Tandem polymer solar cells featuring a spectrally match

Nature Photonics 6, 180-185

DOI: 10.1038/nphoton.2011.356

Citation Report

#	Article	IF	CITATIONS
3	High-speed compact silicon digital optical switch with slot structure. Optik, 2011, 122, 955-959.	1.4	3
4	High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer. Applied Physics Letters, 2012, 101, .	1.5	14
5	Minimizing interfacial losses in inverted organic solar cells comprising Al-doped ZnO. Applied Physics Letters, 2012, 100, .	1.5	41
6	Enhanced photocurrent and open-circuit voltage in a 3-layer cascade organic solar cell. Applied Physics Letters, 2012, 101, 143301.	1.5	59
7	Measuring efficiency losses in quantum dot polymer solar cells. , 2012, , .		0
8	Snow cleaning of substrates increases yield of large-area organic photovoltaics. Applied Physics Letters, 2012, 101, 133901.	1.5	29
9	Light trapping with total internal reflection and transparent electrodes in organic photovoltaic devices. Applied Physics Letters, 2012, 101, 163902.	1.5	21
10	Controlled energy shuttling in terpolymers enabling independent optimization of absorption and transport properties in organic solar cell materials. Applied Physics Letters, 2012, 101, 231104.	1.5	1
11	Novel hybrid amorphous/organic tandem junction solar cell. , 2012, , .		0
12	The role of cesium carbonate on the electron injection and transport enhancement in organic layer by admittance spectroscopy. Applied Physics Letters, 2012, 101, .	1.5	37
13	Understanding the effect of ferroelectric polarization on power conversion efficiency of organic photovoltaic devices. Energy and Environmental Science, 2012, 5, 8558.	15.6	64
14	Solution processable low bandgap small molecule donors with naphthalene end-groups for organic solar cells. Synthetic Metals, 2012, 162, 1665-1671.	2.1	20
15	Photoinduced Charge Generation in a Molecular Bulk Heterojunction Material. Journal of the American Chemical Society, 2012, 134, 19828-19838.	6.6	143
16	Semiconducting Monolayer Materials as a Tunable Platform for Excitonic Solar Cells. ACS Nano, 2012, 6, 10082-10089.	7.3	145
17	Temperature Activation of the Photoinduced Charge Carrier Generation Efficiency in Quaterthiophene:C ₆₀ Mixed Films. Journal of Physical Chemistry C, 2012, 116, 25097-25105.	1.5	9
18	Top-down meets bottom-up: organized donor–acceptor heterojunctions for organic solar cells. Journal of Materials Chemistry, 2012, 22, 24297.	6.7	73
19	Degradation and stability of polymer-based solar cells. Journal of Materials Chemistry, 2012, 22, 24265.	6.7	134
20	Themed issue: nanomaterials for energy conversion and storage. Journal of Materials Chemistry, 2012, 22, 24190.	6.7	48

#	Article	IF	Citations
21	Oleamide as a self-assembled cathode buffer layer for polymer solar cells: the role of the terminal group on the function of the surfactant. Journal of Materials Chemistry, 2012, 22, 24067.	6.7	40
22	Towards fabrication of high-performing organic photovoltaics: new donor-polymer, atomic layer deposited thin buffer layer and plasmonic effects. Energy and Environmental Science, 2012, 5, 9803.	15.6	78
23	Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%. Energy and Environmental Science, 2012, 5, 9173.	15.6	138
24	All printed transparent electrodes through an electrical switching mechanism: A convincing alternative to indium-tin-oxide, silver and vacuum. Energy and Environmental Science, 2012, 5, 9467.	15.6	94
25	Design of benzodithiophene-diketopyrrolopyrrole based donor–acceptor copolymers for efficient organic field effect transistors and polymer solar cells. Journal of Materials Chemistry, 2012, 22, 22734.	6.7	64
26	Plasmonic backscattering enhancement for inverted polymer solar cells. Journal of Materials Chemistry, 2012, 22, 22781.	6.7	23
27	Enhanced solar cell performance by replacing benzodithiophene with naphthodithiophene in diketopyrrolopyrrole-based copolymers. Chemical Communications, 2012, 48, 11452.	2.2	71
28	Femtosecond Time-Resolved Fluorescence Study of TiO ₂ -Coated ZnO Nanorods/P3HT Photovoltaic Films. Journal of Physical Chemistry C, 2012, 116, 25248-25256.	1.5	27
29	Studies of the optimization of recombination layers for inverted tandem polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 107, 51-55.	3.0	34
30	Prominent Short-Circuit Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of 8.0%. Chemistry of Materials, 2012, 24, 4766-4772.	3.2	329
31	High performance low band gap polymer solar cells with a non-conventional acceptor. Chemical Communications, 2012, 48, 7616.	2.2	33
32	Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 16345-16351.	6.6	563
33	Semitransparent ZnO/poly(3,4-ethylenedioxythiophene) based hybrid inorganic/organic heterojunction thin film diodes prepared by combined radio-frequency magnetron-sputtering and electrodeposition techniques. Thin Solid Films, 2012, 525, 88-92.	0.8	20
34	Applications of light scattering in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 14982.	1.3	209
35	Effect of MoO3 doping power on the electrical, optical, and structural properties of MoO3-doped In2O3 anodes for organic solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 061507.	0.9	11
36	Aqueous-solution-processed PPV–CdxHg1â^'xTe hybrid solar cells with a significant near-infrared contribution. Journal of Materials Chemistry, 2012, 22, 17827.	6.7	20
37	Polymer-nanoparticle hybrid solar cell. , 2012, , .		1
38	A low band-gap polymer based on unsubstituted benzo[1,2-b:4,5-b′]dithiophene for high performance organic photovoltaics. Chemical Communications, 2012, 48, 6933.	2.2	66

#	ARTICLE	IF	Citations
39	Calcium niobate nanosheets as a novel electron transport material for solution-processed multi-junction polymer solar cells. Journal of Materials Chemistry, 2012, 22, 20443.	6.7	19
40	Novel ladder-type heteroheptacene-based copolymers for bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 16032.	6.7	19
41	All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers. Physical Chemistry Chemical Physics, 2012, 14, 15046.	1.3	16
42	Evolution of polymer photovoltaic performances from subtle chemical structure variations. Physical Chemistry Chemical Physics, 2012, 14, 15127.	1.3	7
43	Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 14932-14944.	6.6	361
44	Plasmon enhanced polymer solar cells by spin-coating Au nanoparticles on indium-tin-oxide substrate. Applied Physics Letters, 2012, 101, 133903.	1.5	27
45	Solution-Processed Bulk-Heterojunction Solar Cells containing Self-Organized Disk-Shaped Donors. ACS Applied Materials & Disk-Shaped Donors.	4.0	30
46	High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols. Physical Chemistry Chemical Physics, 2012, 14, 12094.	1.3	42
47	n-Type Naphthalene Diimide–Biselenophene Copolymer for All-Polymer Bulk Heterojunction Solar Cells. Macromolecules, 2012, 45, 9056-9062.	2.2	123
48	Nanoscale Electro-Optical Properties of Organic Semiconducting Thin Films: From Individual Materials to the Blend. Journal of Physical Chemistry C, 2012, 116, 17919-17927.	1.5	7
49	Self-Assembly of Well-Defined Poly(3-hexylthiophene) Nanostructures toward the Structure–Property Relationship Determination of Polymer Solar Cells. Journal of Physical Chemistry C, 2012, 116, 23858-23863.	1.5	31
50	Efficiency Enhancement of Organic and Thin-Film Silicon Solar Cells with Photochemical Upconversion. Journal of Physical Chemistry C, 2012, 116, 22794-22801.	1.5	167
51	Random benzotrithiophene-based donor–acceptor copolymers for efficient organic photovoltaic devices. Chemical Communications, 2012, 48, 5832.	2.2	111
52	Nonplanar Perylene Diimides as Potential Alternatives to Fullerenes in Organic Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 2405-2408.	2.1	261
53	Solid-State, Polymer-Based Fiber Solar Cells with Carbon Nanotube Electrodes. ACS Nano, 2012, 6, 11027-11034.	7.3	132
54	Highly efficient bifacial transparent organic solar cells with power conversion efficiency greater than 3% and transparency of 50%. Organic Electronics, 2012, 13, 1722-1728.	1.4	35
55	Use of benzothiadiazole–triphenylamine amorphous polymer for reproducible performance of polymer–fullerene bulk-heterojunction solar cells. Organic Electronics, 2012, 13, 1802-1808.	1.4	18
56	Performance characteristics of pentacene-based organic photovoltaic cells. Organic Electronics, 2012, 13, 1809-1818.	1.4	8

#	Article	IF	CITATIONS
57	Synthesis of new near infrared absorption polymers based on thiadiazoloquinoxaline and their solar cell applications. Synthetic Metals, 2012, 162, 1184-1189.	2.1	17
58	Fill factor enhancement of organic solar cells based on a wide bandgap phosphorescent material and C60. Thin Solid Films, 2012, 520, 6653-6657.	0.8	14
59	A star-shaped oligothiophene end-capped with alkyl cyanoacetate groups for solution-processed organic solar cells. Chemical Communications, 2012, 48, 9655.	2.2	70
60	Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 10071-10079.	6.6	530
61	Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy and Environmental Science, 2012, 5, 8208.	15.6	616
62	Solar Cell Efficiency, Self-Assembly, and Dipole–Dipole Interactions of Isomorphic Narrow-Band-Gap Molecules. Journal of the American Chemical Society, 2012, 134, 16597-16606.	6.6	297
63	Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control. Journal of the American Chemical Society, 2012, 134, 13787-13795.	6.6	258
64	Two dimensional photovoltaic copolymers based on new benzothiadiazole acceptors with diphenylamine-vinylene side chains. Polymer Chemistry, 2012, 3, 2933.	1.9	17
65	A Pronounced Dispersion Effect of Crystalline Silicon Nanoparticles on the Performance and Stability of Polymer:Fullerene Solar Cells. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5300-5308.	4.0	9
66	Metal oxides for interface engineering in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 24202.	6.7	331
67	Materials interface engineering for solution-processed photovoltaics. Nature, 2012, 488, 304-312.	13.7	1,000
68	Multijunction organic photovoltaics with a broad spectral response. Physical Chemistry Chemical Physics, 2012, 14, 14548.	1.3	14
69	Improvement of Interfacial Contacts for New Smallâ€Molecule Bulkâ€Heterojunction Organic Photovoltaics. Advanced Materials, 2012, 24, 5368-5373.	11.1	132
70	From Binary to Ternary Solvent: Morphology Fineâ€ŧuning of D/A Blends in PDPP3Tâ€based Polymer Solar Cells. Advanced Materials, 2012, 24, 6335-6341.	11.1	288
71	A Novel Thiophene Derivativeâ€based Conjugated Polymer for Polymer Solar Cells with High Openâ€circuit Voltage. Chinese Journal of Chemistry, 2012, 30, 2219-2224.	2.6	19
72	Effect of branched alkyl chains attached at sp3 silicon of donor–acceptor copolymers on their morphology and photovoltaic properties. Journal of Polymer Science Part A, 2012, 50, 4829-4839.	2.5	11
73	Polymer BHJ solar cell performance tuning by C ₆₀ fullerene derivative alkyl sideâ€chain length. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1562-1566.	2.4	20
74	Solution-Processed Tungsten Oxide as an Effective Anode Buffer Layer for High-Performance Polymer Solar Cells. Journal of Physical Chemistry C, 2012, 116, 18626-18632.	1.5	157

#	Article	IF	Citations
75	Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy and Environmental Science, 2012, 5, 9662.	15.6	705
76	Toward mechanically robust and intrinsically stretchable organic solar cells: Evolution of photovoltaic properties with tensile strain. Solar Energy Materials and Solar Cells, 2012, 107, 355-365.	3.0	154
77	Fine tuning the HOMO energy levels of polythieno [3,4-b] thiophene derivatives by incorporation of thiophene-3,4-dicarboxylate moiety for photovoltaic applications. Synthetic Metals, 2012, 162, 2005-2009.	2.1	10
78	Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells. Organic Electronics, 2012, 13, 2696-2701.	1.4	35
79	Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures. Organic Electronics, 2012, 13, 2733-2740.	1.4	41
80	Cyclopentadithiophene–benzothiadiazole oligomers: Synthesis via direct arylation, X-ray crystallography, optical properties, solution casted field-effect transistor and photovoltaic characteristics. Organic Electronics, 2012, 13, 2967-2974.	1.4	33
81	Solvent extraction induced nano-porous zinc oxide as an electron transport layer for inverted polymer solar cells. Organic Electronics, 2012, 13, 2991-2996.	1.4	8
82	Synthesis and characterization of thieno[3,4-c]pyrrole-4,6-dione and pyrrolo[3,4-c]pyrrole-1,4-dione-based random polymers for photovoltaic applications. Polymer, 2012, 53, 4407-4412.	1.8	24
83	New acceptor-pended conjugated polymers based on 3,6- and 2,7-carbazole for polymer solar cells. Polymer, 2012, 53, 5675-5683.	1.8	31
84	Preparation of polymer–nanocrystals hybrid solar cells through aqueous approaches. Nano Today, 2012, 7, 316-326.	6.2	37
85	Measurements of Efficiency Losses in Blend and Bilayer-Type Zinc Phthalocyanine/C ₆₀ High-Vacuum-Processed Organic Solar Cells. Journal of Physical Chemistry C, 2012, 116, 16384-16390.	1.5	35
86	A 3D star-shaped non-fullerene acceptor for solution-processed organic solar cells with a high open-circuit voltage of 1.18 V. Chemical Communications, 2012, 48, 4773.	2.2	281
87	An Easily Accessible Donorâ^ï∈-Acceptor-Conjugated Small Molecule from a 4,8-Dialkoxybenzo[1,2- <i>b</i> i>i-i>bi>i=i]dithiophene Unit for Efficient Solution-Processed Organic Solar Cells. ACS Applied Materials & Solar Cells.	4.0	34
88	Replacing 2,1,3-benzothiadiazole with 2,1,3-naphthothiadiazole in PCDTBT: towards a low bandgap polymer with deep HOMO energy level. Polymer Chemistry, 2012, 3, 3276.	1.9	27
89	High performance polymeric charge recombination layer for organic tandem solar cells. Energy and Environmental Science, 2012, 5, 9827.	15.6	183
90	Organic photovoltaics. Materials Today, 2012, 15, 554-562.	8.3	391
91	Efficient, bulk heterojunction organic photovoltaic cells based on boron subphthalocyanine chloride-C70. Applied Physics Letters, 2012, 101, .	1.5	63
92	Tandem organic photovoltaics using both solution and vacuum deposited small molecules. Applied Physics Letters, 2012, 101, 063303.	1.5	60

#	Article	IF	CITATIONS
93	Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cells. Polymer Chemistry, 2012, 3, 2649.	1.9	33
94	Synthesis of the pyrrolo[3,2-b]pyrrole-based copolymer with enhanced open circuit voltage. Synthetic Metals, 2012, 162, 2288-2293.	2.1	13
95	Synthesis and Self-Assembly of Thiophene-Based All-Conjugated Amphiphilic Diblock Copolymers with a Narrow Molecular Weight Distribution. Macromolecules, 2012, 45, 5058-5068.	2.2	42
96	Correlation of π-Conjugated Oligomer Structure with Film Morphology and Organic Solar Cell Performance. Journal of the American Chemical Society, 2012, 134, 11064-11067.	6.6	260
97	N-acylation: an effective method for reducing the LUMO energy levels of conjugated polymers containing five-membered lactam units. Chemical Communications, 2012, 48, 6960.	2.2	74
98	Solution-processed vanadium oxide as a hole collection layer on an ITO electrode for high-performance polymer solar cells. Physical Chemistry Chemical Physics, 2012, 14, 14589.	1.3	75
99	o-Quinodimethane-methano [60] fullerene and thieno-o-quinodimethane-methano [60] fullerene as efficient acceptor materials for polymer solar cells. Journal of Materials Chemistry, 2012, 22, 22374.	6.7	55
100	Compositional Dependence of the Open-Circuit Voltage in Ternary Blend Bulk Heterojunction Solar Cells Based on Two Donor Polymers. Journal of the American Chemical Society, 2012, 134, 9074-9077.	6.6	272
101	Development of Solar Cells Based on Synthetic Near-Infrared Absorbing Purpurins 2: Use of Fullerene and Its Derivative As Electron Acceptors for Favorable Charge Separation. Journal of Physical Chemistry C, 2012, 116, 21244-21254.	1.5	18
102	Donor–Acceptor Alternating Copolymer Based on Thermally Converted Isothianaphthene Dimer and Thiazolothiazole Subunits. Journal of Physical Chemistry C, 2012, 116, 17414-17423.	1.5	8
103	Transition metal-catalyzed C–H activation as a route to structurally diverse di(arylthiophenyl)-diketopyrrolopyrroles. Journal of Materials Chemistry, 2012, 22, 21392.	6.7	42
104	Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell. Physical Chemistry Chemical Physics, 2012, 14, 10547.	1.3	15
105	Incremental optimization in donor polymers for bulk heterojunction organic solar cells exhibiting high performance. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1057-1070.	2.4	29
106	Polymer solar cells. Nature Photonics, 2012, 6, 153-161.	15.6	4,041
107	Effects of dihydronaphthyl-based [60]fullerene bisadduct regioisomers on polymer solar cell performance. Chemical Communications, 2012, 48, 8550.	2.2	71
108	Visibly Transparent Polymer Solar Cells Produced by Solution Processing. ACS Nano, 2012, 6, 7185-7190.	7.3	492
109	Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers. Energy and Environmental Science, 2012, 5, 8158.	15.6	189
110	Coâ€Evaporated Bulk Heterojunction Solar Cells with >6.0% Efficiency. Advanced Materials, 2012, 24, 2768-2773.	11.1	149

#	Article	IF	CITATIONS
111	High Efficiency Inorganic/Organic Hybrid Tandem Solar Cells. Advanced Materials, 2012, 24, 4523-4527.	11.1	59
112	Metal Oxide Nanoparticles as an Electronâ€Transport Layer in Highâ€Performance and Stable Inverted Polymer Solar Cells. Advanced Materials, 2012, 24, 5267-5272.	11.1	333
113	Surface Plasmon and Scatteringâ€Enhanced Lowâ€Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Advanced Energy Materials, 2012, 2, 1203-1207.	10.2	160
114	Semiâ€Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency. Advanced Energy Materials, 2012, 2, 1467-1476.	10.2	109
115	A New Terthiopheneâ€Thienopyrrolodione Copolymerâ€Based Bulk Heterojunction Solar Cell with High Openâ€Circuit Voltage. Advanced Energy Materials, 2012, 2, 1397-1403.	10.2	98
116	Solution-processed nickel acetate as hole collection layer for polymer solar cells. Physical Chemistry Chemical Physics, 2012, 14, 14217.	1.3	7 5
117	Facile synthesis of 1-(2,6-diisopropylphenyl)-2,5-di(2-thienyl)pyrrole-based narrow band gap small molecules for solar cell applications. Synthetic Metals, 2013, 176, 96-103.	2.1	11
118	Fine Structural Tuning of Cyanated Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]silole–Oligothiophene Copolymers: Synthesis, Characterization, and Photovoltaic Response. Macromolecules, 2013, 46, 6419-6430.	2.2	37
119	Synthesis of silver quantum dots decorated TiO2 nanotubes and their incorporation in organic hybrid solar cells. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	2
120	A new isoindigo-based molecule with ideal energy levels for solution-processable organic solar cells. Dyes and Pigments, 2013, 98, 11-16.	2.0	59
121	A green, low-cost, and highly effective strategy to enhance the performance of hybrid solar cells: Post-deposition ligand exchange by acetic acid. Solar Energy Materials and Solar Cells, 2013, 117, 329-335.	3.0	21
122	Highly efficient organic tandem solar cells: a follow up review. Energy and Environmental Science, 2013, 6, 2390.	15.6	440
123	Nanochemistry and nanomaterials for photovoltaics. Chemical Society Reviews, 2013, 42, 8304.	18.7	269
124	Semi-crystalline random conjugated copolymers with panchromatic absorption for highly efficient polymer solar cells. Energy and Environmental Science, 2013, 6, 3301.	15.6	165
125	Efficient Polymer Solar Cells Based on Benzothiadiazole and Alkylphenyl Substituted Benzodithiophene with a Power Conversion Efficiency over 8%. Advanced Materials, 2013, 25, 4944-4949.	11.1	306
126	An Efficient Solutionâ€Processed Intermediate Layer for Facilitating Fabrication of Organic Multiâ€Junction Solar Cells. Advanced Energy Materials, 2013, 3, 1597-1605.	10.2	45
127	Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics, 2013, 7, 732-738.	15.6	501
128	Solution processed reduced graphene oxide/metal oxide hybrid electron transport layers for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 9922.	5.2	74

#	Article	IF	CITATIONS
130	Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. Journal of Materials Chemistry A, 2013, 1, 9907.	5.2	235
131	[6,6]â€Phenylâ€C ₆₁ â€Butyric Acid Dimethylamino Ester as a Cathode Buffer Layer for Highâ€Performance Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 1569-1574.	10.2	77
132	Benzodithiophene bridged dimeric perylene diimide amphiphiles as efficient solution-processed non-fullerene small molecules. Polymer Chemistry, 2013, 4, 4631.	1.9	66
133	A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells. Journal of Applied Physics, 2013, 113, .	1.1	12
134	Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy and Environmental Science, 2013, 6, 3022.	15.6	158
135	Alternating Electron Donor–Acceptor Conjugated Polymers Based on Modified Naphthalene Diimide Framework: The Large Enhancement of p-Type Semiconducting Performance upon Solvent Vapor Annealing. Macromolecules, 2013, 46, 5504-5511.	2.2	25
136	Light trapping enhancement of inverted polymer solar cells with a nanostructured scattering rear electrode. Organic Electronics, 2013, 14, 2158-2163.	1.4	36
137	Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells. Organic Electronics, 2013, 14, 657-664.	1.4	67
138	Dicyano-functionalized chlorophyll derivatives with ambipolar characteristic for organic photovoltaics. Organic Electronics, 2013, 14, 1972-1979.	1.4	21
139	Synthesis and Application of Ferroelectric P(VDFâ€TrFE) Nanoparticles in Organic Photovoltaic Devices for High Efficiency. Advanced Energy Materials, 2013, 3, 1581-1588.	10.2	50
140	The case for organic photovoltaics. RSC Advances, 2013, 3, 17633.	1.7	471
141	Competition between morphological attributes in the thermal annealing and additive processing of polymer solar cells. Journal of Materials Chemistry C, 2013, 1, 5023.	2.7	44
142	Control of Crystal Morphology in Monodisperse Polyfluorenes by Solvent and Molecular Weight. Journal of Physical Chemistry B, 2013, 117, 8880-8886.	1.2	14
143	A Seleniumâ€Substituted Lowâ€Bandgap Polymer with Versatile Photovoltaic Applications. Advanced Materials, 2013, 25, 825-831.	11.1	396
144	Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrroleâ€Based Lowâ€Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte Electronâ€Transport Layers. Advanced Materials, 2013, 25, 4783-4788.	11.1	111
145	Fullereneâ€Bisadduct Acceptors for Polymer Solar Cells. Chemistry - an Asian Journal, 2013, 8, 2316-2328.	1.7	148
146	Polythiophenes comprising conjugated pendants toward long-term air-stable inverted polymer solar cells with high open circuit voltages. Journal of Materials Chemistry A, 2013, 1, 8950.	5.2	9
147	Synthesis, Molecular and Photovoltaic Properties of an Indolo[3,2â€ <i>b</i> jindoleâ€Based Acceptorâ€"Donorâ€"Acceptor Small Molecule. European Journal of Organic Chemistry, 2013, 2013, 5076-5084.	1.2	41

#	Article	IF	CITATIONS
148	Towards rational design of organic electron acceptors for photovoltaics: a study based on perylenediimide derivatives. Chemical Science, 2013, 4, 4389.	3.7	242
149	Synthesis and photovoltaic properties of new near infrared absorption polymers based on C and N-bridged dithiophene and diketopyrrolopyrrole units. Journal of Materials Science: Materials in Electronics, 2013, 24, 3029-3035.	1.1	2
150	Spatiallyâ€Resolved Inâ€Situ Structural Study of Organic Electronic Devices with Nanoscale Resolution: The Plasmonic Photovoltaic Case Study. Advanced Materials, 2013, 25, 4760-4765.	11.1	31
151	Significant Enhancement of Polymer Solar Cell Performance via Side-Chain Engineering and Simple Solvent Treatment. Chemistry of Materials, 2013, 25, 3196-3204.	3.2	118
152	High-performance semi-transparent polymer solar cells possessing tandem structures. Energy and Environmental Science, 2013, 6, 2714.	15.6	170
153	Random and V-groove texturing for efficient light trapping in organic photovoltaic cells. Solar Energy Materials and Solar Cells, 2013, 115, 36-41.	3.0	70
154	Solution processed metal-oxides for organic electronic devices. Journal of Materials Chemistry C, 2013, 1, 4796.	2.7	128
155	A new ladder-type benzodi(cyclopentadithiophene)-based donor–acceptor polymer and a modified hole-collecting PEDOT:PSS layer to achieve tandem solar cells with an open-circuit voltage of 1.62 V. Chemical Communications, 2013, 49, 7702.	2.2	26
156	Importance of Optimal Composition in Random Terpolymer-Based Polymer Solar Cells. Macromolecules, 2013, 46, 6806-6813.	2.2	137
157	Development of Large Band-Gap Conjugated Copolymers for Efficient Regular Single and Tandem Organic Solar Cells. Journal of the American Chemical Society, 2013, 135, 13549-13557.	6.6	289
158	Triple junction polymer solar cells. Energy and Environmental Science, 2013, 6, 3150.	15.6	77
159	C–H Arylation Reaction: Atom Efficient and Greener Syntheses of π-Conjugated Small Molecules and Macromolecules for Organic Electronic Materials. Macromolecules, 2013, 46, 8059-8078.	2.2	301
160	Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Progress in Polymer Science, 2013, 38, 1990-2052.	11.8	252
161	A Versatile Fluoroâ€Containing Lowâ€Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells. Advanced Functional Materials, 2013, 23, 5084-5090.	7.8	110
162	Enhanced performance of polymer solar cells through sensitization by a narrow band gap polymer. Solar Energy Materials and Solar Cells, 2013, 118, 30-35.	3.0	49
163	Towards high performance inverted polymer solar cells. Current Opinion in Chemical Engineering, 2013, 2, 125-131.	3.8	7
164	Solution-Processed DPP-Based Small Molecule that Gives High Photovoltaic Efficiency with Judicious Device Optimization. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2033-2039.	4.0	163
165	Amine group functionalized fullerene derivatives as cathode buffer layers for high performance polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 9624.	5.2	69

#	Article	IF	CITATIONS
166	Imideâ€functionalized naphthodithiophene based donorâ€acceptor conjugated polymers for solar cells. Journal of Polymer Science Part A, 2013, 51, 3818-3828.	2.5	13
167	Matching Photocurrents of Subâ€cells in Doubleâ€unction Organic Solar Cells via Coupling Between Surface Plasmon Polaritons and Microcavity Modes. Advanced Optical Materials, 2013, 1, 809-813.	3.6	40
168	Synthesis and characterization of new indeno[1,2-b]indole-co-benzothiadiazole-based ¨∈-conjugated ladder type polymers for bulk heterojunction polymer solar cells. Polymer, 2013, 54, 4883-4893.	1.8	35
169	Efficient polymer solar cells with a solution-processed gold chloride as an anode interfacial modifier. Applied Physics Letters, 2013, 102, 163302.	1.5	13
170	Ruthenium(ii) containing supramolecular polymers with cyclopentadithiophene–benzothiazole conjugated bridges for photovoltaic applications. Polymer Chemistry, 2013, 4, 5701.	1.9	28
171	Synthesis and Photovoltaic Properties of D–A Copolymers Based on 11,12â€Difluorodibenzo[a,c]phenazine Acceptor Unit. Macromolecular Chemistry and Physics, 2013, 214, 1772-1779.	1.1	13
172	Optimization of Polymer Solar Cells Based on the Conjugated Copolymer of Poly(phenylenevinyleneâ€ <i>alt</i> altfi>â€4,7â€diphenylâ€2,1,3â€benzothiadiazole) (PPâ€DBT). Macromolecular Chand Physics, 2013, 214, 1836-1844.	em is try	3
173	The Effect of Additive on the Performance and Phase Separation of Benzo[1,2â€ <i>b</i> :3,4â€ <i>b</i> :6013,2014, 985-993.	1.1	2
174	Synthesis of pyridine-capped diketopyrrolopyrrole and its use as a building block of low band-gap polymers for efficient polymer solar cells. Chemical Communications, 2013, 49, 8495.	2.2	67
175	Thermo-cleavable fullerene materials as buffer layers for efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 11170.	5.2	29
176	Correlation between structure and photovoltaic performance of a series of furan bridged donor–acceptor conjugated polymers. Journal of Materials Chemistry A, 2013, 1, 12128.	5.2	25
177	N,N′-diphenylperylene diimide functioning as a sensitizing light absorber based on excitation transfer for organic thin-film solar cells. Organic Electronics, 2013, 14, 464-468.	1.4	6
178	Fabrication of nanostructured ZnO film as a hole-conducting layer of organic photovoltaic cell. Nanoscale Research Letters, 2013, 8, 240.	3.1	6
179	Synthesis and simultaneously enhanced photovoltaic property of poly $[4,4,9,9$ -tetra $(4$ -octyloxyphenyl)-2,7-indaceno $[1,2$ -b:5,6-bâ \in 2] dithiophene-alt-2,5-thieno $[3,2$ -b]thiophene]. Polymer, 2013, 54, 607-613.	1.8	19
180	Inverted polymer solar cells integrated with small molecular electron collection layer. Organic Electronics, 2013, 14, 1844-1851.	1.4	14
181	Nanoparticle-based plasmonic organic photovoltaic devices. Materials Today, 2013, 16, 133-146.	8.3	369
182	Transferable Graphene Oxide by Stamping Nanotechnology: Electronâ€Transport Layer for Efficient Bulkâ€Heterojunction Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 2874-2880.	7.2	112
183	Lowâ€Cost Solar Cell Based on a Composite of Silicon Nanowires and a Highly Conductive Nonphotoactive Polymer. Chemistry - A European Journal, 2013, 19, 17273-17276.	1.7	4

#	Article	IF	CITATIONS
184	Novel Hybrid Amorphous/Organic Tandem Junction Solar Cell. IEEE Journal of Photovoltaics, 2013, 3, 295-299.	1.5	16
185	Organic solar cell energy harvesting, control, optimization, and commericalization — Challenges and opportunities., 2013,,.		0
186	New soluble porphyrin bearing a pyridinylethynyl group as donor for bulk heterojunction solar cells. Organic Electronics, 2013, 14, 1811-1819.	1.4	31
187	Efficiency and stability enhancement of polymer solar cells using multi-stacks of C60/LiF as cathode buffer layer. Organic Electronics, 2013, 14, 469-474.	1.4	17
188	Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Scientific Reports, 2013, 3, 3356.	1.6	542
189	Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. Scientific Reports, 2013, 3, .	1.6	215
190	A structure–property–performance investigation of perylenediimides as electron accepting materials in organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 18894.	1.3	32
191	Simultaneously Grasping and Selfâ€Organizing Photoactive Polymers for Highly Reproducible Organic Solar Cells with Improved Efficiency. Advanced Energy Materials, 2013, 3, 1018-1024.	10.2	21
192	Synthesis and characterization of two carbazole-based alternating copolymers with 4-nitrophenylcyanovinylene pendant groups and their use as electron donors for bulk heterojunction solar cells. RSC Advances, 2013, 3, 18821.	1.7	5
193	Low band gap polymers for photovoltaic device with photocurrent response wavelengths over 1000nm. Polymer, 2013, 54, 6501-6509.	1.8	62
194	Donor–acceptor copolymers containing quinacridone and benzothiadiazole for thin film transistors. Journal of Materials Chemistry C, 2013, 1, 2021.	2.7	25
195	Tetrafluorene-9,9′-bifluorenylidene as a non-fullerene type electron acceptor for P3HT-based bulk-heterojunction polymer solar cells. Solar Energy Materials and Solar Cells, 2013, 116, 275-282.	3.0	32
196	<i>N</i> -Acyldithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrole-Based Low-Band-Gap Conjugated Polymer Solar Cells with Amine-Modified [6,6]-Phenyl-C61-butyric Acid Ester Cathode Interlayers. ACS Applied Materials & Diterfaces, 2013, 5, 10995-11003.	4.0	25
197	Low-Temperature, Solution-Processed Hole Selective Layers for Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1100-1107.	4.0	43
198	Electrical properties of the interfaces in bulk heterojunction organic solar cells investigated by electrochemical impedance spectroscopy. Electrochimica Acta, 2013, 109, 221-225.	2.6	75
199	Solution-processed indacenodithiophene-based small molecule for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 14214.	5.2	49
200	SiC ₂ Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cells. Nano Letters, 2013, 13, 5431-5436.	4.5	205
201	Isostructural, Deeper Highest Occupied Molecular Orbital Analogues of Poly(3-hexylthiophene) for High-Open Circuit Voltage Organic Solar Cells. Chemistry of Materials, 2013, 25, 4239-4249.	3.2	55

#	Article	IF	CITATIONS
202	Self-assembly of interfacial and photoactive layers via one-step solution processing for efficient inverted organic solar cells. Nanoscale, 2013, 5, 11587.	2.8	48
203	Enhanced Photovoltaic Performance of Diketopyrrolopyrrole (DPP)-Based Polymers with Extended π Conjugation. Journal of Physical Chemistry C, 2013, 117, 9550-9557.	1.5	103
204	High-performance polymer photovoltaics based on rationally designed fullerene acceptors. Solar Energy Materials and Solar Cells, 2013, 118, 171-178.	3.0	25
205	Extremely stable all solution processed organic tandem solar cells with TiO2/GO recombination layer under continuous light illumination. Nanoscale, 2013, 5, 11051.	2.8	26
206	Low-LUMO 56Ï€-electron fullerene acceptors bearing electron-withdrawing cyano groups for small-molecule organic solar cells. Organic Electronics, 2013, 14, 3306-3311.	1.4	13
207	Side-Chain Engineering of Isoindigo-Containing Conjugated Polymers Using Polystyrene for High-Performance Bulk Heterojunction Solar Cells. Chemistry of Materials, 2013, 25, 4874-4880.	3.2	136
208	Performance of PCDTBT:PC ₇₀ BM Organic Photovoltaic Cells Fabricated Using Dipolar and Common Dopants as Processing Additives. Molecular Crystals and Liquid Crystals, 2013, 581, 18-24.	0.4	3
209	Understanding the mechanism of poly(3-hexylthiophene)-b-poly(4-vinylpyridine) as a nanostructuring compatibilizer for improving the performance of poly(3-hexylthiophene)/ZnO-based hybrid solar cells. Journal of Materials Chemistry A, 2013, 1, 10881.	5.2	13
210	Unified assay of adverse effects from the varied nanoparticle hybrid in polymer–fullerene organic photovoltaics. Solar Energy Materials and Solar Cells, 2013, 116, 153-170.	3.0	16
211	Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells. Nanoscale Research Letters, 2013, 8, 434.	3.1	7
212	Nearâ€Infrared Photovoltaic Performance of Conjugated Polymers Containing Thienoisoindigo Acceptor Units. Macromolecular Chemistry and Physics, 2013, 214, 2388-2397.	1.1	22
213	Synthesis and characterization of new electron-withdrawing moiety thieno[2,3-c]pyrrole-4,6-dione-based molecules for small molecule solar cells. Dyes and Pigments, 2013, 97, 141-147.	2.0	14
214	Thieno[3,4- <i>b</i>]thiophene Acceptors with Alkyl, Aryl, Perfluoroalkyl, and Perfluorophenyl Pendants for Donor–Acceptor Low Bandgap Polymers. Macromolecules, 2013, 46, 8873-8881.	2.2	46
215	Effect of structure on the solubility and photovoltaic properties of bis-diketopyrrolopyrrole molecules. Journal of Materials Chemistry A, 2013, 1, 15150.	5.2	35
216	Electrostatic Self-Assembled Metal Oxide/Conjugated Polyelectrolytes as Electron-Transporting Layers for Inverted Solar Cells with High Efficiency. Journal of Physical Chemistry C, 2013, 117, 24804-24814.	1.5	49
217	Additives for morphology control in high-efficiency organic solar cells. Materials Today, 2013, 16, 326-336.	8.3	483
218	Charge Carrier Generation and Transport in a Polyfluorene Copolymer With Electron Donating Side Groups Doped With PCBM. Journal of Physical Chemistry C, 2013, 117, 15871-15878.	1.5	2
219	Design and synthesis of soluble dibenzosuberane-substituted fullerene derivatives for bulk-heterojunction polymer solar cells. Organic Electronics, 2013, 14, 2184-2191.	1.4	16

#	Article	IF	CITATIONS
220	Relating Chemical Structure to Device Performance via Morphology Control in Diketopyrrolopyrrole-Based Low Band Gap Polymers. Journal of the American Chemical Society, 2013, 135, 19248-19259.	6.6	121
221	Power efficiency enhancement of solution-processed small-molecule solar cells based on squaraine via thermal annealing and solvent additive methods. Solar Energy Materials and Solar Cells, 2013, 109, 262-269.	3.0	29
222	Aqueous-solution-processed hybrid solar cells with good thermal and morphological stability. Solar Energy Materials and Solar Cells, 2013, 109, 254-261.	3.0	26
223	Fine tuning of the PCDTBT-OR:PC ₇₁ BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics. Nanotechnology, 2013, 24, 484004.	1.3	10
224	ITO Interface Modifiers Can Improve $\langle i \rangle V \langle i \rangle \langle sub \rangle OC \langle sub \rangle$ in Polymer Solar Cells and Suppress Surface Recombination. Journal of Physical Chemistry Letters, 2013, 4, 4038-4044.	2.1	78
225	Surface Plasmon Enhanced Organic Solar Cells with a MoO ₃ Buffer Layer. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12847-12853.	4.0	58
226	Diketopyrrolopyrrole–Thiophene–Benzothiadiazole Random Copolymers: An Effective Strategy To Adjust Thin-Film Crystallinity for Transistor and Photovoltaic Properties. Macromolecules, 2013, 46, 9211-9219.	2.2	52
227	Universal Correlation between Fibril Width and Quantum Efficiency in Diketopyrrolopyrrole-Based Polymer Solar Cells. Journal of the American Chemical Society, 2013, 135, 18942-18948.	6.6	305
228	Optimal Sunlight Harvesting in Photovoltaics and Photosynthesis. Journal of Physical Chemistry C, 2013, 117, 26896-26904.	1.5	6
229	Enhancing Photovoltaic Performance of Copolymers Containing Thiophene Unit with D–A Conjugated Side Chain by Rational Molecular Design. Macromolecules, 2013, 46, 9575-9586.	2.2	66
230	Near-Infrared Absorbing Thienoisoindigo-Based Copolymers for Organic Photovoltaics. Journal of Physical Chemistry C, 2013, 117, 26859-26870.	1.5	35
231	Long lived photoexcitation dynamics in π-conjugated polymer and fullerene blended films. Organic Electronics, 2013, 14, 2058-2064.	1.4	16
232	Device Modelling of Organic Bulk Heterojunction Solar Cells. Topics in Current Chemistry, 2013, 352, 279-324.	4.0	23
233	The effect of controllable thin film crystal growth on the aggregation of a novel high panchromaticity squaraine viable for organic solar cells. Solar Energy Materials and Solar Cells, 2013, 112, 202-208.	3.0	31
234	Sample preparation for scanning Kelvin probe microscopy studies on cross sections of organic solar cells. AIP Advances, 2013, 3, .	0.6	15
235	Synthesis and photovoltaic properties of donor–acceptor polymers incorporating a structurally-novel pyrrole-based imide-functionalized electron acceptor moiety. Polymer, 2013, 54, 6125-6132.	1.8	30
236	Enhancing the performance of P3HT:ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer. Solar Energy Materials and Solar Cells, 2013, 110, 63-68.	3.0	55
237	A hybrid solar cell fabricated using amorphous silicon and a fullerene derivative. Physical Chemistry Chemical Physics, 2013, 15, 19913.	1.3	7

#	Article	IF	CITATIONS
238	Electrospun Organic Nanofiber Electronics and Photonics. Macromolecular Materials and Engineering, 2013, 298, 475-486.	1.7	83
239	Engineering optoelectronically active macromolecules for polymer-based photovoltaic and thermoelectric devices. Current Opinion in Chemical Engineering, 2013, 2, 294-301.	3.8	28
240	Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics. Frontiers of Optoelectronics, 2013, 6, 418-428.	1.9	1
241	Surface Modification of a ZnO Electron-Collecting Layer Using Atomic Layer Deposition to Fabricate High-Performing Inverted Organic Photovoltaics. ACS Applied Materials & Interfaces, 2013, 5, 8718-8723.	4.0	58
242	A Direct Evidence of Morphological Degradation on a Nanometer Scale in Polymer Solar Cells. Advanced Materials, 2013, 25, 6760-6764.	11.1	176
243	The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers. Journal of Materials Chemistry C, 2013, 1, 7526.	2.7	38
244	Tuning zinc oxide/organic energy level alignment using mixed triethoxysilane monolayers. Journal of Materials Chemistry C, 2013, 1, 5935.	2.7	18
245	Taking the place of perylene diimide: perylene tetracarboxylic tetraester as a building block for polymeric acceptors to achieve higher open circuit voltage in all-polymer bulk heterojunction solar cells. Polymer Chemistry, 2013, 4, 5612.	1.9	52
246	The investigation of donor-acceptor compatibility in bulk-heterojunction polymer systems. Applied Physics Letters, 2013, 103, .	1.5	43
248	Origin of Reduced Bimolecular Recombination in Blends of Conjugated Polymers and Fullerenes. Advanced Functional Materials, 2013, 23, 4262-4268.	7.8	76
249	Dithienylbenzodipyrrolidone: New Acceptor for Donor–Acceptor Low Band Gap Polymers. Macromolecules, 2013, 46, 7232-7238.	2.2	57
250	25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Advanced Materials, 2013, 25, 6642-6671.	11.1	1,055
251	Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells. Advanced Materials, 2013, 25, 6868-6873.	11.1	92
252	Interface Control of Semiconducting Metal Oxide Layers for Efficient and Stable Inverted Polymer Solar Cells with Open-Circuit Voltages over 1.0 Volt. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9015-9025.	4.0	64
253	New solution-processable small molecules as hole-transporting layer in efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 14253.	5.2	26
254	Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials. Energy and Environmental Science, 2013, 6, 3407.	15.6	96
255	Compression-Induced Open Circuit Voltage Increase in All-Polymer Solar Cells with Lithium Fluoride Nanolayers. ACS Sustainable Chemistry and Engineering, 2013, 1, 1280-1285.	3.2	4
256	Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices. Journal of Materials Chemistry A, 2013, 1, 14538.	5.2	86

#	Article	IF	Citations
257	Revealing the Dynamics of Charge Carriers in Polymer:Fullerene Blends Using Photoinduced Time-Resolved Microwave Conductivity. Journal of Physical Chemistry C, 2013, 117, 24085-24103.	1.5	219
258	A star-shaped electron acceptor based on $5,5\hat{a}\in^2$ -bibenzothiadiazole for solution processed solar cells. Journal of Materials Chemistry A, 2013, 1, 14627.	5.2	38
259	Impact of molecular solvophobicity vs. solvophilicity on device performances of dimeric perylene diimide based solution-processed non-fullerene organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 11375.	1.3	43
260	Carbazoleâ€Substituted Triphenylamine and Diketopyrrolopyrrole Alternating Copolymer for Photovoltaic Cells. Macromolecular Chemistry and Physics, 2013, 214, 2136-2143.	1.1	14
261	2D π-conjugated benzo[1,2-b:4,5-b′]dithiophene- and quinoxaline-based copolymers for photovoltaic applications. RSC Advances, 2013, 3, 24543.	1.7	34
262	Effect of Processing Additives on PCDTBT:PC ₆₀ BM Based Organic Photovoltaic Cells. Molecular Crystals and Liquid Crystals, 2013, 586, 95-103.	0.4	2
263	New interfacial materials for rapid hole-extraction in organic photovoltaic cells. Journal of Materials Chemistry A, 2013, 1, 4077.	5.2	41
264	A photovoltaic system composed of a keplerate-type polyoxometalate and a water-soluble poly(p-phenylenevinylene) derivative. Journal of Materials Chemistry A, 2013, 1, 6727.	5.2	26
265	Using volatile additives to alter the morphology and performance of active layers in thin-film molecular photovoltaic devices incorporating bulk heterojunctions. Chemical Society Reviews, 2013, 42, 9105.	18.7	69
266	Pyridinium salt-based molecules as cathode interlayers for enhanced performance in polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 3387.	5.2	43
267	Enhanced crystallinity and film retention of P3HT thin-films for efficient organic solar cells by use of preformed nanofibers in solution. Journal of Materials Chemistry C, 2013, 1, 7748.	2.7	34
268	Mechanism of Primary Charge Photogeneration in Polyfluorene Copolymer/Fullerene Blends and Influence of the Donor/Acceptor Lowest Unoccupied Molecular Orbital Level Offset. Journal of Physical Chemistry C, 2013, 117, 735-749.	1.5	24
269	Evolved structure of thiazolothiazole based small molecules towards enhanced efficiency in organic solar cells. Organic Electronics, 2013, 14, 599-606.	1.4	45
270	Cooperative Plasmonic Effect of Ag and Au Nanoparticles on Enhancing Performance of Polymer Solar Cells. Nano Letters, 2013, 13, 59-64.	4.5	540
271	Factors Limiting Device Efficiency in Organic Photovoltaics. Advanced Materials, 2013, 25, 1847-1858.	11.1	550
272	Side-chain substitution of poly(3-hexylthiophene) (P3HT) by PCBM via postpolymerization: an intramolecular hybrid of donor and acceptor. Polymer Chemistry, 2013, 4, 550-557.	1.9	24
273	Conjugated Thiophene-Containing Polymer Zwitterions: Direct Synthesis and Thin Film Electronic Properties. Macromolecules, 2013, 46, 344-351.	2.2	49
274	Natural Photosynthetic Carotenoids for Solution-Processed Organic Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2013, 117, 804-811.	1.5	40

#	Article	IF	CITATIONS
275	Donor and acceptor levels of organic photovoltaic compounds from first principles. Physical Chemistry Chemical Physics, 2013, 15, 685-695.	1.3	36
276	Inverted polymer solar cells with a solution-processed cesium halide interlayer. Organic Electronics, 2013, 14, 267-272.	1.4	29
277	Open circuit voltage tuning through molecular design in hydrazone end capped donors for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 2631.	5.2	16
278	Efficient small molecule bulk heterojunction solar cells with high fill factors via introduction of π-stacking moieties as end group. Journal of Materials Chemistry A, 2013, 1, 1801-1809.	5.2	96
279	An Aâ€"Dâ€"A small molecule based on the 3,6-dithienylcarbazole electron donor (D) unit and nitrophenyl acrylonitrileelectron acceptor (A) units for solution processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 2297-2306.	5.2	38
280	Efficient polymer solar cells based on a broad bandgap D–A copolymer of "zigzag― naphthodithiophene and thieno[3,4-c]pyrrole-4,6-dione. Journal of Materials Chemistry A, 2013, 1, 1540-1543.	5.2	55
281	Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor–acceptor polymers. Journal of Materials Chemistry A, 2013, 1, 1785-1793.	5.2	32
282	The synthesis and photovoltaic properties of A–D–A-type small molecules containing diketopyrrolopyrrole terminal units. New Journal of Chemistry, 2013, 37, 632-639.	1.4	51
283	Fluoro-functionalization of vinylene units in a polyarylenevinylene for polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 715-727.	5.2	27
284	New benzotrithiophene derivative with a broad band gap for high performance polymer solar cells. Polymer Chemistry, 2013, 4, 57-60.	1.9	50
285	Increased open circuit voltage in a fluorinated quinoxaline-based alternating conjugated polymer. Polymer Chemistry, 2013, 4, 1161-1166.	1.9	52
286	Synthesis and photovoltaic properties of dithienosilole-based copolymers. Journal of Materials Science: Materials in Electronics, 2013, 24, 536-541.	1.1	4
287	Synthesis and Photovoltaic Effect in Dithieno[2,3â€ <i>d</i> à€²]Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiopheneâ€Based CAdvanced Materials, 2013, 25, 838-843.	Co njug ated	l P ot9 mers.
288	Wide band gap copolymers based on phthalimide: synthesis, characterization, and photovoltaic properties with 3.70% efficiency. Polymer Chemistry, 2013, 4, 2174.	1.9	28
289	Synthesis of new n-type isoindigo copolymers. Polymer Chemistry, 2013, 4, 1836.	1.9	91
290	Synthesis and characterization of copolymers based on benzotriazoles and different atom-bridged dithiophenes for efficient solar cells. Polymer Chemistry, 2013, 4, 2496.	1.9	17
291	Inkjet printing of organic electronics $\hat{a}\in$ "comparison of deposition techniques and state-of-the-art developments. Journal of Materials Chemistry C, 2013, 1, 1910.	2.7	219
292	A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013, 4, 1446.	5.8	2,612

#	Article	IF	CITATIONS
293	Limits on the Fill Factor in Organic Photovoltaics: Distinguishing Nongeminate and Geminate Recombination Mechanisms. Journal of Physical Chemistry Letters, 2013, 4, 803-808.	2.1	102
294	The role of acceptor-rich domain in optoelectronic properties of photovoltaic diodes based on polymer blends. Chemical Physics Letters, 2013, 583, 92-96.	1.2	3
295	Interfacial layer for efficiency improvement of solution-processed small molecular solar cells. Solar Energy Materials and Solar Cells, 2013, 118, 135-140.	3.0	20
296	Synthesis and Photovoltaic Properties of Poly(5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole-9,9-dioctylfluorene). Journal of Materials Science and Technology, 2013, 29, 1214-1218.	5.6	4
297	Cathodic multilayer transparent electrodes for ITO-free inverted organic solar cells. Organic Electronics, 2013, 14, 1477-1482.	1.4	17
298	Cascade-type excitation energy relay in organic thin-film solar cells. Organic Electronics, 2013, 14, 814-820.	1.4	11
299	Pyrrolo[3,2-b]pyrrole based small molecules as donor materials for OPVs. Solar Energy Materials and Solar Cells, 2013, 112, 120-126.	3.0	10
300	Insight into lamellar crystals of monodisperse polyfluorenes – Fractionated crystallization and the crystal's stability. Polymer, 2013, 54, 1251-1258.	1.8	14
301	Star-shaped chromophores based on a benzodithiophene fused truxene core for solution processed organic solar cells. Dyes and Pigments, 2013, 99, 366-373.	2.0	22
302	Inverted polymer solar cells with a boron-doped zinc oxide layer deposited by metal organic chemical vapor deposition. Solar Energy Materials and Solar Cells, 2013, 117, 610-616.	3.0	19
303	Enhancement of the power conversion efficiency for organic photovoltaic cells with a Liq/bathocuproine electron transport bilayer. Thin Solid Films, 2013, 547, 116-119.	0.8	6
304	Properties of interlayer for organic photovoltaics. Materials Today, 2013, 16, 424-432.	8.3	168
305	An X-ray fluorescence study on the segregation of Cs and I in an inverted organic solar cell. Organic Electronics, 2013, 14, 3190-3194.	1.4	8
306	Reversed organic–inorganic hybrid tandem solar cells for improved interfacial series resistances and balanced photocurrents. Synthetic Metals, 2013, 175, 103-107.	2.1	8
307	The role of cesium fluoride as an n-type dopant on electron transport layer in organic light-emitting diodes. Organic Electronics, 2013, 14, 839-844.	1.4	14
308	A new alcohol-soluble electron-transporting molecule for efficient inverted polymer solar cells. Organic Electronics, 2013, 14, 2164-2171.	1.4	9
309	Improved efficiency and stability of inverted polymer solar cells with a solution-processed BPhen interlayer and polystyrene beads. Organic Electronics, 2013, 14, 2555-2563.	1.4	18
310	Buffer and anode-integrated WO3-doped In2O3 electrodes for PEDOT:PSS-free organic photovoltaics. Organic Electronics, 2013, 14, 1305-1312.	1.4	17

#	Article	IF	CITATIONS
311	Electrodeposited NiO anode interlayers: Enhancement of the charge carrier selectivity in organic solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 564-568.	3.0	32
312	Modular Establishment of a Diketopyrrolopyrroleâ€Based Polymer Library via Pdâ€Catalyzed Direct C–H (Hetero)arylation: a Highly Efficient Approach to Discover Lowâ€Bandgap Polymers. Macromolecular Rapid Communications, 2013, 34, 522-527.	2.0	73
313	New –(D–A1–D–A2)n– type conjugated polymers for photovoltaic applications: consensus between low band-gap and low HOMO energy level. Tetrahedron, 2013, 69, 3419-3424.	1.0	13
314	What Makes Fullerene Acceptors Special as Electron Acceptors in Organic Solar Cells and How to Replace Them. Advanced Materials, 2013, 25, 1038-1041.	11.1	273
315	Probing Electric Fields in Polymer Tandem and Single Junction Cells with Electroabsorption Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 4374-4382.	1.5	7
316	Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells. Advanced Energy Materials, 2013, 3, 718-723.	10.2	92
317	Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement. Particulate Science and Technology, 2013, 31, 427-442.	1,1	150
318	Efficient Polymer Solar Cells on Opaque Substrates with a Laminated PEDOT:PSS Top Electrode. Advanced Energy Materials, 2013, 3, 782-787.	10.2	84
319	Semiâ€Random Twoâ€Acceptor Polymers: Elucidating Electronic Trends Through Multiple Acceptor Combinations. Macromolecular Chemistry and Physics, 2013, 214, 681-690.	1.1	28
320	Structure, band gap and energy level modulations for obtaining efficient materials in inverted polymer solar cells. Organic Electronics, 2013, 14, 635-643.	1.4	28
321	Indium tin oxide modified by titanium dioxide nanoparticles dispersed in poly(N-vinylpyrrolidone) for use as an electron-collecting layer in organic solar cells with an inverted structure. Journal of Materials Research, 2013, 28, 535-540.	1,2	4
322	Effect of synthetic accessibility on the commercial viability of organic photovoltaics. Energy and Environmental Science, 2013, 6, 711.	15.6	288
323	Poly(3-hexylthiophene-co-benzothiadiazole) (THBT) as an electron-accepting polymer for normal and inverted type all-polymer solar cells. Polymer Chemistry, 2013, 4, 2053.	1.9	60
324	Seamless polymer solar cell module architecture built upon self-aligned alternating interfacial layers. Energy and Environmental Science, 2013, 6, 1152.	15.6	28
325	Efficient Small Bandgap Polymer Solar Cells with High Fill Factors for 300 nm Thick Films. Advanced Materials, 2013, 25, 3182-3186.	11.1	295
326	Design and synthesis of indole-substituted fullerene derivatives with different side groups for organic photovoltaic devices. Organic Electronics, 2013, 14, 682-692.	1.4	16
327	A highly crystalline low band-gap polymer consisting of perylene and diketopyrrolopyrrole for organic photovoltaic cells. Chemical Communications, 2013, 49, 3248.	2.2	31
328	Conjugated random copolymers of benzodithiophene–benzooxadiazole–diketopyrrolopyrrole with full visible light absorption for bulk heterojunction solar cells. Polymer Chemistry, 2013, 4, 5321.	1.9	79

#	Article	IF	Citations
329	Domain Purity, Miscibility, and Molecular Orientation at Donor/Acceptor Interfaces in High Performance Organic Solar Cells: Paths to Further Improvement. Advanced Energy Materials, 2013, 3, 864-872.	10.2	283
330	Efficient organic solar cells with solution-processed carbon nanosheets as transparent electrodes. Applied Physics Letters, 2013, 102, 043304.	1.5	31
331	Enhanced power conversion efficiencies in bulk heterojunction solar cells based on conjugated polymer with isoindigo side chain. Chemical Communications, 2013, 49, 3857.	2.2	43
332	Allâ€Solutionâ€Processed Tandem Solar Cells. Energy Technology, 2013, 1, 212-216.	1.8	13
333	Plasmonicâ€Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier. Advanced Materials, 2013, 25, 2385-2396.	11.1	420
334	A new donor–acceptor–donor ternary copolymer pending additional diketopyrrolopyrrole unit in the side of a donor for efficient solar cells. Organic Electronics, 2013, 14, 1510-1515.	1.4	16
335	A Novel Benzo[1,2- <i>b</i> i>i>i+,5- <i>b</i> a€²]dithiophene-Based Conjugated Polymer with a Pendant Diketopyrrolopyrrole Unit for High-Performance Solar Cells. Macromolecules, 2013, 46, 113-118.	2.2	74
336	Influences of charge of conjugated polymer electrolytes cathode interlayer for bulk-heterojunction polymer solar cells. Organic Electronics, 2013, 14, 1551-1561.	1.4	22
337	Efficient Tandem and Triple-Junction Polymer Solar Cells. Journal of the American Chemical Society, 2013, 135, 5529-5532.	6.6	498
338	Self-Organized Hole Transport Layers Based on Polythiophene Diblock Copolymers for Inverted Organic Solar Cells with High Efficiency. Chemistry of Materials, 2013, 25, 897-904.	3.2	57
339	Imidazoliumâ€Substituted Polythiophenes as Efficient Electron Transport Materials Improving Photovoltaic Performance. Advanced Energy Materials, 2013, 3, 1180-1185.	10.2	55
340	Efficient and thermally stable polymer solar cells based on a 54Ï€-electron fullerene acceptor. Journal of Materials Chemistry A, 2013, 1, 5562.	5.2	30
341	Significant improvement of photovoltaic performance by embedding thiophene in solution-processed star-shaped TPA-DPP backbone. Journal of Materials Chemistry A, 2013, 1, 5747.	5.2	69
342	Improved efficiency of solution processed small molecules organic solar cells using thermal annealing. Organic Electronics, 2013, 14, 1562-1569.	1.4	26
343	Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. Journal of Computational Chemistry, 2013, 34, 1611-1619.	1.5	130
344	Quantification and Validation of the Efficiency Enhancement Reached by Application of a Retroreflective Light Trapping Texture on a Polymer Solar Cell. Advanced Energy Materials, 2013, 3, 1013-1017.	10.2	49
345	Manipulating open-circuit voltage in an organic photovoltaic device via a phenylalkyl side chain. Chemical Communications, 2013, 49, 4543.	2.2	17
346	Toward Highâ€Performance Semiâ€Transparent Polymer Solar Cells: Optimization of Ultraâ€Thin Light Absorbing Layer and Transparent Cathode Architecture. Advanced Energy Materials, 2013, 3, 417-423.	10.2	141

#	Article	IF	CITATIONS
347	Triple Junction Polymer Solar Cells for Photoelectrochemical Water Splitting. Advanced Materials, 2013, 25, 2932-2936.	11.1	67
348	All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells. Solar Energy Materials and Solar Cells, 2013, 112, 157-162.	3.0	80
349	Highly Efficient and Bendable Organic Solar Cells with Solutionâ€Processed Silver Nanowire Electrodes. Advanced Functional Materials, 2013, 23, 4177-4184.	7.8	308
350	Design of the Solutionâ€Processed Intermediate Layer by Engineering for Inverted Organic Multi junction Solar Cells. Advanced Energy Materials, 2013, 3, 301-307.	10.2	57
351	Energy Level Alignment and Subâ€Bandgap Charge Generation in Polymer:Fullerene Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 2434-2439.	11.1	35
352	Enhanced Efficiency Parameters of Solutionâ€Processable Smallâ€Molecule Solar Cells Depending on ITO Sheet Resistance. Advanced Energy Materials, 2013, 3, 1161-1165.	10.2	94
353	Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring. Analytica Chimica Acta, 2013, 778, 70-78.	2.6	33
354	New alternating electron donor–acceptor conjugated polymers entailing (E)-[4,4′-biimidazolylidene]-5,5′(1H,1′H)-dione moieties. Polymer Chemistry, 2013, 4, 5283.	1.9	19
355	Application of sputter-deposited amorphous and anatase TiO2 as electron-collecting layers in inverted organic photovoltaics. Organic Electronics, 2013, 14, 1715-1719.	1.4	18
356	Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38, 1909-1928.	11.8	246
357	Phenylâ€1,3,5â€Trithienylâ€Diketopyrrolopyrrole: A Molecular Backbone Potentially Affording High Efficiency for Solutionâ€Processed Smallâ€Molecule Organic Solar Cells through Judicious Molecular Design. Chemistry - an Asian Journal, 2013, 8, 2407-2416.	1.7	22
358	Detection and role of trace impurities in high-performance organic solar cells. Energy and Environmental Science, 2013, 6, 1513.	15.6	157
359	Small D–π–A Systems with <i>o</i> à€Phenyleneâ€Bridged Accepting Units as Active Materials for Organic Photovoltaics. Chemistry - A European Journal, 2013, 19, 9948-9960.	1.7	80
360	Synthesis of polymers containing 1,2,4â€oxadiazole as an electronâ€acceptor moiety in their main chain and their solar cell applications. Journal of Polymer Science Part A, 2013, 51, 2131-2141.	2.5	29
361	Indacenodithieno[3,2-b]thiophene-based broad bandgap polymers for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 5220.	1.9	42
362	Organic photovoltaics based on a crosslinkable PCPDTBT analogue; synthesis, morphological studies, solar cell performance and enhanced lifetime. Journal of Materials Chemistry A, 2013, 1, 7370.	5.2	25
363	Tailored Electronic Structure and Optical Properties of Conjugated Systems through Aggregates and Dipole–Dipole Interactions. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4685-4695.	4.0	38
365	Tuning the Stability of Graphene Layers by Phthalocyanineâ€Based oPPV Oligomers Towards Photo―and Redoxactive Materials. Small, 2013, 9, 2348-2357.	5.2	25

#	Article	IF	CITATIONS
366	Remarkable Order of a High-Performance Polymer. Nano Letters, 2013, 13, 2522-2527.	4.5	120
367	Electrochemical Route to Fabricate Filmâ€Like Conjugated Microporous Polymers and Application for Organic Electronics. Advanced Materials, 2013, 25, 3443-3448.	11.1	212
368	PDTâ€Sâ€T: A New Polymer with Optimized Molecular Conformation for Controlled Aggregation and ⟨i⟩Ï∈⟨ i⟩â€"⟨i⟩Ï∈⟨ i⟩ Stacking and Its Application in Efficient Photovoltaic Devices. Advanced Materials, 2013, 25, 3449-3455.	11.1	190
369	Polymer Bulk Heterojunction Solar Cells with PEDOT:PSS Bilayer Structure as Hole Extraction Layer. ChemSusChem, 2013, 6, 1070-1075.	3.6	26
370	Influences of the Nonâ€Covalent Interaction Strength on Reaching High Solidâ€State Order and Device Performance of a Low Bandgap Polymer with Axisymmetrical Structural Units. Advanced Materials, 2013, 25, 2445-2451.	11.1	129
371	Synthesis of 5 <i>H</i> -Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>)]pyran as an Electron-Rich Building Block for Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules, 2013, 46, 4734-4734.	2.2	17
372	Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 8972.	1.3	575
373	Manipulating Backbone Structure to Enhance Low Band Gap Polymer Photovoltaic Performance. Advanced Energy Materials, 2013, 3, 930-937.	10.2	62
374	N-Octyl-2,7-dithia-5-azacyclopenta[a]pentalene-4,6-dione-Based Low Band Gap Polymers for Efficient Solar Cells. Macromolecules, 2013, 46, 3861-3869.	2.2	24
375	Enhanced carrier mobility and photon-harvesting property by introducing Au nano-particles in bulk heterojunction photovoltaic cells. Organic Electronics, 2013, 14, 1931-1938.	1.4	25
376	Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit. Journal of the American Chemical Society, 2013, 135, 8484-8487.	6.6	675
377	An efficient interconnection unit composed of electron-transporting layer/metal/p-doped hole-transporting layer for tandem organic photovoltaics. Applied Physics Letters, 2013, 102, 203903.	1.5	13
378	Strong electron acceptor additive for achieving efficient polymer solar cells with P3HT: PCBM films by a quick drying process. Synthetic Metals, 2013, 168, 43-47.	2.1	18
379	Novel conjugated polymers with planar backbone bearing acenaphtho[1,2-b]quinoxaline acceptor subunit for polymer solar cells. Synthetic Metals, 2013, 175, 21-29.	2.1	17
380	10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub ells. Advanced Materials, 2013, 25, 3973-3978.	11.1	419
381	Ultraâ€High Voltage Multijunction Organic Solar Cells for Lowâ€Power Electronic Applications. Advanced Energy Materials, 2013, 3, 239-244.	10.2	34
382	Active Layer-Incorporated, Spectrally Tuned Au/SiO ₂ Core/Shell Nanorod-Based Light Trapping for Organic Photovoltaics. ACS Nano, 2013, 7, 3815-3822.	7.3	134
383	Polymer Solar Cells: An Overview. Macromolecular Symposia, 2013, 327, 128-149.	0.4	22

#	ARTICLE	IF	CITATIONS
384	Imaging the Electric Potential within Organic Solar Cells. Advanced Functional Materials, 2013, 23, 5854-5860.	7.8	41
385	The state of organic solar cells—A meta analysis. Solar Energy Materials and Solar Cells, 2013, 119, 84-93.	3.0	154
386	Modulation of electronic properties of Ï€â€conjugated copolymers derived from naphtho[1,2â€b:5,6â€b′]dithiophene donor unit: A structureâ€property relationship study. Journal of Polymer Science Part A, 2013, 51, 2948-2958.	2.5	11
387	The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 364-374.	10.2	412
388	Oligofuran-containing molecules for organic electronics. Journal of Materials Chemistry C, 2013, 1, 4358.	2.7	77
389	A new two-dimensional oligothiophene end-capped with alkyl cyanoacetate groups for highly efficient solution-processed organic solar cells. Chemical Communications, 2013, 49, 4409.	2.2	66
390	Bi-hierarchical nanostructures of donor–acceptor copolymer and fullerene for high efficient bulk heterojunction solar cells. Energy and Environmental Science, 2013, 6, 1938.	15.6	101
391	Enhanced performance of organic photovoltaics by TiO2-interlayer with precisely controlled thickness between ZnO electron collecting and active layers. Applied Surface Science, 2013, 279, 380-383.	3.1	21
392	Synthesis of 5 <i>H</i> -Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>) pyran as an Electron-Rich Building Block for Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules, 2013, 46, 3384-3390.	2.2	299
393	Successive solvent-treated PEDOT:PSS electrodes for flexible ITO-free organic photovoltaics. Solar Energy Materials and Solar Cells, 2013, 114, 104-109.	3.0	64
394	Investigation of Phase Separation in Bulk Heterojunction Solar Cells via Supramolecular Chemistry. Journal of Physical Chemistry C, 2013, 117, 9129-9136.	1.5	12
395	Design and Synthesis of Copolymers of Indacenodithiophene and Naphtho[1,2- <i>c</i> :5,6- <i>c</i>]bis(1,2,5-thiadiazole) for Polymer Solar Cells. Macromolecules, 2013, 46, 3950-3958.	2.2	69
396	Self-Organizing Mesomorphic Diketopyrrolopyrrole Derivatives for Efficient Solution-Processed Organic Solar Cells. Chemistry of Materials, 2013, 25, 2549-2556.	3.2	126
397	Dithienosilole-bridged small molecules with different alkyl group substituents for organic solar cells exhibiting high open-circuit voltage. Journal of Materials Chemistry A, 2013, 1, 7622.	5.2	38
398	A Series of New Mediumâ€Bandgap Conjugated Polymers Based on Naphtho[1,2â€ɛ:5,6â€ɛ]bis(2â€octylâ€[1,2,3]triazole) for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 3683-3688.	11.1	125
399	Highâ€Performance Polymer Solar Cells Using an Optically Enhanced Architecture. Advanced Optical Materials, 2013, 1, 37-42.	3.6	27
400	Synthesis of N-[4-Octylphenyl]dithieno[3,2-b: $2\hat{a}\in^2$, $3\hat{a}\in^2$ -d]pyrrole-based broad absorbing polymers and their photovoltaic applications. Polymer, 2013, 54, 3198-3205.	1.8	19
401	Rod–coil and all-conjugated block copolymers for photovoltaic applications. Progress in Polymer Science, 2013, 38, 791-844.	11.8	125

#	Article	IF	CITATIONS
402	Hybrid Phototransistors Based on Bulk Heterojunction Films of Poly(3-hexylthiophene) and Zinc Oxide Nanoparticle. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1385-1392.	4.0	7 5
403	Integrated Energy-Harvesting System by Combining the Advantages of Polymer Solar Cells and Thermoelectric Devices. Journal of Physical Chemistry C, 2013, 117, 24685-24691.	1.5	54
404	Optimization of Temperature-Mediated Organic Semiconducting Crystals on Soft Polymer-Treated Gate Dielectrics. Journal of Physical Chemistry C, 2013, 117, 25290-25297.	1.5	9
405	Reduced-bandgap triphenylamine- <i>alt</i> -benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene copolymers pending benzothiadiazole or diketopyrrolopyrrole units for efficient polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 4103-4110.	2.5	15
406	Cascade organic solar cells with energy-level-matched three photon-harvesting layers. Chemical Physics Letters, 2013, 557, 88-91.	1.2	15
407	Polymer bulk heterojunction photovoltaics employing a squaraine donor additive. Organic Electronics, 2013, 14, 1081-1085.	1.4	30
408	Platinum nanoparticles modified indium tin oxide anodes for enhancing the efficiency and stability of organic solar cells. Electrochimica Acta, 2013, 87, 277-282.	2.6	5
409	3-Fluoro-4-hexylthiophene as a Building Block for Tuning the Electronic Properties of Conjugated Polythiophenes. Journal of Organic Chemistry, 2013, 78, 1497-1503.	1.7	36
410	Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells. Journal of Materials Chemistry A, 2013, 1, 6446.	5.2	122
411	Influence of annealing temperature on the nanostructure and performance of polymer: Polymer solar cells. Journal of the Korean Physical Society, 2013, 63, 1368-1372.	0.3	5
412	Small molecule dye rubrene doped organic bulk heterojunction solar cells. Thin Solid Films, 2013, 539, 278-283.	0.8	10
413	Synthesis, characterization and photovoltaic performances of $D\hat{a}\in A$ copolymers based on BDT and DBPz: the largely improved performance caused by additional thiophene blocks. Journal of Materials Chemistry A, 2013, 1, 4508.	5.2	31
414	New Alkylfuranyl-Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> 倲]dithiophene-Based Donor–Acceptor Polymers for Highly Efficient Solar Cells. Macromolecules, 2013, 46, 1368-1375.	2.2	73
415	A low bandgap polymer based on isoindigo and bis(dialkylthienyl)benzodithiophene for organic photovoltaic applications. Journal of Polymer Science Part A, 2013, 51, 94-100.	2.5	33
416	An ester-functionalized diketopyrrolopyrrole molecule with appropriate energy levels for application in solution-processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 105-111.	5.2	63
417	Efficient Polymer Solar Cells with a High Open Circuit Voltage of 1 Volt. Advanced Functional Materials, 2013, 23, 885-892.	7.8	180
418	Recent Advances in the Development of Semiconducting DPPâ€Containing Polymers for Transistor Applications. Advanced Materials, 2013, 25, 1859-1880.	11.1	793
419	Simultaneous Openâ€Circuit Voltage Enhancement and Shortâ€Circuit Current Loss in Polymer: Fullerene Solar Cells Correlated by Reduced Quantum Efficiency for Photoinduced Electron Transfer. Advanced Energy Materials, 2013, 3, 85-94.	10.2	77

#	Article	IF	CITATIONS
420	Recombination in Polymer:Fullerene Solar Cells with Openâ€Circuit Voltages Approaching and Exceeding 1.0 V. Advanced Energy Materials, 2013, 3, 220-230.	10.2	212
421	Synthesis of a terpolymer containing fluorene, side chain conjugated thiophene and benzothiadiazole and its applications in photovoltaic devices. Journal of Applied Polymer Science, 2013, 128, 3250-3255.	1.3	8
422	A thieno[3,4-f]isoindole-5,7-dione based copolymer for polymer solar cells. Polymer Chemistry, 2013, 4, 536-541.	1.9	15
423	Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures. Optics Express, 2013, 21, A841.	1.7	10
424	Spectral response tuning using an optical spacer in broad-band organic solar cells. Applied Physics Letters, 2013, 102, 013302.	1.5	8
425	Dynamics of exciton dissociation in donor-acceptor polymer heterojunctions. Journal of Chemical Physics, 2013, 138, 164905.	1.2	30
426	Pyramid shape of polymer solar cells: a simple solution to triple efficiency. Journal Physics D: Applied Physics, 2013, 46, 305101.	1.3	4
427	Ultrafast Transient Spectroscopy of Polymer/Fullerene Blends for Organic Photovoltaic Applications. Materials, 2013, 6, 897-910.	1.3	20
428	The Influence of Alkoxy Substitutions on the Properties of Diketopyrrolopyrrole-Phenyl Copolymers for Solar Cells. Materials, 2013, 6, 3022-3034.	1.3	8
429	Effect of Selenophene in a DPP Copolymer Incorporating a Vinyl Group for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 524-528.	11.1	230
430	Morphology study on ternary blend polymer solar cell to achieve improved device performance. Proceedings of SPIE, 2013, , .	0.8	0
431	Doping effects on charge transport in organic materials. , 2013, , 102-142.		1
432	Electronic States of IC ₆₀ BA and PC ₇₁ BM. Chinese Physics Letters, 2013, 30, 117103.	1.3	2
433	Improved Charge-Collection Efficiency in PCDTBT:PC 71 BM-Based Solar Cells via CS 2 Solvent Vapor Annealing. Chinese Physics Letters, 2013, 30, 068801.	1.3	5
434	Current-voltage analysis of annealing effects of poly(3-hexlythiophene) and phenyl-C61-butyric acid methyl ester organic solar cells. Journal of Photonics for Energy, 2013, 3, 032098.	0.8	4
435	Structural and Optoelectronic Properties of CdSe Tetrapod Nanocrystals for Bulk Heterojunction Solar Cell Applications. International Journal of Photoenergy, 2013, 2013, 1-7.	1.4	11
436	Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]pyrrole and Benzothiadiazoleâ€Based Semicrystalline Copolymer for Photovoltaic Devices with Indene ₆₀ Bisadduct. Macromolecular Chemistry and Physics, 2013, 214, 2083-2090.	or 1.1	7
437	Synthesis and characterization of naphtho[2,1-b:3,4-b′]dithiophene-based polymers with extended Ĭ€-conjugation systems for use in bulk heterojunction polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 4742-4751.	2.5	13

#	Article	IF	CITATIONS
438	Fullerene concentration dependent bimolecular recombination in organic photovoltaic films. Applied Physics Letters, 2013, 102, .	1.5	20
439	Diketopyrrolopyrrole-based conjugated polymers and small molecules for organic ambipolar transistors and solar cells. Journal of Polymer Science Part A, 2013, 51, 4241-4260.	2.5	87
440	<i>In-situ</i> monitoring of molecular vibrations of two organic semiconductors in photovoltaic blends and their impact on thin film morphology. Applied Physics Letters, 2013, 102, .	1.5	24
441	Efficient inverted polymer solar cells with thermal-evaporated and solution-processed small molecular electron extraction layer. Applied Physics Letters, 2013, 102, 133303.	1.5	10
442	Dâ€A Conjugated Polymers Based on Tetracyclic Acceptor Units: Synthesis and Application in Organic Solar Cells. Macromolecular Chemistry and Physics, 2013, 214, 2054-2060.	1.1	8
443	High-performance and air-processed polymer solar cells by room-temperature drying of the active layer. Applied Physics Letters, 2013, 102, 043307.	1.5	11
444	Performance enhancement of polymer solar cells with luminescent down-shifting sensitizer. Applied Physics Letters, 2013, 103, 043302.	1.5	16
445	Evidence for space-charge-limited conduction in organic photovoltaic cells at open-circuit conditions. Physical Review B, 2013, 87, .	1.1	17
446	Ligand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells. Applied Physics Letters, 2013, 102, 103302.	1.5	12
447	Microstructures and photovoltaic properties of C ₆₀ based solar cells with copper oxides, CuInS ₂ , phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton diffusion blocking layers. Materials Technology, 2013, 28, 21-39.	1.5	52
448	Flexible Organic Solar Cells Based on Spin-Coated Blend Films of a Phenylene-Thiophene Oligomer Derivative and PCBM. Molecular Crystals and Liquid Crystals, 2013, 578, 78-87.	0.4	9
449	Highly efficient and stable solid-state luminescent nanohybrids: Precise architecture and enhancement mechanism. Journal of Materials Research, 2013, 28, 1061-1069.	1.2	4
450	Unprecedented High Local Charge-carrier Mobility in P3HT Revealed by Direct and Alternating Current Methods. Chemistry Letters, 2013, 42, 19-21.	0.7	29
451	Novel hybrid amorphous/organic tandem junction solar cell. , 2013, , .		0
452	Additiveâ€Free Bulkâ€Heterojuction Solar Cells with Enhanced Power Conversion Efficiency, Comprising a Newly Designed Selenopheneâ€Thienopyrrolodione Copolymer. Advanced Functional Materials, 2013, 23, 1297-1304.	7.8	93
453	Thieno[3,2â€ <i>b</i>]thiopheneâ€diketopyrrolopyrrole Containing Polymers for Inverted Solar Cells Devices with High Short Circuit Currents. Advanced Functional Materials, 2013, 23, 5647-5654.	7.8	78
454	Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials, 2013, 3, 22-47.	1.9	46
456	Elucidating Interactions and Conductivity of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids. PLoS ONE, 2013, 8, e68970.	1.1	16

#	ARTICLE	IF	CITATIONS
459	Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots. New Journal of Physics, 2014, 16, 045019.	1.2	13
460	Polymer Solar Cells with Micrometerâ€Scale Engraved Active Nanolayers Fabricated by Pressing with Metal Molds. Energy Technology, 2014, 2, 713-720.	1.8	2
461	Modeling and simulation of energetically disordered organic solar cells. Journal of Applied Physics, 2014, 116, .	1.1	34
462	Current voltage analysis of silver nanoparticle doped organic photovoltaic devices. , 2014, , .		0
463	Influence of Additive in the Photoactive Layer on the Performance of Organic Photovoltaics. Molecular Crystals and Liquid Crystals, 2014, 602, 104-110.	0.4	0
464	UV-ozone-treated MoO 3 as the hole-collecting buffer layer for high-efficiency solution-processed SQ:PC 71 BM photovoltaic devices. Chinese Physics B, 2014, 23, 038405.	0.7	1
465	Higher LUMO Level Endohedral Fullerene and Fullerene Bisadduct Acceptors for Polymer Solar Cells. , 2014, , 417-431.		0
466	Morphology Development in Amorphous Polymer:Fullerene Photovoltaic Blend Films During Solution Casting. Advanced Functional Materials, 2014, 24, 659-667.	7.8	55
467	Tailoring Dispersion and Aggregation of Au Nanoparticles in the BHJ Layer of Polymer Solar Cells: Plasmon Effects versus Electrical Effects. ChemSusChem, 2014, 7, 3452-3458.	3.6	12
468	Optimal construction parameters of electrosprayed trilayer organic photovoltaic devices. Journal Physics D: Applied Physics, 2014, 47, 045106.	1.3	11
469	Benzodithiophene and benzotrithiophene-based conjugated polymers for organic thin-film transistors application: Impact of conjugated- and acyl-side chain. Organic Electronics, 2014, 15, 2608-2615.	1.4	11
470	Performance of Solution Processed Organic Photovoltaic Cells Using A-D-A Type Small Molecular Donors. Molecular Crystals and Liquid Crystals, 2014, 598, 135-143.	0.4	2
471	Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review. Materials, 2014, 7, 2411-2439.	1.3	56
472	A nanocomposite interconnecting layer for tandem small molecular organic photovoltaic cells. Applied Physics Letters, 2014, 104, .	1.5	5
473	The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 aggregation in films. Applied Physics Letters, 2014, 105, 191605.	1.5	4
474	Effects of thermal annealing on photoluminescence spectra in Ï∈-conjugated polymer film: evidence for dual emission by temperature dependent measurements. Proceedings of SPIE, 2014, , .	0.8	0
475	Optimal design of organic–inorganic hybrid tandem solar cell based on aâ€6i:H and organic photovoltaics for high efficiency. Micro and Nano Letters, 2014, 9, 881-883.	0.6	11
476	Plasmonic ITO-free polymer solar cell. Optics Express, 2014, 22, A438.	1.7	17

#	Article	IF	CITATIONS
477	CHAPTER 9. Active Layer Limitations and Non-geminate Recombination in Polymer–Fullerene Bulk Heterojunction Solar Cells. RSC Energy and Environment Series, 0, , 287-323.	0.2	0
478	Conjugated polymers with polar side chains in bulk heterojunction solar cell devices. Polymer International, 2014, 63, 22-30.	1.6	9
479	A Depletionâ€Free, Ionic, Selfâ€Assembled Recombination Layer for Tandem Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1301226.	10.2	28
480	Thieno[3,2-b]thiophene-substituted benzodithiophene in donor-acceptor type semiconducting copolymers: A feasible approach to improve performances of organic photovoltaic cells. Journal of Polymer Science Part A, 2014, 52, 3608-3616.	2.5	16
481	Strategic Design of Three-Dimensional (3D) Urchin-Like Pt–Ni Nanoalloys: How This Unique Nanostructure Boosts the Bulk Heterojunction Polymer Solar Cells Efficiency to 8.48%. Chemistry of Materials, 2014, 26, 7029-7038.	3.2	13
482	Pyrrolo[3,4-c]pyrrole-1,3-dione-based large band gap polymers containing benzodithiophene derivatives for highly efficient simple structured polymer solar cells. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.5	9
483	Organic and Hybrid Solar Cells. , 2014, , .		18
484	Communication: Charge-transfer rate constants in zinc-porphyrin-porphyrin-derived dyads: A Fermi golden rule first-principles-based study. Journal of Chemical Physics, 2014, 141, 121102.	1.2	31
485	Efficient optical absorption enhancement in organic solar cells by using a 2-dimensional periodic light trapping structure. Applied Physics Letters, 2014, 104, 243904.	1.5	13
486	Significant Enhancement in Built-in Potential and Charge Carrier Collection of Organic Solar Cells Layer. Chinese Journal of Chemical Physics, 2014, 27, 593-599.	0.6	3
487	Solution-Processed Parallel Tandem Polymer Solar Cells Using Silver Nanowires as Intermediate Electrode. ACS Nano, 2014, 8, 12632-12640.	7.3	34
488	Efficient microwave-mediated synthesis of fullerene acceptors for organic photovoltaics. RSC Advances, 2014, 4, 63200-63207.	1.7	19
489	Photophysics of Organometallic Platinum(II) Derivatives of the Diketopyrrolopyrrole Chromophore. Journal of Physical Chemistry A, 2014, 118, 11735-11743.	1.1	36
490	Non-toxic, colloidal ZnS-AglnS <inf>2</inf> nanoparticles for organic-inorganic hybrid photovoltaics. , 2014, , .		0
491	Enhanced Photovoltaic Performance of Amorphous Copolymers Based on Dithienosilole and Dioxocycloalkene-annelated Thiophene. Chemistry of Materials, 2014, 26, 6971-6978.	3.2	32
492	Synthesis and Photovoltaic Properties of Moderate Band Gap Diketopyrrolopyrrole Based Small Molecules for Solution Processed Organic Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 598, 163-170.	0.4	1
493	A Conjugated Random Copolymer of Benzodithiopheneâ€Difluorobenzeneâ€Diketopyrrolopyrrole with Full Visibleâ€Light Absorption for Bulkâ€Heterojunction Solar Cells. Macromolecular Chemistry and Physics, 2014, 215, 2119-2124.	1.1	4
494	High-performance inverted polymer solar cells based on thin copper film. Journal of Photonics for Energy, 2014, 5, 057206.	0.8	4

#	Article	IF	CITATIONS
495	Continuous-wave photoinduced absorption studies in long lived photoexcitation of π-conjugated polymer and fullerene blended films. Proceedings of SPIE, 2014, , .	0.8	0
496	MoO ₃ /Ag/Al/ZnO intermediate layer for inverted tandem polymer solar cells. Chinese Physics B, 2014, 23, 038802.	0.7	14
497	Interfacial Layers in Organic Solar Cells. , 2014, , 121-176.		4
498	Reduced optical loss in mechanically stacked multi-junction organic solar cells exhibiting complementary absorptions. Optics Express, 2014, 22, A481.	1.7	5
499	Parameter free calculation of the subgap density of states in poly(3-hexylthiophene). Faraday Discussions, 2014, 174, 255-266.	1.6	29
500	Organic Photovoltaicsâ€"Quo Vadis?. Springer Series in Materials Science, 2014, , 427-453.	0.4	0
501	Synthesis characterization and bulk-heterojunction photovoltaic applications of new naphtho[1,2- <i>b</i> 5,6- <i>b</i> ê<²]dithiophene–quinoxaline containing narrow band gap D–A conjugated polymers. Polymer Chemistry, 2014, 5, 132-143.	1.9	21
502	Modeling and simulation of bulk heterojunction polymer solar cells. Solar Energy Materials and Solar Cells, 2014, 127, 67-86.	3.0	60
503	A new polymer from fluorinated benzothiadiazole and alkoxylphenyl substituted benzo[1,2-b:4,5-b′]dithiophene: Synthesis and photovoltaic applications. Synthetic Metals, 2014, 187, 201-208.	2.1	13
504	Dinaphtho-s-indacene-based copolymers for inverted organic solar cells with high open-circuit voltages. Polymer, 2014, 55, 2262-2270.	1.8	5
505	Effects of Fullerene Bisadduct Regioisomers on Photovoltaic Performance. Advanced Functional Materials, 2014, 24, 158-163.	7.8	104
506	Annealing Effect of ZnO on the Performance of Inverted Organic Photovoltaic Devices. Journal of Materials Science and Technology, 2014, 30, 197-202.	5.6	12
507	High-efficiency inverted tandem polymer solar cells with step-Al-doped MoO3 interconnection layer. Solar Energy Materials and Solar Cells, 2014, 120, 744-750.	3.0	17
508	Large active area inverted tandem polymer solar cell with high performance via insertion of subnano-scale silver layer. Solar Energy Materials and Solar Cells, 2014, 120, 728-734.	3.0	12
509	How to design low bandgap polymers for highly efficient organic solar cells. Materials Today, 2014, 17, 11-15.	8.3	209
510	Controlling Solutionâ€Phase Polymer Aggregation with Molecular Weight and Solvent Additives to Optimize Polymerâ€Fullerene Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1301733.	10.2	194
511	Solvent polarity and nanoscale morphology in bulk heterojunction organic solar cells: A case study. Journal of Applied Physics, 2014, 115, 104302.	1,1	5
512	Enhanced Photovoltaic Performance by Modulating Surface Composition in Bulk Heterojunction Polymer Solar Cells Based on PBDTTTâ€C‶/PC ₇₁ BM. Advanced Materials, 2014, 26, 4043-4049.	11.1	203

#	Article	IF	CITATIONS
513	Achieving High Efficiency of PTB7â€Based Polymer Solar Cells via Integrated Optimization of Both Anode and Cathode Interlayers. Advanced Energy Materials, 2014, 4, 1301771.	10.2	102
514	Vapor-Phase Polymerization of Nanofibrillar Poly(3,4-ethylenedioxythiophene) for Supercapacitors. ACS Nano, 2014, 8, 1500-1510.	7.3	217
515	A diketopyrrolopyrrole molecule end-capped with a furan-2-carboxylate moiety: the planarity of molecular geometry and photovoltaic properties. Journal of Materials Chemistry A, 2014, 2, 6589.	5.2	42
516	Quantification of Nano―and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, <i>J</i> < _{sc} , and FF in Polymer:Fullerene Solar Cells. Advanced Materials, 2014, 26, 4234-4241.	11.1	127
517	Inverted Tandem Polymer Solar Cells with Polyethylenimineâ€Modified MoO _X /Al ₂ O ₃ :ZnO Nanolaminate as the Charge Recombination Layers. Advanced Energy Materials, 2014, 4, 1400048.	10.2	21
518	8.9% Singleâ€Stack Inverted Polymer Solar Cells with Electronâ€Rich Polymer Nanolayerâ€Modified Inorganic Electronâ€Collecting Buffer Layers. Advanced Energy Materials, 2014, 4, 1301692.	10.2	218
519	Recent progress in organic photovoltaics: device architecture and optical design. Energy and Environmental Science, 2014, 7, 2123.	15.6	309
520	Layerâ€byâ€Layer Solutionâ€Processed Lowâ€Bandgap Polymerâ€PC ₆₁ BM Solar Cells with High Efficiency. Advanced Energy Materials, 2014, 4, 1301349.	10.2	57
521	Molecular Structureâ€Dependent Charge Injection and Doping Efficiencies of Organic Semiconductors: Impact of Side Chain Substitution. Advanced Materials Interfaces, 2014, 1, 1300128.	1.9	22
522	Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2â€∢i>b⟨ i>]thiopheneâ€Based Polymers and Devices. Advanced Functional Materials, 2014, 24, 1465-1473.	7.8	132
523	Enhanced Power Conversion Efficiency of Low Bandâ€Gap Polymer Solar Cells by Insertion of Optimized Binary Processing Additives. Advanced Energy Materials, 2014, 4, 1300835.	10.2	40
524	Recent Advances in Polymer Solar Cells: Realization of High Device Performance by Incorporating Water/Alcoholâ€Soluble Conjugated Polymers as Electrode Buffer Layer. Advanced Materials, 2014, 26, 1006-1024.	11.1	231
525	A New Architecture for Printable Photovoltaics Overcoming Conventional Module Limits. Advanced Materials, 2014, 26, 1602-1606.	11,1	11
526	Replacing the metal oxide layer with a polymer surface modifier for high-performance inverted polymer solar cells. RSC Advances, 2014, 4, 4791-4795.	1.7	34
527	Environmentally Printing Efficient Organic Tandem Solar Cells with High Fill Factors: A Guideline Towards 20% Power Conversion Efficiency. Advanced Energy Materials, 2014, 4, 1400084.	10.2	116
529	Improvement of organic solar cells with ammonium salt, tetrabutylammonium tetraphenylborate, as cathode buffer layer. Synthetic Metals, 2014, 191, 36-40.	2.1	4
530	Efficient inverted organic solar cells using Zn-doped titanium oxide films as electron transport layers. Electrochimica Acta, 2014, 116, 442-446.	2.6	16
531	Diketopyrrolopyrrole Jâ€Aggregates Formed by Selfâ€Organization with DNA. Chemistry - an Asian Journal, 2014, 9, 1618-1622.	1.7	9

#	Article	IF	CITATIONS
532	Highâ€Performance Semitransparent Tandem Solar Cell of 8.02% Conversion Efficiency with Solutionâ€Processed Graphene Mesh and Laminated Ag Nanowire Top Electrodes. Advanced Energy Materials, 2014, 4, 1301989.	10.2	70
533	Synthesis of PCDTBT-Based Fluorinated Polymers for High Open-Circuit Voltage in Organic Photovoltaics: Towards an Understanding of Relationships between Polymer Energy Levels Engineering and Ideal Morphology Control. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7523-7534.	4.0	88
534	Novel hybrid solar cells based on α-copper phthalocyanine–cadmium sulfide planar heterojunction. Journal of Materials Science, 2014, 49, 5100-5111.	1.7	8
535	Thieno[3,4â€ <i>c</i>)]pyrroleâ€4,6â€dioneâ€Based Small Molecules for Highly Efficient Solutionâ€Processed Organic Solar Cells. Chemistry - an Asian Journal, 2014, 9, 1045-1053.	1.7	27
536	High open-circuit voltage organic photovoltaic cells fabricated using semiconducting copolymers consisting of bithiophene and fluorinated quinoxaline or triazole derivatives. Synthetic Metals, 2014, 194, 88-96.	2.1	13
537	Molecular Design and Morphology Control Towards Efficient Polymer Solar Cells Processed using Nonâ€aromatic and Nonâ€chlorinated Solvents. Advanced Materials, 2014, 26, 2744-2749.	11.1	95
538	Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. Journal of Materials Chemistry A, 2014, 2, 5580-5596.	5.2	150
539	Titanium oxide:fullerene composite films as electron collector layer in organic solar cells and the use of an easy-deposition cathode. Optical Materials, 2014, 36, 1336-1341.	1.7	11
540	Tailored Donor–Acceptor Polymers with an A–D1–A–D2 Structure: Controlling Intermolecular Interactions to Enable Enhanced Polymer Photovoltaic Devices. Journal of the American Chemical Society, 2014, 136, 6049-6055.	6.6	186
541	Universal and Versatile MoO ₃ -Based Hole Transport Layers for Efficient and Stable Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9930-9938.	1.5	53
542	Polymer solar cells based on quinoxaline and dialkylthienyl substituted benzodithiophene with enhanced open circuit voltage. Journal of Polymer Science Part A, 2014, 52, 1028-1036.	2.5	23
543	Synthesis of phenanthro[1,10,9,8- <i>cdefg</i>]carbazole-based conjugated polymers for organic solar cell applications. Journal of Polymer Science Part A, 2014, 52, 796-803.	2.5	13
544	Graphene synthesis and application for solar cells. Journal of Materials Research, 2014, 29, 299-319.	1.2	77
545	Molecularly Stretchable Electronics. Chemistry of Materials, 2014, 26, 3028-3041.	3.2	170
546	Silaindacenodithiophene-Based Molecular Donor: Morphological Features and Use in the Fabrication of Compositionally Tolerant, High-Efficiency Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2014, 136, 3597-3606.	6.6	136
547	Microscopic description of the current–voltage characteristics of a bulk-heterojunction organic solar cell under illumination. Applied Physics Express, 2014, 7, 021602.	1.1	9
548	Two strategies to enhance efficiency of PbS quantum dot solar cells: Removing surface organic ligands and configuring a bilayer heterojunction with a new conjugated polymer. Organic Electronics, 2014, 15, 391-398.	1.4	19
549	The role of metal/metal oxide/organic anode interfaces in efficiency and stability of bulk heterojunction organic photodetectors. Microelectronic Engineering, 2014, 117, 13-17.	1.1	7

#	Article	IF	CITATIONS
550	Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO ₂ anode buffer layer. Journal of Materials Chemistry A, 2014, 2, 1318-1324.	5.2	64
551	Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications. Journal of Materials Chemistry C, 2014, 2, 1306-1313.	2.7	25
552	Dependence of Exciton Diffusion Length on Crystalline Order in Conjugated Polymers. Journal of Physical Chemistry C, 2014, 118, 760-766.	1.5	86
553	Computational modelling of donor–acceptor conjugated polymers through engineered backbone manipulations based on a thiophene–quinoxaline alternating copolymer. Journal of Materials Chemistry A, 2014, 2, 2202-2212.	5.2	24
554	Benzo[1,2-b:4,5-b′]dithiophene-fumaronitrile-based D-A type copolymers with different π-bridges: Synthesis, characterization and photovoltaic properties. Synthetic Metals, 2014, 188, 57-65.	2.1	9
555	Effect of end-groups on the photovoltaic property of diphenyl substituted diketopyrrolopyrrole derivatives. Synthetic Metals, 2014, 188, 66-71.	2.1	16
556	New alkylselenyl substituted benzodithiophene-based solution-processable 2D π-conjugated polymers for bulk heterojunction polymer solar cell applications. Solar Energy Materials and Solar Cells, 2014, 122, 136-145.	3.0	30
557	Organic solar cells comprising multiple-device stacked structures exhibiting complementary absorption behavior. Solar Energy Materials and Solar Cells, 2014, 120, 724-727.	3.0	7
558	Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy and Environmental Science, 2014, 7, 1351-1356.	15.6	224
559	Exciton diffusion in organic photovoltaic cells. Energy and Environmental Science, 2014, 7, 499-512.	15.6	332
560	Porphyrin oriented self-assembled nanostructures for efficient exciton dissociation in high-performing organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 182-192.	5. 2	60
561	Dithieno[2,3-d:2′,3′-d′]naphtho[1,2-b:3,4-b′]dithiophene – a novel electron-rich building block for lo band gap conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 1601.	^W 2.7	17
562	Highly Conjugated Side-Chain-Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Based Conjugated Polymers for Use in Polymer Solar Cells. Macromolecules, 2014, 47, 97-105.	2.2	50
563	Linkage position influences of anthracene and tricyanovinyl groups on the opto-electrical and photovoltaic properties of anthracene-based organic small molecules. Tetrahedron, 2014, 70, 1176-1186.	1.0	8
564	Photoelectrochemical scanning droplet cell microscopy for localized photovoltaic investigations on organic semiconductors. Physical Chemistry Chemical Physics, 2014, 16, 3739.	1.3	11
565	Influence of the Position of the Side Chain on Crystallization and Solar Cell Performance of DPP-Based Small Molecules. Chemistry of Materials, 2014, 26, 916-926.	3.2	113
566	Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents. Energy and Environmental Science, 2014, 7, 1103.	15.6	56
567	Towards large-scale production of solution-processed organic tandem modules based on ternary composites: Design of the intermediate layer, device optimization and laser based module processing. Solar Energy Materials and Solar Cells, 2014, 120, 701-708.	3.0	30

#	Article	IF	Citations
568	Hyperconjugated side chained benzodithiophene and 4,7-di-2-thienyl-2,1,3-benzothiadiazole based polymer for solar cells. Polymer Chemistry, 2014, 5, 2076.	1.9	39
569	A chlorinated phenazine-based donor–acceptor copolymer with enhanced photovoltaic performance. Polymer Chemistry, 2014, 5, 1848.	1.9	33
570	Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 1201-1213.	5.2	361
572	Annealing-free P3HT:PCBM-based organic solar cells via two halohydrocarbons additives with similar boiling points. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 180, 7-11.	1.7	9
573	Very Low Band Gap Thiadiazoloquinoxaline Donor–Acceptor Polymers as Multi-tool Conjugated Polymers. Journal of the American Chemical Society, 2014, 136, 1190-1193.	6.6	129
574	Plasmonic effect of gold nanoparticles in organic solar cells. Solar Energy, 2014, 106, 23-37.	2.9	236
575	Conjugated electron donor–acceptor molecules with (E)-[4,4′-biimidazolylidene]-5,5′(1H,1′H)-dione for new organic semiconductors. Journal of Materials Chemistry C, 2014, 2, 1149-1157.	2.7	7
576	Hydrogenated under-stoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 1738-1749.	5.2	161
577	A bipolar small molecule based on indacenodithiophene and diketopyrrolopyrrole for solution processed organic solar cells. Journal of Materials Chemistry A, 2014, 2, 778-784.	5.2	87
578	Design and synthesis of triazoloquinoxaline polymers with positioning alkyl or alkoxyl chains for organic photovoltaics cells. Polymer Chemistry, 2014, 5, 1163-1172.	1.9	21
579	New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application. Journal of Materials Chemistry A, 2014, 2, 155-171.	5.2	55
580	Improved power conversion efficiency by insertion of RGO–TiO2 composite layer as optical spacer in polymer bulk heterojunction solar cells. Organic Electronics, 2014, 15, 348-355.	1.4	21
581	Tetrathienodibenzocarbazole Based Donor–Acceptor Type Wide Band-Gap Copolymers for Polymer Solar Cell Applications. Macromolecules, 2014, 47, 7407-7415.	2.2	17
582	TFSA doped interlayer for efficient organic solar cells. Organic Electronics, 2014, 15, 3702-3709.	1.4	6
583	Light trapping design for low band-gap polymer solar cells. Optics Express, 2014, 22, A465.	1.7	11
584	Synthesis, characterization and photovoltaic properties of benzo[1,2-b:4,5-b′]dithiophene-bridged molecules. RSC Advances, 2014, 4, 63260-63267.	1.7	11
585	Kinetic Monte Carlo modeling of low-bandgap polymer solar cells. , 2014, , .		3
586	Photovoltaic performance of novel push–pull–push thienyl–Bodipy dyes in solution-processed BHJ-solar cells. New Journal of Chemistry, 2014, 38, 1701-1710.	1.4	29

#	Article	IF	CITATIONS
587	A high molecular weight triisopropylsilylethynyl (TIPS)-benzodithiophene and diketopyrrolopyrrole-based copolymer for high performance organic photovoltaic cells. Journal of Materials Chemistry A, 2014, 2, 6348.	5.2	61
588	Strong addition effect of charge-bridging polymer in polymer:fullerene solar cells with low fullerene content. RSC Advances, 2014, 4, 24914-24921.	1.7	4
589	Self-assembled buffer layer from conjugated diblock copolymers with ethyleneoxide side chains for high efficiency polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 8054-8064.	2.7	15
590	A water-soluble metallophthalocyanine derivative as a cathode interlayer for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 12484-12491.	5.2	54
591	Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 1018-1027.	2.7	51
592	Modeling of photoactive conjugated donor–acceptor copolymers: the effect of the exact HF exchange in DFT functionals on geometries and gap energies of oligomer and periodic models. Physical Chemistry Chemical Physics, 2014, 16, 13294-13305.	1.3	29
593	Large-Scale Flexible and Highly Conductive Carbon Transparent Electrodes via Roll-to-Roll Process and Its High Performance Lab-Scale Indium Tin Oxide-Free Polymer Solar Cells. Chemistry of Materials, 2014, 26, 6293-6302.	3.2	83
594	Effect of structural variation on photovoltaic characteristics of phenyl substituted diketopyrrolopyrroles. RSC Advances, 2014, 4, 14101-14108.	1.7	15
595	A high-performance solution-processed small molecule: alkylselenophene-substituted benzodithiophene organic solar cell. Journal of Materials Chemistry C, 2014, 2, 4937-4946.	2.7	34
596	Tuning morphology and photovoltaic properties of diketopyrrolopyrrole-based small-molecule solar cells by taloring end-capped aromatic groups. Physical Chemistry Chemical Physics, 2014, 16, 4664.	1.3	19
597	Development of bulk heterojunction morphology by the difference of intermolecular interaction behaviors. Organic Electronics, 2014, 15, 3558-3567.	1.4	8
598	Double junction polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 10331-10349.	5.2	18
599	Efficiency enhancement of inverted organic solar cells by introducing PFDTBT quantum dots into PCDTBT:PC71BM active layer. Organic Electronics, 2014, 15, 2632-2638.	1.4	15
600	Small molecule-based tandem solar cells with solution-processed and vacuum-processed photoactive layers. Chemical Communications, 2014, 50, 5349-5351.	2.2	11
601	High open-circuit voltage polymer/polymer blend solar cells with a polyfluorene copolymer as the electron acceptor. RSC Advances, 2014, 4, 12579.	1.7	20
602	DTBDT-TTPD: a new dithienobenzodithiophene-based small molecule for use in efficient photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 16443-16451.	5.2	25
603	Photocurrent spectroscopic studies of diketopyrrolopyrrole-based statistical copolymers. Physical Chemistry Chemical Physics, 2014, 16, 4291.	1.3	7
604	Enhancing exciton diffusion in organic photovoltaics cells incorporating dilute donor layers., 2014,		0

#	Article	IF	CITATIONS
605	Quinoxaline-functionalized C ₆₀ derivatives as electron acceptors in organic solar cells. RSC Advances, 2014, 4, 25291-25301.	1.7	23
606	Molecular weight and end capping effects on the optoelectronic properties of structurally related †heavy atom†donor†acceptor polymers. Journal of Materials Chemistry A, 2014, 2, 14468-14480.	5.2	34
607	Electron deficient diketopyrrolopyrrole dyes for organic electronics: synthesis by direct arylation, optoelectronic characterization, and charge carrier mobility. Journal of Materials Chemistry A, 2014, 2, 4198-4207.	5.2	83
608	Efficiency limitations in a low band-gap diketopyrrolopyrrole-based polymer solar cell. Physical Chemistry Chemical Physics, 2014, 16, 6743-6752.	1.3	17
609	Indole and triisopropyl phenyl as capping units for a diketopyrrolopyrrole (DPP) acceptor central unit: an efficient D–A–D type small molecule for organic solar cells. RSC Advances, 2014, 4, 732-742.	1.7	23
610	A Green Approach to Organic Thin-Film Electronic Devices: Recycling Electrodes Composed of Indium Tin Oxide (ITO). ACS Sustainable Chemistry and Engineering, 2014, 2, 2715-2721.	3.2	15
611	Plasma modification of poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole) low bandgap polymer and its application in solar cells. Physical Chemistry Chemical Physics, 2014, 16, 27043-27052.	1.3	12
612	Property modulation of benzodithiophene-based polymers via the incorporation of a covalently bonded novel 2,1,3-benzothiadiazole-1,2,4-oxadiazole derivative in their main chain for polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 8515-8524.	2.7	13
613	Benzotrithiophene polymers with tuneable bandgap for photovoltaic applications. RSC Advances, 2014, 4, 53939-53945.	1.7	10
614	Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells. Journal of Computational Electronics, 2014, 13, 933-942.	1.3	28
615	Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids. Chemical Science, 2014, 5, 2368-2373.	3.7	18
616	New low band gap 2-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole and benzo[1,2-c;4,5-c′]bis[1,2,5]thiadiazole based conjugated polymers for organic photovoltaics. RSC Advances, 2014, 4, 44902-44910.	1.7	22
617	A universal method to form the equivalent ohmic contact for efficient solution-processed organic tandem solar cells. Journal of Materials Chemistry A, 2014, 2, 14896-14902.	5.2	20
618	High-Performance All-Polymer Solar Cells Based on Face-On Stacked Polymer Blends with Low Interfacial Tension. ACS Macro Letters, 2014, 3, 1009-1014.	2.3	106
619	Optimizing the Performance of Conjugated Polymers in Organic Photovoltaic Cells by Traversing Group 16. Macromolecules, 2014, 47, 7253-7271.	2.2	162
620	Critical Electron Transfer Rates for Exciton Dissociation Governed by Extent of Crystallinity in Small Molecule Organic Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 14840-14847.	1.5	20
621	Atomic-Scale Understanding of the Interaction of Poly(3-hexylthiophene) with the NiO (100) Surface: A First-Principles Study. Journal of Physical Chemistry C, 2014, 118, 20298-20305.	1.5	13
622	Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Heteroâ€junction Polymer Solar Cells. Journal of the Chinese Chemical Society, 2014, 61, 115-126.	0.8	66

#	Article	IF	CITATIONS
623	Light trapping in a polymer solar cell by tailored quantum dot emission. Optics Express, 2014, 22, A259.	1.7	11
624	Annealing-induced phase separation in small-molecular bulk heterojunctions. Organic Electronics, 2014, 15, 2810-2816.	1.4	3
625	Atomic‣ayerâ€Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO ₂ in Highâ€Efficiency Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1400214.	10.2	52
626	Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA[DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2014, 2, 8412-8422.	2.7	19
627	Synthesis and photovoltaic properties of new donor–acceptor (D–A) copolymers based on benzo[1,2-b:3,4-b′:6,5-b′′] trithiophene donor and different acceptor units (P1 and P2). RSC Advances, 24, 53531-53542.	0 1.4 ,	5
628	Influence of the Acceptor on Electrical Performance and Charge Carrier Transport in Bulk Heterojunction Solar Cells with HXS-1. Journal of Physical Chemistry C, 2014, 118, 3386-3392.	1.5	4
629	Enhancing Fieldâ€Effect Mobility of Conjugated Polymers Through Rational Design of Branched Side Chains. Advanced Functional Materials, 2014, 24, 3734-3744.	7.8	112
630	Nanophotonic Organic Solar Cell Architecture for Advanced Light Trapping with Dual Photonic Crystals. ACS Photonics, 2014, 1, 840-847.	3.2	39
631	The effects of P3HT crystallinity in bilayer structure organic solar cells. Current Applied Physics, 2014, 14, 1369-1373.	1.1	4
632	Effect of π-conjugated bridges of TPD-based medium bandgap conjugated copolymers for efficient tandem organic photovoltaic cells. Energy and Environmental Science, 2014, 7, 4118-4131.	15.6	115
633	Conductive Water/Alcohol-Soluble Neutral Fullerene Derivative as an Interfacial Layer for Inverted Polymer Solar Cells with High Efficiency. ACS Applied Materials & Enterfaces, 2014, 6, 14189-14195.	4.0	22
634	Sideâ€Chain Tunability via Triple Component Random Copolymerization for Better Photovoltaic Polymers. Advanced Energy Materials, 2014, 4, 1300864.	10.2	81
635	High Polymer/Fullerene Ratio Realized in Efficient Polymer Solar Cells by Tailoring of the Polymer Sideâ€Chains. Advanced Materials, 2014, 26, 3624-3630.	11.1	62
636	In Situ Fabricating One-Dimensional Donor–Acceptor Core–Shell Hybrid Nanobeams Network Driven by Self-Assembly of Diblock Copolythiophenes. Macromolecules, 2014, 47, 1757-1767.	2.2	13
637	Simultaneous Enhancement of Solar Cell Efficiency and Photostability via Chemical Tuning of Electron Donating Units in Diketopyrrolopyrrole-Based Push–Pull Type Polymers. Macromolecules, 2014, 47, 6270-6280.	2.2	37
638	Imide- and Amide-Functionalized Polymer Semiconductors. Chemical Reviews, 2014, 114, 8943-9021.	23.0	874
639	Thiocarbonyl Substitution in 1,4-Dithioketopyrrolopyrrole and Thienopyrroledithione Derivatives: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 3953-3959.	1.5	19
640	Au@Polymer Core–Shell Nanoparticles for Simultaneously Enhancing Efficiency and Ambient Stability of Organic Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16956-16965.	4.0	71

#	Article	IF	CITATIONS
641	High-Performance Inverted Tandem Polymer Solar Cells Utilizing Thieno[3,4- <i>c</i>) pyrrole-4,6-dione Copolymer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13079-13087.	4.0	9
642	New Molecular Donors with Dithienopyrrole as the Electron-Donating Group for Efficient Small-Molecule Organic Solar Cells. Chemistry of Materials, 2014, 26, 4361-4367.	3.2	54
643	"Solar tree― Exploring new form factors of organic solar cells. Renewable Energy, 2014, 72, 134-139.	4.3	31
644	Organic solar cells based on conjugated polymers: History and recent advances. Korean Journal of Chemical Engineering, 2014, 31, 1095-1104.	1.2	67
645	Polymer-based parallel tandem solar cells with a transparent ferroelectric interconnecting layer. Applied Physics Letters, 2014, 104, 083302.	1.5	7
646	Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a â ¹ /4300 nm thick conventional single-cell device. Energy and Environmental Science, 2014, 7, 3040-3051.	15.6	600
647	Design of red, green, blue transparent electrodes for flexible optical devices. Optics Express, 2014, 22, A1257.	1.7	11
648	Graphene Oxide-Based Carbon Interconnecting Layer for Polymer Tandem Solar Cells. Nano Letters, 2014, 14, 1467-1471.	4.5	56
649	Synthetically controlling the optoelectronic properties of dithieno[2,3-d: $2\hat{a}\in^2$, $3\hat{a}\in^2$ -d $a\in^2$]benzo[1,2-b:4,5-b $a\in^2$]dithiophene-alt-diketopyrrolopyrrole-conjugated polymers efficient solar cells. Journal of Materials Chemistry A, 2014, 2, 15316-15325.	fo : 5.2	46
650	Nanostructured Electrodes Improve the Fill Factor of Organic Photovoltaics. IEEE Journal of Photovoltaics, 2014, 4, 1100-1106.	1.5	7
651	A Benzodithiophene-Based Novel Electron Transport Layer for a Highly Efficient Polymer Solar Cell. ACS Applied Materials & Diterfaces, 2014, 6, 15875-15880.	4.0	33
652	Hole extraction layer utilizing well defined graphene oxide with multiple functionalities for high-performance bulk heterojunction solar cells. Organic Electronics, 2014, 15, 2868-2875.	1.4	23
653	Effect of electrode geometry on photovoltaic performance of polymer solar cells. Journal Physics D: Applied Physics, 2014, 47, 435104.	1.3	2
654	Performance improvement of inverted polymer solar cells thermally evaporating CuI as an anode buffer layer. Synthetic Metals, 2014, 198, 1-5.	2.1	15
655	Guided crystallization of P3HT in ternary blend solar cell based on P3HT:PCPDTBT:PCBM. Energy and Environmental Science, 2014, 7, 3782-3790.	15.6	60
656	Enhancement of the Efficiency and Stability of Organic Photovoltaic Devices via the Addition of a Lithium-Neutralized Graphene Oxide Electron-Transporting Layer. Chemistry of Materials, 2014, 26, 5988-5993.	3.2	71
657	Electronic structure of fullerene derivatives in organic photovoltaics. Organic Electronics, 2014, 15, 2912-2921.	1.4	33
658	The effect of surface hydrogenation of metal oxides on the nanomorphology and the charge generation efficiency of polymer blend solar cells. Nanoscale, 2014, 6, 13726-13739.	2.8	26

#	Article	IF	CITATIONS
659	Donor–Acceptorâ€Type Copolymers Based on a Naphtho[1,2â€ɛ:5,6â€ɛ]bis(1,2,5â€ŧhiadiazole) Scaffold for Highâ€Efficiency Polymer Solar Cells. Chemistry - an Asian Journal, 2014, 9, 2104-2112.	1.7	13
660	Synthesis and photovoltaic properties of conjugated D-A copolymers based on thienyl substituted pyrene and diketopyrrolopyrrole for polymer solar cells. Journal of Polymer Science Part A, 2014, 52, 3198-3204.	2.5	12
661	Low-temperature photo-activated inorganic electron transport layers for flexible inverted polymer solar cells. Applied Physics A: Materials Science and Processing, 2014, 116, 2087-2093.	1.1	3
662	Improving conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube arrays by doping with Zn2+ and decorating with ZnO nanoparticles. Materials Chemistry and Physics, 2014, 146, 531-537.	2.0	12
663	Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nature Communications, 2014, 5, 4148.	5.8	143
664	Synthesis and Search for Design Principles of New Electron Accepting Polymers for All-Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3450-3459.	3.2	100
665	Interfacial Engineering of P3HT/ZnO Hybrid Solar Cells Using Phthalocyanines: A Joint Theoretical and Experimental Investigation. Advanced Energy Materials, 2014, 4, 1301694.	10.2	42
666	Phosphor-doping enhanced efficiency in bilayer organic solar cells due to longer exciton diffusion length. Journal of Luminescence, 2014, 151, 193-196.	1.5	15
667	Photophysical, electrochemical and solid state properties of diketopyrrolopyrrole based molecular materials: importance of the donor group. Journal of Materials Chemistry C, 2014, 2, 3457-3466.	2.7	96
668	Organic photovoltaic performance improvement using atomic layer deposited ZnO electron-collecting layers. Solid-State Electronics, 2014, 101, 50-56.	0.8	8
669	The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy. Solar Energy Materials and Solar Cells, 2014, 130, 20-26.	3.0	75
670	Synthesis and photovoltaic properties of D–A–D type small molecules containing diketopyrrolopyrrole (DPP) acceptor central unit with different donor terminal units. Organic Electronics, 2014, 15, 2116-2125.	1.4	20
671	Efficient Diketopyrrolopyrroleâ€Based Smallâ€Molecule Bulkâ€Heterojunction Solar Cells with Different Electronâ€Donating Endâ€Groups. Chemistry - an Asian Journal, 2014, 9, 2505-2513.	1.7	14
672	Rational Design of Ternary-Phase Polymer Solar Cells by Controlling Polymer Phase Separation. Journal of Physical Chemistry C, 2014, 118, 10552-10559.	1.5	16
673	Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy and Environmental Science, 2014, 7, 2276-2284.	15.6	493
674	Effects of Cyano-Substituents on the Molecular Packing Structures of Conjugated Polymers for Bulk-Heterojunction Solar Cells. ACS Applied Materials & Early; Interfaces, 2014, 6, 15774-15782.	4.0	33
675	Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy and Environmental Science, 2014, 7, 2005.	15.6	275
676	Cooperatively Tuning Phase Size and Absorption of Near IR Photons in P3HT:Perylene Diimide Solar Cells by Bay-Modifications on the Acceptor. Journal of Physical Chemistry C, 2014, 118, 24212-24220.	1.5	39

#	Article	IF	Citations
677	Electronic Structure and Transition Energies in Polymer–Fullerene Bulk Heterojunctions. Journal of Physical Chemistry C, 2014, 118, 21873-21883.	1.5	48
678	An Efficient Tripleâ€Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%. Advanced Materials, 2014, 26, 5670-5677.	11.1	752
679	5-Alkyloxy-6-fluorobenzo[<i>c</i>)][1,2,5]thiadiazole- and Silafluorene-Based D–A Alternating Conjugated Polymers: Synthesis and Application in Polymer Photovoltaic Cells. Macromolecules, 2014, 47, 4645-4652.	2.2	47
680	Flexible polymer solar cells with power conversion efficiency of 8.7%. Journal of Materials Chemistry C, 2014, 2, 5077-5082.	2.7	76
681	The unusual electronic structure of ambipolar dicyanovinyl-substituted diketopyrrolopyrrole derivatives. Journal of Materials Chemistry C, 2014, 2, 6376.	2.7	55
682	Charge-Transfer Dynamics in Poly(3-hexylthiophene):Perylenediimide-C ₆₀ Blend Films Studied by Ultrafast Transient Absorption. Journal of Physical Chemistry C, 2014, 118, 10625-10630.	1.5	8
683	Substituent effect of fulleropyrrolidine acceptors on bilayer organic solar cells. Synthetic Metals, 2014, 187, 118-122.	2.1	3
684	High open-circuit voltage polymer solar cells based on D–A copolymer of indacenodithiophene and fluorine-substituted benzotriazole. Organic Electronics, 2014, 15, 818-823.	1.4	16
685	Synthesis and photovoltaic properties of novel C60 bisadducts based on benzo [2,1,3]-thiadiazole. Tetrahedron, 2014, 70, 6217-6221.	1.0	22
686	Enhanced electron collection in inverted organic solar cells using titanium oxide/reduced graphene oxide composite films as electron collecting layers. Electrochimica Acta, 2014, 117, 438-442.	2.6	30
687	Near-infrared response thienoisoindigo-based small molecule for solution-processed bulk-heterojunction solar cells. Synthetic Metals, 2014, 187, 24-29.	2.1	20
688	Effect of temperature on the interactions between low bandgap polymer and ionic liquids. Thermochimica Acta, 2014, 579, 15-21.	1.2	11
689	Effects of Ï∈-conjugated side chains on properties and performances of photovoltaic copolymers. Synthetic Metals, 2014, 187, 30-36.	2.1	9
690	Synthesis of a Fully Conjugated Phthalocyanineâ€Diketopyrrolopyrroleâ€Phthalocyanine Triad as Low Band Gap Donor in Small Molecule Bulk Heterojunction Solar Cells. European Journal of Organic Chemistry, 2014, 2014, 4585-4591.	1.2	18
691	Controlling Conformations of Diketopyrrolopyrrole-Based Conjugated Polymers: Role of Torsional Angle. Journal of Physical Chemistry C, 2014, 118, 11536-11544.	1.5	28
692	Microcavityâ€Embedded, Colourâ€Tuneable, Transparent Organic Solar Cells. Advanced Materials, 2014, 26, 1129-1134.	11.1	95
693	Effect of the Fibrillar Microstructure on the Efficiency of High Molecular Weight Diketopyrrolopyrroleâ€Based Polymer Solar Cells. Advanced Materials, 2014, 26, 1565-1570.	11.1	207
694	An Easy and Effective Method to Modulate Molecular Energy Level of the Polymer Based on Benzodithiophene for the Application in Polymer Solar Cells. Advanced Materials, 2014, 26, 2089-2095.	11.1	137

#	Article	IF	CITATIONS
695	Universal Formation of Compositionally Graded Bulk Heterojunction for Efficiency Enhancement in Organic Photovoltaics. Advanced Materials, 2014, 26, 3068-3075.	11.1	139
696	Factors Affecting the Performance of Bifacial Inverted Polymer Solar Cells with a Thick Photoactive Layer. Journal of Physical Chemistry C, 2014, 118, 4050-4055.	1.5	7
697	Improving Structural Order for a Highâ€Performance Diketopyrrolopyrroleâ€Based Polymer Solar Cell with a Thick Active Layer. Advanced Energy Materials, 2014, 4, 1300739.	10.2	43
698	Effect of Incorporation of Squaraine Dye on the Photovoltaic Response of Bulk Heterojunction Solar Cells Based on P3HT:PC ₇₀ BM Blend. ACS Sustainable Chemistry and Engineering, 2014, 2, 1743-1751.	3.2	25
699	Oligothiophene Semiconductors: Synthesis, Characterization, and Applications for Organic Devices. ACS Applied Materials & Devices, 2014, 6, 5327-5343.	4.0	193
700	Interfacial Engineering of Ultrathin Metal Film Transparent Electrode for Flexible Organic Photovoltaic Cells. Advanced Materials, 2014, 26, 3618-3623.	11.1	178
701	Vacuum-deposited interconnection layers for tandem solar cells. Organic Electronics, 2014, 15, 1828-1835.	1.4	15
702	Study of multiple photovoltaic processes in stacked organic active layers. Organic Electronics, 2014, 15, 2014-2020.	1.4	6
703	Enhanced photovoltaic properties of the terpolymer containing diketopyrrolopyrrole and benzothiadiazole side chain. European Polymer Journal, 2014, 57, 83-90.	2.6	4
704	Effect of different p-dopants in an interconnection unit on the performance of tandem organic solar cells. Organic Electronics, 2014, 15, 1805-1809.	1.4	6
705	Large active area inverted tandem polymer solar cell with high performance via alcohol treatment on the surface of bottom active layer P3HT:ICBA. Solar Energy Materials and Solar Cells, 2014, 128, 240-247.	3.0	8
706	Prospects of layer-split tandem cells for high-efficiency OPV. Solar Energy Materials and Solar Cells, 2014, 120, 716-723.	3.0	6
707	Inverted organic solar cells with polymer-modified fluorine-doped tin oxide as the electron-collecting electrode. Thin Solid Films, 2014, 554, 54-57.	0.8	11
708	Optical properties of the composite film from P3HT and hydrothermally synthesized porous carbon nanospheres. Journal of Materials Research, 2015, 30, 1599-1610.	1.2	1
709	Influence of annealing temperature of ZnO film as the electron transport layer on the performance of polymer solar cells. Optoelectronics Letters, 2015, 11, 260-263.	0.4	2
710	Photochemical Solar Energy Conversion. , 2015, , 20-29.		0
712	High performance polymer tandem solar cell. Scientific Reports, 2015, 5, 18090.	1.6	16
713	Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell. Scientific Reports, 2015, 5, 11558.	1.6	2

#	Article	IF	CITATIONS
714	Efficient all polymer solar cells employing donor polymer based on benzo[1,2-b:4,5-b']dithiophene unit. AIP Advances, 2015, 5, 117126.	0.6	5
715	Versatile MoS2 Nanosheets in ITO-Free and Semi-transparent Polymer Power-generating Glass. Scientific Reports, 2015, 5, 12161.	1.6	19
716	Photoinduced Charge Transport in a BHJ Solar Cell Controlled by an External Electric Field. Scientific Reports, 2015, 5, 13970.	1.6	33
717	Enhanced absorption in tandem solar cells by applying hydrogenated In2O3 as electrode. Applied Physics Letters, 2015, 107, .	1.5	21
718	A New D-A conjugated polymer P(PTQD-BDT) with PTQD acceptor and BDT donor units for BHJ polymer solar cells application. Journal of Polymer Science Part A, 2015, 53, 2390-2398.	2.5	10
719	Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and their Implications on Design Rules. Advanced Materials Interfaces, 2015, 2, 1500204.	1.9	34
720	Photophysics of Molecularâ€Weightâ€Induced Losses in Indacenodithienothiopheneâ€Based Solar Cells. Advanced Functional Materials, 2015, 25, 4898-4907.	7.8	61
721	A Solutionâ€Processable Molecule using Thieno[3,2â€ <i>b</i>]thiophene as Building Block for Efficient Organic Solar Cells. Chemistry - an Asian Journal, 2015, 10, 1791-1798.	1.7	16
722	Side chain engineering and conjugation enhancement of benzodithiophene and phenanthrenequnioxaline based conjugated polymers for photovoltaic devices. Journal of Polymer Science Part A, 2015, 53, 1915-1926.	2.5	16
723	Wideâ€Bandgap Benzodithiophene–Benzothiadiazole Copolymers for Highly Efficient Multijunction Polymer Solar Cells. Advanced Materials, 2015, 27, 4461-4468.	11.1	99
724	A Largeâ€Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Advanced Materials, 2015, 27, 4655-4660.	11.1	882
725	Revealing structure formation in PCPDTBT by optical spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1416-1430.	2.4	41
726	Amineâ∈Based Interfacial Molecules for Inverted Polymerâ∈Based Optoelectronic Devices. Advanced Materials, 2015, 27, 3553-3559.	11.1	77
727	Polymer–Polymer Förster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulkâ€Heterojunction Solar Cells. Advanced Materials, 2015, 27, 4398-4404.	11.1	201
728	Synthesis of Alternating Lowâ€Bandgap Conjugated Polymers Based on Dithieno[2,3â€ <i>d</i> :2′,3′à€ <i>d</i> :2′]aphtho[1,2â€ <i>b</i> :3,4â€ <i>b</i> :3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4âE:3,4	nancemen 1.1	t of
729	Silver-Based Nanoparticles for Surface Plasmon Resonance in Organic Optoelectronics. Particle and Particle Systems Characterization, 2015, 32, 164-175.	1.2	106
730	Novel Use of Semiconductive Conjugated Polymer With Optimized Scintillator for Betavoltaic Applications. , $2015, \dots$		2
731	Understanding the Role of Additives in Improving the Performance of Bulk Heterojunction Organic Solar Cells. Microscopy and Microanalysis, 2015, 21, 2439-2440.	0.2	1

#	ARTICLE	IF	CITATIONS
732	Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%. Chemical Science, 2015, 6, 4860-4866.	3.7	35
733	Unraveling the Mechanism of Photoinduced Charge Transfer in Carotenoid–Porphyrin–C ₆₀ Molecular Triad. Journal of Physical Chemistry Letters, 2015, 6, 1231-1237.	2.1	48
734	Effect of chemically converted graphene as an electrode interfacial modifier on device-performances of inverted organic photovoltaic cells. Semiconductor Science and Technology, 2015, 30, 065008.	1.0	1
735	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.	1.9	34
736	Development of Active Materials and Interface Materials for High Performance Bulk-Heterojunction Polymer Solar Cells. Topics in Applied Physics, 2015, , 191-219.	0.4	1
737	Optimizing the fabrication process and interplay of device components of polymer solar cells using a field-based multiscale solar-cell algorithm. Journal of Chemical Physics, 2015, 142, 184902.	1.2	2
738	Beyond Shockley–Queisser: Molecular Approaches to High-Efficiency Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 2367-2378.	2.1	142
739	A high-performance ambipolar organic field-effect transistor based on a bidirectional π-extended diketopyrrolopyrrole under ambient conditions. RSC Advances, 2015, 5, 53412-53418.	1.7	10
740	Recent Advances in P-Type Conjugated Polymers for High-Performance Solar Cells. Topics in Applied Physics, 2015, , 145-189.	0.4	1
741	Vertical phase separation and light-soaking effect improvements by photoactive layer spin coating initiation time control in air-processed inverted organic solar cells. Solar Energy Materials and Solar Cells, 2015, 140, 335-343.	3.0	26
742	High efficient ternary polymer solar cells based on absorption complementary materials as electron donor. Solar Energy Materials and Solar Cells, 2015, 141, 154-161.	3.0	33
743	Organic Optoelectronic Materials. Lecture Notes in Quantum Chemistry II, 2015, , .	0.3	33
744	Organometallic Versus Organic Molecules for Energy Conversion in Organic Light-Emitting Diodes and Solar Cells. Green Chemistry and Sustainable Technology, 2015, , 1-28.	0.4	0
745	Photoconductive Cathode Interlayer for Highly Efficient Inverted Polymer Solar Cells. Journal of the American Chemical Society, 2015, 137, 6995-6998.	6.6	237
746	Ladder-type conjugated oligomers prepared by the Scholl oxidative cyclodehydrogenation reaction: synthesis, characterization and application in field effect transistors. Journal of Materials Chemistry C, 2015, 3, 6200-6208.	2.7	18
747	A DFT/TDDFT mission to probe push–pull vinyl coupled thiophene oligomers for optoelectronic applications. RSC Advances, 2015, 5, 50353-50364.	1.7	22
748	Synthesis of a low bandgap polymer based on thieno [3,2-b] thiophene and fluorinated quinoxaline derivatives and its application in bulk heterojunction solar cells. Synthetic Metals, 2015, 206, 66-71.	2.1	5
749	Conjugated Polymer Photovoltaic Materials. Lecture Notes in Quantum Chemistry II, 2015, , 195-239.	0.3	3

#	Article	IF	Citations
750	Efficient inverted polymer solar cells integrated with a compound electron extraction layer. Optics Communications, 2015, 356, 541-545.	1.0	5
751	Efficiency Enhancement of Polymer Solar Cells with Three-Component Active Layer. Molecular Crystals and Liquid Crystals, 2015, 620, 53-63.	0.4	1
752	Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application. Applied Optics, 2015, 54, 10232.	2.1	34
7 53	Molecularâ€Level Switching of Polymer/Nanocrystal Nonâ€Covalent Interactions and Application in Hybrid Solar Cells. Advanced Functional Materials, 2015, 25, 111-119.	7.8	50
754	Molecular design and ordering effects of alkoxy aromatic donor in a DPP copolymer on OTFTs and OPVs. Materials Chemistry and Physics, 2015, 153, 63-71.	2.0	16
755	Synthesis and photovoltaic properties of conjugated polymers with an asymmetric 4-(2-ethylhexyloxy)-8-(2-ethylhexylthio)benzo[1,2-b:4,5-b′]dithiophene unit. Dyes and Pigments, 2015, 115, 58-66.	2.0	9
756	Synthesis and characterization of π-conjugated copolymers with thieno-imidazole units in the main chain: application for bulk heterojunction polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 7888-7897.	1.3	6
757	High-performance multiple-donor bulk heterojunction solar cells. Nature Photonics, 2015, 9, 190-198.	15.6	489
758	Polymer/small-molecule parallel tandem organic solar cells based on MoOx–Ag–MoOx intermediate electrodes. Solar Energy Materials and Solar Cells, 2015, 137, 34-43.	3.0	18
759	Synthesis of dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene -alt-isoindigo conjugated poly enhancement of photovoltaic property with diphenyl sulfide additives. Journal of Polymer Research, 2015, 22, 1.	mer and	12
760	An Indium Tin Oxide-Free Polymer Solar Cell on Flexible Glass. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4541-4548.	4.0	60
761	Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells. Thin Solid Films, 2015, 578, 161-166.	0.8	19
762	The effect of interfacial diffusion on device performance of polymer solar cells: a quantitative view by active-layer doping. Science China Chemistry, 2015, 58, 317-322.	4.2	8
763	Atomically Precise Graphene Nanoribbon Heterojunctions for Excitonic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 775-783.	1.5	34
764	Calculating High Energy Charge Transfer States Using Optimally Tuned Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 2015, 11, 1110-1117.	2.3	51
765	A Selenophene Containing Benzodithiophene- <i>alt</i> -thienothiophene Polymer for Additive-Free High Performance Solar Cell. Macromolecules, 2015, 48, 562-568.	2.2	59
766	Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Organic Electronics, 2015, 19, 34-60.	1.4	216
767	The enhanced performance of fluorinated quinoxaline-containing polymers by replacing carbon with silicon bridging atoms on the dithiophene donor skeleton. Polymer Chemistry, 2015, 6, 2337-2347.	1.9	21

#	Article	IF	CITATIONS
768	Columnar self-assembly of star-shaped luminescent oxadiazole and thiadiazole derivatives. Journal of Materials Chemistry C, 2015, 3, 2940-2952.	2.7	79
769	Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2, 203-211.	6.4	148
770	Synthesis of two-dimensional ¨i€-conjugated polymers pendent with benzothiadiazole and naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole moieties for polymer solar cells. Science China Chemistry, 2015, 58, 257-266.	4.2	29
771	An alkylthieno-2-yl flanked dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-based low band gap conjugated polymer for high performance photovoltaic solar cells. RSC Advances, 2015, 5, 12879-12885.	1.7	24
772	Dual plasmonic-enhanced bulk-heterojunction solar cell incorporating gold nanoparticles into solution-processed anode buffer layer and active layer. Physica Status Solidi - Rapid Research Letters, 2015, 9, 115-119.	1.2	5
773	Organic Donor Materials Based on Bis(arylene ethynylene)s for Bulk Heterojunction Organic Solar Cells with High <i>V</i> _{oc} Values. Chemistry - an Asian Journal, 2015, 10, 1017-1024.	1.7	9
774	Synthesis of modified benzothiadiazole-thiophene-cored acceptor and carbazole/indolocarbazole alternating conjugated polymers and their photovoltaic applications. Polymer Bulletin, 2015, 72, 565-581.	1.7	11
775	Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements. Scientific Reports, 2015, 5, 7836.	1.6	74
776	Highly efficient polymer solar cells based on a universal cathode interlayer composed of metallophthalocyanine derivative with good film-forming property. Journal of Materials Chemistry A, 2015, 3, 4547-4554.	5.2	37
777	Tunable Charge Transfer Dynamics at Tetracene/LiF/C ₆₀ Interfaces. Journal of Physical Chemistry C, 2015, 119, 1286-1290.	1.5	12
778	Toward efficient non-fullerene polymer solar cells: Selection of donor polymers. Organic Electronics, 2015, 17, 295-303.	1.4	41
779	Polymer Homoâ€₹andem Solar Cells with Best Efficiency of 11.3%. Advanced Materials, 2015, 27, 1767-1773.	11.1	408
780	Correlation of structure and photovoltaic performance of benzo[1,2-b:4,5-b′]dithiophene copolymers alternating with different acceptors. New Journal of Chemistry, 2015, 39, 2248-2255.	1.4	19
781	Reflection and transmission calculations in a multilayer structure with coherent, incoherent, and partially coherent interference, using the transmission line method. Applied Optics, 2015, 54, 1492.	0.9	9
782	High performance quinacridone-based polymers in film transistors and photovoltaics: effects of vinylene linkage on crystallinity and morphology. Polymer Chemistry, 2015, 6, 3283-3289.	1.9	22
783	High efficiency all-polymer solar cells realized by the synergistic effect between the polymer side-chain structure and solvent additive. Journal of Materials Chemistry A, 2015, 3, 7077-7085.	5.2	79
784	10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nature Communications, 2015, 6, 6391.	5.8	45
785	Effect of fluorine substitution on photovoltaic performance of DPP-based copolymer. Organic Electronics, 2015, 20, 125-131.	1.4	12

#	Article	IF	CITATIONS
786	Progress in High-Efficient Solution Process Organic Photovoltaic Devices. Topics in Applied Physics, 2015, , .	0.4	17
787	Enhanced efficiency of inverted polymer solar cells by using solution-processed TiOx/CsOx cathode buffer layer. Nanoscale Research Letters, 2015, 10, 29.	3.1	9
788	A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency. Solar Energy Materials and Solar Cells, 2015, 137, 138-145.	3.0	10
789	Enhanced performance and morphological evolution of PTB7:PC ₇₁ BM polymer solar cells by using solvent mixtures with different additives. Physical Chemistry Chemical Physics, 2015, 17, 8053-8060.	1.3	55
790	Unusual photophysical properties of conjugated, alternating indigo–fluorene copolymers. Journal of Materials Chemistry A, 2015, 3, 6373-6382.	5.2	24
791	Downscaling the Sample Thickness to Sub-Micrometers by Employing Organic Photovoltaic Materials as a Charge-Generation Layer in the Time-of-Flight Measurement. Scientific Reports, 2015, 5, 10384.	1.6	8
792	Role of Polymer in Hybrid Polymer/PbS Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2015, 119, 14972-14979.	1.5	43
793	Annealing-free highly crystalline solution-processed molecular metal oxides for efficient single-junction and tandem polymer solar cells. Energy and Environmental Science, 2015, 8, 2448-2463.	15.6	68
794	First-principles investigation of organic photovoltaic materials <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>C</mml:mtext><mml:mn>60< and bis-</mml:mn></mml:msub></mml:math>		

#	Article	IF	CITATIONS
804	On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics. Physical Chemistry Chemical Physics, 2015, 17, 17778-17784.	1.3	35
805	Organic photovoltaics: Crosslinking for optimal morphology and stability. Materials Today, 2015, 18, 425-435.	8.3	127
806	Versatile third components for efficient and stable organic solar cells. Materials Horizons, 2015, 2, 462-485.	6.4	168
807	Highly efficient photovoltaics and field-effect transistors based on copolymers of mono-fluorinated benzothiadiazole and quaterthiophene: synthesis and effect of the molecular weight on device performance. Polymer Chemistry, 2015, 6, 6050-6057.	1.9	15
808	Modulation of optical and electronic properties of quinoxailineâ€based conjugated polymers for organic photovoltaic cells. Journal of Polymer Science Part A, 2015, 53, 1904-1914.	2.5	5
809	New D-A-D-A-D push–pull organic semiconductors with different benzo[1,2-b:4, 5-b′] dithiophene cores for solution processed bulk heterojunction solar cells. Dyes and Pigments, 2015, 120, 126-135.	2.0	23
810	Emissive Nanoclusters Based on Subnanometerâ€Sized Au38 Cores for Boosting the Performance of Inverted Organic Photovoltaic Cells. Advanced Energy Materials, 2015, 5, 1500393.	10.2	31
811	Fine tuning of terpolymer properties by incorporating electron-accepting difluorobenzene and diketopyrrolopyrrole units. Journal of Materials Science, 2015, 50, 5363-5370.	1.7	4
812	Cadmium sulfide interface layer for improving the performance of titanium dioxide/poly (3-hexylthiophene) solar cells by extending the spectral response. Journal of Materials Science: Materials in Electronics, 2015, 26, 3558-3563.	1.1	10
813	Structure Evolution of Fluorinated Conjugated Polymers Based on Benzodithiophene and Benzothiadiazole for Photovoltaics. Journal of Physical Chemistry C, 2015, 119, 8038-8045.	1.5	5
814	Direct C–H arylation synthesis of (DD′AD′DA′)-constituted alternating polymers with low bandgaps and their photovoltaic performance. New Journal of Chemistry, 2015, 39, 4957-4964.	1.4	15
815	An extremely thin and robust interconnecting layer providing 76% fill factor in a tandem polymer solar cell architecture. Journal of Materials Chemistry A, 2015, 3, 10681-10686.	5.2	25
816	Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells. Nanoscale, 2015, 7, 9194-9203.	2.8	22
817	ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode. Current Applied Physics, 2015, 15, 829-832.	1.1	17
818	Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review. Journal of Photonics for Energy, 2015, 5, 057214.	0.8	63
819	Diketopyrrolopyrrole-based narrow band gap donors for efficient solution-processed organic solar cells. Chemical Physics Letters, 2015, 630, 37-43.	1.2	8
820	Modeling approach to derive the anisotropic complex refractive index of polymer:fullerene blends for organic solar cells utilizing spectroscopic ellipsometry. Journal of Photonics for Energy, 2015, 5, 057204.	0.8	9
821	Unraveling the effect of polymer dots doping in inverted low bandgap organic solar cells. Physical Chemistry Chemical Physics, 2015, 17, 16086-16091.	1.3	6

#	Article	IF	Citations
822	Origin of the open-circuit voltage in small-molecular organic photovoltaic devices: Effects of deposition rate control of donor material. Japanese Journal of Applied Physics, 2015, 54, 03CD01.	0.8	1
823	The role of phosphor nanoparticles in high efficiency organic solar cells. Synthetic Metals, 2015, 204, 65-69.	2.1	9
824	Benzodithiopheneâ€Based Broad Absorbing Random Copolymers Incorporating Weak and Strong Electron Accepting Imide and Lactam Functionalized Pyrrolo[3,4â€c]pyrrole Derivatives for Polymer Solar Cells. Macromolecular Chemistry and Physics, 2015, 216, 996-1007.	1.1	12
825	Optical Studies of Photoexcitations in Polymer/Fullerene Blends for Organic Photovoltaic Applications. Topics in Applied Physics, 2015, , 3-41.	0.4	5
826	Improved open-circuit voltage of benzodithiophene based polymer solar cells using bulky terthiophene side group. Solar Energy Materials and Solar Cells, 2015, 138, 26-34.	3.0	23
827	An organic photovoltaic featuring graphene nanoribbons. Chemical Communications, 2015, 51, 9185-9188.	2.2	17
828	Tandem Solar Cellâ€"Concept and Practice in Organic Solar Cells. Topics in Applied Physics, 2015, , 315-346.	0.4	8
829	Improvement of Conversion Efficiency of Inverted Organic Photovoltaic With PEDOT: PSS:WO <italic>x </italic> by Thermal Annealing. IEEE Journal of Photovoltaics, 2015, 5, 897-902.	1.5	6
830	Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells. Energy and Environmental Science, 2015, 8, 1712-1718.	15.6	101
831	A Facile Approach To Fabricate High-Performance Polymer Solar Cells with an Annealing-Free and Simple Device of Three Layers. Journal of Physical Chemistry C, 2015, 119, 11619-11624.	1.5	4
832	Device and morphological engineering of organic solar cells for enhanced charge transport and photovoltaic performance. Journal of Photonics for Energy, 2015, 5, 057207.	0.8	21
833	Trifluoromethyl benzimidazole-based conjugated polymers with deep HOMO levels for organic photovoltaics. Synthetic Metals, 2015, 205, 112-120.	2.1	14
834	Efficient Vacuumâ€Deposited Tandem Organic Solar Cells with Fill Factors Higher Than Singleâ€Junction Subcells. Advanced Energy Materials, 2015, 5, 1500228.	10.2	10
835	Raising efficiency of organic solar cells with electrotropic additives. Applied Physics Letters, 2015, 106, .	1.5	28
836	A low band-gap copolymer composed of thienyl substituted anthracene and diketopyrrolopyrrole compatible with multiple electron acceptors for high efficiency polymer solar cells. Polymer Chemistry, 2015, 6, 4013-4019.	1.9	26
837	Unsymmetrical Donor–Acceptor–Acceptorâ~π–Donor Type Benzothiadiazole-Based Small Molecule for a Solution Processed Bulk Heterojunction Organic Solar Cell. ACS Applied Materials & Diterfaces, 2015, 7, 10283-10292.	4.0	79
838	CH_3NH_3Pbl_3 perovskite / silicon tandem solar cells: characterization based optical simulations. Optics Express, 2015, 23, A263.	1.7	258
839	Computation of full polymer-based photovoltaic nanodevices using a parametrized field-based multiscale solar-cell approach. Organic Electronics, 2015, 22, 216-228.	1.4	2

#	Article	IF	CITATIONS
841	Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells. Scientific Reports, 2015, 5, 9265.	1.6	52
842	Regioregular Low Bandgap Polymer with Controlled Thieno [3,4- <i>b</i>) thiophene Orientation for High-Efficiency Polymer Solar Cells. Chemistry of Materials, 2015, 27, 3102-3107.	3.2	52
843	Improved photovoltaic performance of inverted polymer solar cells through a sol-gel processed Al-doped ZnO electron extraction layer. Optics Express, 2015, 23, A1334.	1.7	9
844	Solution processed thick film organic solar cells. Polymer Chemistry, 2015, 6, 8081-8098.	1.9	86
845	Development of a silver/polymer nanocomposite interconnection layer for organic tandem solar cells. Journal of Nanophotonics, 2015, 9, 093049.	0.4	13
846	Influence of thermal and solvent annealing on the morphology and photovoltaic performance of solution processed, D–A–D type small molecule-based bulk heterojunction solar cells. RSC Advances, 2015, 5, 93579-93590.	1.7	13
847	Synthesis of π-Extended Dithienobenzodithiophene-Containing Medium Bandgap Copolymers and Their Photovoltaic Application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 934-941.	1.2	11
848	Constructing bulk heterojunction with componential gradient for enhancing the efficiency of polymer solar cells. Journal of Power Sources, 2015, 300, 238-244.	4.0	23
849	Efficient PEDOT:PSS-Free Polymer Solar Cells with an Easily Accessible Polyacrylonitrile Polymer Material as a Novel Solution-Processable Anode Interfacial Layer. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 25032-25038.	4.0	19
850	Small-molecule organic solar cells with multiple-layer donor. Japanese Journal of Applied Physics, 2015, 54, 094102.	0.8	6
851	Electric-field dependence of photocarrier generation efficiency of organic photoconductors. Journal of Applied Physics, 2015, 117, .	1.1	3
852	Atomic Pathways Underlying Light-Induced Changes in Organic Solar Cell Materials. Journal of Physical Chemistry C, 2015, 119, 20265-20271.	1.5	21
853	Ultrahigh and Broad Spectral Photodetectivity of an Organic–Inorganic Hybrid Phototransistor for Flexible Electronics. Advanced Materials, 2015, 27, 6885-6891.	11.1	137
854	Synthesis, optical, electrochemical properties and photovoltaic performance of novel panchromatic meso-thiophene BODIPY dyes with a variety of electron-donating groups at the 3,5-positions. RSC Advances, 2015, 5, 86453-86462.	1.7	18
855	Thiadiazole quinoxaline-based copolymers with \hat{a}^4 1.0ÂeV bandgap for ternary polymer solar cells. Polymer, 2015, 79, 12-20.	1.8	19
856	A detailed study on the thermal, photo-physical and electrochemical properties and OFET applications of D–π–A–π–D structured unsymmetrical diketopyrrolopyrrole materials. RSC Advances, 2015, 5, 94859-94865.	1.7	17
857	Controlling the Morphology of BDTT-DPP-Based Small Molecules via End-Group Functionalization for Highly Efficient Single and Tandem Organic Photovoltaic Cells. ACS Applied Materials & Diterfaces, 2015, 7, 23866-23875.	4.0	33
858	Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chemical Reviews, 2015, 115, 12633-12665.	23.0	1,029

#	Article	IF	CITATIONS
859	Systematic investigation of the synthesis and light-absorption broadening of a novel diketopyrrolopyrrole conjugated polymer of low and high molecular weight with thermo-labile groups. Polymer Chemistry, 2015, 6, 7005-7014.	1.9	18
860	Influence of microwave exposure of tungsten oxide hole extraction layers on nanomorphology, optical and electrical properties of organic photovoltaics., 2015,,.		0
861	Improving the performance of organic solar cells using an electron transport layer of B4PyMPM self-assembled nanostructures. Electronic Materials Letters, 2015, 11, 795-800.	1.0	6
862	Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells. Nano Energy, 2015, 17, 196-205.	8.2	43
863	Synthesis and characterization of alternating and random conjugated polymers derived from dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene and 2,1,3-benzothiadiazole derivatives. Polymer Journal, 2015, 47, 803-809.	r 1.3	8
864	Overview of high-efficiency organic photovoltaic materials and devices. Renewable and Sustainable Energy Reviews, 2015, 52, 1527-1538.	8.2	70
865	Suppression of dark current through barrier engineer for solution-processed colloidal quantum-dots infrared photodetectors. Applied Physics Letters, 2015, 107, .	1.5	8
866	The effect of molecular geometry on the polymer/fullerene ratio in polymer solar cells. Polymer Chemistry, 2015, 6, 7550-7557.	1.9	5
867	Small molecular thienoquinoidal dyes as electron donors for solution processable organic photovoltaic cells. RSC Advances, 2015, 5, 76666-76669.	1.7	3
868	Designing interchain and intrachain properties of conjugated polymers for latent optical information encoding. Chemical Science, 2015, 6, 6980-6985.	3.7	12
869	Systematic Variation of Fluorinated Diketopyrrolopyrrole Low Bandgap Conjugated Polymers: Synthesis by Direct Arylation Polymerization and Characterization and Performance in Organic Photovoltaics and Organic Field-Effect Transistors. Macromolecules, 2015, 48, 6978-6986.	2.2	46
870	Molecular Modeling of Interfaces between Hole Transport and Active Layers in Flexible Organic Electronic Devices. Journal of Physical Chemistry C, 2015, 119, 27909-27918.	1.5	12
871	Tuning the physical properties of pyrrolo[3,4-c]pyrrole-1,3-dione-based highly efficient large band gap polymers via the chemical modification on the polymer backbone for polymer solar cells. RSC Advances, 2015, 5, 99217-99227.	1.7	12
872	Improved Photovoltaic Properties of Donor–Acceptor Copolymers by Introducing Quinoxalino[2,3- <i>b</i> porphyrin as a Light-Harvesting Unit. Macromolecules, 2015, 48, 287-296.	2.2	38
873	Synergistic Concurrent Enhancement of Charge Generation, Dissociation, and Transport in Organic Solar Cells with Plasmonic Metal–Carbon Nanotube Hybrids. Advanced Materials, 2015, 27, 1519-1525.	11.1	85
874	Heteroatom-Bridged Benzothiazolyls for Organic Solar Cells: A Theoretical Study. Journal of Physical Chemistry B, 2015, 119, 583-591.	1.2	28
875	Efficient inverted-structure polymer solar cells with reduced graphene oxide for anode modification. Journal of Industrial and Engineering Chemistry, 2015, 24, 206-210.	2.9	10
876	Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures. Scientific Reports, 2014, 4, 4040.	1.6	119

#	Article	IF	CITATIONS
877	Decoupling the optical and electrical properties of subphthalocyanine/C ₇₀ bi-layer organic photovoltaic devices: improved photocurrent while maintaining a high open-circuit voltage and fill factor. RSC Advances, 2015, 5, 5617-5626.	1.7	9
878	A versatile strategy to directly synthesize 4,8-functionalized benzo[1,2-b:4,5-b′]difurans for organic electronics. Journal of Materials Chemistry A, 2015, 3, 1920-1924.	5.2	20
879	8.7% Power conversion efficiency polymer solar cell realized with non-chlorinated solvents. Solar Energy Materials and Solar Cells, 2015, 134, 194-198.	3.0	42
880	Synthesis, optical and electrochemical properties new donor–acceptor (D–A) copolymers based on benzo[1,2-b:3,4-b′:6,5-b″] trithiophene donor and different acceptor units: Application as donor for photovoltaic devices. Organic Electronics, 2015, 17, 167-177.	1.4	9
881	Nanostructured photoelectrochemical solar cells with polyaniline nanobelts acting as hole conductors. Ionics, 2015, 21, 1781-1786.	1.2	7
882	Highly Efficient Tandem Polymer Solar Cells with a Photovoltaic Response in the Visible Light Range. Advanced Materials, 2015, 27, 1189-1194.	11.1	130
883	Alternative alcohol-soluble conjugated small molecule electrolytes for high-efficiency inverted polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 3637-3646.	1.3	8
884	Enhanced Light Trapping and Power Conversion Efficiency in Ultrathin Plasmonic Organic Solar Cells: A Coupled Optical-Electrical Multiphysics Study on the Effect of Nanoparticle Geometry. ACS Photonics, 2015, 2, 78-85.	3.2	49
885	Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells. Journal of Polymer Science Part A, 2015, 53, 327-336.	2.5	20
886	A push–pull organic semiconductor with efficient intramolecular charge transfer for solution-processed small molecule solar cells. RSC Advances, 2015, 5, 3435-3442.	1.7	14
887	Optical, electrochemical, and photovoltaic properties of conjugated polymers with dithiafulvalene as side chains. Journal of Applied Polymer Science, 2015, 132, .	1.3	2
888	Toward reliable and accurate evaluation of polymer solar cells based on low band gap polymers. Journal of Materials Chemistry C, 2015, 3, 564-569.	2.7	32
889	Improved performance and life time of inverted organic photovoltaics by using polymer interfacial materials. Solar Energy Materials and Solar Cells, 2015, 133, 99-104.	3.0	10
890	Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells. Scientific Reports, 2014, 4, 4306.	1.6	83
891	Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. Scientific Reports, 2014, 4, 4580.	1.6	25
892	Improved lifetimes of organic solar cells with solutionâ€processed molybdenum oxide anodeâ€modifying layers. Progress in Photovoltaics: Research and Applications, 2015, 23, 989-996.	4.4	22
893	Lateral Organic Solar Cells with Selfâ€Assembled Semiconductor Nanowires. Advanced Energy Materials, 2015, 5, 1401317.	10.2	28
894	A bridged low band gap A–D–A quaterthiophene as efficient donor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 390-398.	2.7	13

#	Article	IF	CITATIONS
895	Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy, 2015, 11, 56-63.	8.2	40
896	Highly stable inverted organic photovoltaics using aluminum-doped zinc oxide as electron transport layers. Journal of Power Sources, 2015, 275, 274-278.	4.0	20
897	Enhanced Fill Factor of Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrroleâ€Based Lowâ€Bandgap Polymer and Optimized Interlayer. ChemSusChem, 2015, 8, 331-336.	3.6	8
898	A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy and Environmental Science, 2015, 8, 303-316.	15.6	351
899	Parallel polymer tandem solar cells containing comb-shaped common electrodes. Solar Energy Materials and Solar Cells, 2015, 132, 56-66.	3.0	5
900	Photovoltaic performance enhancement from diketopyrrolopyrrole-based solar cells through structure manipulation. Dyes and Pigments, 2015, 112, 145-153.	2.0	13
901	Optically Switchable Smart Windows with Integrated Photovoltaic Devices. Advanced Energy Materials, 2015, 5, 1401347.	10.2	81
902	Donor–acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chemical Society Reviews, 2015, 44, 1113-1154.	18.7	543
903	Electrochemical studies on two-dimensional ZnlnO nanoplates for organic–inorganic hybrid photodiode related applications. Journal of Alloys and Compounds, 2015, 619, 693-696.	2.8	1
904	Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar Cells with Fullerene Intercalation. Scientific Reports, 2014, 4, 5211.	1.6	32
905	Phosphonated conjugated polymers for polymer solar cells with a non-halogenated solvent process. Polymer Chemistry, 2015, 6, 805-812.	1.9	26
906	5. Organic-type solar cells. , 2016, , 69-108.		O
907	Identifying Emerging Research Related to Solar Cells Field Using a Machine Leaning Approach. Journal of Sustainable Development of Energy, Water and Environment Systems, 2016, 4, 418-429.	0.9	10
909	Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications. Beilstein Journal of Organic Chemistry, 2016, 12, 1629-1637.	1.3	18
910	Plasmon-induced slow aging of exciton generation and dissociation for stable organic solar cells. Optica, 2016, 3, 1115.	4.8	1
911	Towards Highlyâ€Efficient Phototriggered Data Storage by Utilizing a Diketopyrrolopyrroleâ€Based Photoelectronic Small Molecule. Chemistry - an Asian Journal, 2016, 11, 2078-2084.	1.7	7
912	Synthesis and photovoltaic properties of 2,6â€bis(2â€thienyl) benzobisazole and 4,8â€bis(thienyl)â€benzo[1,2â€ <i>Bc!i>:4,5â€<i>B′</i>]dithiophene copolymers. Journal of Polymer Science F 2016, 54, 316-324.</i>	¯-¯-¯- Pa⊈ <i>\$</i> A,	12
913	Synthesis and characterization of new low band-gap polymers containing electron-accepting acenaphtho[1,2-c]thiophene-S,S-dioxide groups. Journal of Polymer Science Part A, 2016, 54, 498-506.	2.5	2

#	Article	IF	CITATIONS
914	Nd ₂ (S, Se, Te) ₃ Colloidal Quantum Dots: Synthesis, Energy Level Alignment, Charge Transfer Dynamics, and Their Applications to Solar Cells. Advanced Functional Materials, 2016, 254-266.	7.8	53
915	Homoâ€Tandem Polymer Solar Cells with <i>V</i> _{OC} >1.8 V for Efficient PVâ€Driven Water Splitting. Advanced Materials, 2016, 28, 3366-3373.	11.1	57
916	Bulkâ€Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization. Advanced Materials, 2016, 28, 7821-7861.	11.1	404
917	Perylene Diimide Trimers Based Bulk Heterojunction Organic Solar Cells with Efficiency over 7%. Advanced Energy Materials, 2016, 6, 1600060.	10.2	111
918	Excitation Energy Transfer in <i>meta</i> \$\hat{i} \approx \hat{a} \in \hat{S} \text{ubstituted Phenylacetylene Multibranched Chromophores.} Chemistry - an Asian Journal, 2016, 11, 2741-2748.	1.7	10
919	Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer. Advanced Materials, 2016, 28, 7521-7526.	11.1	102
920	Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Wellâ€Known PBDTTT Polymers. Advanced Energy Materials, 2016, 6, 1502529.	10.2	285
921	Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells. Macromolecular Rapid Communications, 2016, 37, 287-302.	2.0	71
922	A Silica Colloidal Mask for Randomly Surfaceâ€textured Indiumâ€doped Tin Oxide for Enhancing the Powerâ€conversion Efficiency of Polymer Solar Cells. Bulletin of the Korean Chemical Society, 2016, 37, 294-298.	1.0	0
923	Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Advanced Energy Materials, 2016, 6, 1502109.	10.2	147
924	Processing temperature control of a diketopyrrolopyrrole-alt-thieno[2,3-b]thiophene polymer for high-mobility thin-film transistors and polymer solar cells with high open-circuit voltages. Polymer, 2016, 105, 79-87.	1.8	7
925	Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots. ACS Nano, 2016, 10, 10829-10841.	7.3	31
926	Record high performance of perovskite/crystalline silicon four-terminal tandem solar cells. , 2016, , .		2
927	Medium-Bandgap Conjugated Polymers Containing Fused Dithienobenzochalcogenadiazoles: Chalcogen Atom Effects on Organic Photovoltaics. Macromolecules, 2016, 49, 9358-9370.	2.2	40
928	A novel crystallizable low band gap polymer for highâ€efficiency polymer photovoltaic cells. Journal of Polymer Science Part A, 2016, 54, 44-48.	2.5	2
929	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. RSC Advances, 2016, 6, 35677-35683.	1.7	22
930	Effect of solvent additive on active layer morphologies and photovoltaic performance of polymer solar cells based on PBDTTT-C-T/PC71BM. RSC Advances, 2016, 6, 51924-51931.	1.7	11
931	Systematic optimization of low bandgap polymer/[6,6]-phenyl C70 butyric acid methyl ester blend photodiode via structural engineering. Organic Electronics, 2016, 35, 17-23.	1.4	6

#	Article	IF	CITATIONS
932	Boosting Responsivity of Organic–Metal Oxynitride Hybrid Heterointerface Phototransistor. ACS Applied Materials & Diterfaces, 2016, 8, 14665-14670.	4.0	25
933	Efficient fullerene-based and fullerene-free polymer solar cells using two wide band gap thiophene-thiazolothiazole-based photovoltaic materials. Journal of Materials Chemistry A, 2016, 4, 9511-9518.	5.2	34
934	Large band-gap copolymers based on a 1,2,5,6-naphthalenediimide unit for polymer solar cells with high open circuit voltages and power conversion efficiencies. Journal of Materials Chemistry A, 2016, 4, 7372-7381.	5.2	25
935	Interface energetics and engineering of organic heterostructures in organic photovoltaic cells. Science China Chemistry, 2016, 59, 422-435.	4.2	10
936	High performance all-polymer solar cells employing systematically tailored donor polymers. Organic Electronics, 2016, 33, 227-234.	1.4	14
937	Polyfluorene Electrolytes Interfacial Layer for Efficient Polymer Solar Cells: Controllably Interfacial Dipoles by Regulation of Polar Groups. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9821-9828.	4.0	32
938	A perovskite based plug and play AC photovoltaic device with ionic liquid induced transient opto-electronic conversion. Journal of Materials Chemistry A, 2016, 4, 9019-9028.	5.2	12
939	Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells. ACS Applied Materials & Dot Solar Cells. ACS Applied Materials & Dot Solar Cells. ACS Applied Materials & Dot Solar Cells. ACS	4.0	40
940	Inverted organic photovoltaic cells. Chemical Society Reviews, 2016, 45, 2937-2975.	18.7	185
941	A D–π–A1–π–A2 push–pull small molecule donor for solution processed bulk heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 13918-13926.	1.3	12
942	Two-dimensional conjugated copolymers composed of diketopyrrolopyrrole, thiophene, and thiophene with side chains for binary and ternary polymer solar cells. Organic Electronics, 2016, 33, 213-220.	1.4	9
943	Impact of the Crystalline Packing Structures on Charge Transport and Recombination via Alkyl Chain Tunability of DPP-Based Small Molecules in Bulk Heterojunction Solar Cells. ACS Applied Materials & Amp; Interfaces, 2016, 8, 12940-12950.	4.0	43
944	10.20% Efficiency polymer solar cells via employing bilaterally hole-cascade diazaphenanthrobisthiadiazole polymer donors and electron-cascade indene-C70 bisadduct acceptor. Nano Energy, 2016, 25, 170-183.	8.2	68
945	Enhanced photovoltaic performance of ternary solar cells by doping a new squaraine derivative. Dyes and Pigments, 2016, 132, 20-26.	2.0	8
946	Donor–acceptor conjugated polymers based on thieno[3,2-b]indole (TI) and 2,1,3-benzothiadiazole (BT) for high efficiency polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 5448-5460.	2.7	32
947	Effects of the charge-transfer reorganization energy on the open-circuit voltage in small-molecular bilayer organic photovoltaic devices: comparison of the influence of deposition rates of the donor. Physical Chemistry Chemical Physics, 2016, 18, 12651-12661.	1.3	5
948	Metallophthalocyanine derivatives utilized as cathode interlayers for polymer solar cells: a practical approach to prepare a uniform film. RSC Advances, 2016, 6, 40442-40449.	1.7	5
949	D–A conjugated polymers based on thieno[3,2-b]indole (TI) and 2,1,3-benzodiathiazole (BT) derivatives: synthesis, characterization and side-chain influence on photovoltaic properties. RSC Advances, 2016, 6, 45873-45883.	1.7	13

#	Article	IF	CITATIONS
950	1,8-Naphthalimide-based nonfullerene acceptors for wide optical band gap polymer solar cells with an ultrathin active layer thickness of 35 nm. Journal of Materials Chemistry C, 2016, 4, 5656-5663.	2.7	42
951	Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polymer Chemistry, 2016, 7, 4036-4045.	1.9	26
952	A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2Vâ^1sâ^1. Nano Energy, 2016, 28, 433-439.	8.2	212
953	Capacitance Spectroscopy of Light Induced Trap States in Organic Solar Cells. Journal of Physical Chemistry C, 2016, 120, 22169-22178.	1.5	42
954	Printable Solar Cells from Advanced Solution-Processible Materials. CheM, 2016, 1, 197-219.	5.8	68
955	Photoluminescence quenching of poly(octylfluorenylbenzothiadiazole) luminophore by n-type cobalt(II) salicylaldimine metallodendrimer. Synthetic Metals, 2016, 220, 114-122.	2.1	4
956	ITO-free inverted small molecule solar cells. , 2016, , .		0
957	Photochemical site-selective synthesis of [70]methanofullerenes. Chemical Communications, 2016, 52, 12733-12736.	2.2	16
958	Polarized Thin Layer Deposited Electrochemically on Aluminum-Doped Zinc Oxide as a Cathode Interlayer for Highly Efficient Organic Electronics. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26463-26469.	4.0	13
959	Novel regular D–A-conjugated polymers based on 2,6-bis(6-fluoro-2-hexyl-2H-benzotriazol-4-yl)-4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene derivatives: Synthesis, optoelectronic, and electrochemical properties. Doklady Chemistry, 2016, 470, 274-278.	0.2	2
960	Cu2SnS3nanostructures for inorganic–organic hybrid infrared photodetector applications. Materials Research Express, 2016, 3, 105006.	0.8	9
961	Efficient Solution Processable Polymer Solar Cells Using Newly Designed and Synthesized Fullerene Derivatives. Journal of Physical Chemistry C, 2016, 120, 19493-19503.	1.5	17
962	Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods. Optics Express, 2016, 24, 17910.	1.7	10
963	Quaternary Organic Solar Cells Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies >10%. Advanced Energy Materials, 2016, 6, 1600660.	10.2	46
964	Organic Solar Cells with Open Circuit Voltage over 1.25 V Employing Tetraphenyldibenzoperiflanthene as the Acceptor. Journal of Physical Chemistry C, 2016, 120, 19027-19034.	1.5	16
965	A wide-bandgap conjugated polymer for highly efficient inverted single and tandem polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 13251-13258.	5. 2	58
966	Molecular Engineering on Conjugated Side Chain for Polymer Solar Cells with Improved Efficiency and Accessibility. Chemistry of Materials, 2016, 28, 5887-5895.	3.2	65
967	Synthesis and photophysical properties of regioregular low bandgap copolymers with controlled 5-fluorobenzotriazole orientation for photovoltaic application. Polymer Chemistry, 2016, 7, 5849-5861.	1.9	11

#	Article	IF	CITATIONS
968	A density functional approach to characterize anisotropic hyperelastic behavior of organic crystals: Case study of nylon-6,6. Computational Materials Science, 2016, 124, 390-397.	1.4	8
969	Advanced triple junction solar cell by employing inorganic-organic hybrid materials. , 2016, , .		0
970	Control of Molecular Orientation in Polydiketopyrrolopyrrole Copolymers via Diffusive Noncovalent Interactions. Chemistry of Materials, 2016, 28, 7088-7097.	3.2	47
971	Induced Infiltration of Hole-Transporting Polymer into Photocatalyst for Staunch Polymer–Metal Oxide Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 25915-25922.	4.0	8
972	Electric field assisted spray deposited MoO3 thin films as a hole transport layer for organic solar cells. Solar Energy, 2016, 137, 379-384.	2.9	32
973	Optimization and Analysis of Conjugated Polymer Side Chains for Highâ€Performance Organic Photovoltaic Cells. Advanced Functional Materials, 2016, 26, 1517-1525.	7.8	67
974	Design and Synthesis of a Low Bandgap Small Molecule Acceptor for Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 8283-8287.	11.1	421
975	Synthetic Routes to TEGâ€Substituted Diketopyrrolopyrroleâ€Based Low Bandâ€Gap Polymers. European Journal of Organic Chemistry, 2016, 2016, 3233-3242.	1.2	29
976	Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. Advanced Science, 2016, 3, 1500362.	5.6	389
977	10.8% Efficiency Polymer Solar Cells Based on PTB7‶h and PC ₇₁ BM via Binary Solvent Additives Treatment. Advanced Functional Materials, 2016, 26, 6635-6640.	7.8	279
978	Luminescent Downshifting by Photoâ€Induced Solâ€Gel Hybrid Coatings: Accessing Multifunctionality on Flexible Organic Photovoltaics via Ambient Temperature Material Processing. Advanced Electronic Materials, 2016, 2, 1600288.	2.6	85
979	Tailorable PC ₇₁ BM Isomers: Using the Most Prevalent Electron Acceptor to Obtain Highâ€Performance Polymer Solar Cells. Chemistry - A European Journal, 2016, 22, 18709-18713.	1.7	15
980	Density Functional Theory Study of Selenium-Substituted Low-Bandgap Donor–Acceptor–Donor Polymer. Journal of Physical Chemistry C, 2016, 120, 27200-27211.	1.5	21
981	Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells. Scientific Reports, 2016, 6, 30327.	1.6	21
982	High Performance Small-Molecule Cathode Interlayer Materials with D-A-D Conjugated Central Skeletons and Side Flexible Alcohol/Water-Soluble Groups for Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32823-32832.	4.0	35
983	Determination of the Local Morphology within Individual Polymer Domains. Macromolecules, 2016, 49, 8219-8227.	2.2	4
984	Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics. Accounts of Chemical Research, 2016, 49, 2478-2488.	7.6	109
985	A diketopyrrolopyrrole-based low bandgap polymer with enhanced photovoltaic performances through backbone twisting. Journal of Materials Chemistry A, 2016, 4, 18174-18180.	5.2	16

#	Article	IF	CITATIONS
986	DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chemistry Central Journal, 2016, 10, 67.	2.6	97
987	Organic Solar Cells. , 2016, , 73-136.		1
988	How to Prevent Degradation in Organic Solar Cells. , 2016, , 243-267.		0
989	High efficiency all-polymer tandem solar cells. Scientific Reports, 2016, 6, 26459.	1.6	57
990	Effects of the incorporation of bithiophene instead of thiophene between the pyrrolo[3,4-c]pyrrole-1,3-dione units of a bis(pyrrolo[3,4-c]pyrrole-1,3-dione)-based polymer for polymer solar cells. New Journal of Chemistry, 2016, 40, 10153-10160.	1.4	10
991	Light Scattering Effects by Silver Nano-Particles on the Surface Protection Sheet of an Amorphous Silicon Solar Cell. E-Journal of Surface Science and Nanotechnology, 2016, 14, 83-86.	0.1	1
992	Gallium arsenide/gold nanostructures deposited using plasma method. AIP Conference Proceedings, 2016, , .	0.3	0
993	Conducting polymers as electron glasses: surface charge domains and slow relaxation. Scientific Reports, 2016, 6, 21647.	1.6	10
994	Dual Effect of ITOâ€Interlayer on Inverted Topâ€Illuminated Polymer Solar Cells: Wetting of Polyelectrolyte and Tuning of Cavity. Advanced Functional Materials, 2016, 26, 5437-5446.	7.8	13
995	Electronic Structure and Properties of Organic Bulkâ€Heterojunction Interfaces. Advanced Materials, 2016, 28, 3814-3830.	11.1	74
996	Plasmonic Backscattering Effect in Highâ€Efficient Organic Photovoltaic Devices. Advanced Energy Materials, 2016, 6, 1501640.	10.2	43
997	Optimized "Alloyâ€Parallel―Morphology of Ternary Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502456.	10.2	79
998	Dithieno [2,3â€d:2′,3′â€d′]naphtho [2,1â€b:3,4â€b′]dithiophene based medium bandgap conjugated photovoltaic applications. Journal of Applied Polymer Science, 2016, 133, .	polymers	for
999	The rising star in photovoltaics-perovskite solar cells: The past, present and future. Science China Technological Sciences, 2016, 59, 989-1006.	2.0	33
1000	Enhancement of the power conversion efficiency due to the plasmonic resonant effect of Au nanoparticles in ZnO nanoripples. Organic Electronics, 2016, 37, 74-79.	1.4	11
1001	All organic-based solar cell and thermoelectric generator hybrid device system using highly conductive PEDOT:PSS film as organic thermoelectric generator. Solar Energy, 2016, 134, 479-483.	2.9	36
1002	Broadband Scattering With Strong Electric Field Coupling Between Metal Nanostructures Using DDA Simulation: Role of Different Organic Environments. IEEE Journal of Photovoltaics, 2016, 6, 940-951.	1.5	5
1003	Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method. Applied Surface Science, 2016, 388, 109-113.	3.1	9

#	Article	IF	CITATIONS
1004	Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 2016, 116, 7397-7457.	23.0	998
1005	Effect of a high boiling point additive on the morphology of solution-processed P3HT-fullerene blends. Synthetic Metals, 2016, 216, 23-30.	2.1	10
1006	Revealing optically induced dipole-dipole interaction effects on charge dissociation at donor:acceptor interfaces in organic solar cells under device-operating condition. Nano Energy, 2016, 26, 595-602.	8.2	18
1007	Development of Photovoltaic Devices Based on Near Infrared Quantum Dots and Conjugated Polymers. ChemNanoMat, 2016, 2, 601-615.	1.5	6
1008	New Electron Transport Materials for High Performance Organic Solar Cells: Synthesis and Properties of Symmetrical and Asymmetrical 1,4,5,8â€Naphthalenetetracarboxylic Dianhydride Derivatives. Advanced Electronic Materials, 2016, 2, 1600047.	2.6	5
1009	High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. Frontiers of Optoelectronics, 2016, 9, 71-80.	1.9	42
1010	N-type cathode interlayer based on dicyanomethylenated quinacridone derivative for high-performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 2169-2177.	5.2	24
1011	Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renewable and Sustainable Energy Reviews, 2016, 53, 859-884.	8.2	239
1012	Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer. Energy and Environmental Science, 2016, 9, 240-246.	15.6	93
1013	Donor–acceptor polymers with a regioregularly incorporated thieno[3,4-b]thiophene segment as a π-bridge for organic photovoltaic devices. Synthetic Metals, 2016, 211, 75-83.	2.1	18
1014	Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance. Journal of Materials Chemistry A, 2016, 4, 961-968.	5.2	16
1015	Preparation and employment of carbon nanodots to improve electron extraction capacity of polyethylenimine interfacial layer for polymer solar cells. Organic Electronics, 2016, 33, 62-70.	1.4	13
1016	Synthesis and characterization of π-conjugated copolymers based on alkyltriazolyl substituted benzodithiophene. New Journal of Chemistry, 2016, 40, 4727-4734.	1.4	10
1017	Molecular Structure Controlled Transitions between Free-Charge Generation and Trap Formation in a Conjugated Copolymer Series. Journal of Physical Chemistry C, 2016, 120, 4189-4198.	1.5	9
1018	Semitransparent quantum dot solar cell. Nano Energy, 2016, 22, 70-78.	8.2	37
1019	Organic Photovoltaics for Energy Efficiency in Buildings. , 2016, , 321-355.		2
1020	Incorporation of diketopyrrolopyrrole dye to improve photovoltaic performance of P3HT:PC 71 BM based bulk heterojunction polymer solar cells. Organic Electronics, 2016, 31, 171-176.	1.4	9
1021	Recent progress in high efficiency polymer solar cells by rational design and energy level tuning of low bandgap copolymers with various electron-withdrawing units. Organic Electronics, 2016, 31, 149-170.	1.4	103

#	Article	IF	CITATIONS
1022	Heterojunction Solar Cells Based on Silicon and Composite Films of Polyaniline and Carbon Nanotubes. IEEE Journal of Photovoltaics, 2016, 6, 688-695.	1.5	18
1023	Long-Term Stable Recombination Layer for Tandem Polymer Solar Cells Using Self-Doped Conducting Polymers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6144-6151.	4.0	34
1024	Tuning the LUMO level of organic photovoltaic solar cells by conjugately fusing graphene flake: A DFT-B3LYP study. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 108-115.	1.3	21
1025	Structures and photoelectric properties of five benzotrithiophene isomers-based donor–acceptor copolymers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 159, 262-268.	2.0	4
1026	Efficient polymer tandem modules and solar cells by doctor blading. Journal of Materials Chemistry A, 2016, 4, 4771-4775.	5.2	9
1027	Dual structure modifications to realize efficient polymer solar cells with low fullerene content. Organic Electronics, 2016, 32, 187-194.	1.4	6
1028	Donor–Acceptor Random versus Alternating Copolymers for Efficient Polymer Solar Cells: Importance of Optimal Composition in Random Copolymers. Macromolecules, 2016, 49, 2096-2105.	2.2	40
1029	Cyanine tandem and triple-junction solar cells. Organic Electronics, 2016, 30, 191-199.	1.4	15
1030	Improved efficiency of organic solar cells by transfer printing induced crystallization of active layer. Journal of Industrial and Engineering Chemistry, 2016, 33, 366-368.	2.9	5
1031	Efficient Vacuum-Deposited Ternary Organic Solar Cells with Broad Absorption, Energy Transfer, and Enhanced Hole Mobility. ACS Applied Materials & Interfaces, 2016, 8, 1214-1219.	4.0	26
1032	Double-parallel-junction hybrid solar cells based on silicon nanocrystals. Organic Electronics, 2016, 30, 99-104.	1.4	9
1033	Effect of side chain length on the charge transport, morphology, and photovoltaic performance of conjugated polymers in bulk heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 1855-1866.	5. 2	74
1034	Diketopyrrolopyrrole Polymers for Organic Solar Cells. Accounts of Chemical Research, 2016, 49, 78-85.	7.6	435
1035	Charge transport dependent high open circuit voltage tandem organic photovoltaic cells with low temperature deposited HATCN-based charge recombination layers. Physical Chemistry Chemical Physics, 2016, 18, 4045-4050.	1.3	3
1036	Photoconductivity of composites based on CdSe quantum dots and low-band-gap polymers. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 79, 206-211.	1.3	16
1037	Solution-processable thiadiazoloquinoxaline-based donor–acceptor small molecules for thin-film transistors. Journal of Materials Chemistry C, 2016, 4, 3809-3814.	2.7	47
1038	Low bandgap semiconducting polymers for polymeric photovoltaics. Chemical Society Reviews, 2016, 45, 4825-4846.	18.7	461
1039	Enhanced carrier dynamics of PTB7:PC 71 BM based bulk heterojunction organic solar cells by the incorporation of formic acid. Organic Electronics, 2016, 28, 275-280.	1.4	11

#	Article	IF	CITATIONS
1040	N-Alkylthienopyrroledione versus benzothiadiazole pulling units in push–pull copolymers used for photovoltaic applications: density functional theory study. Physical Chemistry Chemical Physics, 2016, 18, 1017-1024.	1.3	15
1041	Systematic Study of the PCE and Device Operation of Organic Tandem Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 202-210.	1.5	15
1042	Dielectric Antireflection Fiber Arrays for Absorption Enhancement in Thin-Film Organic Tandem Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 1-6.	1.9	198
1043	Novel triphenylamine-based copolymers for all-polymer solar cells. Dyes and Pigments, 2017, 140, 141-149.	2.0	12
1044	Enhanced photovoltaic performances of bis(pyrrolo[3,4-c]pyrrole-1,3-dione)-based wide band gap polymer via the incorporation of an appropriate spacer unit between pyrrolo[3,4-c]pyrrole-1,3-dione units. Organic Electronics, 2017, 42, 34-41.	1.4	11
1045	Excited-states spectroscopies and its magnetic field effect of π-conjugated polymer-fullerene blends with below-gap excitation. Synthetic Metals, 2017, 223, 132-136.	2.1	1
1046	Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultraâ€Narrow Band Gap. Angewandte Chemie, 2017, 129, 3091-3095.	1.6	61
1047	Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultraâ€Narrow Band Gap. Angewandte Chemie - International Edition, 2017, 56, 3045-3049.	7.2	711
1048	Indacenodithiophene-based wide bandgap copolymers for high performance single-junction and tandem polymer solar cells. Nano Energy, 2017, 33, 313-324.	8.2	52
1050	Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.	18.7	99
1051	Photovoltaic limitations of BODIPY:fullerene based bulk heterojunction solar cells. Synthetic Metals, 2017, 226, 25-30.	2.1	14
1052	Electroluminescence from ZnCuInS/ZnS quantum dots/poly(9-vinylcarbazole) multilayer films with different thicknesses of quantum dot layer. Journal of Physics and Chemistry of Solids, 2017, 104, 133-138.	1.9	10
1053	Highly Efficient Parallel-Like Ternary Organic Solar Cells. Chemistry of Materials, 2017, 29, 2914-2920.	3.2	152
1054	Efficient Top-Illuminated Organic-Quantum Dots Hybrid Tandem Solar Cells with Complementary Absorption. ACS Photonics, 2017, 4, 1172-1177.	3.2	17
1055	Film morphology of solution-processed regioregular ternary conjugated polymer solar cells under processing additive stress. Journal of Materials Chemistry A, 2017, 5, 8903-8908.	5.2	9
1056	Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell. Journal of the American Chemical Society, 2017, 139, 7302-7309.	6.6	427
1057	Improved performance of polymer-fullerene composite solar cells with fluorinated compound as an additive in active layer. Molecular Crystals and Liquid Crystals, 2017, 645, 199-206.	0.4	1
1058	Side-Chain Influence of Wide-Bandgap Copolymers Based on Naphtho[1,2- <i>b</i> :5,6- <i>b</i>]bispyrazine and Benzo[1,2- <i>b</i> :4,5- <i>b</i> ?dithiophene for Efficient Photovoltaic Applications. ACS Applied Materials & The Samp; Interfaces, 2017, 9, 18142-18150.	4.0	17

#	Article	IF	CITATIONS
1059	Achieving 12.8% Efficiency by Simultaneously Improving Open ircuit Voltage and Short ircuit Current Density in Tandem Organic Solar Cells. Advanced Materials, 2017, 29, 1606340.	11.1	100
1060	Highly Sensitive and Broadband Organic Photodetectors with Fast Speed Gain and Large Linear Dynamic Range at Low Forward Bias. Small, 2017, 13, 1603260.	5. 2	102
1061	Thiophene and diketopyrrolopyrrole based conjugated polymers as efficient alternatives to spiro-OMeTAD in perovskite solar cells as hole transporting layers. Journal of Materials Chemistry C, 2017, 5, 5193-5198.	2.7	35
1062	High performance thermal-treatment-free tandem polymer solar cells with high fill factors. Organic Electronics, 2017, 47, 79-84.	1.4	14
1063	Synthesis of diketopyrrolopyrrole based conjugated polymers containing thieno[3,2-b]thiophene flanking groups for high performance thin film transistors. Polymer Chemistry, 2017, 8, 3431-3437.	1.9	13
1064	Solution-processed colloidal quantum dot/organic hybrid tandem photovoltaic devices with 8.3% efficiency. Nano Energy, 2017, 31, 403-409.	8.2	25
1065	Solution processed cathode and interconnecting layer of silver nanowires in an efficient inverted tandem organic solar cells. Solar Energy Materials and Solar Cells, 2017, 160, 494-502.	3.0	24
1066	Electron Transport Layer-Free Inverted Organic Solar Cells Fabricated with Highly Transparent Low-Resistance Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Electrode. Journal of Electronic Materials, 2017, 46, 2140-2146.	1.0	4
1067	Tailoring Nanoscale Morphology of Polymer:Fullerene Blends Using Electrostatic Field. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2678-2685.	4.0	14
1068	Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nature Photonics, 2017, 11, 85-90.	15.6	510
1069	Electrochemical and photovoltaic studies on water soluble triads: Metallosupramolecular self-assembly of ditopic bis(imidazole) perylene diimide with platinum(II)-, and palladium(II)-2,2â \in 2:6â \in 2,2â \in 3-terpyridyl complex ions. Dyes and Pigments, 2017, 144, 190-202.	2.0	12
1070	Smallâ€Molecule Solar Cells with Simultaneously Enhanced Shortâ€Circuit Current and Fill Factor to Achieve 11% Efficiency. Advanced Materials, 2017, 29, 1700616.	11.1	87
1071	A liquid crystal material as the third component for ternary polymer solar cells with an efficiency of 10.83% and enhanced stability. Journal of Materials Chemistry A, 2017, 5, 13145-13153.	5.2	65
1072	Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. Applied Physics Letters, 2017, 110, 223903.	1.5	23
1073	Numerical simulation of metal subwavelength nanogeometries in organic media using DDA technique: a coupled broadband resonant near electric field perspective. Journal of Optics (India), 2017, 46, 132-142.	0.8	0
1074	Effective band gap tuning by foreign metal doping in hybrid tin iodide perovskites. Journal of Materials Chemistry C, 2017, 5, 4048-4052.	2.7	35
1075	A novel organic–inorganic hybrid tandem solar cell with inverted structure. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	1
1076	An Allâ€Solution Processed Recombination Layer with Mild Postâ€Treatment Enabling Efficient Homoâ€Tandem Nonâ€fullerene Organic Solar Cells. Advanced Materials, 2017, 29, 1604231.	11.1	68

#	Article	IF	CITATIONS
1077	Utilizing Forster resonance energy transfer to extend spectral response of PCDTBT:PCBM solar cells. Organic Electronics, 2017, 42, 87-92.	1.4	8
1078	Eco-friendly direct (hetero)-arylation polymerization: scope and limitation. Journal of Materials Chemistry C, 2017, 5, 29-40.	2.7	46
1079	Morphology-driven photocurrent enhancement in PTB7/PC71BM bulk heterojunction solar cells via the use of ternary solvent processing blends. Organic Electronics, 2017, 41, 229-236.	1.4	5
1080	Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells. Journal of Materials Chemistry C, 2017, 5, 566-572.	2.7	51
1081	Novel thienoisoindigo-based dyes for near-infrared organic photovoltaics - A combination of theoretical and experimental study. Organic Electronics, 2017, 51, 410-421.	1.4	5
1082	Advanced Photonic Processes for Photovoltaic and Energy Storage Systems. Advanced Materials, 2017, 29, 1700335.	11.1	61
1083	Improved photovoltaic performance of bilayer small molecular solar cells via geometrical rearrangement of active materials. Materials Technology, 2017, 32, 792-799.	1.5	7
1084	Highâ€Efficiency Organic Tandem Solar Cells With Effective Transition Metal Chelates Interconnecting Layer. Solar Rrl, 2017, 1, 1700139.	3.1	19
1085	A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase. Nanoscale, 2017, 9, 11511-11522.	2.8	9
1086	Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells. Nano Letters, 2017, 17, 5140-5147.	4.5	78
1087	Light illumination intensity dependence of current-voltage characteristics in polymer solar cells with solution-processed titanium chelate as electron extraction layer. Solar Energy, 2017, 155, 1044-1051.	2.9	10
1088	Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nature Reviews Materials, 2017, 2, .	23.3	284
1089	Inverted Organic Solar Cells Fabricated with Roomâ€Temperatureâ€deposited Transparent Multilayer Electrodes. Bulletin of the Korean Chemical Society, 2017, 38, 856-860.	1.0	1
1090	Thin-film photovoltaic devices incorporating low-bandgap push-pull molecules dispersed in passive polymeric matrices. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1479-1493.	2.4	2
1091	Precise Characterization of Performance Metrics of Organic Solar Cells. Small Methods, 2017, 1, 1700159.	4.6	11
1092	Recent Development of Quinoxaline Based Polymers/Small Molecules for Organic Photovoltaics. Advanced Energy Materials, 2017, 7, 1700575.	10.2	115
1093	Hybrid Organic Tandem Solar Cell Comprising Small-Molecule Bottom and Polymer:Fullerene Top Subcells Fabricated by Thin-Film Transfer. Scientific Reports, 2017, 7, 1942.	1.6	15
1094	A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell. Advanced Energy Materials, 2017, 7, 1701164.	10.2	29

#	Article	IF	CITATIONS
1095	Efficient pyrrolo[3,4-c]pyrrole-1,3-dione-based wide band gap polymer for high-efficiency binary and ternary solar cells. Polymer, 2017, 125, 182-189.	1.8	15
1096	Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29917-29923.	4.0	45
1097	Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains for Single-Component Organic Solar Cells. Chemistry of Materials, 2017, 29, 7073-7077.	3.2	93
1098	Rational design of perylenediimide-based polymer acceptor for efficient all-polymer solar cells. Organic Electronics, 2017, 50, 376-383.	1.4	14
1099	Wide bandgap conjugated polymers based on bithiophene and benzotriazole for bulk heterojunction solar cells: Thiophene versus thieno[3,2-⟨i⟩b⟨/i⟩]thiophene as Ï€-conjugated spacers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 565-574.	1.2	5
1100	The influence of electrical effects on device performance of organic solar cells with nano-structured electrodes. Scientific Reports, 2017, 7, 5300.	1.6	26
1101	Nanostructures induced light harvesting enhancement in organic photovoltaics. Nanophotonics, 2017, 7, 371-391.	2.9	32
1102	High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells. Journal of the American Chemical Society, 2017, 139, 17114-17119.	6.6	384
1103	Water-soluble polythiophenes as efficient charge-transport layers for the improvement of photovoltaic performance in bulk heterojunction polymeric solar cells. European Polymer Journal, 2017, 97, 378-388.	2.6	15
1104	Colorful flexible polymer tandem solar cells. Journal of Materials Chemistry C, 2017, 5, 7884-7889.	2.7	14
1105	An efficient and thermally stable interconnecting layer for tandem organic solar cells. Solar Energy, 2017, 155, 552-560.	2.9	11
1106	Enhancing the Efficiency of Polymer Solar Cells by Incorporation of 2,5-Difluorobenzene Units into the Polymer Backbone via Random Copolymerization. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23775-23781.	4.0	9
1107	Properties of functional layers in inverted thin film organic solar cells. Solar Energy Materials and Solar Cells, 2017, 160, 241-256.	3.0	50
1108	Photovoltaic performance of TCVA-InSe hybrid solar cells based on nanostructure films. Solar Energy Materials and Solar Cells, 2017, 160, 335-339.	3.0	32
1109	Efficient PbS QD solar cell with an inverted structure. Solar Energy Materials and Solar Cells, 2017, 159, 503-509.	3.0	25
1110	Control of Mesoscale Morphology and Photovoltaic Performance in Diketopyrrolopyrroleâ€Based Small Band Gap Terpolymers. Advanced Energy Materials, 2017, 7, 1601138.	10.2	59
1111	Carbon Nanotubes in Thinâ€Film Solar Cells. Advanced Energy Materials, 2017, 7, 1601205.	10.2	25
1112	Structure and design of polymers for durable, stretchable organic electronics. Polymer Journal, 2017, 49, 41-60.	1.3	80

#	Article	IF	CITATIONS
1113	Polymer solar cells with enhanced power conversion efficiency using nanomaterials and laser techniques. Materials Technology, 2017, 32, 279-298.	1.5	7
1114	Transparent Conductive ITO/Ag/ITO Electrode Deposited at Room Temperature for Organic Solar Cells. Journal of Electronic Materials, 2017, 46, 306-311.	1.0	24
1115	Carbon Dangling Bonds in Photodegraded Polymer:Fullerene Solar Cells. Advanced Energy Materials, 2017, 7, 1601420.	10.2	15
1116	Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601251.	10.2	152
1117	Hydrogen and nitrogen codoping of anatase TiO2 for efficiency enhancement in organic solar cells. Scientific Reports, 2017, 7, 17839.	1.6	24
1118	Knowledge Domain and Emerging Trends in Organic Photovoltaic Technology: A Scientometric Review Based on CiteSpace Analysis. Frontiers in Chemistry, 2017, 5, 67.	1.8	80
1119	Tandem polymer solar cells: simulation and optimization through a multiscale scheme. Beilstein Journal of Nanotechnology, 2017, 8, 123-133.	1.5	9
1120	Alleviating Hydrogen Plasma Damage to Amorphous/Crystalline Silicon Interface Passivation. , 2017, , .		0
1121	Pentacene-assisted planarization of photo-active layers for high performance tandem organic photovoltaics. Solar Energy, 2018, 163, 434-442.	2.9	2
1122	Engineering the interconnecting layer for efficient inverted tandem polymer solar cells with absorption complementary fullerene and nonfullerene acceptors. Solar Energy Materials and Solar Cells, 2018, 180, 1-9.	3.0	26
1123	Fabrication of flexible indium tin oxide-free polymer solar cells with silver nanowire transparent electrode. Japanese Journal of Applied Physics, 2018, 57, 03DD01.	0.8	7
1124	Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 36-44.	3.0	31
1125	Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics, 2018, 12, 131-142.	15.6	1,535
1126	Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy and Environmental Science, 2018, 11, 1688-1709.	15.6	266
1127	Solutionâ€Processable Conjugated Polymers as Anode Interfacial Layer Materials for Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800022.	10.2	95
1128	A Universal Route to Fabricate <i>nâ€iâ€p</i> Multiâ€Junction Polymer Solar Cells via Solution Processing. Solar Rrl, 2018, 2, 1800018.	3.1	13
1129	Low-Temperature Solution-Processed Mg:SnO ₂ Nanoparticles as an Effective Cathode Interfacial Layer for Inverted Polymer Solar Cell. ACS Sustainable Chemistry and Engineering, 2018, 6, 6702-6710.	3.2	25
1130	Tandem perovskite solar cells. Renewable and Sustainable Energy Reviews, 2018, 84, 89-110.	8.2	93

#	Article	IF	CITATIONS
1131	A Lewis acid-base chemistry approach towards narrow bandgap dye molecules. Dyes and Pigments, 2018, 153, 1-9.	2.0	15
1132	Benzothiadiazole-oligothiophene flanked dicyanomethylenated quinacridone for non-fullerene acceptors in polymer solar cells. New Journal of Chemistry, 2018, 42, 5005-5013.	1.4	7
1133	Single-layer solar cell based on nanostructure of polyaniline on fluorine-doped tin oxide: a simple, low-cost and efficient FTOâ",n-PANIâ",Al cell. Journal of the Iranian Chemical Society, 2018, 15, 967-980.	1.2	15
1134	New Class of Efficient Terahertz Generators: Effective Terahertz Spectral Filling by Complementary Tandem Configuration of Nonlinear Organic Crystals. Advanced Functional Materials, 2018, 28, 1707195.	7.8	17
1135	Single-Walled Carbon Nanotubes in Solar Cells. Topics in Current Chemistry, 2018, 376, 4.	3.0	58
1136	Solution Processed Bathocuproine for Organic Solar Cells. IEEE Nanotechnology Magazine, 2018, 17, 128-132.	1.1	5
1137	Improved Stability and Performance of Visible Photoelectrochemical Water Splitting on Solution-Processed Organic Semiconductor Thin Films by Ultrathin Metal Oxide Passivation. Chemistry of Materials, 2018, 30, 324-335.	3.2	29
1138	A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO ₂ cathode interlayers for highly efficient and extremely stable polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 1459-1469.	2.7	25
1139	Formulation of PC71BM isomers in P3HT-based polymer solar cells. Solar Energy Materials and Solar Cells, 2018, 176, 340-345.	3.0	8
1140	Highly stable Al-doped ZnO by ligand-free synthesis as general thickness-insensitive interlayers for organic solar cells. Science China Chemistry, 2018, 61, 127-134.	4.2	25
1141	Highâ€Performance Organic Bulkâ€Heterojunction Solar Cells Based on Multipleâ€Donor or Multipleâ€Acceptor Components. Advanced Materials, 2018, 30, 1705706.	11.1	161
1142	Enhanced Charge Transfer, Transport and Photovoltaic Efficiency in Allâ€Polymer Organic Solar Cells by Polymer Backbone Fluorination. Chinese Journal of Chemistry, 2018, 36, 280-286.	2.6	5
1143	A new strategy for designing polymer electron acceptors: electronrich conjugated backbone with electron-deficient side units. Science China Chemistry, 2018, 61, 824-829.	4.2	34
1144	2D/2D vanadyl phosphate (VP) on reduced graphene oxide as a hole transporting layer for efficient organic solar cells. Organic Electronics, 2018, 59, 92-98.	1.4	13
1145	Well-aligned Vertically Oriented ZnO Nanorod Arrays and their Application in Inverted Small Molecule Solar Cells. Journal of Visualized Experiments, 2018, , .	0.2	4
1146	Near-infrared absorbing non-fullerene acceptors with selenophene as π bridges for efficient organic solar cells. Journal of Materials Chemistry A, 2018, 6, 8059-8067.	5.2	92
1147	A Primer on Photovoltaic Generators. Springer Series in Materials Science, 2018, , 63-90.	0.4	3
1148	Organic solar cells based on graphene derivatives and eutectic alloys vacuum-free deposited as top electrodes. Carbon, 2018, 134, 301-309.	5.4	35

#	Article	IF	CITATIONS
1149	Analyzing p-type Conjugated Conducting Poly (diaminonaphthalene) Doped Poly (vinyl alcohol) Bulk Hetrojunction Film for Organic Solar Cells. Materials Today: Proceedings, 2018, 5, 1673-1678.	0.9	4
1150	Low bandgap diketopyrrolopyrrole-based polymers with an asymmetric unit of fluoridated phenylene-thiophene for efficient polymer solar cells. Synthetic Metals, 2018, 240, 30-36.	2.1	10
1151	Enhanced photovoltaic performance of polymer solar cells through design of a fused dithienosilolodithiophene structure with an enlarged π-conjugated system. Journal of Materials Chemistry C, 2018, 6, 4208-4216.	2.7	11
1152	Efficient cascade multiple heterojunction organic solar cells with inverted structure. Superlattices and Microstructures, 2018, 117, 215-219.	1.4	3
1153	Charge transfer induced unexpected red-shift absorption of Zn and Cu porous coordination polymers based on electron-withdrawing ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 350, 103-110.	2.0	16
1154	Polymer Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 45-108.	0.4	1
1155	A strategy to design lanthanide doped dual-mode phosphor mediated spectral convertor for solar cell applications. Journal of Luminescence, 2018, 196, 207-213.	1.5	27
1156	A facile approach towards chemical modification of Ag nanowires by PEDOT as a transparent electrode for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 312-319.	2.7	19
1157	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67
1158	Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells. Optical Materials, 2018, 75, 166-173.	1.7	40
1159	Extracting interface locations in multilayer polymer waveguide films using scanning angle Raman spectroscopy. Journal of Raman Spectroscopy, 2018, 49, 262-270.	1,2	7
1160	Derivative of PBDTTT-EFT Organic Molecular Solid as a good donor Material towards a High Efficiency OSC. Materials Today: Proceedings, 2018, 5, 15319-15324.	0.9	0
1161	Ternary Blend Solar Cells Based on a Conjugated Polymer With Diketopyrrolopyrrole and Carbazole Units. Frontiers in Energy Research, 2018, 6, .	1.2	14
1162	Coherent Transport of Electron Excitations in Organic Solar Cells. Journal of Experimental and Theoretical Physics, 2018, 127, 566-580.	0.2	6
1163	Suppressing Defect Formation Pathways in the Direct C–H Arylation Polymerization of Photovoltaic Copolymers. Macromolecules, 2018, 51, 9140-9155.	2.2	46
1165	Nanoscale Imaging of Photocurrent in Perovskite Solar Cells using Near-field Scanning Photocurrent Microscopy., 2018,,.		0
1166	Fluorobenzotriazoleâ€Based Mediumâ€Bandgap Conjugated D–A Copolymers for Applications to Fullereneâ€Based and Nonfullerene Polymer Solar Cells. Journal of Polymer Science Part A, 2018, 56, 2330-2343.	2.5	5
1167	Nearâ€Infrared Ternary Tandem Solar Cells. Advanced Materials, 2018, 30, e1804416.	11.1	65

#	Article	IF	CITATIONS
1168	Exceeding 14% Efficiency for Solution-Processed Tandem Organic Solar Cells Combining Fullerene- and Nonfullerene-Based Subcells with Complementary Absorption. ACS Energy Letters, 2018, 3, 2566-2572.	8.8	45
1169	Nearâ€Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells. Advanced Materials, 2018, 30, e1803769.	11.1	116
1170	Experimental investigation of charge transfer, charge extraction, and charge carrier concentration in P3HT:PBD-DT-DPP:PC70BM ternary blend photovoltaics. Solar Energy, 2018, 174, 1078-1084.	2.9	11
1171	The synergistic effect of dimethyl sulfoxide vapor treatment and C60 electron transporting layer towards enhancing current collection in mixed-ion inverted perovskite solar cells. Journal of Power Sources, 2018, 405, 70-79.	4.0	14
1172	Design and Synthesis of <i>N</i> â€Phenylcarbazoleâ€Substituted Diketopyrrolopyrroleâ€Based Monomers and Dimers: A Comparative Study. European Journal of Organic Chemistry, 2018, 2018, 6474-6481.	1.2	4
1173	Excited Electron–Hole States in Molecular Chains. High Energy Chemistry, 2018, 52, 390-399.	0.2	2
1174	Autoionization of Excitons in Organic Solar Cells. High Energy Chemistry, 2018, 52, 400-406.	0.2	4
1175	Elucidating Aggregation Pathways in the Donor–Acceptor Type Molecules p-DTS(FBTTh ₂) ₂ . Journal of Physical Chemistry B, 2018, 122, 9191-9201.	1.2	8
1176	Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy and Environmental Science, 2018, 11, 3275-3282.	15.6	261
1177	Plasmonically-enhanced absorption in organic solar cells with metal nanostructures. , 2018, , .		3
1178	Engineering of Porphyrin Molecules for Use as Effective Cathode Interfacial Modifiers in Organic Solar Cells of Enhanced Efficiency and Stability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20728-20739.	4.0	22
1179	Ternary non-fullerene polymer solar cells with an efficiency of 11.6% by simultaneously optimizing photon harvesting and phase separation. Journal of Materials Chemistry A, 2018, 6, 11751-11758.	5.2	30
1180	Nanoparticleâ€Enhanced Silverâ€Nanowire Plasmonic Electrodes for Highâ€Performance Organic Optoelectronic Devices. Advanced Materials, 2018, 30, e1800659.	11.1	67
1181	Organic tandem solar cells: How impedance analyses can improve the quality of external quantum efficiency measurements. Progress in Photovoltaics: Research and Applications, 2018, 26, 763-777.	4.4	0
1182	Eliminating light soaking effect of inverted polymer solar cells functionalized with a conjugated macroelectrolyte electron-collecting interlayer. Electrochimica Acta, 2018, 281, 218-226.	2.6	3
1183	A novel oligo-pyrazole-based thin film: synthesis, characterization, optical and morphological properties. Colloid and Polymer Science, 2018, 296, 1249-1257.	1.0	14
1184	Influence of side chains on low optical bandgap copolymers based on 2,1,3-benzoxadiazole for polymer solar cells. Organic Electronics, 2018, 61, 261-265.	1.4	4
1185	Crystal structure oriented carrier transport characteristic of triphenylamine derivative single crystal. AIP Advances, 2018, 8, .	0.6	7

#	Article	IF	CITATIONS
1186	Controlling Molecular Weight to Achieve Highâ€Efficient Polymer Solar Cells With Unprecedented Fill Factor of 79% Based on Nonâ€Fullerene Small Molecule Acceptor. Solar Rrl, 2018, 2, 1800129.	3.1	16
1187	Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%. Energy and Environmental Science, 2018, 11, 3392-3399.	15.6	143
1188	Efficient ternary organic solar cells with high absorption coefficient DIB-SQ as the third component. Chinese Physics B, 2018, 27, 058802.	0.7	5
1190	Greatly Enhanced Photovoltaic Performance of Crystalline Silicon Solar Cells via Metal Oxide. Nanomaterials, 2018, 8, 505.	1.9	6
1191	Improving the exciton dissociation of polymer/fullerene interfaces with a minimal loading amount of energy cascading molecular dopant. Journal of Materials Chemistry A, 2018, 6, 15977-15984.	5.2	17
1192	Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications. Chemistry of Materials, 2018, 30, 6521-6531.	3.2	25
1193	Polyelectrolyte interlayers with a broad processing window for high efficiency inverted organic solar cells towards mass production. Journal of Materials Chemistry A, 2018, 6, 17662-17670.	5.2	13
1194	Graphene- and Carbon-Nanotube-Based Transparent Electrodes for Semitransparent Solar Cells. Materials, 2018, 11, 1503.	1.3	36
1195	High-efficiency polymer solar cells with low temperature solution-processed SnO ₂ /PFN as a dual-function electron transporting layer. Journal of Materials Chemistry A, 2018, 6, 17401-17408.	5.2	33
1196	4.15 Solar Cells., 2018,, 637-658.		4
1197	Highâ€Performance Polymer Solar Cells Achieved by Introducing Sideâ€Chain Heteroatom on Smallâ€Molecule Electron Acceptor. Macromolecular Rapid Communications, 2019, 40, e1800393.	2.0	30
1198	Indoloindole-based small molecule bulk heterojunction small molecule solar cells. Dyes and Pigments, 2019, 161, 419-426.	2.0	6
1199	Stability of pushâ \in "pull small molecule donors for organic photovoltaics: spectroscopic degradation of acceptor endcaps on benzo[1,2- <i>b</i> bba \in 2] dithiophene cores. Journal of Materials Chemistry A, 2019, 7, 19984-19995.	5.2	4
1200	Synthesis of a thiophene derivative and its effects as an additive on the performance of solar cells. Molecular Crystals and Liquid Crystals, 2019, 678, 121-130.	0.4	2
1201	Characterization of organic solar cells using semiconducting polymers with different bandgaps. Journal of Polymer Engineering, 2019, 39, 636-641.	0.6	7
1202	Polymerizable C70 derivatives with acrylate functionality for efficient and stable solar cells. Tetrahedron, 2019, 75, 4676-4685.	1.0	4
1203	The synthesis and properties of a new class of π-expanded diketopyrrolopyrrole analogs and conjugated polymers. Organic Chemistry Frontiers, 2019, 6, 2974-2980.	2.3	13
1204	Highly Efficient Semitransparent Solar Cells with Selective Absorption and Tandem Architecture. Advanced Materials, 2019, 31, e1901683.	11.1	89

#	Article	IF	CITATIONS
1205	Effect of multiple electron-withdrawing substituents on photovoltaic properties of quinoxaline-based polymers. Molecular Crystals and Liquid Crystals, 2019, 685, 14-21.	0.4	2
1206	Functionalized Truxene Scaffold: A Promising Advanced Organic Material for Digital Era. ChemistrySelect, 2019, 4, 12272-12288.	0.7	23
1207	Functionality of Nonâ€Fullerene Electron Acceptors in Ternary Organic Solar Cells. Solar Rrl, 2019, 3, 1900322.	3.1	26
1208	Negative electron affinity driven broadband absorption of Cs3+nPbnSb2I9+3n/GaN van der Waals heterostructures. Journal of Materials Chemistry A, 2019, 7, 22346-22352.	5.2	5
1209	Designing difluoro substituted benzene ring based fullerene free acceptors for small Naphthalene Di-Imide based molecules with DFT approaches. Optical and Quantum Electronics, 2019, 51, 1.	1.5	12
1210	Conjugated materials containing dithieno $[3,2-\langle i\rangle b\langle i\rangle:23\in^2,33\in^2-\langle i\rangle d\langle i\rangle]$ pyrrole and its derivatives for organic and hybrid solar cell applications. Journal of Materials Chemistry A, 2019, 7, 64-96.	5.2	133
1211	Conjugated Donor–Acceptor Terpolymers Toward Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2019, 31, e1807019.	11.1	120
1212	Semi-transparent quaternary organic blends for advanced photovoltaic applications. Nano Energy, 2019, 58, 652-659.	8.2	37
1213	Effects of interlayer properties on the performance of tandem organic solar cells with low and high band gap polymers. Journal of Materials Research, 2019, 34, 2407-2415.	1.2	10
1214	Efficient DPP Donor and Nonfullerene Acceptor Organic Solar Cells with High Photonâ€to urrent Ratio and Low Energetic Loss. Advanced Functional Materials, 2019, 29, 1902441.	7.8	43
1215	Fullerene-based solar cells., 2019,, 661-698.		0
1216	Light manipulating electrode based on high optical haze aluminum-doped zinc oxide for highly efficient indium-tin-oxide free organic solar cells with over 13% efficiency. Journal of Materials Chemistry C, 2019, 7, 8515-8521.	2.7	11
1217	Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. Chemical Reviews, 2019, 119, 8028-8086.	23.0	566
1218	Fluoro-Modulated Molecular Geometry in Diketopyrrolopyrrole-Based Low-Bandgap Copolymers for Tuning the Photovoltaic Performance. Frontiers in Chemistry, 2019, 7, 333.	1.8	3
1219	New Directions for Organic Thin-Film Solar Cells: Stability and Performance., 2019, , 195-244.		3
1220	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy and Environmental Science, 2019, 12, 2529-2536.	15.6	213
1221	Photogalvanic eff ect in porphyrin-pyrrolo[3′,4′:1,9]-(C60-lh)[5,6]fullerene-2′,5′-dicarboxylate systems Russian Chemical Bulletin, 2019, 68, 825-831.	0.4	2
1222	High efficiency tandem polymer solar cells with MoO ₃ /Ni/ZnO:PEOz hybrid interconnection layers. Nanoscale Horizons, 2019, 4, 1221-1226.	4.1	15

#	Article	IF	CITATIONS
1223	Computational Dissection of 2D SiC ₇ Monolayer: A Direct Band Gap Semiconductor and High Power Conversion Efficiency. Advanced Theory and Simulations, 2019, 2, 1900058.	1.3	13
1224	Design and synthesis of acceptor–donor–acceptor small molecule based on caffeine derivative for efficient and stable polymer solar cells. Journal of Industrial and Engineering Chemistry, 2019, 75, 138-147.	2.9	5
1225	Excellent Electrochemical Performances of Intrinsic Polyaniline Nanofibers Fabricated by Electrochemical Deposition. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 216-222.	0.4	11
1226	Physics and Chemistry of Carbon-Based Materials. , 2019, , .		6
1227	Solar Cell Applications of π-Conjugated Molecules. , 2019, , 293-332.		2
1228	Structures, photoresponse properties and DNA binding abilities of 4-(4-pyridinyl)-2-pyridone salts. RSC Advances, 2019, 9, 9663-9677.	1.7	24
1229	The progression of silicon technology acting as substratum for the betterment of future photovoltaics. International Journal of Energy Research, 2019, 43, 3959-3980.	2.2	11
1230	Tandem structure: a breakthrough in power conversion efficiency for highly efficient polymer solar cells. Sustainable Energy and Fuels, 2019, 3, 910-934.	2.5	28
1231	Partially green small molecule solar cells. , 2019, , .		0
1232	Chain Coupling and Luminescence in High-Mobility, Low-Disorder Conjugated Polymers. ACS Nano, 2019, 13, 13716-13727.	7.3	7
1233	Defect processes in F and Cl doped anatase TiO2. Scientific Reports, 2019, 9, 19970.	1.6	35
1234	Enhancement of the Power Conversion Efficiency of Organic Solar Cells by Surface Patterning of Azobenzene Thin Films. ACS Omega, 2019, 4, 21862-21872.	1.6	10
1235	Advances in Solutionâ€Processed Multijunction Organic Solar Cells. Advanced Materials, 2019, 31, e1806499.	11.1	146
1236	Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. Materials Today Energy, 2019, 12, 70-94.	2.5	67
1237	Fully Conjugated Donor–Acceptor Block Copolymers for Organic Photovoltaics via Heck–Mizoroki Coupling. ACS Macro Letters, 2019, 8, 134-139.	2.3	25
1238	Investigation of the buried planar interfaces in multi-layered inverted organic solar cells using x-ray reflectivity and impedance spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 124003.	0.7	2
1239	Low Temperature Solution-Processable 3D-Patterned Charge Recombination Layer for Organic Tandem Solar Cells. Materials, 2019, 12, 162.	1.3	2
1240	The role of data source selection in chemical hazard assessment: A case study on organic photovoltaics. Journal of Hazardous Materials, 2019, 365, 227-236.	6.5	7

#	Article	IF	CITATIONS
1241	Phase transfer reaction for the preparation of stable polymer-quantum dot conjugates. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 91-97.	2.0	3
1242	Porphyrin-Containing Polymer as a Superior Blue Light-Absorbing Additive To Afford High- <i>J</i> _{sc} Ternary Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1156-1162.	4.0	16
1243	Efficient Tandem Organic Photovoltaics with Tunable Rear Sub-cells. Joule, 2019, 3, 432-442.	11.7	65
1244	Integrated Perovskite/Bulkâ∈Heterojunction Organic Solar Cells. Advanced Materials, 2020, 32, e1805843.	11.1	61
1245	Molecular designing of naphthalene diimide based fullerene-free small organic solar cell - Acceptors with high photovoltaic performance by density functional theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117685.	2.0	14
1246	Modeling and implementation of tandem polymer solar cells using wideâ€bandgap front cells. , 2020, 2, 131-142.		9
1247	Impact of alkyl side chain on the photostability and optoelectronic properties of indacenodithieno[3,2― b]thiophene―alt â€naphtho[1,2―c:5,6―c ′]bis[1,2,5]thiadiazole medium bandgap copolymers. Polymer International, 2020, 69, 192-205.	1.6	11
1248	Performance enhancement of small molecular solar cells via luminescent sensitizer 4,5-bis(carbazol-9-yl)-1,2-dicyanobenzene (2CzPN). Journal Physics D: Applied Physics, 2020, 53, 125102.	1.3	4
1249	Highly Conductive and Wettable PEDOT:PSS for Simple and Efficient Organic/câ€Si Planar Heterojunction Solar Cells. Solar Rrl, 2020, 4, 1900513.	3.1	22
1250	Diverse applications of MoO ₃ for high performance organic photovoltaics: fundamentals, processes and optimization strategies. Journal of Materials Chemistry A, 2020, 8, 978-1009.	5.2	70
1251	Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C, 2020, 8, 909-915.	2.7	47
1252	Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells. Journal of Energy Chemistry, 2020, 47, 196-202.	7.1	32
1253	Engineering aromatic heterocycle strategy: Improving copper electrodeposition performance via tuning the bandgap of diketopyrrolopyrrole-based leveler. Tetrahedron, 2020, 76, 130882.	1.0	6
1254	Hybrid ZnO Electron Transport Layer by Down Conversion Complexes for Dual Improvements of Photovoltaic and Stable Performances in Polymer Solar Cells. Nanomaterials, 2020, 10, 80.	1.9	17
1255	Highâ€Performance Polymer Photodetector Using the Nonâ€Thermalâ€andâ€Nonâ€Ultraviolet–Ozoneâ€Treate SnO 2 Interfacial Layer. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900531.	≀d _{1.2}	10
1256	Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 2020, 5, 657-665.	19.8	186
1257	Optical and Electrical Properties of Organic Semiconductor Thin Films on Aperiodic Plasmonic Metasurfaces. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35579-35587.	4.0	8
1258	Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell. Journal of Materials Science: Materials in Electronics, 2020, 31, 16199-16207.	1.1	12

#	Article	IF	CITATIONS
1259	Developement of highly efficient large area organic photovoltaic module: Effects of nonfullerene acceptor. Nano Energy, 2020, 77, 105147.	8.2	22
1260	Recent Advances Toward Highly Efficient Tandem Organic Solar Cells. Small Structures, 2020, 1, 2000016.	6.9	23
1261	n-Channel organic phototransistors with an n-type conjugated polymer based on indacenodithiophene and naphthalenediimide units. Journal of Materials Chemistry C, 2020, 8, 15778-15787.	2.7	16
1262	Design of Thienothiophene-Based Copolymers with Various Side Chain-End Groups for Efficient Polymer Solar Cells. Polymers, 2020, 12, 2964.	2.0	2
1263	A Novel Wideâ€Bandgap Polymer with Deep Ionization Potential Enables Exceeding 16% Efficiency in Ternary Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2020, 30, 1910466.	7.8	50
1264	Light induced morphological reforms in thin film of advanced nano-materials for energy generation: A review. Optics and Laser Technology, 2020, 129, 106284.	2.2	9
1265	Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Accounts of Chemical Research, 2020, 53, 1218-1228.	7.6	171
1266	The role of Y6 as the third component in fullerene-free ternary organic photovoltaics. Dyes and Pigments, 2020, 181, 108613.	2.0	25
1267	Efficient organic solar cells based on a new "Y-series―non-fullerene acceptor with an asymmetric electron-deficient-core. Chemical Communications, 2020, 56, 4340-4343.	2.2	51
1268	Air-processed active-layer of organic solar cells investigated by conducting AFM for precise defect detection. RSC Advances, 2020, 10, 24882-24892.	1.7	14
1269	Recent Progress in Hybrid Solar Cells Based on Solution-Processed Organic and Semiconductor Nanocrystal: Perspectives on Device Design. Applied Sciences (Switzerland), 2020, 10, 4285.	1.3	9
1270	Formation of Highly Efficient, Longâ€Lived Charge Separated States in Starâ€Shaped Ferroceneâ€Diketopyrrolopyrroleâ€Triphenylamine Donor–Acceptor–Donor Conjugates. Chemistry - A European Journal, 2020, 26, 15109-15115.	1.7	10
1271	Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Science China Chemistry, 2020, 63, 325-330.	4.2	292
1272	Numerical Analysis of Optical Absorption Effect in Nonhalogen Solution-Processed, Inverted Small Molecule Solar Cell. Crystals, 2020, 10, 113.	1.0	1
1273	Two-Dimensional BAs/InTe: A Promising Tandem Solar Cell with High Power Conversion Efficiency. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6074-6081.	4.0	32
1274	Efficient Hybrid Tandem Solar Cells Based on Optical Reinforcement of Colloidal Quantum Dots with Organic Bulk Heterojunctions. Advanced Energy Materials, 2020, 10, 1903294.	10.2	17
1275	OPTIMIZED POLYMERIC STRUCTURES OF ORGANIC ACTIVE ELECTRONIC COMPONENTS. , 2020, , 251-339.		2
1276	Thin-Film Tandem Organic Solar Cells With Improved Efficiency. IEEE Access, 2020, 8, 74093-74100.	2.6	12

#	Article	IF	CITATIONS
1277	A computational insight on designing low electronic energy gap benzothiadiazole/benzoselenadiazole–pyrrole copolymers. International Journal of Quantum Chemistry, 2021, 121, e26585.	1.0	0
1278	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
1279	High-efficiency ternary polymer solar cells with optimized morphology of active layers enabled by few-layered \hat{l}^2 -InSe nanosheets. Nanoscale, 2021, 13, 6871-6883.	2.8	8
1280	Modeling and optimization of organic tandem photovoltaic solar cells using silver nanowires as electrode and interconnecting layer. EPJ Applied Physics, 2021, 93, 20202.	0.3	0
1282	Analysis of the Performance of Narrow-Bandgap Organic Solar Cells Based on a Diketopyrrolopyrrole Polymer and a Nonfullerene Acceptor. Journal of Physical Chemistry C, 2021, 125, 5505-5517.	1.5	11
1283	Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: a theoretical and experimental approach. Scientific Reports, 2021, 11, 5700.	1.6	30
1284	Recent Developments in Organic Tandem Solar Cells toward High Efficiency. Advanced Energy and Sustainability Research, 2021, 2, 2000050.	2.8	12
1285	Computational studies of diindole-based molecules for organic bulk heterojunction solar devices using DFT and TD-DFT calculations. Structural Chemistry, 2021, 32, 1973-1984.	1.0	8
1286	Nonâ€Halogenatedâ€Solvent Processed and Additiveâ€Free Tandem Organic Solar Cell with Efficiency Reaching 16.67%. Advanced Functional Materials, 2021, 31, 2102361.	7.8	40
1287	Toward Real Setting Applications of Organic and Perovskite Solar Cells: A Comparative Review. Energy Technology, 2021, 9, 2000901.	1.8	33
1288	Thickness Optimization of Thin-Film Tandem Organic Solar Cell. Micromachines, 2021, 12, 518.	1.4	8
1289	Hotspots, frontiers, and emerging trends of tandem solar cell research: A comprehensive review. International Journal of Energy Research, 2022, 46, 104-123.	2.2	12
1290	Efficient Organic Tandem Solar Cells Enabled by Solutionâ€Processed Interconnection Layer and Fineâ€Tuned Active Layer. Advanced Optical Materials, 2021, 9, 2101246.	3.6	3
1293	Unfused-ring small molecule acceptors based on A1-D-A2-D-A1 architecture with low non-radiative energy loss and excellent air stability. Materials Today Energy, 2021, 21, 100802.	2.5	5
1294	Enhancement of thermoelectric properties of <scp>Dâ€A</scp> conjugated polymer through constructing random copolymers with more electronic donors. Journal of Polymer Science, 2022, 60, 1002-1012.	2.0	8
1295	Theoretically designated synthesizable donor-acceptor type semiconducting copolymers: Investigation into molecular, electronic, and optical properties. Materials Chemistry and Physics, 2021, 275, 125238.	2.0	0
1296	18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today, 2021, 41, 101289.	6.2	47
1297	High-efficiency single and tandem fullerene solar cells with asymmetric monofluorinated diketopyrrolopyrrole-based polymer. Journal of Energy Chemistry, 2022, 64, 236-245.	7.1	15

#	Article	IF	CITATIONS
1298	Theoretical design of new organic compounds based on diketopyrrolopyrrole and phenyl for organic bulk heterojunction solar cell applications: DFT and TD-DFT study. Materials Today: Proceedings, 2021, 45, 7334-7343.	0.9	19
1299	Research Advances on Benzotriazole-based Organic Photovoltaic Materials. Acta Chimica Sinica, 2021, 79, 820.	0.5	10
1300	Recent Progress and Challenges toward Highly Stable Nonfullerene Acceptorâ€Based Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003002.	10.2	146
1301	Inverted Organic Solar Cells (OSCs). , 2014, , 215-242.		2
1302	Synthesis, characterization and photocell studies of a Pt(II) poly-yne covalently attached to a fullerene. Journal of Organometallic Chemistry, 2017, 842, 32-38.	0.8	5
1303	Transparent Polymer Photovoltaics for Solar Energy Harvesting and Beyond. Joule, 2018, 2, 1039-1054.	11.7	211
1304	Photopolymers for Third-generation Solar Cells. RSC Polymer Chemistry Series, 2018, , 504-523.	0.1	1
1305	Influence of the Electron Acceptor Group on the Backbone of N-(2,6-Diisopropylphenyl)-2,5-di(2-thienyl)pyrrole-Based Polymer. Bulletin of the Korean Chemical Society, 2012, 33, 3845-3848.	1.0	4
1306	Conventional and Inverted Photovoltaic Cells Fabricated Using New Conjugated Polymer Comprising Fluorinated Benzotriazole and Benzodithiophene Derivative. Bulletin of the Korean Chemical Society, 2014, 35, 1356-1364.	1.0	4
1307	The light absorption enhancement in polymer solar cells with periodic nano-structures gratings. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 207204.	0.2	0
1308	Progress in the blend stacked structure of organic solar cells. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 027201.	0.2	6
1309	Effect of various cathode modifying layers on the performances of SubPc/C60 based inverted organic solar cells. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 128803.	0.2	6
1310	Thiadiazoloquinoxaline-Based Low Band Gap Polymer for Solar Cell Applications. Bulletin of the Korean Chemical Society, 2013, 34, 2835-2838.	1.0	0
1311	Pyrrolo[3,2-b]pyrrole-Based Copolymers as Donor Materials for Organic Photovoltaics. Bulletin of the Korean Chemical Society, 2013, 34, 3399-3404.	1.0	0
1312	Stability of Organic Solar Cells (OSCs). , 2014, , 243-274.		0
1314	- Theoretical Modeling for Electron Transfer in Organic Materials. , 2014, , 20-51.		0
1315	Surface Plasmonic Effects of Nanostructures on the Performance of Polymer Solar Cells. Topics in Applied Physics, 2015, , 299-313.	0.4	0
1316	Surface Plasmon Polariton-Enabled High-Performance Organic Optoelectronic Devices., 2015,, 1-11.		O

#	Article	IF	Citations
1318	Surface Plasmon Polariton-Enabled High-Performance Organic Optoelectronic Devices. , 2016, , 3956-3966.		0
1319	New Low-Band Gap 2D-Conjugated Polymer with Alkylthiobithiophene-Substituted Benzodithiophene for Organic Photovoltaic Cells. Journal of the Korean Chemical Society, 2016, 60, 194-202.	0.2	0
1320	Organic photovoltaic integrator with three complementary absorption bands to enhance efficiency. Journal of Photonics for Energy, 2018, 8, 1.	0.8	0
1321	Highly dendritic polythiophene/silver (PT/Ag) nanocomposite for solar energy applications. Egyptian Journal of Chemistry, 2019, .	0.1	0
1322	Recent Advances in Ternary Organic Solar Cells Based on Förster Resonance Energy Transfer. Solar Rrl, 2021, 5, 2100496.	3.1	17
1323	Nearâ€Infrared Materials: The Turning Point of Organic Photovoltaics. Advanced Materials, 2022, 34, e2107330.	11.1	111
1324	Light-emission organic solar cells with MoO3:Al interfacial layer $\hat{a} \in \hat{b}$ preparation and characterizations. Frontiers of Optoelectronics, 0, , 1.	1.9	0
1325	Architectural design of new conjugated systems carrying donor-Ï€-acceptor groups (carbazole-CF3): Characterizations, optical, photophysical properties and DSSC's applications. Journal of Molecular Structure, 2022, 1250, 131689.	1.8	2
1326	Synthesis and characterization of disc-shaped thiophene based Zn-Porphyrin for organic solar cells application. AIP Conference Proceedings, 2020, , .	0.3	0
1327	Plasma Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices. Journal of the Russian Universities Radioelectronics, 2020, 23, 38-47.	0.1	1
1328	Revisiting the antecedent of electronic word-of-mouth (eWOM) during COVID-19 Pandemic. Decision, 2021, 48, 419-432.	0.8	4
1329	Two-dimensional InSb/GaAs- and InSb/InP-based tandem photovoltaic device with matched bandgap. Nanoscale, 2022, 14, 1954-1961.	2.8	9
1332	Switchable photovoltaic effect in solar cells: Architecture, features, and future scope., 2022,, 161-184.		0
1333	Carbon Nanotubes for Solar Cells and Photovoltaics. , 2021, , 1-31.		0
1336	Thermal Management of Photovoltaics Using Porous Nanochannels. Energy & Ene	2.5	1
1337	New benzodithiophene-pyrrolopyrroledione-thienopyrazine random terpolymers for organic photovoltaics. Mendeleev Communications, 2021, 31, 800-803.	0.6	4
1338	Toward Highâ€Performance Semitransparent Organic Photovoltaics with Narrowâ€Bandgap Donors and Nonâ€Fullerene Acceptors. Advanced Energy Materials, 2022, 12, .	10.2	45
1343	1D Colloidal chains: recent progress from formation to emergent properties and applications. Chemical Society Reviews, 2022, 51, 4023-4074.	18.7	15

#	Article	IF	CITATIONS
1344	Nonfullerene Near-Infrared Sensitive Acceptors "Octacyclic Naphtho[1,2- <i>b</i> :5,6- <i>b</i>] Dithiophene Coreâ€for Organic Solar Cell Applications: <i>In Silico</i> Molecular Engineering. ACS Omega, 2022, 7, 16716-16727.	1.6	8
1346	Optoelectronic Applications of Conjugated Organic Polymers: Influence of Donor/Acceptor Groups through Density Functional Studies. Journal of Physical Chemistry C, 2022, 126, 9313-9323.	1.5	9
1347	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
1349	Graphene oxide hydrogel electrolyte for improving the performance of electropolymerized polyaniline solar cells. Journal of Power Sources, 2022, 542, 231796.	4.0	2
1350	Self-Assembled Monolayers for Improved Charge Injection of Silver Back Electrodes in Inverted Organic Electronic Devices. ACS Applied Materials & Samp; Interfaces, 2022, 14, 38270-38280.	4.0	0
1351	Performance Analysis and Optimization of Triple Junction Tandem Organic Solar Cell Via Optical and Electrical Modelling., 2022,,.		0
1352	Carbon Nanotubes for Solar Cells and Photovoltaics. , 2022, , 1419-1449.		0
1353	Optimizing thermoelectric performance of two-dimensional donor-donor benzodithiophene-based conjugated polymers using backbone engineering. Composites Communications, 2023, 37, 101461.	3.3	2
1354	A Flexible, Highâ€Voltage (>100ÂV) Generating Device Based on Zebra‣ike Asymmetrical Photovoltaic Cascade. Advanced Materials, 2023, 35, .	11.1	1
1355	Effective Approach toward Selective Near-Infrared Dyes: Rational Design, Synthesis, and Characterization of Thieno[3,4- <i>b</i>)thiophene-Based Quinoidal Oligomers. ACS Applied Materials & Amp; Interfaces, 2022, 14, 55686-55690.	4.0	0
1356	Tandem organic solar cells with efficiency over 19% via the careful subcell design and optimization. Science China Chemistry, 0 , , .	4.2	3
1357	Dihydroindenofluorene–based polymeric donors incorporating structural isomers of pyrrolopyrroledione for non-fullerene organic solar cells. Molecular Crystals and Liquid Crystals, 0, , 1-12.	0.4	0
1358	Interface Engineering for Highly Efficient Organic Solar Cells. Advanced Materials, 0, , .	11.1	40
1359	(Z)-4-(thiophen-2-ylmethylene)-4H-thieno[2,3-b]pyrrol-5(6H)-one based polymers for organic photovoltaics. Journal of Polymer Research, 2023, 30, .	1.2	0
1360	A Review of Perovskite Nanocrystal Applications in Luminescent Solar Concentrators. Advanced Optical Materials, 2023, 11, .	3.6	4
1372	Metal oxides in organic solar cells. , 2024, , 577-606.		0