complexes Reveals a Transcription Strategy for Late Genes. Molecular Cell, 2015, 57, 349-360.	4.5	165
177	Proteomics in the investigation of HIVâ \in interactions with host proteins. Proteomics - Clinical Applications, 2015, 9, 221-234.	0.8	12
178	A Combined Proteomics/Genomics Approach Links Hepatitis C Virus Infection with Nonsense-Mediated mRNA Decay. Molecular Cell, 2015, 57, 329-340.	4.5	124
179	Proteomic alteration of equine monocyteâ€derived macrophages infected with equine infectious anemia virus. Proteomics, 2015, 15, 1843-1858.	1.3	15
180	PPI network inference from AP-MS data. , 2015, , 51-59.		1
181	Identification of an HIV-1 replication inhibitor which rescues host restriction factor APOBEC3G in Vif–APOBEC3G complex. Antiviral Research, 2015, 122, 20-27.	1.9	23
182	Recent strategies and progress in identifying host factors involved in virus replication. Current Opinion in Microbiology, 2015, 26, 79-88.	2.3	22
183	HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus. Viruses, 2015, 7, 199-218.	1.5	45
184	Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host and Microbe, 2015, 18, 109-121.	5.1	174

ARTICLE IF CITATIONS # Molecular dynamics simulations of large macromolecular complexes. Current Opinion in Structural 185 2.6 347 Biology, 2015, 31, 64-74. Bioinformatics and HIV Latency. Current HIV/AIDS Reports, 2015, 12, 97-106. 1.1 An integrated map of HIV genome-wide variation from a population perspective. Retrovirology, 2015, 12, 187 0.9 90 18. Extracting high confidence protein interactions from affinity purification data: At the crossroads. 1.2 Journal of Proteomics, 2015, 118, 63-80. The impact of host genetic variation on infection with HIV-1. Nature Immunology, 2015, 16, 577-583. 189 7.0 119 Balanced splicing at the Tat-specific HIV-1 3â€²ss A3 is critical for HIV-1 replication. Retrovirology, 2015, 12, 29 The Road Less Traveled: HIV's Use of Alternative Routes through Cellular Pathways. Journal of 191 1.5 9 Virology, 2015, 89, 5204-5212. Proteomics methods for discovering viral–host interactions. Methods, 2015, 90, 21-27. 1.9 193 Rapid, optimized interactomic screening. Nature Methods, 2015, 12, 553-560. 9.0 68 194 Proteomic approaches to analyzing hepatitis C virus biology. Proteomics, 2015, 15, 2051-2065. 1.3 Multidimensional proteomics for cell biology. Nature Reviews Molecular Cell Biology, 2015, 16, 195 16.1 375 269-280. Analysis of HIV-1 Gag Protein Interactions via Biotin Ligase Tagging. Journal of Virology, 2015, 89, 1.5 3988-4001. Host-Microbe Protein Interactions during Bacterial Infection. Chemistry and Biology, 2015, 22, 197 6.2 103 1521-1530. HIV-1 Nef hijacks clathrin coats by stabilizing AP-1:Arf1 polygons. Science, 2015, 350, aac5137. 198 6.0 39 Coevolutionary analyses require phylogenetically deep alignments and better null models to 199 1.2 12 accurately detect inter-protein contacts within and between species. BMC Bioinformatics, 2015, 16, 268. Lineage-Specific Viral Hijacking of Non-canonical E3ÂUbiquitin Ligase Cofactors in the Evolution of Vif Anti-ĂPOBEC3 Activity. Cell Reports, 2015, 11, 1236-1250. Comparative mapping of hostâ€"pathogen proteinâ€"protein interactions. Current Opinion in 201 2.337 Microbiology, 2015, 27, 62-68. HIV-1 protease cleaves the serine-threonine kinases RIPK1 and RIPK2. Retrovirology, 2015, 12, 74.

#	Article	IF	CITATIONS
203	No-Go'ing Back: Co-opting RVB-2 to Control HIV-1 Gene Expression and Immune Response. Trends in Microbiology, 2015, 23, 593-595.	3.5	1
204	RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs. Virology, 2015, 486, 15-26.	1.1	21
205	CDK11 in TREX/THOC Regulates HIV mRNA 3′ End Processing. Cell Host and Microbe, 2015, 18, 560-570.	5.1	53
206	How pathogens use linear motifs to perturb host cell networks. Trends in Biochemical Sciences, 2015, 40, 36-48.	3.7	85
207	Molecular principles of human virus protein–protein interactions. Bioinformatics, 2015, 31, 1025-1033.	1.8	41
208	Network inference from AP-MS data: computational challenges and solutions. Briefings in Bioinformatics, 2015, 16, 658-674.	3.2	21
209	Analysis of Host Gene Expression Profile in HIV-1 and HIV-2 Infected T-Cells. PLoS ONE, 2016, 11, e0147421.	1.1	23
210	The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing. PLoS Pathogens, 2016, 12, e1005841.	2.1	176
211	The Virus–Host Interactome. , 2016, , 157-167.		4
212	Computational modeling of Repeat1 region of INI1/hSNF5: An evolutionary link with ubiquitin. Protein Science, 2016, 25, 1593-1604.	3.1	1
213	Effect of internal cleavage site mutations in human immunodeficiency virus type 1 capsid protein on its structure and function. FEBS Open Bio, 2016, 6, 847-859.	1.0	2
214	A structurally plastic ribonucleoprotein complex mediates postâ€transcriptional gene regulation in <scp>HIV</scp> â€1. Wiley Interdisciplinary Reviews RNA, 2016, 7, 470-486.	3.2	25
215	A scaffold protein connects type IV pili with the Chp chemosensory system to mediate activation of virulence signaling in <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2016, 101, 590-605.	1.2	69
216	HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiology and Molecular Biology Reviews, 2016, 80, 679-731.	2.9	61
217	Advances in Zika Virus Research: Stem Cell Models, Challenges, and Opportunities. Cell Stem Cell, 2016, 19, 690-702.	5.2	103
218	Eukaryotic translation initiation factor 3 subunit D overexpression is associated with the occurrence and development of ovarian cancer. FEBS Open Bio, 2016, 6, 1201-1210.	1.0	9
220	An interâ€species protein–protein interaction network across vast evolutionary distance. Molecular Systems Biology, 2016, 12, 865.	3.2	42
221	Identification of Novel Host Interactors of Effectors Secreted by <i>Salmonella</i> and <i>Citrobacter</i> . MSystems, 2016, 1, .	1.7	22

#	Article	IF	CITATIONS
222	A time-resolved molecular map of the macrophage response to VSV infection. Npj Systems Biology and Applications, 2016, 2, 16027.	1.4	42
223	Pathogen receptor discovery with a microfluidic human membrane protein array. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4344-4349.	3.3	19
224	Assembly of eIF3 Mediated by Mutually Dependent Subunit Insertion. Structure, 2016, 24, 886-896.	1.6	39
225	Predicting Protein–Protein Interactions from the Molecular to the Proteome Level. Chemical Reviews, 2016, 116, 4884-4909.	23.0	289
226	Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4976-4981.	3.3	249
227	Using biological networks to integrate, visualize and analyze genomics data. Genetics Selection Evolution, 2016, 48, 27.	1.2	86
228	Improving Viral Protease Inhibitors to Counter Drug Resistance. Trends in Microbiology, 2016, 24, 547-557.	3.5	81
229	Patterns of amino acid conservation in human and animal immunodeficiency viruses. Bioinformatics, 2016, 32, i685-i692.	1.8	8
230	Oligomeric viral proteins: small in size, large in presence. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 379-394.	2.3	23
231	Development and validation of a cell-based assay system to assess human immunodeficiency virus type 1 integrase multimerization. Journal of Virological Methods, 2016, 236, 196-206.	1.0	2
232	Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function. Molecular Cell, 2016, 63, 621-632.	4.5	241
233	Proteomics, biomarkers, and HIVâ€1: A current perspective. Proteomics - Clinical Applications, 2016, 10, 110-125.	0.8	15
234	Global profiling of protein complexes: current approaches and their perspective in biomedical research. Expert Review of Proteomics, 2016, 13, 951-964.	1.3	15
235	Deep interactome profiling of membrane proteins by co-interacting protein identification technology. Nature Protocols, 2016, 11, 2515-2528.	5.5	54
236	Herb-target interaction network analysis helps to disclose molecular mechanism of traditional Chinese medicine. Scientific Reports, 2016, 6, 36767.	1.6	26
237	A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells. Cell Reports, 2016, 17, 1438-1452.	2.9	167
238	HIV–host interactome revealed directly from infected cells. Nature Microbiology, 2016, 1, 16068.	5.9	49
239	HIV-1 Vpr N-terminal tagging affects alternative splicing of the viral genome. Scientific Reports, 2016, 6, 34573.	1.6	9

#	Article	IF	Citations
241	Casp8p41: The Protean Mediator of Death in CD4 T-cells that Replicate HIV. Journal of Cell Death, 2016, 9, JCD.S39872.	0.8	2
242	Heat Shock Factor 1 Mediates Latent HIV Reactivation. Scientific Reports, 2016, 6, 26294.	1.6	29
243	Characterization of the interaction between the HIV-1 Gag structural polyprotein and the cellular ribosomal protein L7 and its implication in viral nucleic acid remodeling. Retrovirology, 2016, 13, 54.	0.9	17
244	Investigation of the HIVâ€1 matrix interactome during virus replication. Proteomics - Clinical Applications, 2016, 10, 156-163.	0.8	21
245	<scp>HIV</scp> ″ Nef: Taking Control of Protein Trafficking. Traffic, 2016, 17, 976-996.	1.3	101
246	Complex Interplay between HIV-1 Capsid and MX2-Independent Alpha Interferon-Induced Antiviral Factors. Journal of Virology, 2016, 90, 7469-7480.	1.5	40
247	Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity, 2016, 44, 46-58.	6.6	110
248	Making the right connections: Network biology and plant immune system dynamics. Current Plant Biology, 2016, 5, 2-12.	2.3	34
249	HSP70 binding protein 1 (HspBP1) suppresses HIV-1 replication by inhibiting NF-κB mediated activation of viral gene expression. Nucleic Acids Research, 2016, 44, 1613-1629.	6.5	37
250	The Dynamic Landscape of the Full-Length HIV-1 Transactivator of Transcription. Biochemistry, 2016, 55, 1314-1325.	1.2	7
251	Proteomic approaches to uncovering virus–host protein interactions during the progression of viral infection. Expert Review of Proteomics, 2016, 13, 325-340.	1.3	76
252	PP2A as a master regulator of the cell cycle. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 162-184.	2.3	263
253	Polyomavirus and Naturally Occuring Neuroglial Tumors in Raccoons (Procyon Lotor). ILAR Journal, 2016, 56, 297-305.	1.8	6
254	Decoding protein networks during virus entry by quantitative proteomics. Virus Research, 2016, 218, 25-39.	1.1	24
255	Identifying novel protein interactions: Proteomic methods, optimisation approaches and data analysis pipelines. Methods, 2016, 95, 46-54.	1.9	25
256	Inter-helical conformational preferences of HIV-1 TAR-RNA from maximum occurrence analysis of NMR data and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2016, 18, 5743-5752.	1.3	15
257	Genome-Wide Analyses Reveal Gene Influence on HIV Disease Progression and HIV-1C Acquisition in Southern Africa. AIDS Research and Human Retroviruses, 2017, 33, 597-609.	0.5	14
258	Role of autophagy in <scp>HIV</scp> infection and pathogenesis. Journal of Internal Medicine, 2017, 281, 422-432.	2.7	54

#	Article	IF	CITATIONS
259	Deciphering the HIV–host interactome: overcoming the bottleneck of previous approaches. Future Virology, 2017, 12, 5-7.	0.9	0
260	Interaction between FMDV Lpro and transcription factor ADNP is required for optimal viral replication. Virology, 2017, 505, 12-22.	1.1	19
261	Cullin-RING E3 Ubiquitin Ligases: Bridges to Destruction. Sub-Cellular Biochemistry, 2017, 83, 323-347.	1.0	45
262	Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nature Microbiology, 2017, 2, 17022.	5.9	25
263	Dynamics of IRES-mediated translation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160177.	1.8	80
264	Discovering Proteinâ€Protein Interactions Using Nucleic Acid Programmable Protein Arrays. Current Protocols in Cell Biology, 2017, 74, 15.21.1-15.21.14.	2.3	11
265	Macromolecular Protein Complexes. Sub-Cellular Biochemistry, 2017, , .	1.0	5
266	Regulation of human immunodeficiency virus type 1 (HIV-1) mRNA translation. Biochemical Society Transactions, 2017, 45, 353-364.	1.6	14
267	Similarity in viral and host promoters couples viral reactivation with host cell migration. Nature Communications, 2017, 8, 15006.	5.8	16
268	The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity. Cell, 2017, 169, 679-692.e14.	13.5	48
269	Recent 5-year Findings and Technological Advances in the Proteomic Study of HIV-associated Disorders. Genomics, Proteomics and Bioinformatics, 2017, 15, 110-120.	3.0	9
270	Proteomics Tracing the Footsteps of Infectious Disease. Molecular and Cellular Proteomics, 2017, 16, S5-S14.	2.5	32
271	Proteomics and integrative omic approaches for understanding host–pathogen interactions and infectious diseases. Molecular Systems Biology, 2017, 13, 922.	3.2	164
272	An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell, 2017, 169, 350-360.e12.	13.5	322
273	Virus-host interactome: Putting the accent on how it changes. Journal of Proteomics, 2017, 156, 1-4.	1.2	12
274	A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nature Genetics, 2017, 49, 193-203.	9.4	290
275	Comparative interactomics for virus–human protein–protein interactions: <scp>DNA</scp> viruses versus <scp>RNA</scp> viruses. FEBS Open Bio, 2017, 7, 96-107.	1.0	42
276	Systematic Identification of Mycobacterium tuberculosis Effectors Reveals that BfrB Suppresses Innate Immunity. Molecular and Cellular Proteomics, 2017, 16, 2243-2253.	2.5	18

#	Article	IF	CITATIONS
277	A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins. Scientific Reports, 2017, 7, 9328.	1.6	25
278	Quantitative Assessment of the Effects of Trypsin Digestion Methods on Affinity Purification–Mass Spectrometry-based Protein–Protein Interaction Analysis. Journal of Proteome Research, 2017, 16, 3068-3082.	1.8	39
279	Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells. Journal of Visualized Experiments, 2017, , .	0.2	6
280	Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting. Journal of Cell Biology, 2017, 216, 2927-2943.	2.3	35
281	PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription. Scientific Reports, 2017, 7, 45394.	1.6	30
282	Elucidation of host–pathogen protein–protein interactions to uncover mechanisms of host cell rewiring. Current Opinion in Microbiology, 2017, 39, 7-15.	2.3	61
283	Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry. Scientific Reports, 2017, 7, 16965.	1.6	36
284	Identification of a tripartite interaction between the N-terminus of HIV-1 Vif and CBFÎ ² that is critical for Vif function. Retrovirology, 2017, 14, 19.	0.9	10
285	compleXView: a server for the interpretation of protein abundance and connectivity information to identify protein complexes. Nucleic Acids Research, 2017, 45, W276-W284.	6.5	6
286	CD4-gp120 interaction interface - a gateway for HIV-1 infection in human: molecular network, modeling and docking studies. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2631-2644.	2.0	5
287	A Global Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors. Cell Reports, 2017, 21, 3900-3913.	2.9	90
288	Mutations in the X-linked <i>ATP6AP2</i> cause a glycosylation disorder with autophagic defects. Journal of Experimental Medicine, 2017, 214, 3707-3729.	4.2	62
289	Knockdown of TBRG4 affects tumorigenesis in human H1299 lung cancer cells by regulating DDIT3, CAV1 and RRM2. Oncology Letters, 2017, 15, 121-128.	0.8	14
290	Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Research, 2017, 45, 10948-10968.	6.5	102
291	Identification of HIV-1 Tat-Associated Proteins Contributing to HIV-1 Transcription and Latency. Viruses, 2017, 9, 67.	1.5	18
292	Inference of a Geminivirusâ^'Host Proteinâ^'Protein Interaction Network through Affinity Purification and Mass Spectrometry Analysis. Viruses, 2017, 9, 275.	1.5	35
293	Influenza A Virus–Host Protein Interactions Control Viral Pathogenesis. International Journal of Molecular Sciences, 2017, 18, 1673.	1.8	45
294	Beyond Paralogs: The Multiple Layers of Redundancy in Bacterial Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 467.	1.8	84

#	Article	IF	CITATIONS
295	Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes. PLoS Pathogens, 2017, 13, e1006570.	2.1	93
296	Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein. PLoS Pathogens, 2017, 13, e1006758.	2.1	19
297	A two-step framework for inferring direct protein-protein interaction network from AP-MS data. BMC Systems Biology, 2017, 11, 82.	3.0	8
298	Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins. Microbiome, 2017, 5, 89.	4.9	27
299	Large-Scale Arrayed Analysis of Protein Degradation Reveals Cellular Targets for HIV-1 Vpu. Cell Reports, 2018, 22, 2493-2503.	2.9	21
300	Behind the scenes of HIV-1 replication: Alternative splicing as the dependency factor on the quiet. Virology, 2018, 516, 176-188.	1.1	44
301	Proteomic profiling of HIV-infected T-cells by SWATH mass spectrometry. Virology, 2018, 516, 246-257.	1.1	6
302	A path to the powerhouse: systemsâ€toâ€structure approaches for studying mitochondrial proteins. Protein Science, 2018, 27, 1518-1525.	3.1	0
303	Vaccine Efforts Against AIDS. , 2018, , 2139-2149.		0
304	DDX49 is an RNA helicase that affects translation by regulating mRNA export and the levels of pre-ribosomal RNA. Nucleic Acids Research, 2018, 46, 6304-6317.	6.5	29
305	Cellular and molecular mechanisms of HIV-1 integration targeting. Cellular and Molecular Life Sciences, 2018, 75, 2491-2507.	2.4	53
306	Nef Secretion into Extracellular Vesicles or Exosomes Is Conserved across Human and Simian Immunodeficiency Viruses. MBio, 2018, 9, .	1.8	84
307	Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	10
308	<scp>DNA</scp> â€damage inducible protein 1 is a conserved metacaspase substrate that is cleaved and further destabilized in yeast under specific metabolic conditions. FEBS Journal, 2018, 285, 1097-1110.	2.2	10
309	Systems Biology Modeling to Study Pathogen–Host Interactions. Methods in Molecular Biology, 2018, 1734, 97-112.	0.4	13
310	A decade of RNA virus metagenomics is (not) enough. Virus Research, 2018, 244, 218-229.	1.1	129
311	Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1458.	3.2	83
312	The role of exosomal transport of viral agents in persistent HIV pathogenesis. Retrovirology, 2018, 15, 79.	0.9	33

		CITATION R	EPORT	
#	Article		IF	CITATIONS
313	Mosquito Transmission of HIV: Rare or Not Possible?. Parasitology Research Monograph	s, 2018, , 9-21.	0.4	0
314	Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Rep 2018, 175, 1917-1930.e13.	blication. Cell,	13.5	108
315	Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengu Pathogenesis. Cell, 2018, 175, 1931-1945.e18.	ie and Zika Virus	13.5	252
316	Integrating Multifaceted Information to Predict <i>Mycobacterium tuberculosis</i> Hur Protein-Protein Interactions. Journal of Proteome Research, 2018, 17, 3810-3823.	nan	1.8	8
317	Multiple Routes to Oncogenesis Are Promoted by the Human Papillomavirus–Host Pro Cancer Discovery, 2018, 8, 1474-1489.	otein Network.	7.7	67
318	Virus–Host Interactions in Retrovirus Integration. , 2018, , 163-198.			8
319	Cellular RNA Helicases Support Early and Late Events in Retroviral Replication. , 2018, , 2	253-271.		1
320	Strategies to Discover Novel Cellular Factors Involved in Retrovirus Replication. , 2018, ,	.527-568.		0
321	Systematic detection of positive selection in the human-pathogen interactome and last infectious disease susceptibility. PLoS ONE, 2018, 13, e0196676.	ing effects on	1.1	7
322	CRL4 ^{AMBRA1} targets Elongin C for ubiquitination and degradation to mo signaling. EMBO Journal, 2018, 37, .	dulate CRL5	3.5	13
323	Understanding mucosal and microbial functionality of the female reproductive tract by metaproteomics: Implications for HIV transmission. American Journal of Reproductive In 2018, 80, e12977.	nmunology,	1.2	12
324	Smc5/6 Antagonism by HBx Is an Evolutionarily Conserved Function of Hepatitis B Virus Mammals. Journal of Virology, 2018, 92, .	Infection in	1.5	34
325	Gp41 dynamically interacts with the TCR in the immune synapse and promotes early T c Scientific Reports, 2018, 8, 9747.	ell activation.	1.6	8
326	Viral journeys on the intracellular highways. Cellular and Molecular Life Sciences, 2018,	75, 3693-3714.	2.4	70
327	The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illumin Molecular Pathways in Neuropsychiatric Disorders. Cell, 2018, 174, 505-520.	lating Key	13.5	108
328	Host Interaction Analysis of PA-N155 and PA-N182 in Chicken Cells Reveals an Essential for Replication of H5N1 Avian Influenza Virus. Frontiers in Microbiology, 2018, 9, 936.	Role of UBA52	1.5	13
329	Structural Hole Spanner in HumanNet Identifies Disease Gene and Drug targets. IEEE Ac 35392-35401.	cess, 2018, 6,	2.6	3
330	Y-box-binding protein 1 supports the early and late steps of HIV replication. PLoS ONE, 2 e0200080.	2018, 13,	1.1	11

#	Article	IF	CITATIONS
331	An Mtb-Human Protein-Protein Interaction Map Identifies a Switch between Host Antiviral and Antibacterial Responses. Molecular Cell, 2018, 71, 637-648.e5.	4.5	100
332	Unconventional RNAâ€binding proteins step into the virus–host battlefront. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1498.	3.2	65
333	Defining Pharmacological Targets by Analysis of Virus–Host Protein Interactions. Advances in Protein Chemistry and Structural Biology, 2018, 111, 223-242.	1.0	3
334	Design of Tat-Activated Cdk9 Inhibitor. International Journal of Peptide Research and Therapeutics, 2019, 25, 807-817.	0.9	7
335	Genome Analysis – Identification of Genes Involved in Host-Pathogen Protein-Protein Interaction Networks. , 2019, , 410-424.		0
336	Network-Based Analysis of Host-Pathogen Interactions. , 2019, , 932-937.		2
337	Ring finger protein 121 is a potent regulator of adeno-associated viral genome transcription. PLoS Pathogens, 2019, 15, e1007988.	2.1	22
338	Comparison of CRISPR Genomic Tagging for Affinity Purification and Endogenous Immunoprecipitation Coupled with Quantitative Mass Spectrometry To Identify the Dynamic AMPKα2 Interactome. Journal of Proteome Research, 2019, 18, 3703-3714.	1.8	6
339	ARIH2 Is a Vif-Dependent Regulator of CUL5-Mediated APOBEC3G Degradation in HIV Infection. Cell Host and Microbe, 2019, 26, 86-99.e7.	5.1	42
340	Host factor heat-shock protein 90 contributes to baculovirus budded virus morphogenesis via facilitating nuclear actin polymerization. Virology, 2019, 535, 200-209.	1.1	7
341	Analysis of networks of host proteins in the early time points following HIV transduction. BMC Bioinformatics, 2019, 20, 398.	1.2	10
342	TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature, 2019, 571, 211-218.	13.7	934
343	The autophagy protein ATG9A promotes HIV-1 infectivity. Retrovirology, 2019, 16, 18.	0.9	10
344	Common Nodes of Virus–Host Interaction Revealed Through an Integrated Network Analysis. Frontiers in Immunology, 2019, 10, 2186.	2.2	67
345	How HIV Nef Proteins Hijack Membrane Traffic To Promote Infection. Journal of Virology, 2019, 93, .	1.5	41
346	Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Cell Reports, 2019, 28, 2317-2330.e8.	2.9	12
347	Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. Journal of Biological Chemistry, 2019, 294, 15137-15157.	1.6	57
348	A Structure-Informed Atlas of Human-Virus Interactions. Cell, 2019, 178, 1526-1541.e16.	13.5	108

#	Article	IF	CITATIONS
349	Mapping Interactome Networks of DNAJC11, a Novel Mitochondrial Protein Causing Neuromuscular Pathology in Mice. Journal of Proteome Research, 2019, 18, 3896-3912.	1.8	6
350	Role of host tRNAs and aminoacyl-tRNA synthetases in retroviral replication. Journal of Biological Chemistry, 2019, 294, 5352-5364.	1.6	34
351	CRISPR-Based Tools in Immunity. Annual Review of Immunology, 2019, 37, 571-597.	9.5	38
352	HIV-1 Nef and host proteome analysis: Current perspective. Life Sciences, 2019, 219, 322-328.	2.0	6
353	Virus-Like Particles as an Instrument of Vaccine Production. Molecular Biology, 2019, 53, 323-334.	0.4	62
354	Two Accessory Proteins Govern MmpL3 Mycolic Acid Transport in Mycobacteria. MBio, 2019, 10, .	1.8	32
355	A CRISPR/Cas9 screen identifies the histone demethylase MINA53 as a novel HIV-1 latency-promoting gene (LPG). Nucleic Acids Research, 2019, 47, 7333-7347.	6.5	35
356	Tat inhibition by didehydro-Cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics and Chromatin, 2019, 12, 23.	1.8	46
357	Reduced eIF3d accelerates HIV disease progression by attenuating CD8+ T cell function. Journal of Translational Medicine, 2019, 17, 167.	1.8	7
358	Destabilization of the human RED–SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10968-10977.	3.3	7
359	Understanding Human-Virus Protein-Protein Interactions Using a Human Protein Complex-Based Analysis Framework. MSystems, 2019, 4, .	1.7	42
360	How host genetics dictates successful viral zoonosis. PLoS Biology, 2019, 17, e3000217.	2.6	59
361	Considerations for Identifying Endogenous Protein Complexes from Tissue via Immunoaffinity Purification and Quantitative Mass Spectrometry. Methods in Molecular Biology, 2019, 1977, 115-143.	0.4	5
362	Experimental Analysis of Viral–Host Interactions. Frontiers in Physiology, 2019, 10, 425.	1.3	22
363	Promiscuous Targeting of Cellular Proteins by Vpr Drives Systems-Level Proteomic Remodeling in HIV-1 Infection. Cell Reports, 2019, 27, 1579-1596.e7.	2.9	75
364	Anti-virus reagents targeting the capsid protein assembly. Journal of Materials Chemistry B, 2019, 7, 3331-3340.	2.9	2
365	Identification of antiviral roles for the exon–junction complex and nonsense-mediated decay in flaviviral infection. Nature Microbiology, 2019, 4, 985-995.	5.9	52
366	A Two-Way Proteome Microarray Strategy to Identify Novel Mycobacterium tuberculosis-Human Interactors. Frontiers in Cellular and Infection Microbiology, 2019, 9, 65.	1.8	4

#	Article	IF	CITATIONS
367	G protein-coupled and ATP-sensitive inwardly rectifying potassium ion channels are essential for HIV entry. Scientific Reports, 2019, 9, 4113.	1.6	13
368	Conformational Dynamics of the HIV-Vif Protein Complex. Biophysical Journal, 2019, 116, 1432-1445.	0.2	8
369	Highly Mutable Linker Regions Regulate HIV-1 Rev Function and Stability. Scientific Reports, 2019, 9, 5139.	1.6	14
370	Inferring pathogen-host interactions between Leptospira interrogans and Homo sapiens using network theory. Scientific Reports, 2019, 9, 1434.	1.6	20
371	Enterovirus pathogenesis requires the host methyltransferase SETD3. Nature Microbiology, 2019, 4, 2523-2537.	5.9	51
372	Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets. Antiviral Research, 2019, 162, 90-100.	1.9	12
373	Focus on Translation Initiation of the HIV-1 mRNAs. International Journal of Molecular Sciences, 2019, 20, 101.	1.8	28
374	Interface-Based Structural Prediction of Novel Host-Pathogen Interactions. Methods in Molecular Biology, 2019, 1851, 317-335.	0.4	21
375	Reinforce: An Ensemble Approach for Inferring PPI Network from AP-MS Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 365-376.	1.9	2
376	Cellular roles of the human Obg-like ATPase 1 (hOLA1) and its YchF homologs. Biochemistry and Cell Biology, 2020, 98, 1-11.	0.9	7
377	Protein-protein interactions of human viruses. Seminars in Cell and Developmental Biology, 2020, 99, 31-39.	2.3	34
378	The functional landscape of the human phosphoproteome. Nature Biotechnology, 2020, 38, 365-373.	9.4	273
379	Fluorescence "Turn-on―Lectin Sensors Fabricated by Ligand-Assisted Labeling Probes for Detecting Protein–Glycoprotein Interactions. Biomacromolecules, 2020, 21, 815-824.	2.6	3
380	Novel association of genetic variants in non-coding regulatory regions with HIV-1 infection. Infection, Genetics and Evolution, 2020, 85, 104514.	1.0	1
381	System-Based Approaches to Delineate the Antiviral Innate Immune Landscape. Viruses, 2020, 12, 1196.	1.5	5
382	Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses, 2020, 12, 1179.	1.5	34
383	A computational study of Tat–CDK9–Cyclin binding dynamics and its implication in transcription-dependent HIV latency. Physical Chemistry Chemical Physics, 2020, 22, 25474-25482.	1.3	8
384	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	6.0	508

#	Article	IF	CITATIONS
385	Vpu modulates DNA repair to suppress innate sensing and hyper-integration of HIV-1. Nature Microbiology, 2020, 5, 1247-1261.	5.9	22
386	Ubiquitin E3 Ligase c-Cbl Is a Host Negative Regulator of Nef Protein of HIV-1. Frontiers in Microbiology, 2020, 11, 597972.	1.5	3
387	Modelling of pathogen-host systems using deeper ORF annotations and transcriptomics to inform proteomics analyses. Computational and Structural Biotechnology Journal, 2020, 18, 2836-2850.	1.9	7
388	A phosphorylation-regulated elF3d translation switch mediates cellular adaptation to metabolic stress. Science, 2020, 370, 853-856.	6.0	68
389	The E3 Ubiquitin-Protein Ligase Cullin 3 Regulates HIV-1 Transcription. Cells, 2020, 9, 2010.	1.8	5
390	Multiplexed Proximity Biotinylation Coupled to Mass Spectrometry for Defining Integrin Adhesion Complexes. Current Protocols in Cell Biology, 2020, 88, e113.	2.3	4
391	Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. Journal of Biological Chemistry, 2020, 295, 15158-15171.	1.6	34
392	How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses, 2020, 12, 888.	1.5	7
393	Retroviral Restriction Factors and Their Viral Targets: Restriction Strategies and Evolutionary Adaptations. Microorganisms, 2020, 8, 1965.	1.6	21
394	HIV-1 Proviral Transcription and Latency in the New Era. Viruses, 2020, 12, 555.	1.5	29
395	Endoplasmic Reticulum Calcium Pumps and Tumor Cell Differentiation. International Journal of Molecular Sciences, 2020, 21, 3351.	1.8	13
396	HSF1 Activation Can Restrict HIV Replication. ACS Infectious Diseases, 2020, 6, 1659-1666.	1.8	6
398	Very-long-chain fatty acid metabolic capacity of 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) promotes replication of hepatitis C virus and related flaviviruses. Scientific Reports, 2020, 10, 4040.	1.6	20
399	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	13.7	3,542
400	Human Virus Transcriptional Regulators. Cell, 2020, 182, 24-37.	13.5	52
401	Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria–human protein interactions. Medical Microbiology and Immunology, 2020, 209, 265-275.	2.6	13
402	A Quantitative Genetic Interaction Map of HIV Infection. Molecular Cell, 2020, 78, 197-209.e7.	4.5	17
403	HIV protease cleaves the antiviral m6A reader protein YTHDF3 in the viral particle. PLoS Pathogens, 2020, 16, e1008305.	2.1	40

	CITATION R	EPORT	
#	Article	IF	CITATIONS
404	A systems approach to infectious disease. Nature Reviews Genetics, 2020, 21, 339-354.	7.7	72
405	The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses, 2020, 12, 436.	1.5	24
406	Deciphering cell–cell interactions and communication from gene expression. Nature Reviews Genetics, 2021, 22, 71-88.	7.7	575
407	HIV p17 enhances T cell proliferation by suppressing autophagy through the p17â€OLA1â€CSK3β axis under nutrient starvation. Journal of Medical Virology, 2021, 93, 3607-3620.	2.5	2
408	Affinity and chemical enrichment strategies for mapping lowâ€abundance protein modifications and proteinâ€interaction networks. Journal of Separation Science, 2021, 44, 310-322.	1.3	6
409	Identifying and Validating MYC:Protein Interactors in Pursuit of Novel Anti-MYC Therapies. Methods in Molecular Biology, 2021, 2318, 45-67.	0.4	0
410	Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. Journal of Proteome Research, 2021, 20, 1133-1152.	1.8	27
411	Mass spectrometryâ€based protein–protein interaction networks for the study of human diseases. Molecular Systems Biology, 2021, 17, e8792.	3.2	96
413	Mass spectrometry-based protein-protein interaction techniques and their applications in studies of DNA damage repair. Journal of Zhejiang University: Science B, 2021, 22, 1-20.	1.3	3
414	Proteomics approaches for the identification of protease substrates during virus infection. Advances in Virus Research, 2021, 109, 135-161.	0.9	5
415	Characterization of an A3G-VifHIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host–Pathogen Complexes. Molecular and Cellular Proteomics, 2021, 20, 100132.	2.5	4
416	Virus systems biology: Proteomics profiling of dynamic protein networks during infection. Advances in Virus Research, 2021, 109, 1-29.	0.9	5
419	Mapping the SARS-CoV-2–Host Protein–Protein Interactome by Affinity Purification Mass Spectrometry and Proximity-Dependent Biotin Labeling: A Rational and Straightforward Route to Discover Host-Directed Anti-SARS-CoV-2 Therapeutics. International Journal of Molecular Sciences, 2021, 22, 532.	1.8	38
420	An Integrated Systems Biology Approach Identifies the Proteasome as A Critical Host Machinery for ZIKV and DENV Replication. Genomics, Proteomics and Bioinformatics, 2021, 19, 108-122.	3.0	7
421	Open Science Resources for the Mass Spectrometry-Based Analysis of SARS-CoV-2. Journal of Proteome Research, 2021, 20, 1464-1475.	1.8	11
422	Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants, 2021, 10, 256.	2.2	37
424	Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells, 2021, 10, 646.	1.8	2
425	Interactions of HIV-1 Capsid with Host Factors and Their Implications for Developing Novel Therapeutics. Viruses, 2021, 13, 417.	1.5	22

#	Article	IF	CITATIONS
427	Current status and future perspectives of computational studies on human–virus protein–protein interactions. Briefings in Bioinformatics, 2021, 22, .	3.2	17
428	InÂvivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell, 2021, 184, 1865-1883.e20.	13.5	153
429	Viral–Host Interactome Analysis Reveals Chicken STAU2 Interacts With Non-structural Protein 1 and Promotes the Replication of H5N1 Avian Influenza Virus. Frontiers in Immunology, 2021, 12, 590679.	2.2	5
430	Discrimination between Functional and Non-functional Cellular Gag Complexes involved in HIV-1 Assembly. Journal of Molecular Biology, 2021, 433, 166842.	2.0	8
432	Viral Interactions with Adaptor-Protein Complexes: A Ubiquitous Trait among Viral Species. International Journal of Molecular Sciences, 2021, 22, 5274.	1.8	6
434	Identification of recombinant Fabs for structural and functional characterization of HIV-host factor complexes. PLoS ONE, 2021, 16, e0250318.	1.1	0
435	The peripheral and core regions of virus-host network of COVID-19. Briefings in Bioinformatics, 2021, 22, .	3.2	3
438	The RNA-Binding Proteins SRP14 and HMGB3 Control HIV-1 Tat mRNA Processing and Translation During HIV-1 Latency. Frontiers in Genetics, 2021, 12, 680725.	1.1	7
439	Discovery of candidate HIV-1 latency biomarkers using an OMICs approach. Virology, 2021, 558, 86-95.	1.1	2
440	Molecular signatures of silencing suppression degeneracy from a complex RNA virus. PLoS Computational Biology, 2021, 17, e1009166.	1.5	3
442	Flavonoids as Promising Antiviral Agents against SARS-CoV-2 Infection: A Mechanistic Review. Molecules, 2021, 26, 3900.	1.7	43
443	Synergistic Chromatin-Modifying Treatments Reactivate Latent HIV and Decrease Migration of Multiple Host-Cell Types. Viruses, 2021, 13, 1097.	1.5	3
444	Human Immunodeficiency Virus Type 1 Vpr Mediates Degradation of APC1, a Scaffolding Component of the Anaphase-Promoting Complex/Cyclosome. Journal of Virology, 2021, 95, e0097120.	1.5	2
445	An atlas of protein-protein interactions across mouse tissues. Cell, 2021, 184, 4073-4089.e17.	13.5	59
446	Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host and Microbe, 2021, 29, 1316-1332.e12.	5.1	39
447	Interactome Analysis of the Nucleocapsid Protein of SARS-CoV-2 Virus. Pathogens, 2021, 10, 1155.	1.2	25
448	Candidate host epigenetic marks predictive for HIV reservoir size, responsiveness to latency reversal, and viral rebound. Aids, 2021, 35, 2269-2279.	1.0	6
449	Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nature Microbiology, 2021, 6, 1319-1333.	5.9	23

#	Article	IF	CITATIONS
450	Interactome Networks of FOSL1 and FOSL2 in Human Th17 Cells. ACS Omega, 2021, 6, 24834-24847.	1.6	6
451	Quantitative Temporal Viromics. Annual Review of Virology, 2021, 8, 159-181.	3.0	5
452	Target Discovery for Host-Directed Antiviral Therapies: Application of Proteomics Approaches. MSystems, 2021, 6, e0038821.	1.7	10
453	Integration of Mass Spectrometry Data for Structural Biology. Chemical Reviews, 2022, 122, 7952-7986.	23.0	36
454	STUB1/CHIP promotes ubiquitination and degradation of HIV-1 Vif to restore the cellular level of APOBEC3G protein. Biochemical and Biophysical Research Communications, 2021, 574, 27-32.	1.0	3
455	A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity. Science, 2021, 374, eabf2911.	6.0	37
457	Tandem Affinity Purification and Mass Spectrometry (TAPâ€MS) for the Analysis of Protein Complexes. Current Protocols in Protein Science, 2019, 96, e84.	2.8	17
458	Human Acute and Chronic Viruses: Host-Pathogen Interactions and Therapeutics. , 2020, , 1-120.		3
459	The TRiC/CCT Chaperonin and Its Role in Uncontrolled Proliferation. Advances in Experimental Medicine and Biology, 2020, 1243, 21-40.	0.8	21
460	Drug Resistance to HIV-1 Protease Inhibitors: Molecular Mechanisms and Substrate Coevolution. , 2017, , 535-544.		5
461	Proteomics Defines Protein Interaction Network of Signaling Pathways. Translational Bioinformatics, 2013, , 17-38.	0.0	1
462	Diverse Mechanisms of Translation Regulation and Their Role in Cancer. , 2014, , 39-71.		2
463	KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Molecular Cell, 2020, 78, 1133-1151.e14.	4.5	26
464	Evolution toward beta common chain receptor usage links the matrix proteins of HIV-1 and its ancestors to human erythropoietin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2021366118.	3.3	4
465	Nef homodimers down-regulate SERINC5 by AP-2–mediated endocytosis to promote HIV-1 infectivity. Journal of Biological Chemistry, 2020, 295, 15540-15552.	1.6	15
466	HIV Rev-isited. Open Biology, 2020, 10, 200320.	1.5	20
467	Pre-infection transcript levels of FAM26F in peripheral blood mononuclear cells inform about overall plasma viral load in acute and post-acute phase after simian immunodeficiency virus infection. Journal of General Virology, 2016, 97, 3400-3412.	1.3	5
468	Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. Journal of General Virology, 2012, 93, 1151-1172.	1.3	8

		CITATION REPORT		
#	Article		IF	CITATIONS
478	Host Factors in Retroviral Integration and the Selection of Integration Target Sites. , 0, ,	1035-1050.		2
479	Efficient SIVcpz replication in human lymphoid tissue requires viral matrix protein adapt of Clinical Investigation, 2012, 122, 1644-1652.	ation. Journal	3.9	44
480	Stem-loop binding protein is a multifaceted cellular regulator of HIV-1 replication. Journa Investigation, 2016, 126, 3117-3129.	al of Clinical	3.9	5
481	enhancedGraphics: a Cytoscape app for enhanced node graphics. F1000Research, 2014	, 3, 147.	0.8	45
482	Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene Insertional Mutagenesis. PLoS Computational Biology, 2016, 12, e1005074.	e-Trap	1.5	52
483	Structural host-microbiota interaction networks. PLoS Computational Biology, 2017, 13	s, e1005579.	1.5	51
484	Brain Transcriptome-Wide Screen for HIV-1 Nef Protein Interaction Partners Reveals Vari Membrane-Associated Proteins. PLoS ONE, 2012, 7, e51578.	ous	1.1	19
485	Investigating the Cellular Distribution and Interactions of HIV-1 Nucleocapsid Protein by Fluorescence Microscopy. PLoS ONE, 2015, 10, e0116921.	Quantitative	1.1	20
486	Uncovering New Pathogen–Host Protein–Protein Interactions by Pairwise Structure ONE, 2016, 11, e0147612.	Similarity. PLoS	1.1	13
487	HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe. PLoS ONE, 2016, 11, o	e0151286.	1.1	15
488	Hepatitis C Virus Protein Interaction Network Analysis Based on Hepatocellular Carcinor 2016, 11, e0153882.	na. PLoS ONE,	1.1	9
489	Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Cullin-3-Rbx1 Complex. PLoS Pathogens, 2016, 12, e1005929.	Hijacking a Host	2.1	59
490	Optimization And ZSPORE Analysis Of Affinity Purification Coupled With Tandem Mass Mammalian Cells. Journal of Proteomics and Genomics Research, 2012, 1, 9-20.	Spectrometry In	0.7	2
491	An Atlas of Protein-Protein Interactions Across Mammalian Tissues. SSRN Electronic Jour	rnal, O, , .	0.4	8
492	Targeting Virus-host Interactions of HIV Replication. Current Topics in Medicinal Chemis 1167-1190.	try, 2015, 16,	1.0	14
493	Manipulation of the host protein acetylation network by human immunodeficiency virus Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 314-25.	s type 1.	2.3	16
494	The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat. ELife, 2013, 2, e00327.		2.8	65
495	How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4. ELife, 2014, 3, e	01754.	2.8	102

#	Article	IF	CITATIONS
496	AFF4 binding to Tat-P-TEFb indirectly stimulates TAR recognition of super elongation complexes at the HIV promoter. ELife, 2014, 3, e02375.	2.8	45
497	Viruses are a dominant driver of protein adaptation in mammals. ELife, 2016, 5, .	2.8	267
498	Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. ELife, 2017, 6, .	2.8	44
499	Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. ELife, 2017, 6, .	2.8	61
500	The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. ELife, 2018, 7, .	2.8	29
501	Cellular Proteo-Transcriptomic Changes in the Immediate Early-Phase of Lentiviral Transduction. Microorganisms, 2021, 9, 2207.	1.6	4
502	Systems-level effects of allosteric perturbations to a model molecular switch. Nature, 2021, 599, 152-157.	13.7	13
504	tRNA Primer Sequestration as an Antiviral Strategy. , 2013, , 205-221.		0
505	Systems Biology. , 2013, , 1-9.		0
506	Cellular Trafficking Mechanisms in the Assembly and Release of HIV. , 2013, , 23-53.		2
507	DDX3, Cofactors, and RNA Export. , 2013, , 1-4.		0
508	Identification and Validation of HIV Cofactors. , 2013, , 1-6.		0
510	Sphingoproteomics: Proteomic Strategies to Examine Sphingolipid Biology. , 2015, , 359-384.		0
511	Viral Fitness in Hosts. , 2015, , 1-11.		0
514	Proteomic Studies of HIV-1., 2016,, 39-58.		0
517	HIV Life Cycle: Overview. , 2018, , 722-730.		0
518	Systems Biology. , 2018, , 1949-1956.		0
519	Viral Fitness in Hosts. , 2018, , 2150-2158.		0

#	Article	IF	CITATIONS
520	Identification and Validation of HIV Cofactors. , 2018, , 1043-1047.		0
521	Cellular Cofactors of HIV as Drug Targets. , 2018, , 253-259.		0
522	DDX3, Cofactors, and RNA Export. , 2018, , 437-439.		0
527	A Structure Informed Atlas of Pan-Viral Interactions Reveals Features of Human Infection. SSRN Electronic Journal, 0, , .	0.4	0
532	Human Gene Functional Network-Informed Prediction of HIV-1 Host Dependency Factors. MSystems, 2020, 5, .	1.7	4
533	Protein–Protein Interaction Networks in Human Disease. RSC Drug Discovery Series, 2020, , 25-48.	0.2	0
536	From Molecular Recognition to the "Vehicles―of Evolutionary Complexity: An Informational Approach. International Journal of Molecular Sciences, 2021, 22, 11965.	1.8	8
537	Comparison of viral RNA–host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Research, 2022, 32, 9-23.	5.7	55
539	Eukaryotic translation initiation factor 3 subunit G promotes human colorectal cancer. American Journal of Translational Research (discontinued), 2019, 11, 612-623.	0.0	6
540	Huntingtin-Interacting Protein 1 Promotes Vpr-Induced G2 Arrest and HIV-1 Infection in Macrophages. Viruses, 2021, 13, 2308.	1.5	3
541	A combined EM and proteomic analysis places HIV-1 Vpu at the crossroads of retromer and ESCRT complexes: PTPN23 is a Vpu-cofactor. PLoS Pathogens, 2021, 17, e1009409.	2.1	0
542	A 3D structural SARS-CoV-2–human interactome to explore genetic and drug perturbations. Nature Methods, 2021, 18, 1477-1488.	9.0	17
544	Comparative Analysis of T-Cell Spatial Proteomics and the Influence of HIV Expression. Molecular and Cellular Proteomics, 2022, 21, 100194.	2.5	2
545	From systems to structure — using genetic data to model protein structures. Nature Reviews Genetics, 2022, 23, 342-354.	7.7	14
546	The biological information flow: From cell theory to a new evolutionary synthesis. BioSystems, 2022, 213, 104631.	0.9	5
547	Next-Generation Sequencing for Confronting Virus Pandemics. Viruses, 2022, 14, 600.	1.5	24
548	A point mutation in HIV-1 integrase redirects proviral integration into centromeric repeats. Nature Communications, 2022, 13, 1474.	5.8	6
549	Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA–miRNA–mRNA Networks Exclusive to HIV-1 Viremic Patients. Viruses, 2022, 14, 683.	1.5	3

#	Article	IF	CITATIONS
551	The E3 ligase TRIM1 ubiquitinates LRRK2 and controls its localization, degradation, and toxicity. Journal of Cell Biology, 2022, 221, .	2.3	8
552	A functional map of HIV-host interactions in primary human T cells. Nature Communications, 2022, 13, 1752.	5.8	27
553	Epigenetic landscape in the kick-and-kill therapeutic vaccine BCN02 clinical trial is associated with antiretroviral treatment interruption (ATI) outcome. EBioMedicine, 2022, 78, 103956.	2.7	5
554	Similarities and Differences between COVID-19-Associated Nephropathy and HIV-Associated Nephropathy. Kidney Diseases (Basel, Switzerland), 2022, 8, 1-12.	1.2	6
555	Spotted Fever Group <i>Rickettsia</i> Trigger Species-Specific Alterations in Macrophage Proteome Signatures with Different Impacts in Host Innate Inflammatory Responses. Microbiology Spectrum, 2021, 9, e0081421.	1.2	4
556	Interactome of SARS-CoV-2 Modulated Host Proteins With Computationally Predicted PPIs: Insights From Translational Systems Biology Studies. Frontiers in Systems Biology, 2022, 2, .	0.5	6
557	Aggresome assembly at the centrosome is driven by CP110–CEP97–CEP290 and centriolar satellites. Nature Cell Biology, 2022, 24, 483-496.	4.6	18
558	The Intricacy of the Viral-Human Protein Interaction Networks: Resources, Data, and Analyses. Frontiers in Microbiology, 2022, 13, 849781.	1.5	2
567	Tag Thy Neighbour: Nanometre-Scale Insights Into Kinetoplastid Parasites With Proximity Dependent Biotinylation. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	1
568	Systems Biology of Virus-Host Protein Interactions: From Hypothesis Generation to Mechanisms of Replication and Pathogenesis. Annual Review of Virology, 2022, 9, .	3.0	5
569	Viral hijacking mechanism in humans through protein–protein interactions. Advances in Protein Chemistry and Structural Biology, 2022, , .	1.0	1
570	HIV-1 exploits the Fanconi anemia pathway for viral DNA integration. Cell Reports, 2022, 39, 110840.	2.9	10
571	Catchet-MS identifies IKZF1-targeting thalidomide analogues as novel HIV-1 latency reversal agents. Nucleic Acids Research, 2022, 50, 5577-5598.	6.5	5
572	Beyond Inhibition: A Novel Strategy of Targeting HIV-1 Protease to Eliminate Viral Reservoirs. Viruses, 2022, 14, 1179.	1.5	8
573	Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chemical Reviews, 2022, 122, 11287-11368.	23.0	38
574	DLX1 and the NuRD complex cooperate in enhancer decommissioning and transcriptional repression. Development (Cambridge), 2022, 149, .	1.2	6
575	DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
576	A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility. Nature Communications, 2022, 13, .	5.8	4

ARTICLE IF CITATIONS # PHILM2Web: A high-throughput database of macromolecular host–pathogen interactions on the Web. 579 1.4 1 Database: the Journal of Biological Databases and Curation, 2022, 2022, . A protein–protein interaction map reveals that the Coxiella burnetii effector CirB inhibits host 2.1 proteasome activity. PLoS Pathogens, 2022, 18, e1010660. Origination of LTR retroelement-derived <i>NYNRIN</i> coincides with therian placental emergence. 581 3.5 2 Molecular Biology and Evolution, 0, , . Upstream of N-Ras (Unr/CSDE1) Interacts with NCp7 and Gag, Modulating HIV-1 IRES-Mediated Translation Initiation. Viruses, 2022, 14, 1798. Binding stoichiometry and structural model of the HIV-1 Rev/importin Î² complex. Life Science Alliance, 583 1.3 3 2022, 5, e202201431. Rapidly evolving viral motifs mostly target biophysically constrained binding pockets of host 584 proteins. Cell Reports, 2022, 40, 111212. 586 Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses, 2022, 14, 1980. 1.5 9 Structure-function analysis of enterovirus protease 2A in complex with its essential host factor 5.8 SETD3. Nature Communications, 2022, 13, . Predicted cellular interactors of the endogenous retrovirus-K protease enzyme. Frontiers in 588 0 0.7 Virology, 0, 2, . Mechanistic insights into protein folding by the eukaryotic chaperonin complex CCT. Biochemical 589 1.6 Society Transactions, 2022, 50, 1403-1414. Open Modification Searching of SARS-CoV-2â€"Human Protein Interaction Data Reveals Novel Viral 591 2.5 5 Modification Sites. Molecular and Cellular Proteomics, 2022, 21, 100425. A network view of human immune system and virus-human interaction. Frontiers in Immunology, 0, 13, . 2.2 KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA–DNA triplexes and HP1 593 4.6 20 binding. Nature Cell Biology, 2022, 24, 1617-1629. Structural Insights into the Mechanism of HIV-1 Tat Secretion from the Plasma Membrane. Journal of Molecular Biology, 2023, 435, 167880. DExD/H-box helicases in HIV-1 replication and their inhibition. Trends in Microbiology, 2023, 31, 393-404. 597 3.53 Inhibition of coronavirus HCoV-OC43 by targeting the eIF4F complex. Frontiers in Pharmacology, 0, 13, . Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite. Journal of 601 1.8 21 Proteome Research, 2023, 22, 615-624. A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. Communications Biology, 2023, 6, .

#	Article	IF	CITATIONS
604	Interactome of Paraoxonase PON2 Reveals New Pathways for Tumor Growth Regulation. Doklady Biochemistry and Biophysics, 2023, 508, 31-36.	0.3	1
605	Analysis of affinity purification-related proteomic data for studying protein–protein interaction networks in cells. Briefings in Bioinformatics, 2023, 24, .	3.2	1
606	Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg?. Viruses, 2023, 15, 712.	1.5	0
607	A Virus-Packageable CRISPR System Identifies Host Dependency Factors Co-Opted by Multiple HIV-1 Strains. MBio, 2023, 14, .	1.8	4
609	HIV-1 Gag Binds the Multi-Aminoacyl-tRNA Synthetase Complex via the EPRS Subunit. Viruses, 2023, 15, 474.	1.5	3
611	The lysine methyltransferase SMYD5 amplifies HIV-1 transcription and is post-transcriptionally upregulated by Tat and USP11. Cell Reports, 2023, 42, 112234.	2.9	5
612	The CARD8 inflammasome in HIV infection. Advances in Immunology, 2023, , 59-100.	1.1	1
613	elF3d: A driver of noncanonical cap–dependent translation of specific mRNAs and a trigger of biological/pathological processes. Journal of Biological Chemistry, 2023, 299, 104658.	1.6	4
614	Computer-aided de novo design and optimization of novel potential inhibitors of HIV-1 Nef protein. Computational Biology and Chemistry, 2023, 104, 107871.	1.1	1
621	Affinity-Purification Combined with Crosslinking Mass Spectrometry for Identification and Structural Modeling of Host–Pathogen Protein–Protein Complexes. Methods in Molecular Biology, 2023, , 181-200.	0.4	0