The Amazon basin in transition

Nature

481, 321-328

DOI: 10.1038/nature10717

Citation Report

#	Article	IF	CITATIONS
1	From drought to flooding: understanding the abrupt 2010â€"11 hydrological annual cycle in the Amazonas River and tributaries. Environmental Research Letters, 2012, 7, 024008.	5.2	67
3	Aerosol and precipitation chemistry measurements in a remote site in Central Amazonia: the role of biogenic contribution. Atmospheric Chemistry and Physics, 2012, 12, 4987-5015.	4.9	37
5	Working in harmony with nature: the key to sustainability. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2012, 165, 123-128.	0.3	5
6	Amazonian Extinction Debts. Science, 2012, 337, 162-163.	12.6	13
7	Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 2012, 196, 173-180.	7. 3	190
8	Physical and biological feedbacks of deforestation. Reviews of Geophysics, 2012, 50, .	23.0	86
9	Observations of increased tropical rainfall preceded by air passage over forests. Nature, 2012, 489, 282-285.	27.8	483
10	The rainforest's water pump. Nature, 2012, 489, 217-218.	27.8	63
11	Risk assessment of PM2.5 to child residents in Brazilian Amazon region with biofuel production. Environmental Health, 2012, 11, 64.	4.0	56
12	Land Cover and Land use Changes. , 2012, , 703-772.		3
			3
13	Ecosystem services research in Latin America: The state of the art. Ecosystem Services, 2012, 2, 56-70.	5.4	170
		5.4 3.3	
13	Ecosystem services research in Latin America: The state of the art. Ecosystem Services, 2012, 2, 56-70. Convective activity in Mato Grosso state (Brazil) from microwave satellite observations:		170
13	Ecosystem services research in Latin America: The state of the art. Ecosystem Services, 2012, 2, 56-70. Convective activity in Mato Grosso state (Brazil) from microwave satellite observations: Comparisons between AMSU and TRMM data sets. Journal of Geophysical Research, 2012, 117, . Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resources Research, 2012,	3.3	170 28
13 14 15	Ecosystem services research in Latin America: The state of the art. Ecosystem Services, 2012, 2, 56-70. Convective activity in Mato Grosso state (Brazil) from microwave satellite observations: Comparisons between AMSU and TRMM data sets. Journal of Geophysical Research, 2012, 117, . Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resources Research, 2012, 48, . Diversidade de mamÃferos de médio e grande porte da região do rio Urucu, Amazonas, Brasil. Biota	3.3	170 28 61
13 14 15	Ecosystem services research in Latin America: The state of the art. Ecosystem Services, 2012, 2, 56-70. Convective activity in Mato Grosso state (Brazil) from microwave satellite observations: Comparisons between AMSU and TRMM data sets. Journal of Geophysical Research, 2012, 117, . Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resources Research, 2012, 48, . Diversidade de mamÃferos de mÃ@dio e grande porte da região do rio Urucu, Amazonas, Brasil. Biota Neotropica, 2012, 12, 282-291.	3.3	170 28 61
13 14 15 16	Ecosystem services research in Latin America: The state of the art. Ecosystem Services, 2012, 2, 56-70. Convective activity in Mato Grosso state (Brazil) from microwave satellite observations: Comparisons between AMSU and TRMM data sets. Journal of Geophysical Research, 2012, 117, . Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resources Research, 2012, 48, . Diversidade de mamāferos de mā©dio e grande porte da regiā£o do rio Urucu, Amazonas, Brasil. Biota Neotropica, 2012, 12, 282-291. Agricultural SystemS and the Conservation of Biodiversity and Ecosystems in the Tropics. , 2012, , .	3.3 4.2 1.0	170 28 61 13

#	Article	IF	CITATIONS
21	Spatial and temporal patterns of the recent warming of the Amazon forest. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5204-5215.	3.3	67
22	Land tenure and forest cover change. The case of southwestern Beni, Bolivian Amazon, 1986–2009. Applied Geography, 2013, 43, 113-126.	3.7	38
23	How well can CMIP5 simulate precipitation and its controlling processes over tropical South America?. Climate Dynamics, 2013, 41, 3127-3143.	3.8	186
24	Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 495-504.	3.0	66
25	Killers of the winners. Nature, 2013, 494, 320-321.	27.8	3
26	Avian biodiversity in multiple-use landscapes of the Brazilian Amazon. Biological Conservation, 2013, 167, 339-348.	4.1	84
27	Land Use Change, Air Pollution and Climate Changeâ€"Vegetation Response in Latin America. Developments in Environmental Science, 2013, , 411-427.	0.5	6
28	Variability of vegetation fires with rain and deforestation in Brazil's state of Amazonas. Remote Sensing of Environment, 2013, 136, 199-209.	11.0	21
29	Changing indigenous cultures, economies and landscapes: The case of the Tsimane', Bolivian Amazon. Landscape and Urban Planning, 2013, 120, 147-157.	7. 5	19
30	Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environmental Research Letters, 2013, 8, 024021.	5. 2	93
31	Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discussions, 2013, 165, 203.	3.2	207
32	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120166.	4.0	133
33	The vulnerability of Amazon freshwater ecosystems. Conservation Letters, 2013, 6, 217-229.	5.7	411
34	Measuring the impact of flooding on Amazonian trees: photosynthetic response models for ten species flooded by hydroelectric dams. Trees - Structure and Function, 2013, 27, 193-210.	1.9	66
35	Carbon dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological data with a land surface model. Agricultural and Forest Meteorology, 2013, 182-183, 156-167.	4.8	46
36	A constraint satisfaction method applied to the problem of controlling the CO2 emission in the Legal Brazilian Amazon. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 5322-5329.	2.6	0
37	Landscapeâ€scale forest disturbance regimes in southern Peruvian Amazonia. Ecological Applications, 2013, 23, 1588-1602.	3.8	26
38	Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO ₂ and chlorophyll fluorescence from GOSAT. Geophysical Research Letters, 2013, 40, 2829-2833.	4.0	89

3

#	Article	IF	Citations
39	Surface freshwater storage and variability in the Amazon basin from multiâ€satellite observations, 1993–2007. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,951.	3.3	47
40	Terrestrial Earth couple climate–carbon spatial variability and uncertainty. Global and Planetary Change, 2013, 111, 9-30.	3.5	2
41	Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agricultural and Forest Meteorology, 2013, 182-183, 145-155.	4.8	30
42	A climate changeâ€induced threat to the ecological resilience of a subtropical monsoon evergreen broadâ€leaved forest in Southern China. Global Change Biology, 2013, 19, 1197-1210.	9.5	148
43	Global warming and tropical carbon. Nature, 2013, 494, 319-320.	27.8	21
44	Understorey fire frequency and the fate of burned forests in southern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120163.	4.0	152
45	Impact of Pacific and Atlantic sea surface temperatures on interannual and decadal variations of GRACE land water storage in tropical South America. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,811.	3.3	37
46	Fieldâ€quantified responses of tropical rainforest aboveground productivity to increasing CO ₂ and climatic stress, 1997–2009. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 783-794.	3.0	110
47	Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts. , 2013, , .		2
48	Evaluating Surface Water Cycle Simulated by the Australian Community Land Surface Model (CABLE) across Different Spatial and Temporal Domains. Journal of Hydrometeorology, 2013, 14, 1119-1138.	1.9	34
49	Regional Climate Variability Responses to Future Land Surface Forcing in the Brazilian Amazon. Advances in Meteorology, 2013, 2013, 1-9.	1.6	1
50	Beyond carbon colonialism: Frontier peasant livelihoods, spatial mobility and deforestation in the Brazilian Amazon. Critique of Anthropology, 2013, 33, 193-213.	0.8	9
51	Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120157.	4.0	49
52	Persistent effects of a severe drought on Amazonian forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 565-570.	7.1	334
53	The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3949-3954.	7.1	186
54	Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sensing, 2013, 5, 5493-5513.	4.0	198
55	Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120155.	4.0	118
57	Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia. Atmospheric Chemistry and Physics, 2013, 13, 1261-1275.	4.9	85

#	Article	IF	CITATIONS
58	Long term measurements of aerosol optical properties at a primary forest site in Amazonia. Atmospheric Chemistry and Physics, 2013, 13, 2391-2413.	4.9	87
59	High sensitivity of a tropical rainforest to water variability: Evidence from 10 years of inventory and eddy flux data. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9393-9400.	3.3	22
60	Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus–Madeira interfluvial wetlands in Amazonia. Biogeosciences, 2013, 10, 7759-7774.	3.3	30
61	Ecofisiologia de plantas jovens de mogno-africano submetidas a deficit hÃdrico e reidratação. Pesquisa Agropecuaria Brasileira, 2013, 48, 9-16.	0.9	29
62	Evaluation of sustainability in the use of water within the Amazon deforestation area: a case study in Rondon do $Par ilde{A}_i$, $Par ilde{A}_i$ State, Brazil. Acta Scientiarum - Technology, 2013, 35, .	0.4	1
63	Long term measurements of the elemental composition and optical properties of aerosols in Amazonia. E3S Web of Conferences, 2013, 1, 03005.	0.5	0
64	Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view. Scientia Agricola, 2013, 70, 361-368.	1.2	21
65	Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences, 2013, 10, 2255-2272.	3.3	52
66	Indigenous Burning as Conservation Practice: Neotropical Savanna Recovery amid Agribusiness Deforestation in Central Brazil. PLoS ONE, 2013, 8, e81226.	2.5	51
67	Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka. Climate of the Past, 2014, 10, 843-862.	3.4	66
68	Unveiling the Conservation Biogeography of a Data-Deficient Endangered Bird Species under Climate Change. PLoS ONE, 2014, 9, e84529.	2.5	33
69	Land Use and Land Cover Change Dynamics across the Brazilian Amazon: Insights from Extensive Time-Series Analysis of Remote Sensing Data. PLoS ONE, 2014, 9, e104144.	2.5	45
70	Acute Effects of Particulate Matter and Black Carbon from Seasonal Fires on Peak Expiratory Flow of Schoolchildren in the Brazilian Amazon. PLoS ONE, 2014, 9, e104177.	2.5	57
71	Lightning and precipitation produced by severe weather systems over Belém, Brazil. Revista Brasileira De Meteorologia, 2014, 29, 41-59.	0.5	3
72	Macrofauna do solo em uma cronosequência de capoeiras, florestas e pastos no Centro de Endemismo Belém, Amazônia Oriental. Acta Amazonica, 2014, 44, 499-512.	0.7	18
73	Information and entropy theory for the sustainability of coupled human and natural systems. Ecology and Society, 2014, 19, .	2.3	34
74	The influence of the conservation status and changes in the rainfall regime on forest-savanna mosaic dynamics in Northern Brazilian Amazonia. Acta Amazonica, 2014, 44, 197-206.	0.7	13
75	Sustainability Transitions: An Investigation of the Conditions under Which Corporations Are Likely To Reshape Their Practices to Reverse Environmental Degradation. Environmental Management and Sustainable Development, 2014, 4, 85.	0.2	7

#	Article	IF	CITATIONS
76	Rise of Human Influence on the World's Biota. , 2014, , .		0
77	Why Maintaining Tropical Forests is Essential and Urgent for a Stable Climate. SSRN Electronic Journal, 0, , .	0.4	35
78	Modeling hydraulic redistribution and ecosystem response to droughts over the Amazon basin using Community Land Model 4.0 (CLM4). Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2130-2143.	3.0	52
79	Global Climate Change and Public Health. , 2014, , .		15
80	The productivity, allocation and cycling of carbon in forests at the dry margin of the Amazon forest in Bolivia. Plant Ecology and Diversity, 2014, 7, 55-69.	2.4	34
81	Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4788-4791.	7.1	262
82	Incorporating â€~catastrophic' climate change into policy analysis. Climate Policy, 2014, 14, 637-664.	5.1	7
83	Downscaling the Impacts of Large-Scale LUCC on Surface Temperature along with IPCC RCPs: A Global Perspective. Energies, 2014, 7, 2720-2739.	3.1	29
84	Substantial reorganization of China's tropical and subtropical forests: based on the permanent plots. Global Change Biology, 2014, 20, 240-250.	9.5	81
85	Towards Monitoring Biodiversity in Amazonian Forests: How Regular Samples Capture Meso-Scale Altitudinal Variation in 25 km2 Plots. PLoS ONE, 2014, 9, e106150.	2.5	9
86	Impact of Climate Change on Vector-Borne Disease in the Amazon. , 2014, , 193-210.		3
87	Changes in the ecosystem services provided by forests and their economic valuation: a review. , 2014, , 107-137.		5
88	Potential hydrologic changes in the Amazon by the end of the 21st century and the groundwater buffer. Environmental Research Letters, 2014, 9, 084004.	5.2	41
89	Assessing the impact of global changes on the surface water resources of Southwestern Nigeria. Hydrological Sciences Journal, 2014, , 150527103244004.	2.6	7
90	Oiling the wheels of autoimmunity. Nature, 2014, 506, 42-43.	27.8	7
91	Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecology and Diversity, 2014, 7, 189-203.	2.4	31
92	Ecosystem respiration and net primary productivity after 8–10 years of experimental through-fall reduction in an eastern Amazon forest. Plant Ecology and Diversity, 2014, 7, 7-24.	2.4	52
93	Environmental change and the dynamics of parasitic diseases in the Amazon. Acta Tropica, 2014, 129, 33-41.	2.0	83

#	ARTICLE	IF	Citations
94	Soil CO2 exchange in seven pristine Amazonian rain forest sites in relation to soil temperature. Agricultural and Forest Meteorology, 2014, 192-193, 96-107.	4.8	16
95	Suriname: Reconciling agricultural development and conservation of unique natural wealth. Land Use Policy, 2014, 38, 627-636.	5. 6	19
96	Ecosystem services of regulation and support in Amazonian pioneer fronts: searching for landscape drivers. Landscape Ecology, 2014, 29, 311-328.	4.2	70
97	Status and challenges for conservation of small mammal assemblages in South America. Biological Reviews, 2014, 89, 705-722.	10.4	9
98	Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6347-6352.	7.1	576
99	Soil quality indicators for different restoration stages on Amazon rainforest. Soil and Tillage Research, 2014, 140, 1-7.	5 . 6	25
100	Response of Free-Living Nitrogen-Fixing Microorganisms to Land Use Change in the Amazon Rainforest. Applied and Environmental Microbiology, 2014, 80, 281-288.	3.1	104
101	A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506, 212-215.	27.8	284
102	Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature, 2014, 506, 221-224.	27.8	354
103	Drought and fire change sink to source. Nature, 2014, 506, 41-42.	27.8	16
104	Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15591-15596.	7.1	176
105	Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16041-16046.	7.1	259
106	Cultural Diversity in the Amazon Borderlands: Implications for Conservation and Development. Journal of Borderlands Studies, 2014, 29, 217-241.	1.4	9
107	Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 2014, 28, 289-297.	7.8	236
107	Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 2014, 28, 289-297. The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 687-702.	7.8	236
	The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin.		
108	The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 687-702. Regime shifts limit the predictability of land-system change. Global Environmental Change, 2014, 28,	3.0	54

#	Article	IF	Citations
112	Forests lost and found in tropical Latin America: the woodland †green revolution'. Journal of Peasant Studies, 2014, 41, 877-909.	4.5	74
113	The role of remnants of Amazon savanna for the conservation of Neotropical mammal communities in eucalyptus plantations. Biodiversity and Conservation, 2014, 23, 3171-3184.	2.6	20
114	Forest Landscapes and Global Change. , 2014, , .		7
115	Development of the IAP Dynamic Global Vegetation Model. Advances in Atmospheric Sciences, 2014, 31, 505-514.	4.3	29
116	Long-term carbon loss in fragmented Neotropical forests. Nature Communications, 2014, 5, 5037.	12.8	135
117	Amazon forest biomass density maps: tackling the uncertainty in carbon emission estimates. Climatic Change, 2014, 124, 545-560.	3.6	40
118	Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Molecular Ecology, 2014, 23, 2988-2999.	3.9	152
119	Modelling gross primary production of a tropical semi-deciduous forest in the southern Amazon Basin. International Journal of Remote Sensing, 2014, 35, 1540-1562.	2.9	16
120	Macrosystems ecology: understanding ecological patterns and processes at continental scales. Frontiers in Ecology and the Environment, 2014, 12, 5-14.	4.0	285
121	Revisiting Camu-camu (Myrciaria dubia): Twenty-seven Years of Fruit Collection and Flooding at an Oxbow Lake in Peruvian Amazonia. Economic Botany, 2014, 68, 169-176.	1.7	7
122	Perceptions on climate change of the traditional community Cuiabá Mirim, Pantanal Wetland, Mato Grosso, Brazil. Climatic Change, 2014, 127, 83-92.	3.6	19
123	Payback time for soil carbon and sugar-caneÂethanol. Nature Climate Change, 2014, 4, 605-609.	18.8	85
124	Edaphic controls on ecosystem-level carbon allocation in two contrasting Amazon forests. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1820-1830.	3.0	11
125	Why have land use change models for the Amazon failed to capture the amount of deforestation over the last decade?. Land Use Policy, 2014, 39, 403-411.	5.6	61
126	Ecosystem protection and poverty alleviation in the tropics: Perspective from a historical evolution of policy-making in the Brazilian Amazon. Ecosystem Services, 2014, 8, 97-109.	5.4	36
127	Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science, 2014, 344, 1118-1123.	12.6	770
128	Radial variation of anatomical features, physicomechanical properties and chemical constituents and their potential influence on the wood quality of 45-year-old <i>Eucalyptus propinqua</i> . Australian Forestry, 2014, 77, 78-85.	0.9	6
129	Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado-Amazonian Forest transition zone. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 260-270.	1.2	15

#	ARTICLE	IF	CITATIONS
130	Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecology and Diversity, 2014, 7, 241-253.	2.4	112
131	Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecology and Diversity, 2014, 7, 319-327.	2.4	122
132	Age and light effects on seedling growth in two alternative secondary successions in central Amazonia. Plant Ecology and Diversity, 2014, 7, 349-358.	2.4	30
133	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
134	Forests and the climate system. , 0, , 21-46.		0
135	Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment. Atmospheric Chemistry and Physics, 2014, 14, 12069-12083.	4.9	103
136	The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmospheric Chemistry and Physics, 2014, 14, 6523-6543.	4.9	90
137	Influence of the Atlantic Meridional Overturning Circulation on the monsoon rainfall and carbon balance of the American tropics. Geophysical Research Letters, 2014, 41, 146-151.	4.0	34
138	The significance of land-atmosphere interactions in the Earth systemâ€"iLEAPS achievements and perspectives. Anthropocene, 2015, 12, 69-84.	3.3	38
139	Fires increase Amazon forest productivity through increases in diffuse radiation. Geophysical Research Letters, 2015, 42, 4654-4662.	4.0	87
140	The impact of Amazonian deforestation on Amazon basin rainfall. Geophysical Research Letters, 2015, 42, 9546-9552.	4.0	174
141	Tropical North Atlantic oceanâ€atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires. Geophysical Research Letters, 2015, 42, 6462-6470.	4.0	13
142	Multicentury changes in ocean and land contributions to the climate arbon feedback. Global Biogeochemical Cycles, 2015, 29, 744-759.	4.9	63
143	Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2095-2107.	3.0	71
144	Disruption of hydroecological equilibrium in southwest Amazon mediated by drought. Geophysical Research Letters, 2015, 42, 7546-7553.	4.0	34
145	Wildfire disturbance and productivity as drivers of plant species diversity across spatial scales. Ecosphere, 2015, 6, 1-14.	2.2	66
146	Centuryâ€scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Global Biogeochemical Cycles, 2015, 29, 1549-1566.	4.9	21
147	Uncovering spatial patterns in the natural and human history of Brazil nut (<i>Bertholletia) Tj ETQq1 1 0.784314</i>	1 rgBT /Ov	erlogk 10 Tf 5

#	Article	IF	CITATIONS
148	Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest. Atmospheric Chemistry and Physics, 2015, 15, 3359-3378.	4.9	83
149	A novel methodology for large-scale daily assessment of the direct radiative forcing of smoke aerosols. Atmospheric Chemistry and Physics, 2015, 15, 5471-5483.	4.9	13
150	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 2015, 15, 10723-10776.	4.9	218
151	Opinion Paper: how vulnerable are Amazonian freshwater fishes to ongoing climateÂchange?. Journal of Applied Ichthyology, 2015, 31, 4-9.	0.7	41
152	Estimating of gross primary production in an Amazon-Cerrado transitional forest using MODIS and Landsat imagery. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1545-1564.	0.8	10
153	Litterfall production in intact and selectively logged forests in southern of Amazonia as a function of basal area of vegetation and plant density. Acta Amazonica, 2015, 45, 157-166.	0.7	21
154	IMPACTS OF LAND COVER AND GREENHOUSE GAS (GHG) CONCENTRATION CHANGES ON THE HYDROLOGICAL CYCLE IN AMAZON BASIN: A REGIONAL CLIMATE MODEL STUDY. Revista Brasileira De Climatologia, 2015, 15, .	0.3	8
155	Resource availability and diet in Harpy Eagle breeding territories on the Xingu River, Brazilian Amazon. Brazilian Journal of Biology, 2015, 75, 181-189.	0.9	13
156	Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata) during Progressive Drought Stress and after Rewatering. International Journal of Molecular Sciences, 2015, 16, 15194-15219.	4.1	11
157	Land Cover Change in the Andes of Southern Ecuadorâ€"Patterns and Drivers. Remote Sensing, 2015, 7, 2509-2542.	4.0	64
158	Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils. Frontiers in Microbiology, 2015, 6, 779.	3.5	50
159	Resilience and Alternative Stable States of Tropical Forest Landscapes under Shifting Cultivation Regimes. PLoS ONE, 2015, 10, e0137497.	2.5	18
160	The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrology and Earth System Sciences, 2015, 19, 2899-2910.	4.9	57
161	Recuperation of the <i>Terra Firme</i> Forest Understory Bird Fauna Eight Years after a Wildfire in Eastern Acre, Brazil. International Journal of Ecology, 2015, 2015, 1-12.	0.8	5
162	htm>Distribuição de espécies de Spirostreptidae (Diplopoda: Spirostreptida) em uma área na Amazônia mato-grossense /htm>. Acta Biológica Paranaense, 2015, 44, .	0.1	0
163	Catastrophic shifts in the aquatic primary production revealed by a small low-flow section of tropical downstream after dredging. Brazilian Journal of Biology, 2015, 75, 804-811.	0.9	1
165	Surface Water Resources, Climate Change and Simulation Modeling. Aquatic Procedia, 2015, 4, 730-738.	0.9	29
166	On the measurability of change in Amazon vegetation from MODIS. Remote Sensing of Environment, 2015, 166, 233-242.	11.0	67

#	ARTICLE	IF	CITATIONS
167	Uncertainties in Greenhouse Gas Inventories. , 2015, , .		4
168	Synergistic effects of drought and deforestation on the resilience of the south-eastern Amazon rainforest. Ecological Complexity, 2015, 22, 65-75.	2.9	54
169	The role of leaf traits in determining litter flammability of south-eastern Amazon tree species. International Journal of Wildland Fire, 2015, 24, 1143.	2.4	12
170	Conservation Units, Environmental Services and Frontier Peasants in the Central Amazon: Multi-Functionality, Juxtaposition or Conflict?. Research in Economic Anthropology, 2015, , 65-105.	0.6	3
171	Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environmental Pollution, 2015, 205, 225-239.	7.5	124
172	Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological Applications, 2015, 25, 1493-1505.	3.8	196
173	Thresholds of species loss in Amazonian deforestation frontier landscapes. Conservation Biology, 2015, 29, 440-451.	4.7	97
174	Effects of Warming and Drought on the Vegetation and Plant Diversity in the Amazon Basin. Botanical Review, The, 2015, 81, 42-69.	3.9	37
175	Vulnerability and adaptive capacity of community food systems in the Peruvian Amazon: a case study from Panaillo. Natural Hazards, 2015, 77, 2049-2079.	3.4	45
176	Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 2015, 8, 284-289.	12.9	337
177	Environmental management and open-air experiments in Brazilian Amazonia. Geoforum, 2015, 66, 136-145.	2.5	11
178	Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the Northern Brazilian Amazon. Environmental Management, 2015, 55, 1124-1138.	2.7	26
179	Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment. Earth Surface Processes and Landforms, 2015, 40, 1524-1532.	2.5	70
180	Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. Journal of Hydrology, 2015, 523, 822-829.	5.4	94
181	Past Ecosystem Dynamics in Fashioning Views on Conserving Extant New World Vegetation 1. Annals of the Missouri Botanical Garden, 2015, 100, 150-158.	1.3	2
182	Sun-sensor geometry effects on vegetation index anomalies in the Amazon rainforest. GIScience and Remote Sensing, 2015, 52, 332-343.	5.9	12
183	Rainfall patterns in the Southern Amazon: a chronological perspective (1971–2010). Climatic Change, 2015, 132, 251-264.	3.6	68
184	Impacts of Land-use Change on Ecosystem Services. Springer Geography, 2015, , .	0.4	13

#	Article	IF	CITATIONS
185	"Brasilience:―Assessing Resilience in Land Reform Settlements in the Brazilian Cerrado. Human Ecology, 2015, 43, 531-546.	1.4	34
186	Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmospheric Environment, 2015, 120, 277-285.	4.1	84
187	The Susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment. BioScience, 2015, 65, 893-905.	4.9	89
189	Future deforestation in the Amazon and consequences for South American climate. Agricultural and Forest Meteorology, 2015, 214-215, 12-24.	4.8	100
190	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	10.3	122
191	The evolution of socio-ecological systems: changing palm species management in the Colombian Amazon as an indicator of ecological and institutional change. Journal of Environmental Planning and Management, 2015, 58, 2015-2036.	4.5	1
192	Effects of tropical deforestation on climate and agriculture. Nature Climate Change, 2015, 5, 27-36.	18.8	605
193	Design of optimal ecosystem monitoring networks: hotspot detection and biodiversity patterns. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1085-1101.	4.0	14
194	Complex network analysis helps to identify impacts of the El Ni $\tilde{A}\pm o$ Southern Oscillation on moisture divergence in South America. Climate Dynamics, 2015, 45, 619-632.	3.8	48
195	The ecohydrology of ecosystem transitions: a metaâ€analysis. Ecohydrology, 2015, 8, 911-921.	2.4	19
196	REDD+ governance and indigenous peoples in Latin America: the case of Suru Carbon Project in the Brazilian Amazon Forest. Latin American J of Management for Sustainable Development, 2016, 3, 133.	0.0	1
197	Systematic review of the Cinnamon-throated Woodcreep Dendrexetastes rufigula (Aves:) Tj ETQq1 1 0.784314 r 358-369.	gBT /Overl 0.2	ock 10 Tf 5 4
200	Future Projections of Fire Occurrence in Brazil Using EC-Earth Climate Model. Revista Brasileira De Meteorologia, 2016, 31, 288-297.	0.5	20
201	Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin. Hydrology and Earth System Sciences, 2016, 20, 4237-4264.	4.9	62
202	Influence of seasonal variation on the hydro-biogeochemical characteristics of two upland lakes in the Southeastern Amazon, Brazil. Anais Da Academia Brasileira De Ciencias, 2016, 88, 2211-2227.	0.8	36
203	Anticipating future risk in social-ecological systems using fuzzy cognitive mapping: the case of wildfire in the Chiquitania, Bolivia. Ecology and Society, 2016, 21, .	2.3	23
204	Detection of Amazon Forest Degradation Caused by Land Use Changes. , 2016, , .		1
206	A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?. Hydrology and Earth System Sciences, 2016, 20, 2179-2194.	4.9	44

ARTICLE **CITATIONS** AVALIAÇà O ESTATÃ&TICA ENTRE AS ESTIMATIVAS DE PRECIPITAÇà O DA CONSTELAÇÃ O GPM COM TRMM: UMA ANÃLISE A BACIA HIDROGRÃFICA DO RIO SOLIMÃ-ES (STATISTICAL EVALUATION BETWEEN THE) TJ ETQQO 0 0 rgBT/Qverlock 10 Tf 50 7 207 Amazon Forest Ecosystem Responses to Elevated Atmospheric CO2 and Alterations in Nutrient 208 1.8 Availability: Filling the Gaps with Model-Experiment Integration. Frontiers in Earth Science, 2016, 4, . Ecofunctional Traits and Biomass Production in Leguminous Tree Species under Fertilization 209 9 2.1 Treatments during Forest Restoration in Amazonia. Forests, 2016, 7, 76. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia. Sensors, 2016, 16, 956. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges. PLoS ONE, 2016, 11, 211 2.5 5 e0162500. Hydraulic Balance of a Eucalyptus urophylla Plantation in Response to Periodic Drought in Low 3.6 Súbtropical China. Frontiers in Plant Science, 2016, 7, 1346. High risk of respiratory diseases in children in the fire period in Western Amazon. Revista De Saude 213 1.7 8 Publica, 2016, 50, . Testing the efficiency of protected areas in the Amazon for conserving freshwater turtles. Diversity 214 4.1 37 and Distributions, 2016, 22, 123-135. Landâ€use change affects water recycling in Brazil's last agricultural frontier. Global Change Biology, 215 9.5 258 2016, 22, 3405-3413. Modeling plantâ€"water interactions: an ecohydrological overview from the cell to the global scale. 6.5 163 Wiley Interdisciplinary Reviews: Water, 2016, 3, 327-368. Landscapeâ€scale consequences of differential tree mortality from catastrophic wind disturbance in 217 3.8 38 the Amazon. Ecological Applications, 2016, 26, 2225-2237. Genetic differentiation in redâ€bellied piranha populations (<i>Pygocentrus nattereri</i>, Kner, 1858) from the Solimõesâ€Amazonas River. Ecology and Evolution, 2016, 6, 4203-4213. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. International Journal 219 3.5 479 of Climatology, 2016, 36, 1033-1050. Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International 2.4 Journal of Wildland Fire, 2016, 25, 955. Patterns of tree species composition at watershed-scale in the Amazon â€~arc of deforestation': 221 1.3 14 implications for conservation. Environmental Conservation, 2016, 43, 317-326. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China. Scientific Reports, 2016, 6, 37658. Diversity, distribution, and conservation of lizards (Reptilia: Squamata) in the Brazilian Amazonia. 225 0.5 23 Neotropical Biodiversity, 2016, 2, 195-421. Isoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of 7.1 Sciences of the United States of America, 2016, 113, 6125-6130.

#	Article	IF	CITATIONS
227	Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150177.	4.0	12
228	Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surveys in Geophysics, 2016, 37, 357-395.	4.6	180
229	Introduction: Advances and Predicament. Fungal Biology, 2016, , 1-6.	0.6	0
230	Recent Advances and Remaining Uncertainties in Resolving Past and Future Climate Effects on Global Fire Activity. Current Climate Change Reports, 2016, 2, 1-14.	8.6	110
231	Remotely sensed resilience of tropical forests. Nature Climate Change, 2016, 6, 1028-1031.	18.8	157
232	Environmental drivers of body size variation in the lesser treefrog (Dendropsophus minutus) across the Amazon-Cerrado gradient. Biological Journal of the Linnean Society, 2016, , .	1.6	0
233	The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmospheric Environment, 2016, 146, 113-131.	4.1	73
234	Determinants of crop-livestock integration in Brazil: Evidence from the household and regional levels. Land Use Policy, 2016, 59, 557-568.	5.6	73
235	The impact of deforestation on the hydrological cycle in Amazonia as observed from remote sensing. International Journal of Remote Sensing, 2016, 37, 5412-5430.	2.9	33
236	Sustainable development policies and the spread of land-sharing practices – A statistical assessment in a frontier region of the Brazilian Amazon. Journal of Rural Studies, 2016, 48, 65-76.	4.7	5
237	Diagnosing nonlinearities in the local and remote responses to partial Amazon deforestation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9033-9047.	3.3	5
238	Drought promoted the disappearance of civilizations along the ancient Silk Road. Environmental Earth Sciences, 2016, 75, 1.	2.7	22
239	The Challenge of a $4\hat{A}^{\circ}\text{C}$ World by 2100. Hexagon Series on Human and Environmental Security and Peace, 2016, , 267-283.	0.2	12
240	Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest. GIScience and Remote Sensing, 2016, 53, 689-706.	5.9	13
241	Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10759-10768.	7.1	543
242	Fundamental causes and spatial heterogeneity of deforestation in Legal Amazon. Applied Geography, 2016, 75, 188-199.	3.7	39
243	Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Reviews of Geophysics, 2016, 54, 523-610.	23.0	73
244	Flood pulse dynamics affects exploitation of both aquatic and terrestrial prey by Amazonian floodplain settlements. Biological Conservation, 2016, 201, 129-136.	4.1	44

#	Article	IF	CITATIONS
245	Land Use in LCA: Including Regionally Altered Precipitation to Quantify Ecosystem Damage. Environmental Science & Environmenta	10.0	22
246	Modelling Amazonian Carbon Budgets and Vegetation Dynamics in a Changing Climate. Ecological Studies, 2016, , 331-366.	1.2	3
247	Amazonia in Perspective as a Changing Environment. Ecological Studies, 2016, , 465-469.	1.2	1
248	The Hydrology and Energy Balance of the Amazon Basin. Ecological Studies, 2016, , 35-53.	1.2	10
249	The Amazon Carbon Balance: An Evaluation of Methods and Results. Ecological Studies, 2016, , 79-100.	1.2	5
250	Aquatic Ecosystems. Ecological Studies, 2016, , 119-148.	1.2	25
251	Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity. Nature Communications, 2016, 7, 10383.	12.8	74
252	Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin. Ecological Studies, 2016, , .	1.2	11
253	The Biogeochemistry of the Main Forest Vegetation Types in Amazonia. Ecological Studies, 2016, , 225-266.	1.2	4
254	Evolution of wetâ€day and dryâ€day frequency in the western <scp>A</scp> mazon basin: Relationship with atmospheric circulation and impacts on vegetation. Water Resources Research, 2016, 52, 8546-8560.	4.2	52
255	Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales. Scientific Reports, 2016, 6, 32782.	3.3	30
256	Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmospheric Chemistry and Physics, 2016, 16, 4785-4797.	4.9	213
257	Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction. Atmospheric Chemistry and Physics, 2016, 16, 15709-15740.	4.9	105
258	Food system vulnerability amidst the extreme 2010–2011 flooding in the Peruvian Amazon: a case study from the Ucayali region. Food Security, 2016, 8, 551-570.	5.3	28
259	Resilience changes in watershed systems: A new perspective to quantify long-term hydrological shifts under perturbations. Journal of Hydrology, 2016, 539, 281-289.	5.4	21
260	Multi-scale assessment of human-induced changes to Amazonian instream habitats. Landscape Ecology, 2016, 31, 1725-1745.	4.2	108
261	Opposite OH reactivity and ozone cycles in the Amazon rainforest and megacity Beijing: Subversion of biospheric oxidant control by anthropogenic emissions. Atmospheric Environment, 2016, 125, 112-118.	4.1	56
262	Land-use change drives abundance and community structure alterations of thaumarchaeal ammonia oxidizers in tropical rainforest soils in Rondônia, Brazil. Applied Soil Ecology, 2016, 107, 48-56.	4.3	32

#	Article	IF	CITATIONS
263	Implementing climate variability adaptation at the community level in the Amazon floodplain. Environmental Science and Policy, 2016, 63, 151-160.	4.9	19
264	Carbon dioxide outgassing from Amazonian aquatic ecosystems in the Negro River basin. Biogeochemistry, 2016, 129, 77-91.	3.5	22
265	Unsustainable Management of Arumã (Ischnosiphon polyphyllus [Poepp. & amp; Endl.] Körn.) by the Novo Airão Artisans Association, Rio Negro, Amazon, Brazil1. Economic Botany, 2016, 70, 132-144.	1.7	1
266	Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Global Change Biology, 2016, 22, 2516-2525.	9.5	35
267	The Connection Between the North and South American Monsoons. Springer Climate, 2016, , 187-206.	0.6	9
268	Forest shifts induced by fire and management legacies in a Pinus pinaster woodland. Forest Ecology and Management, 2016, 361, 309-317.	3.2	27
269	Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest. Oecologia, 2016, 180, 685-696.	2.0	25
270	Evidence for arrested succession in a lianaâ€infested Amazonian forest. Journal of Ecology, 2016, 104, 149-159.	4.0	71
271	Multi-functionality, juxtaposition and conflict in the Central Amazon: Will tourism contribute to rural livelihoods and save the rainforest?. Journal of Rural Studies, 2016, 44, 24-36.	4.7	32
272	Busting the Boom–Bust Pattern of Development in the Brazilian Amazon. World Development, 2016, 79, 82-96.	4.9	43
273	Sensitivity to high temperature and water stress in recalcitrant Baccaurea ramiflora seeds. Journal of Plant Research, 2016, 129, 637-645.	2.4	8
274	Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, 2016, 136, 555-570.	3.6	147
275	Understanding ecological transitions under recurrent wildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia. Forest Ecology and Management, 2016, 360, 273-286.	3.2	23
276	The response of tropical rainforests to droughtâ€"lessons from recent research and future prospects. Annals of Forest Science, 2016, 73, 27-44.	2.0	123
277	Recognition of strong seasonality and climatic cyclicity in an ancient, fluvially dominated, tidally influenced point bar: Middle McMurray Formation, Lower Steepbank River, northâ€eastern Alberta, Canada. Sedimentology, 2016, 63, 552-585.	3.1	84
278	Deforestation scenarios for the Bolivian lowlands. Environmental Research, 2016, 144, 49-63.	7. 5	35
279	Do the recent severe droughts in the Amazonia have the same period of length?. Climate Dynamics, 2016, 46, 3279-3285.	3.8	22
280	Structural Dynamics of Pristine Headwater Streams from Southern Brazilian Amazon. River Research and Applications, 2016, 32, 473-482.	1.7	4

#	Article	IF	CITATIONS
281	Climate change impacts in Latin America and the Caribbean and their implications for development. Regional Environmental Change, 2017, 17, 1601-1621.	2.9	97
282	Linking dominant Hawaiian tree species to understory development in recovering pastures via impacts on soils and litter. Restoration Ecology, 2017, 25, 42-52.	2.9	33
283	Biasâ€corrected data sets of climate model outputs at uniform space–time resolution for land surface modelling over Amazonia. International Journal of Climatology, 2017, 37, 621-636.	3.5	17
284	Fire and deforestation dynamics in Amazonia (1973–2014). Global Biogeochemical Cycles, 2017, 31, 24-38.	4.9	66
285	A deforestation-induced tipping point for the South American monsoon system. Scientific Reports, 2017, 7, 41489.	3.3	103
286	Drought tolerance in two oil palm hybrids as related to adjustments in carbon metabolism and vegetative growth. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	33
287	Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2640-2644.	7.1	99
288	Multicriteria assessment of water dynamics reveals subcatchment variability in a seemingly homogeneous tropical cloud forest catchment. Hydrological Processes, 2017, 31, 1456-1468.	2.6	3
289	Extreme floods increase CO ₂ outgassing from a large Amazonian river. Limnology and Oceanography, 2017, 62, 989-999.	3.1	37
290	Regional Controls on Physical Habitat Structure of Amazon Streams. River Research and Applications, 2017, 33, 766-776.	1.7	15
291	Land use sustainability on the South-Eastern Amazon agricultural frontier: Recent progress and the challenges ahead. Applied Geography, 2017, 80, 86-97.	3.7	51
292	Regional dry-season climate changes due to three decades of Amazonian deforestation. Nature Climate Change, 2017, 7, 200-204.	18.8	165
293	Deforestation size influences rainfall. Nature Climate Change, 2017, 7, 175-176.	18.8	44
294	Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon. Regional Environmental Change, 2017, 17, 1687-1699.	2.9	36
295	Floodplains as an Achilles' heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4442-4446.	7.1	96
296	Policy instruments to control Amazon fires: A simulation approach. Ecological Economics, 2017, 138, 199-222.	5 . 7	18
297	Global Spatial–Temporal Variability in Terrestrial Productivity and Phenology Regimes between 2000 and 2012. Annals of the American Association of Geographers, 2017, 107, 1519-1537.	2.2	5
299	Evaluation of MODIS-based estimates of water-use efficiency in Amazonia. International Journal of Remote Sensing, 2017, 38, 5291-5309.	2.9	26

#	Article	IF	CITATIONS
300	Deforestation effects on Amazon forest resilience. Geophysical Research Letters, 2017, 44, 6182-6190.	4.0	107
301	Amazonian forest-savanna bistability and human impact. Nature Communications, 2017, 8, 15519.	12.8	52
302	Damming the rivers of the Amazon basin. Nature, 2017, 546, 363-369.	27.8	526
303	Forest fragmentation reduced carbon storage in a moist tropical forest in Bangladesh: Implications for policy development. Land Use Policy, 2017, 65, 15-25.	5.6	29
304	Scenarios in tropical forest degradation: carbon stock trajectories for REDD+. Carbon Balance and Management, 2017, 12, 6.	3.2	34
305	Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications, 2017, 8, 14681.	12.8	244
306	Mycorrhizal Networks and Forest Resilience to Drought. , 2017, , 319-339.		18
307	Continuous soil carbon storage of old permanent pastures in Amazonia. Global Change Biology, 2017, 23, 3382-3392.	9.5	20
308	Are capacity deficits in local government leaving the Amazon vulnerable to environmental change?. Land Use Policy, 2017, 69, 326-330.	5.6	11
309	Smallholder Agriculture and Climate Change. Annual Review of Environment and Resources, 2017, 42, 347-375.	13.4	98
310	Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data. International Journal of Applied Earth Observation and Geoinformation, 2017, 63, 244-256.	2.8	16
311	Climatic and anthropogenic drivers of northern Amazon fires during the 2015–2016 El Niño event. Ecological Applications, 2017, 27, 2514-2527.	3.8	49
312	Rainforest-initiated wet season onset over the southern Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8481-8486.	7.1	183
313	Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon. Forest Ecology and Management, 2017, 401, 135-146.	3.2	44
314	Spatial patterns of DOC concentration and DOM optical properties in a Brazilian tropical riverâ€wetland system. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1883-1902.	3.0	33
315	Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST. Scientific Reports, 2017, 7, 5811.	3.3	132
316	Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.	1.6	5
317	Dendroecological Studies in the Neotropics: History, Status and Future Challenges. Ecological Studies, 2017, , 35-73.	1.2	35

#	Article	IF	CITATIONS
318	Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fractionâ€Based Light Use Efficiency Model. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3014-3030.	3.0	14
319	Impacts of land use on climate and ecosystem productivity over the Amazon and the South American continent. Environmental Research Letters, 2017, 12, 054016.	5.2	18
320	Development stressors are stronger than protected area management: A case of the Pantanos de Centla Biosphere Reserve, Mexico. Land Use Policy, 2017, 67, 340-351.	5.6	25
321	Field spectroscopy and radiative transfer modelling to assess impacts of petroleum pollution on biophysical and biochemical parameters of the Amazon rainforest. Environmental Earth Sciences, 2017, 76, 1.	2.7	28
322	Long-term dynamics of a floodplain shallow lake in the Pantanal wetland: Is it all about climate?. Science of the Total Environment, 2017, 605-606, 527-540.	8.0	26
323	Woody-plant ecosystems under climate change and air pollution—response consistencies across zonobiomes?. Tree Physiology, 2017, 37, 706-732.	3.1	13
324	A social–ecological perspective on harmonizing food security and biodiversity conservation. Regional Environmental Change, 2017, 17, 1291-1301.	2.9	76
325	The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bulletin of the American Meteorological Society, 2017, 98, 981-997.	3.3	128
326	Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands. Global Change Biology, 2017, 23, 1564-1574.	9.5	75
327	Trade: A Driver of Present and Future Ecosystems. Ecosystems, 2017, 20, 44-53.	3.4	21
328	Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests. New Phytologist, 2017, 214, 1033-1048.	7.3	83
329	Detecting deforestation impacts in Southern Amazonia rainfall using rain gauges. International Journal of Climatology, 2017, 37, 2889-2900.	3.5	41
330	Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. International Journal of Climatology, 2017, 37, 2013-2026.	3.5	120
331	Differential tolerance to water deficit in two açaÃ-(Euterpe oleracea Mart.) plant materials. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	20
332	Dendroecology. Ecological Studies, 2017, , .	1.2	29
333	Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, 2017, 17, 6611-6629.	4.9	45
334	CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry and Physics, 2017, 17, 11779-11801.	4.9	71
335	Bird records in the northwestern and central portions of the Amazon Basin highlight the needs for inventories and long-term monitoring in the region. Revista Brasileira De Ornitologia, 2017, 25, 206-220.	0.2	6

#	Article	IF	CITATIONS
336	Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1761-1771.	0.8	6
337	A matrix clustering method to explore patterns of land-cover transitions in satellite-derived maps of the Brazilian Amazon. Nonlinear Processes in Geophysics, 2017, 24, 113-123.	1.3	15
338	Habitat Loss on Rondon's Marmoset Potential Distribution. Land, 2017, 6, 8.	2.9	3
339	A joint global carbon inversion system using both CO ₂ and ¹³ CO ₂ atmospheric concentration data. Geoscientific Model Development, 2017, 10, 1131-1156.	3.6	11
341	Impacts of forest restoration on water yield: A systematic review. PLoS ONE, 2017, 12, e0183210.	2.5	230
342	Windthrow Variability in Central Amazonia. Atmosphere, 2017, 8, 28.	2.3	29
344	Effect of cover crops on physico-chemical attributes of soil in a short-term experiment in the southwestern Amazon region. African Journal of Agricultural Research Vol Pp, 2017, 12, 3339-3347.	0.5	6
345	Monitoring Rainfall Patterns in the Southern Amazon with PERSIANN-CDR Data: Long-Term Characteristics and Trends. Remote Sensing, 2017, 9, 889.	4.0	50
346	Determinants of the Brazilian Amazon deforestation. African Journal of Agricultural Research Vol Pp, 2017, 12, 169-176.	0.5	7
347	Synergy between land use and climate change increases future fire risk in Amazon forests. Earth System Dynamics, 2017, 8, 1237-1246.	7.1	71
349	The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports, 2018, 8, 3427.	3.3	58
350	Impacts of Agricultural Practices and Individual Life Characteristics on Ecosystem Services: A Case Study on Family Farmers in the Context of an Amazonian Pioneer Front. Environmental Management, 2018, 61, 772-785.	2.7	9
351	Geotechnology in the analysis of forest fragments in northern Mato Grosso, Brazil. Scientific Reports, 2018, 8, 3959.	3.3	7
352	The Global Foodâ€Energyâ€Water Nexus. Reviews of Geophysics, 2018, 56, 456-531.	23.0	446
353	Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes. Science of the Total Environment, 2018, 635, 259-274.	8.0	35
354	Decoupling the effects of deforestation and climate variability in the <scp>T</scp> apajós river basin in the <scp>B</scp> razilian <scp>A</scp> mazon. Hydrological Processes, 2018, 32, 1648-1663.	2.6	16
355	Rain-fed and irrigated cropland-atmosphere water fluxes and their implications for agricultural production in Southern Amazonia. Agricultural and Forest Meteorology, 2018, 256-257, 407-419.	4.8	22
356	Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia. Science Advances, 2018, 4, eaar2547.	10.3	28

#	Article	IF	CITATIONS
357	Seeing the woods through the saplings: Using wood density to assess the recovery of humanâ€modified Amazonian forests. Journal of Ecology, 2018, 106, 2190-2203.	4.0	31
358	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	7.3	341
359	Climate Change in South America. , 2018, , 205-208.		4
360	Drought stress and tree size determine stem <scp>CO</scp> ₂ efflux in a tropical forest. New Phytologist, 2018, 218, 1393-1405.	7.3	26
361	Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global Change Biology, 2018, 24, 1919-1934.	9.5	145
362	Pervasive Rise of Small-scale Deforestation in Amazonia. Scientific Reports, 2018, 8, 1600.	3.3	127
363	Impact of the biomass burning on methane variability during dry years in the Amazon measured from an aircraft and the AIRS sensor. Science of the Total Environment, 2018, 624, 509-516.	8.0	9
364	Land use change and the carbon debt for sugarcane ethanol production in Brazil. Land Use Policy, 2018, 72, 65-73.	5.6	42
365	Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 2018, 9, 157.	12.8	86
366	Trends in global research in deforestation. A bibliometric analysis. Land Use Policy, 2018, 72, 293-302.	5 . 6	45
367	Causes of reduced leafâ€level photosynthesis during strong El Niño drought in a Central Amazon forest. Global Change Biology, 2018, 24, 4266-4279.	9.5	65
368	Use of imaging spectroscopy and LIDAR to characterize fuels for fire behavior prediction. Remote Sensing Applications: Society and Environment, 2018, 11, 41-50.	1.5	12
369	Regional Hydroclimatic Variability Due To Contemporary Deforestation in Southern Amazonia and Associated Boundary Layer Characteristics. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3993-4014.	3.3	7
370	Land, Water, and Wind Watershed Cycle: a strategic use of water, land and wind for climate change adaptation. Climatic Change, 2018, 147, 427-439.	3. 6	10
371	Assessing the effects of rainfall reduction on litterfall and the litter layer in phytophysiognomies of the Amazonia–Cerrado transition. Revista Brasileira De Botanica, 2018, 41, 589-600.	1.3	4
372	Balancing tradeoffs: Reconciling multiple environmental goals when ecosystem services vary regionally. Environmental Research Letters, 2018, 13, 064008.	5 . 2	16
373	Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests. Environmental Conservation, 2018, 45, 378-386.	1.3	10
374	Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Regional Environmental Change, 2018, 18, 91-103.	2.9	34

#	Article	IF	CITATIONS
375	Combining socioeconomic development with environmental governance in the Brazilian Amazon: the Mato Grosso agricultural frontier at a tipping point. Environment, Development and Sustainability, 2018, 20, 1-22.	5.0	30
376	Social Vulnerability to Climatic Shocks Is Shaped by Urban Accessibility. Annals of the American Association of Geographers, 2018, 108, 125-143.	2.2	26
377	Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 2018, 553, 194-198.	27.8	325
378	Mapping pasture management in the Brazilian Amazon from dense Landsat time series. Remote Sensing of Environment, 2018, 205, 453-468.	11.0	37
379	Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant and Soil, 2018, 422, 317-329.	3.7	27
380	Major shifts in Amazon wildlife populations from recent intensification of floods and drought. Conservation Biology, 2018, 32, 333-344.	4.7	48
381	Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. International Journal of Climatology, 2018, 38, 1096-1104.	3.5	112
382	The Influence of Riverine Nutrients in Niche Partitioning of Phytoplankton Communities–A Contrast Between the Amazon River Plume and the Changjiang (Yangtze) River Diluted Water of the East China Sea. Frontiers in Marine Science, 2018, 5, .	2.5	25
383	Recognizing Women Leaders in Fire Science: Revisited. Fire, 2018, 1, 45.	2.8	4
384	Anthropic Processes and Land-Use Change During 33 Years in Roraima, Northern Amazonia. Journal of Agricultural Science, 2018, 10, 426.	0.2	1
385	Droughts Over Amazonia in 2005, 2010, and 2015: A Cloud Cover Perspective. Frontiers in Earth Science, 2018, 6, .	1.8	30
386	A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: an example from the Amazon region. Geoscientific Model Development, 2018, 11, 5203-5215.	3.6	6
387	The impacts of recent drought on fire, forest loss, and regional smoke emissions in lowland Bolivia. Biogeosciences, 2018, 15, 4317-4331.	3.3	12
388	Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Frontiers in Earth Science, 2018, 6, .	1.8	259
389	The Threat of Multiâ€Year Drought in Western Amazonia. Water Resources Research, 2018, 54, 5890-5904.	4.2	14
390	Methods to Evaluate Land-Atmosphere Exchanges in Amazonia Based on Satellite Imagery and Ground Measurements. , 2018, , .		1
391	Land cover data as environmentally sensitive decision-making mediator in territorial and administrative reform. Cogent Environmental Science, 2018, 4, 1505326.	1.6	4
392	Extreme Drought Events over the Amazon Basin: The Perspective from the Reconstruction of South American Hydroclimate. Water (Switzerland), 2018, 10, 1594.	2.7	15

#	Article	IF	CITATIONS
393	Traditional conservation strategies still the best option. Nature Sustainability, 2018, 1, 608-610.	23.7	33
394	Science in support of Amazonian conservation in the 21st century: the case of Brazil. Biotropica, 2018, 50, 850-858.	1.6	6
396	Detecting Human Presence and Influence on Neotropical Forests with Remote Sensing. Remote Sensing, 2018, 10, 1593.	4.0	10
397	A Geostatistical Approach for Modeling Soybean Crop Area and Yield Based on Census and Remote Sensing Data. Remote Sensing, 2018, 10, 680.	4.0	17
398	Links Between Carbon Monoxide and Climate Indices for the Southern Hemisphere and Tropical Fire Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9786-9800.	3.3	15
399	Build a global Earth observatory. Nature, 2018, 553, 21-23.	27.8	78
400	PROGNOSE DA DISTRIBUIÇÃO DIAMÉTRICA NA AMAZÔNIA UTILIZANDO REDES NEURAIS ARTIFICIAIS E AUTÔMATOS CELULARES. Floresta, 2018, 48, 93.	0.2	5
401	Soil Carbon and the Carbon Cycle in the Central Amazon Forest. , 2018, , 59-66.		0
402	Coupling the terrestrial hydrology model with biogeochemistry to the integrated LAND surface model: Amazon Basin applications. Hydrological Sciences Journal, 2018, 63, 1954-1966.	2.6	5
403	Multi-year statistical and modeling analysis of submicrometer aerosol number size distributions at a rain forest site in Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 10255-10274.	4.9	26
404	OBSOLETE: South America. , 2018, , .		0
406	Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols. Atmospheric Chemistry and Physics, 2018, 18, 10289-10331.	4.9	64
407	Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site. Atmospheric Chemistry and Physics, 2018, 18, 12817-12843.	4.9	54
408	Future Drying in Central America and Northern South America Linked With Atlantic Meridional Overturning Circulation. Geophysical Research Letters, 2018, 45, 9226-9235.	4.0	10
409	Atmosphere-Land Bridge between the Pacific and Tropical North Atlantic SST's through the Amazon River basin during the 2005 and 2010 droughts. Chaos, 2018, 28, 085705.	2.5	6
410	Seasonal and interannual assessment of cloud cover and atmospheric constituents across the Amazon (2000–2015): Insights for remote sensing and climate analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 309-327.	11.1	60
411	Forest-rainfall cascades buffer against drought across the Amazon. Nature Climate Change, 2018, 8, 539-543.	18.8	191
412	Assessing changes in extreme river flow regulation from non-stationarity in hydrological scaling laws. Journal of Hydrology, 2018, 562, 492-501.	5.4	5

#	Article	IF	CITATIONS
413	Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytologist, 2018, 219, 914-931.	7. 3	64
414	Do economic conditions affect public support for environmental policy?. Journal of Cleaner Production, 2018, 195, 66-78.	9.3	33
415	Higher rates of decomposition in standing vs. surface litter in a Mediterranean ecosystem during the dry and the wet seasons. Plant and Soil, 2018, 428, 427-439.	3.7	12
416	The enigma of the Amazonian carbon balance. Environmental Research Letters, 2018, 13, 061002.	5.2	5
417	Dryâ€Season Greening and Water Stress in Amazonia: The Role of Modeling Leaf Phenology. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1909-1926.	3.0	37
418	Rise of Human Influence on the World's Biota. , 2018, , 53-65.		0
419	Spatio-temporal patterns of Mauritia flexuosa fruit extraction in the Peruvian Amazon: Implications for conservation and sustainability. Applied Geography, 2018, 97, 98-108.	3.7	15
420	Scaling properties reveal regulation of river flows in the Amazon through a "forest reservoir― Hydrology and Earth System Sciences, 2018, 22, 1735-1748.	4.9	23
421	The Guiana Shield rainforests—overlooked guardians of South American climate. Environmental Research Letters, 2018, 13, 074029.	5.2	46
423	Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes. Atmospheric Chemistry and Physics, 2018, 18, 10055-10088.	4.9	52
424	The Role of Decision-making in Ecosystem Service Trade-offs in Lowland Bolivia's Amazonian Agricultural Systems. Ecological Economics, 2018, 153, 31-42.	5.7	10
425	Agricultural land use among mestizo colonist and indigenous populations: Contrasting patterns in the Amazon. PLoS ONE, 2018, 13, e0199518.	2.5	25
426	Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change. Sustainability, 2018, 10, 989.	3.2	59
427	Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment. Water (Switzerland), 2018, 10, 349.	2.7	27
428	Hydrologic Response to Land Use Change in a Large Basin in Eastern Amazon. Water (Switzerland), 2018, 10, 429.	2.7	48
429	Deriving pattern from complexity in the processes underlying tropical forest drought impacts. New Phytologist, 2018, 219, 841-844.	7.3	11
430	Key drivers of ecosystem recovery after disturbance in a neotropical forest. Forest Ecosystems, 2018, 5, .	3.1	57
431	Carbon-optimised land management strategies for southern Amazonia. Regional Environmental Change, 2018, 18, 1-9.	2.9	9

#	Article	IF	CITATIONS
432	Satellite-Based Analysis of CO Seasonal and Interannual Variability Over the Amazon Basin. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5641-5656.	3.3	15
433	Revealing the causes and temporal distribution of tree mortality in Central Amazonia. Forest Ecology and Management, 2018, 424, 177-183.	3.2	36
434	Reduced Wet-Season Length Detected by Satellite Retrievals of Cloudiness over Brazilian Amazonia: A New Methodology. Journal of Climate, 2018, 31, 9941-9964.	3.2	20
435	Tropical Forests, Tipping Points, and the Social Cost of Deforestation. Ecological Economics, 2018, 153, 161-171.	5.7	29
436	Trait evolution in tropical rubber (<i>Hevea brasiliensis</i>) trees is related to dry season intensity. Functional Ecology, 2018, 32, 2638-2651.	3.6	14
437	Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 12185-12206.	4.9	30
438	Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5. Atmospheric Environment, 2018, 191, 513-524.	4.1	17
439	Highway paving in the southwestern Amazon alters long-term trends and drivers of regional vegetation dynamics. Heliyon, 2018, 4, e00721.	3.2	12
440	Post-drought decline of the Amazon carbon sink. Nature Communications, 2018, 9, 3172.	12.8	95
441	The Effects of Tropical Vegetation on Rainfall. Annual Review of Environment and Resources, 2018, 43, 193-218.	13.4	87
442	Recognizing Women Leaders in Fire Science. Fire, 2018, 1, 30.	2.8	4
443	Statistical reconstruction of global vegetation for the last glacial maximum. Global and Planetary Change, 2018, 168, 67-77.	3.5	12
444	Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America. PLoS ONE, 2018, 13, e0194654.	2.5	39
445	Influence of longer dry seasons in the Southern Amazon on patterns of water vapor transport over northern South America and the Caribbean. Climate Dynamics, 2019, 52, 2647-2665.	3.8	51
446	Response of the river discharge in the Tocantins River Basin, Brazil, to environmental changes and the associated effects on the energy potential. Regional Environmental Change, 2019, 19, 193-204.	2.9	21
447	Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome. PLoS Neglected Tropical Diseases, 2019, 13, e0007629.	3.0	29
448	Forest-to-agriculture conversion in Amazon drives soil microbial communities and N-cycle. Soil Biology and Biochemistry, 2019, 137, 107567.	8.8	61
449	Land use drives change in amazonian tree species. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20190186.	0.8	8

#	Article	IF	Citations
450	Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices. Remote Sensing of Environment, 2019, 232, 111303.	11.0	40
451	Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nature Sustainability, 2019, 2, 764-772.	23.7	71
452	Seasonal and Inter-annual Variation of Evapotranspiration in Amazonia Based on Precipitation, River Discharge and Gravity Anomaly Data. Frontiers in Earth Science, 2019, 7, .	1.8	8
453	Terrestrial water storage., 2019,, 41-64.		11
454	Amazonian farmers' response to fire policies and climate change. Ecological Economics, 2019, 165, 106359.	5.7	12
455	Surfaceâ€Atmosphere Coupling Scale, the Fate of Water, and Ecophysiological Function in a Brazilian Forest. Journal of Advances in Modeling Earth Systems, 2019, 11, 2523-2546.	3.8	6
456	Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics, 2019, 19, 7973-8001.	4.9	36
457	Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory. Atmospheric Chemistry and Physics, 2019, 19, 8425-8470.	4.9	41
458	Multi-decadal hydrologic change and variability in the Amazon River basin: understanding terrestrial water storage variations and drought characteristics. Hydrology and Earth System Sciences, 2019, 23, 2841-2862.	4.9	48
459	Leaf reflectance spectroscopy captures variation in carboxylation capacity across species, canopy environment and leaf age in lowland moist tropical forests. New Phytologist, 2019, 224, 663-674.	7.3	55
460	Land–atmosphere interactions in the tropics – a review. Hydrology and Earth System Sciences, 2019, 23, 4171-4197.	4.9	43
461	The influence of water table depth on evapotranspiration in the Amazon arc of deforestation. Hydrology and Earth System Sciences, 2019, 23, 3917-3931.	4.9	19
462	Improving Representation of Deforestation Effects on Evapotranspiration in the E3SM Land Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2412-2427.	3.8	28
464	A Recent Systematic Increase in Vapor Pressure Deficit over Tropical South America. Scientific Reports, 2019, 9, 15331.	3.3	106
465	Future Climate and Land Use Change Impacts on River Flows in the Tapaj \tilde{A}^3 s Basin in the Brazilian Amazon. Earth's Future, 2019, 7, 993-1017.	6.3	39
466	Why Brazil needs its Legal Reserves. Perspectives in Ecology and Conservation, 2019, 17, 91-103.	1.9	81
467	Impacts of Fire on Forest Biomass Dynamics at the Southern Amazon Edge. Environmental Conservation, 2019, 46, 285-292.	1.3	18
468	Marked isotopic variability within and between the Amazon River and marine dissolved black carbon pools. Nature Communications, 2019, 10, 4018.	12.8	47

#	Article	IF	CITATIONS
470	Climate Benefits of Intact Amazon Forests and the Biophysical Consequences of Disturbance. Frontiers in Forests and Global Change, 2019, 2, .	2.3	54
471	Complementarity in mid-point impacts for water use in life cycle assessment applied to cropland and cattle production in Southern Amazonia. Journal of Cleaner Production, 2019, 219, 497-507.	9.3	6
472	Perceptions of climate and climate change by Amazonian communities. Global Environmental Change, 2019, 57, 101923.	7.8	43
473	Effects of landâ€cover changes on the partitioning of surface energy and water fluxes in <scp>Amazonia</scp> using highâ€resolution satellite imagery. Ecohydrology, 2019, 12, e2126.	2.4	21
474	A spatiotemporal natural-human database to evaluate road development impacts in an Amazon trinational frontier. Scientific Data, 2019, 6, 93.	5.3	6
475	The causes of farmland landscape structural changes in different geographical environments. Science of the Total Environment, 2019, 685, 667-680.	8.0	28
476	Prolonged tropical forest degradation due to compounding disturbances: Implications for CO ₂ and H ₂ O fluxes. Global Change Biology, 2019, 25, 2855-2868.	9.5	43
478	Improving policies and instruments to address cumulative impacts of small hydropower in the Amazon. Energy Policy, 2019, 132, 265-271.	8.8	53
480	Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. Annual Review of Earth and Planetary Sciences, 2019, 47, 555-581.	11.0	131
481	The weathering stage of tropical soils affects the soil-plant cycle of silicon, but depending on land use. Geoderma, 2019, 351, 209-220.	5.1	44
482	Long-term spatiotemporal variations in satellite-based soil moisture and vegetation indices over Iran. Environmental Earth Sciences, 2019, 78, 1.	2.7	8
483	Assessment of terrestrial water balance using remote sensing data in South America. Journal of Hydrology, 2019, 575, 131-147.	5.4	62
484	Understanding and Managing Social–Ecological Tipping Points in Primary Industries. BioScience, 2019, 69, 335-347.	4.9	21
485	Multipleâ€Wavelet Coherence of World's Large Rivers With Meteorological Factors and Ocean Signals. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4932-4954.	3.3	7 5
486	Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 2019, 51, 304-310.	1.6	3
487	The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers. Ecological Processes, 2019, 8, .	3.9	61
488	Effects of Deforestation on the Onset of the Rainy Season and the Duration of Dry Spells in Southern Amazonia. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5268-5281.	3.3	85
489	Lowland tapirs facilitate seed dispersal in degraded Amazonian forests. Biotropica, 2019, 51, 245-252.	1.6	34

#	Article	IF	Citations
490	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 2019, 10, 1046.	12.8	131
492	Why Does Amazon Precipitation Decrease When Tropical Forests Respond to Increasing CO ₂ ?. Earth's Future, 2019, 7, 450-468.	6.3	53
493	Long-Term Annual Surface Water Change in the Brazilian Amazon Biome: Potential Links with Deforestation, Infrastructure Development and Climate Change. Water (Switzerland), 2019, 11, 566.	2.7	28
494	Opposite Effects of Climate and Land Use Changes on the Annual Water Balance in the Amazon Arc of Deforestation. Water Resources Research, 2019, 55, 3092-3106.	4.2	55
495	Physiological responses of young Brazil nut (Bertholletia excelsa) plants to drought stress and subsequent rewatering. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 252, 10-17.	1.2	20
496	Geospatial modeling of land cover change in the Choc \tilde{A}^3 -Darien global ecoregion of South America; One of most biodiverse and rainy areas in the world. PLoS ONE, 2019, 14, e0211324.	2.5	24
497	Characterizing seasonal dynamics of Amazonian wetlands for conservation and decision making. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1073-1082.	2.0	31
498	Monitoring deforestation and forest degradation using multi-temporal fraction images derived from Landsat sensor data in the Brazilian Amazon. International Journal of Remote Sensing, 2019, 40, 5475-5496.	2.9	27
499	Forestâ€Induced Exponential Growth of Precipitation Along Climatological Wind Streamlines Over the Amazon. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2589-2599.	3.3	41
500	The Down Side of Cross-Border Integration: The Case of Deforestation in the Brazilian Mato Grosso and Bolivian Santa Cruz Lowlands. Environment, 2019, 61, 31-44.	1.4	6
501	System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus. Renewable and Sustainable Energy Reviews, 2019, 105, 230-243.	16.4	110
502	Amazonian Reservoir Hosts of Trypanosoma cruzi., 2019,,.		1
503	Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 2019, 9, 993-998.	18.8	229
504	Wet tropical soils and global change. Developments in Soil Science, 2019, 36, 131-169.	0.5	6
505	Hot Spots Occurrence in the Dynamics of Deforestation In The Amazon Rainforest., 2019,,.		1
506	Optimal strategies for ecosystem services provision in Amazonian production forests. Environmental Research Letters, 2019, 14, 124090.	5. 2	9
507	Conflicting Discourses on Wildfire Risk and the Role of Local Media in the Amazonian and Temperate Forests. International Journal of Disaster Risk Science, 2019, 10, 529-543.	2.9	7
508	Carbonaceous components and major ions in PM10 from the Amazonian Basin. Atmospheric Research, 2019, 215, 75-84.	4.1	7

#	Article	IF	CITATIONS
509	Forest-to-pasture conversion and recovery based on assessment of microbial communities in Eastern Amazon rainforest. FEMS Microbiology Ecology, 2019, 95, .	2.7	44
510	Towards high throughput assessment of canopy dynamics: The estimation of leaf area structure in Amazonian forests with multitemporal multi-sensor airborne lidar. Remote Sensing of Environment, 2019, 221, 1-13.	11.0	25
511	Estimation of Evapotranspiration of Amazon Rainforest Using the Maximum Entropy Production Method. Geophysical Research Letters, 2019, 46, 1402-1412.	4.0	37
512	Illegal Selective Logging and Forest Fires in the Northern Brazilian Amazon. Forests, 2019, 10, 61.	2.1	24
513	Longâ€ŧerm water balance partitioning explained by physical and ecological characteristics in world river basins. Ecohydrology, 2019, 12, e2072.	2.4	8
514	Amazonian deforestation and soil biodiversity. Conservation Biology, 2019, 33, 590-600.	4.7	38
515	Homoeostatic maintenance of nonstructural carbohydrates during the 2015–2016 El Niño drought across a tropical forest precipitation gradient. Plant, Cell and Environment, 2019, 42, 1705-1714.	5 . 7	29
516	Interannual hydrological variations and ecological phytoplankton patterns in Amazonian floodplain lakes. Hydrobiologia, 2019, 830, 135-149.	2.0	8
517	Contrasting North–South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Climate Dynamics, 2019, 52, 5413-5430.	3.8	119
518	The Flow of Culture: Assessing the Role of Rivers in the Inter-community Transmission of Material Traditions in the Upper Amazon. Journal of Archaeological Method and Theory, 2019, 26, 135-154.	3.0	8
519	Predicted distribution and habitat loss for the Endangered black-faced black spider monkey <i>Ateles chamek </i> in the Amazon. Oryx, 2020, 54, 699-705.	1.0	11
520	Redefining the Cerrado–Amazonia transition: implications for conservation. Biodiversity and Conservation, 2020, 29, 1501-1517.	2.6	65
521	The southern Amazon rainy season: The role of deforestation and its interactions with largeâ€scale mechanisms. International Journal of Climatology, 2020, 40, 2328-2341.	3.5	51
522	Drought and fires influence the respiratory diseases hospitalizations in the Amazon. Ecological Indicators, 2020, 109, 105817.	6.3	45
523	Human progress and drought sensitivity behavior. Science of the Total Environment, 2020, 702, 134966.	8.0	3
524	Functional diversity improves tropical forest resilience: Insights from a longâ€ŧerm virtual experiment. Journal of Ecology, 2020, 108, 831-843.	4.0	36
525	An atmospheric pollutant (inorganic nitrogen) alters the response of evergreen broad-leaved tree species to extreme drought. Ecotoxicology and Environmental Safety, 2020, 187, 109750.	6.0	7
526	Substantial Increases in Eastern Amazon and Cerrado Biomass Burningâ€Sourced Tropospheric Ozone. Geophysical Research Letters, 2020, 47, e2019GL084143.	4.0	16

#	ARTICLE	IF	CITATIONS
527	Sensitivity of primary production to precipitation across the United States. Ecology Letters, 2020, 23, 527-536.	6.4	109
528	What influences upland soil chemistry in the Amazon basin, Brazil? Major, minor and trace elements in the upper rhizosphere. Journal of Geochemical Exploration, 2020, 211, 106433.	3.2	4
529	Novel Representation of Leaf Phenology Improves Simulation of Amazonian Evergreen Forest Photosynthesis in a Land Surface Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2018MS001565.	3.8	36
530	Forest cover changes., 2020,, 915-952.		1
531	Aboveground Biomass Distribution in a Multi-Use Savannah Landscape in Southeastern Kenya: Impact of Land Use and Fences. Land, 2020, 9, 381.	2.9	17
532	Aligning conservation and development goals with rural community priorities: capacity building for forest health monitoring in an extractive reserve in Brazil. Ecology and Society, 2020, 25, .	2.3	4
533	Implications of CMIP6 Projected Drying Trends for 21st Century Amazonian Drought Risk. Earth's Future, 2020, 8, e2020EF001608.	6. 3	43
534	Agricultural land use and the sustainability of social-ecological systems. Ecological Modelling, 2020, 437, 109312.	2.5	25
535	Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nature Communications, 2020, 11, 5184.	12.8	37
536	Climatic breadth of calling behaviour in two widespread Neotropical frogs: Insights from humidity extremes. Global Change Biology, 2020, 26, 5431-5446.	9.5	3
537	Climate regime shift and forest loss amplify fire in Amazonian forests. Global Change Biology, 2020, 26, 5874-5885.	9.5	62
538	Opinion: The future of nature conservation in Brazil. Inland Waters, 2020, 10, 295-303.	2.2	24
539	Prologue: Sustainable Development, Economic Growth and the Fate of Tropical Forests., 0,,.		1
540	Impact of fires on an open bamboo forest in years of extreme drought in southwestern Amazonia. Regional Environmental Change, 2020, 20, 1.	2.9	13
541	Mapping Burned Areas of Mato Grosso State Brazilian Amazon Using Multisensor Datasets. Remote Sensing, 2020, 12, 3827.	4.0	17
542	The Carbon Cycle of Terrestrial Ecosystems. , 2020, , 141-182.		4
543	The Global Carbon and Oxygen Cycles. , 2020, , 453-481.		1
544	Impacts of Protected Area Deforestation on Dryâ€Season Regional Climate in the Brazilian Amazon. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033048.	3.3	16

#	Article	IF	CITATIONS
545	Microplastics in sediments from Amazon rivers, Brazil. Science of the Total Environment, 2020, 749, 141604.	8.0	93
546	Generating and Mapping Amazonian Urban Regions Using a Geospatial Approach. ISPRS International Journal of Geo-Information, 2020, 9, 453.	2.9	9
547	Du Feu à l'Eau: Source and Flux of Dissolved Black Carbon From the Congo River. Global Biogeochemical Cycles, 2020, 34, e2020GB006560.	4.9	11
548	Higher fire frequency impaired woody species regeneration in a south-eastern Amazonian forest. Journal of Tropical Ecology, 2020, 36, 190-198.	1.1	3
549	Deforestation and reforestation impacts on soils in the tropics. Nature Reviews Earth $\&$ Environment, 2020, $1,590-605$.	29.7	121
550	Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing, 2020, 12, 2735.	4.0	589
551	Reframing tropical savannization: linking changes in canopy structure to energy balance alterations that impact climate. Ecosphere, 2020, 11, e03231.	2.2	24
552	Deforestation Trajectories on a Development Frontier in the Brazilian Amazon: 35 Years of Settlement Colonization, Policy and Economic Shifts, and Land Accumulation. Environmental Management, 2020, 66, 966-984.	2.7	40
553	The Role of Vegetation on the Dynamics of Water and Fire in the Cerrado Ecosystems: Implications for Management and Conservation. Plants, 2020, 9, 1803.	3.5	16
554	Food for thought: The underutilized potential of tropical treeâ€sourced foods for 21st century sustainable food systems. People and Nature, 2020, 2, 1006-1020.	3.7	35
555	Discriminating Forest Successional Stages, Forest Degradation, and Land Use in Central Amazon Using ALOS/PALSAR-2 Full-Polarimetric Data. Remote Sensing, 2020, 12, 3512.	4.0	8
556	Attribution of Amazon floods to modes of climate variability: A review. Meteorological Applications, 2020, 27, e1949.	2.1	18
557	Largeâ€scale DNAâ€based survey of frogs in Amazonia suggests a vast underestimation of species richness and endemism. Journal of Biogeography, 2020, 47, 1781-1791.	3.0	60
558	Rainfall control on Amazon sediment flux: synthesis from 20 years of monitoring. Environmental Research Communications, 2020, 2, 051008.	2.3	22
559	Interannual Variability of Carbon Uptake of Secondary Forests in the Brazilian Amazon (2004â€⊋014). Global Biogeochemical Cycles, 2020, 34, e2019GB006396.	4.9	9
560	Topography consistently drives intra―and interâ€specific leaf trait variation within tree species complexes in a Neotropical forest. Oikos, 2020, 129, 1521-1530.	2.7	28
561	Hydrological Variations and the Ancient Silk Road in the Northern Tarim Basin between Han and Sui Dynasties. Acta Geologica Sinica, 2020, 94, 646-657.	1.4	3
562	Floodâ€pulse disturbances as a threat for longâ€living Amazonian trees. New Phytologist, 2020, 227, 1790-1803.	7.3	28

#	Article	IF	CITATIONS
563	Spatiotemporal analysis of deforestation in the Chapare region of Bolivia using LANDSAT images. Land Degradation and Development, 2020, 31, 3024-3039.	3.9	10
564	Impacts of climate change and deforestation on hydropower planning in the Brazilian Amazon. Nature Sustainability, 2020, 3, 430-436.	23.7	53
565	Agricultural Impacts on Hydrobiogeochemical Cycling in the Amazon: Is There Any Solution?. Water (Switzerland), 2020, 12, 763.	2.7	5
566	Agricultural Expansion in Mato Grosso from 1986–2000: A Bayesian Time Series Approach to Tracking Past Land Cover Change. Remote Sensing, 2020, 12, 688.	4.0	12
567	A shared perspective on managing Amazonian sustainableâ€use reserves in an era of megafires. Journal of Applied Ecology, 2020, 57, 2132-2138.	4.0	8
568	Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005677.	3.0	44
569	Drought resistance increases from the individual to the ecosystem level in highly diverse Neotropical rainforest: a meta-analysis of leaf, tree and ecosystem responses to drought. Biogeosciences, 2020, 17, 2621-2645.	3.3	12
570	Feedback between drought and deforestation in the Amazon. Environmental Research Letters, 2020, 15, 044024.	5.2	102
571	The Rise of Climate-Driven Sediment Discharge in the Amazonian River Basin. Atmosphere, 2020, 11, 208.	2.3	10
572	Advances and prospects of environmental DNA in neotropical rainforests. Advances in Ecological Research, 2020, , 331-373.	2.7	27
573	A discharge stationary model for the Par \tilde{A}_i -Amazon estuarine system. Journal of Hydrology: Regional Studies, 2020, 28, 100668.	2.4	10
574	Carbon Dynamics in a Human-Modified Tropical Forest: A Case Study Using Multi-Temporal LiDAR Data. Remote Sensing, 2020, 12, 430.	4.0	15
575	Effects of tropical forest conversion on soil and aquatic systems in southwestern Brazilian Amazonia: A synthesis. Environmental Research, 2020, 183, 109220.	7.5	12
576	Impact of biomass burning on a metropolitan area in the Amazon during the 2015ÂEl Niño: The enhancement of carbon monoxide and levoglucosan concentrations. Environmental Pollution, 2020, 260, 114029.	7. 5	14
577	Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environmental Research Letters, 2020, 15, 030201.	5.2	105
578	Evaluating spatial patterns in precipitation trends across the Amazon basin driven by land cover and global scale forcings. Theoretical and Applied Climatology, 2020, 140, 411-427.	2.8	47
579	Dissolved silicon isotope dynamics in large river estuaries. Geochimica Et Cosmochimica Acta, 2020, 273, 367-382.	3.9	20
580	Fish assemblages respond to forest cover in small Amazonian basins. Limnologica, 2020, 81, 125757.	1.5	7

#	Article	IF	CITATIONS
581	Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy, 2020, 92, 104491.	5.6	75
582	Metals, n-Alkanes, Hopanes, and Polycyclic Aromatic Hydrocarbon in Sediments from Three Amazonian Streams Crossing Manaus (Brazil). Chemistry, 2020, 2, 274-292.	2.2	2
583	Comparison of Cloud Cover Detection Algorithms on Sentinel–2 Images of the Amazon Tropical Forest. Remote Sensing, 2020, 12, 1284.	4.0	42
584	Productive changes in Brazilian Pampa: impacts, vulnerabilities and coping strategies. Natural Hazards, 2020, 102, 469-488.	3.4	7
585	Using spatial genetic structure of a population of Swietenia macrophylla King to integrate genetic diversity into management strategies in Southwestern Amazon. Forest Ecology and Management, 2020, 464, 118040.	3.2	11
586	Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Climate Dynamics, 2020, 54, 4169-4189.	3.8	71
587	Diazotrophs Show Signs of Restoration in Amazon Rain Forest Soils with Ecosystem Rehabilitation. Applied and Environmental Microbiology, 2020, 86, .	3.1	11
588	Recurrence Analysis of Vegetation Indices for Highlighting the Ecosystem Response to Drought Events: An Application to the Amazon Forest. Remote Sensing, 2020, 12, 907.	4.0	12
589	Land use planning in the Amazon basin: challenges from resilience thinking. Ecology and Society, 2020, 25, .	2.3	12
590	Predicting modeling scenarios of climate change impact on the CO2 emissions from an Amazonian hydroelectric reservoir. Modeling Earth Systems and Environment, 2021, 7, 631-639.	3.4	2
591	Environmental dynamics of the Juru \tilde{A}_i watershed in the Amazon. Environment, Development and Sustainability, 2021, 23, 6769-6785.	5.0	6
592	Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by <scp>CMIP5</scp> and <scp>CMIP6</scp> models. International Journal of Climatology, 2021, 41, E1100.	3.5	11
593	Diversity of growth responses to recent droughts reveals the capacity of Atlantic Forest trees to cope well with current climatic variability. Forest Ecology and Management, 2021, 480, 118656.	3.2	9
594	Do spatial and temporal scales affect the efficiency of surrogates in ant monitoring on the hydroelectric power-plant area in Brazilian Amazon?. Ecological Indicators, 2021, 121, 107158.	6.3	6
595	Land use systems and livelihoods in demographically heterogeneous frontier stages in the amazon. Environmental Development, 2021, 38, 100587.	4.1	8
596	Examination of seasonal water and carbon dynamics in eastern Amazonia: a comparison of Noah-MP and MODIS. Theoretical and Applied Climatology, 2021, 143, 571-586.	2.8	9
597	A synthesis of the effects of cheatgrass invasion on US Great Basin carbon storage. Journal of Applied Ecology, 2021, 58, 327-337.	4.0	26
598	La Via Campesina's Agroecological Militancy at a Crossroads: New Research Avenues for Amazonian Studies. , 2021, , 469-502.		1

#	Article	IF	CITATIONS
599	Fire Occurrences and Greenhouse Gas Emissions from Deforestation in the Brazilian Amazon. Remote Sensing, 2021, 13, 376.	4.0	27
600	Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
601	Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests. PLoS ONE, 2021, 16, e0245991.	2.5	3
602	Farmland landscape fragmentation evolution and its driving mechanism from rural to urban: A case study of Changzhou City. Journal of Rural Studies, 2021, 82, 1-18.	4.7	40
603	Scientific Methods to Understand Fish Population Dynamics and Support Sustainable Fisheries Management. Water (Switzerland), 2021, 13, 574.	2.7	25
604	Satellite Observations of the Tropical Terrestrial Carbon Balance and Interactions With the Water Cycle During the 21st Century. Reviews of Geophysics, 2021, 59, e2020RG000711.	23.0	13
605	Understanding water and energy fluxes in the Amazonia: Lessons from an observationâ€model intercomparison. Global Change Biology, 2021, 27, 1802-1819.	9.5	6
606	Evolution of the riverine nutrient export to the Tropical Atlantic over the last 15 years: is there a link with Sargassum proliferation?. Environmental Research Letters, 2021, 16, 034042.	5.2	18
607	Carbon and Beyond: The Biogeochemistry of Climate in a Rapidly Changing Amazon. Frontiers in Forests and Global Change, 2021, 4, .	2.3	21
608	Modeled Response of South American Climate to Three Decades of Deforestation. Journal of Climate, 2021, 34, 2189-2203.	3.2	13
609	Brazilian Amaz \tilde{A} 'nia, deforestation and environmental degradation: Analyzing the process using game, deterrence and rational choice theories. Environmental Science and Policy, 2021, 117, 46-51.	4.9	4
610	On the Hydroclimate-Vegetation Relationship in the Southwestern Amazon During the 2000–2019 Period. Frontiers in Water, 2021, 3, .	2.3	10
611	In-stream turbines for rethinking hydropower development in the Amazon basin. Nature Sustainability, 2021, 4, 680-687.	23.7	25
612	Classifying flow regimes of the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1005-1028.	2.0	10
613	Rainfall seasonality drives the spatiotemporal patterns of dung beetles in Amazonian forests in the arc of deforestation. Journal of Insect Conservation, 2021, 25, 453-463.	1.4	10
614	Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change, 2021, 11, 442-448.	18.8	166
615	The Pulse of the Amazon: Fluxes of Dissolved Organic Carbon, Nutrients, and Ions From the World's Largest River. Global Biogeochemical Cycles, 2021, 35, e2020GB006895.	4.9	16
616	Mapping tree diversity in the tropical forest region of Choc \tilde{A}^3 -Colombia. Environmental Research Letters, 2021, 16, 054024.	5.2	10

#	Article	IF	CITATIONS
617	Effects of Typhoon Mangkhut on a Monsoon Evergreen Broad-Leaved Forest Community in Dinghushan Nature Reserve, Lower Subtropical China. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
618	Temporal trend changes in reference evapotranspiration contrasting different land uses in southern Amazon basin. Agricultural Water Management, 2021, 250, 106815.	5.6	20
619	Legacy Effects Following Fire on Surface Energy, Water and Carbon Fluxes in Mature Amazonian Forests. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005833.	3.0	3
620	Speciesâ€level ichthyoplankton dynamics for 97 fishes in two major river basins of the Amazon using quantitative metabarcoding. Molecular Ecology, 2022, 31, 1627-1648.	3.9	17
621	Sensitivity of Tropical Insectivorous Birds to the Anthropocene: A Review of Multiple Mechanisms and Conservation Implications. Frontiers in Ecology and Evolution, 2021, 9, .	2,2	21
622	Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global metaâ€analysis. Global Change Biology, 2021, 27, 4196-4206.	9.5	35
623	Vapor Pressure Deficit and Sunlight Explain Seasonality of Leaf Phenology and Photosynthesis Across Amazonian Evergreen Broadleaved Forest. Global Biogeochemical Cycles, 2021, 35, e2020GB006893.	4.9	31
624	Climate-induced hysteresis of the tropical forest in a fire-enabled Earth system model. European Physical Journal: Special Topics, 2021, 230, 3153-3162.	2.6	4
625	Baseflow dynamics and multivariate analysis using bivariate and multiple wavelet coherence in an alpine endorheic river basin (Northwest China). Science of the Total Environment, 2021, 772, 145013.	8.0	14
626	Modelling nonlinear dynamics of interacting tipping elements on complex networks: the PyCascades package. European Physical Journal: Special Topics, 2021, 230, 3163-3176.	2.6	8
627	Microbial Communities and Interactions of Nitrogen Oxides With Methanogenesis in Diverse Peatlands of the Amazon Basin. Frontiers in Microbiology, 2021, 12, 659079.	3.5	8
628	Species distribution and conservation assessment of the black-headed night monkey (Aotus nigriceps): a species of Least Concern that faces widespread anthropogenic threats. Primates, 2021, 62, 817-825.	1.1	7
629	Local Fractal Connections to Characterize the Spatial Processes of Deforestation in the Ecuadorian Amazon. Entropy, 2021, 23, 748.	2.2	5
630	Increasing bamboo dominance in southwestern Amazon forests following intensification of drought-mediated fires. Forest Ecology and Management, 2021, 490, 119139.	3.2	6
631	The role of accessibility for land use and land cover change in the Brazilian Amazon. Applied Geography, 2021, 132, 102419.	3.7	9
632	Managing fires in a changing world: Fuel and weather determine fire behavior and safety in the neotropical savannas. Journal of Environmental Management, 2021, 289, 112508.	7.8	17
633	Forest carbon stocks under three canopy densities in Sitapahar natural forest reserve in Chittagong Hill Tracts of Bangladesh. Forest Ecology and Management, 2021, 492, 119217.	3.2	10
634	The resilience of Amazon tree cover to past and present drying. Global and Planetary Change, 2021, 202, 103520.	3 . 5	15

#	Article	IF	CITATIONS
635	O desmatamento da Amazônia brasileira sob o prisma da pecuária: a degradação dos recursos hÃdricos no contexto da região norte de Mato Grosso. Research, Society and Development, 2021, 10, e66101119252.	0.1	3
636	Streamflow and precipitation trends in the Brazilian Amazon basin and their association with Pacific decadal oscillation and deforestation. Theoretical and Applied Climatology, 2021, 146, 511-526.	2.8	3
637	Relationship between respiratory diseases and environmental conditions: a time-series analysis in Eastern Amazon. Brazilian Journal of Environmental Sciences (Online), 2021, 56, 398-412.	0.4	1
638	Fire-induced loss of the world's most biodiverse forests in Latin America. Science Advances, 2021, 7, .	10.3	33
639	Vegetation degradation in ENSO events: Drought assessment, soil use and vegetation evapotranspiration in the Western Brazilian Amazon. Remote Sensing Applications: Society and Environment, 2021, 23, 100531.	1.5	4
640	Accurate Simulation of Both Sensitivity and Variability for Amazonian Photosynthesis: Is It Too Much to Ask?. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002555.	3.8	3
641	Dynamics of active fire data and their relationship with fires in the areas of regularized indigenous lands in the Southern Amazon. Remote Sensing Applications: Society and Environment, 2021, 23, 100570.	1.5	8
642	Dissolved concentrations and organic speciation of copper in the Amazon River estuary and mixing plume. Marine Chemistry, 2021, 234, 104005.	2.3	12
643	Litterfall seasonality and adaptive strategies of tropical and subtropical evergreen forests in China. Journal of Plant Ecology, 2022, 15, 320-334.	2.3	7
644	Policy, drought and fires combine to affect biodiversity in the Amazon basin. Nature, 2021, 597, 481-483.	27.8	3
645	Remote Sensing of Seasonal Climatic Constraints on Leaf Phenology Across Pantropical Evergreen Forest Biome. Earth's Future, 2021, 9, e2021EF002160.	6.3	7
646	The CO ₂ record at the Amazon Tall Tower Observatory: A new opportunity to study processes on seasonal and interâ€annual scales. Global Change Biology, 2022, 28, 588-611.	9.5	8
647	Government policies endanger the indigenous peoples of the Brazilian Amazon. Land Use Policy, 2021, 108, 105663.	5.6	27
648	Drought Resilience Debt Drives NPP Decline in the Amazon Forest. Global Biogeochemical Cycles, 2021, 35, e2021GB007004.	4.9	12
649	Mapping forest disturbances across the Southwestern Amazon: tradeoffs between open-source, Landsat-based algorithms. Environmental Research Communications, 2021, 3, 091001.	2.3	5
650	Sustainability of Brazilian forest concessions. Forest Ecology and Management, 2021, 496, 119440.	3.2	22
651	River winds and pollutant recirculation near the Manaus city in the central Amazon. Communications Earth $\&$ Environment, 2021, 2, .	6.8	8
652	Satellite-based precipitation estimates using a dense rain gauge network over the Southwestern Brazilian Amazon: Implication for identifying trends in dry season rainfall. Atmospheric Research, 2021, 261, 105741.	4.1	24

#	Article	IF	Citations
653	Climate change forecasts suggest that the conservation area network in the Cerrado-Amazon transition zone needs to be expanded. Acta Oecologica, 2021, 112, 103764.	1.1	3
654	Effects of climate and land cover changes on water availability in a Brazilian Cerrado basin. Journal of Hydrology: Regional Studies, 2021, 37, 100931.	2.4	15
655	The color of water: The contributions of green and blue water to agricultural productivity in the Western Brazilian Amazon. World Development, 2021, 146, 105607.	4.9	4
656	A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests. Innovation(China), 2021, 2, 100154.	9.1	19
657	Distribution and size fractionation of nickel and cobalt species along the Amazon estuary and mixing plume. Marine Chemistry, 2021, 236, 104019.	2.3	11
658	Landscape analysis in a municipality in the arc of deforestation of the Brazilian Amazon rainforest. Ecological Engineering, 2021, 173, 106417.	3.6	4
659	Global analysis of the hydrologic sensitivity to climate variability. Journal of Hydrology, 2021, 603, 126720.	5.4	5
660	Impacts of meander migration on the Amazon riverine communities using Landsat time series and cloud computing. Science of the Total Environment, 2022, 806, 150449.	8.0	17
661	Forest Degradation and Inter-annual Tree Level Brazil Nut Production in the Peruvian Amazon. Frontiers in Forests and Global Change, 2021, 3, .	2.3	8
662	Carbon fluxes and storage in forests and landscapes. , 2014, , 139-166.		7
663	Brazil Nut (Bertholletia excelsa Bonpl.) Breeding. , 2019, , 57-76.		1
664	The Carbon Balance of Tropical Mountain Forests Along an Altitudinal Transect. Ecological Studies, 2013, , 117-139.	1.2	28
666	Water-related problem with special reference to global climate change in Brazil., 2020,, 3-21.		2
667	Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 268, 151613.	1.2	76
668	Collision Course: Development Pushes Amazonia Toward Its Tipping Point. Environment, 2021, 63, 15-25.	1.4	13
669	An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures. Environmental Research Letters, 2020, 15, 094087.	5.2	18
670	Above Ground Biomass and Carbon Stock of Lianas along the Watershed Area of Pergau, Jeli, Kelantan, Peninsular Malaysia. IOP Conference Series: Earth and Environmental Science, 0, 549, 012038.	0.3	1
672	Amazonian biogenic volatile organic compounds under global change. Global Change Biology, 2020, 26, 4722-4751.	9.5	38

#	Article	IF	CITATIONS
674	Changes in Normalized Difference Vegetation Index in the Orinoco and Amazon River Basins: Links to Tropical Atlantic Surface Temperatures. Journal of Climate, 2020, 33, 8537-8559.	3.2	19
675	Introduction to the Human Dimension: A Valuable Research Tool to Achieve Wildlife Conservation Objectives and Maned Wolf Conservation., 2013,, 297-314.		3
676	Global Priority Conservation Areas in the Face of 21st Century Climate Change. PLoS ONE, 2013, 8, e54839.	2.5	38
677	Decadal Trend in Agricultural Abandonment and Woodland Expansion in an Agro-Pastoral Transition Band in Northern China. PLoS ONE, 2015, 10, e0142113.	2.5	17
678	Increased Wildfire Risk Driven by Climate and Development Interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE, 2016, 11, e0161323.	2.5	34
679	Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador. PLoS ONE, 2017, 12, e0169867.	2.5	38
680	Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE, 2017, 12, e0179414.	2.5	61
681	Mapping human vulnerability to climate change in the Brazilian Amazon: The construction of a municipal vulnerability index. PLoS ONE, 2018, 13, e0190808.	2.5	39
682	Drivers of floristic variation in biogeographic transitions: insights from the ecotone between the largest biogeographic domains of South America. Acta Botanica Brasilica, 2020, 34, 155-166.	0.8	6
683	Fluxos de CO2 em Plantio de Palma de Óleo no Leste da Amazônia. Revista Brasileira De Meteorologia, 2018, 33, 181-192.	0.5	3
684	Sobrevivência e Frutificação de Bertholletia excelsa Bonpl. em Ãreas Desmatadas em Oriximiná, Pará. Floresta E Ambiente, 2016, 23, 555-564.	0.4	14
685	Climate change reflected in one of the largest wetlands in the world: an overview of the Northern Pantanal water regime. Acta Limnologica Brasiliensia, 0, 32, .	0.4	31
686	Avalia \tilde{A} § \tilde{A} £o da Resili \tilde{A} ªncia como ferramenta para entender a fronteira amaz \tilde{A} ´nica como um sistema socioecol \tilde{A} ³gico. Sustentabilidade Em Debate, 2016, 7, 20-35.	0.2	4
688	Sustainability Transitions: An Investigation of the Conditions Under Which Corporations are Likely to Reshape Their Practices to Reverse Environmental Degradation. SSRN Electronic Journal, 0, , .	0.4	2
689	Perspectivas de pesquisas na relação entre clima e o funcionamento da floresta Amazônica. Ciência E Cultura, 2014, 66, 41-46.	0.0	14
690	Wild Meat Species, Climate Change, and Indigenous Amazonians. Journal of Ethnobiology, 2020, 40, 218-233.	2.1	11
691	Priority questions in multidisciplinary drought research. Climate Research, 2018, 75, 241-260.	1.1	35
692	Spatial distribution pattern of Mezilaurus itauba (Meins.) Taub. Ex mez. in a seasonal forest area of the southern Amazon, Brazil. IForest, 2016, 9, 497-502.	1.4	2

#	Article	IF	CITATIONS
693	Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) in the influence areas of a hydroelectric power plant on the Madeira River in the Amazon Basin. Biodiversity Data Journal, 2018, 6, e24375.	0.8	8
694	Le Brésil maîtrise-t-il (enfin) la déforestation en Amazonie�. CyberGeo, 0, , .	0.0	8
695	Is Brazil now in control of deforestation in the Amazon?. CyberGeo, 0, , .	0.0	12
696	Dilemas e desafios do desenvolvimento sustent \tilde{A}_i vel da Amaz \tilde{A} ´nia: O caso brasileiro. Revista Critica De Ciencias Sociais, 2015, , 91-108.	0.1	2
697	Epidemiological, Biological and Clinical Aspects of Leishmaniasis with Special Emphasis on Busi Yasi in Suriname. Journal of Clinical & Experimental Dermatology Research, 2017, 08, .	0.1	7
698	Green Fertilization Enhances the Photosynthetic Performance and the Growth of Leguminous Trees for Restoration Plantation in Central Amazon. American Journal of Plant Sciences, 2014, 05, 2497-2508.	0.8	8
699	Visualizing Relationships between Drivers of Environmental Change and Pressures on Land-Based Ecosystems. Natural Resources, 2014, 05, 146-160.	0.4	5
700	Undermining Rights: Indigenous Lands and Mining in the Amazon. , 0, , .		4
701	Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest. Atmospheric Chemistry and Physics, 2020, 20, 15551-15584.	4.9	7
702	Long-term deposition and condensation ice-nucleating particle measurements from four stations across the globe. Atmospheric Chemistry and Physics, 2020, 20, 15983-16006.	4.9	24
713	Tipping the ENSO into a permanent ElÂNiño can trigger state transitions in global terrestrial ecosystems. Earth System Dynamics, 2019, 10, 631-650.	7.1	10
719	Evaluation of monotonic trends for streamflow in austral Amazon, Brazil: a case study for the Xingu and Tapaj \tilde{A}^3 s rivers. Proceedings of the International Association of Hydrological Sciences, 0, 371, 125-130.	1.0	2
720	A multi-approach and multi-scale study on water quantity and quality changes in the Tapaj \tilde{A}^3 s River basin, Amazon. Proceedings of the International Association of Hydrological Sciences, 0, 377, 3-7.	1.0	3
721	Advances in the study of giant otter (Pteronura brasiliensis): ecology, behavior, and conservation: a review. The Latin American Journal of Aquatic Mammals, 2015, 10, 75-98.	0.5	21
722	A Review of Small Farmer Land Use and Deforestation in Tropical Forest Frontiers: Implications for Conservation and Sustainable Livelihoods. Land, 2021, 10, 1113.	2.9	15
723	Opportunities for an African greenhouse gas observation system. Regional Environmental Change, 2021, 21, 1.	2.9	8
724	Active Fire Dynamics in the Amazon: New Perspectives From Highâ€Resolution Satellite Observations. Geophysical Research Letters, 2021, 48, e2021GL093789.	4.0	8
725	Sazonalidade e Correlação entre Emissões de Gases Estufa e Variáveis Ambientais em Ãøeas Florestais Distintas na Amazônia. Biodiversidade Brasileira - BioBrasil, 2021, 11, 72-83.	0.2	0

#	Article	IF	CITATIONS
726	Amazon Hydrology From Space: Scientific Advances and Future Challenges. Reviews of Geophysics, 2021, 59, e2020RG000728.	23.0	53
727	Leaf shedding of Pan-Asian tropical evergreen forests depends on the synchrony of seasonal variations of rainfall and incoming solar radiation. Agricultural and Forest Meteorology, 2021, 311, 108691.	4.8	7
728	De l'utilisation des s \tilde{A} ©ries temporelles SPOT-VEGETATION pour surveiller un front pionnier. Bois Et Forets Des Tropiques, 2012, 312, 77.	0.2	0
729	Arbuscular mycorrhizal fungi: Essential belowground organisms for earth life but sensitive to a changing environment. African Journal of Microbiology Research, 2012, 6, .	0.4	1
732	The Maned Wolf Conservation Project: Serra da Canastra, Minas Gerais, Brazil., 2013, , 209-224.		0
733	CHARACTERIZATION OF INTERANNUAL AND SEASONAL PATTERNS AND EXTREMES IN 41 YEARS OF PRECIPITATION DATA FROM BELTERRA, PARÃ, BRAZIL. CIência E Natura, 2013, .	0.0	0
735	Avances en el diseño de esquemas de pagos por servicios ambientales locales en la Amazonia baja peruana: El caso de la Cuenca del Nanay. Natura EconomÃa, 2020, 2, 92.	0.1	0
737	Bio-historical diversity, sustainability and collaboration in the Xingu. Anu \tilde{A}_i rio Antropol \tilde{A}^3 gico, 2014, , 69-96.	0.2	5
738	Group Comparison, Trends and Cluster Analysis to Understand Historical Precipitation. Green Energy and Technology, 2016, , 77-87.	0.6	0
739	Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Space Sciences Series of ISSI, 2016, , 167-205.	0.0	1
740	Low-Emission Rural Development in the Amazon. , 2018, , 67-83.		0
743	CartografÃa, corredores y cooperación: la búsqueda de soluciones transfronterizas en las fronteras amazA³nicas. Revista CartogrÁ¡fica, 2019, , 133-145.	0.2	0
744	DINÃ,MICA TEMPORAL DE FOCOS DE CALOR E SEUS CONDUTORES DE PRESSÃ O NO TERRITÃ "RIO DO SUDESTE PARAENSE. Nativa, 2019, 7, 681.	0.4	0
745	NARX model identification for analysing Amazon vegetation under climate change. , 2019, , .		1
749	Editorial special issue: plant-soil interactions in the Amazon rainforest. Plant and Soil, 2020, 450, 1-9.	3.7	4
752	Cartographie des concepts société et forêt tropicale: une perspective de ces cinq dernières années. Geografia Em Atos (Online), 2020, 3, 61-77.	0.1	0
753	Spatial and temporal variation of forest net primary productivity components on contrasting soils in northwestern Amazon. Ecosphere, 2020, 11, e03233.	2.2	4
755	FLORISTIC COMPOSITION AND DIVERSITY IN TERRA FIRME FOREST UNDER WATER STRESS IN THE AMAZON. Cerne, 2020, 26, 403-412.	0.9	1

#	Article	IF	CITATIONS
756	Hyperspectral vegetation indices to detect hydrocarbon pollution., 2020,, 401-425.		3
758	Mudanças no Uso da Terra na Amazônia Ocidental e a Resposta do Microclima à Ocorrência de Eventos Extremos. Revista Brasileira De Meteorologia, 2020, 35, 135-145.	0.5	1
759	Conservation refugees and environmental dispossession in 21st century critical Geography. Boletin De La Asociacion De Geografos Espanoles, 2020, , .	0.3	1
760	Resilience of the Central Indian Forest Ecosystem to Rainfall Variability in the Context of a Changing Climate. Remote Sensing, 2021, 13, 4474.	4.0	7
761	Where Has All the Carbon Gone?. Annual Review of Earth and Planetary Sciences, 2022, 50, .	11.0	5
762	A regional view of the linkages between hydro limatic changes and deforestation in the Southern Amazon. International Journal of Climatology, 2022, 42, 3757-3775.	3.5	8
763	Land use and land cover changes and their impacts on surface-atmosphere interactions in Brazil: A systematic review. Science of the Total Environment, 2022, 808, 152134.	8.0	29
764	Impact of exposure to smoke from biomass burning in the Amazon rain forest on human health. Jornal Brasileiro De Pneumologia, 2021, 47, e20210219.	0.7	5
765	Deforestation triggering irreversible transition in Amazon hydrological cycle. Environmental Research Letters, 2022, 17, 034037.	5.2	22
766	Deciphering Multifactorial Correlations of COVID-19 Incidence and Mortality in the Brazilian Amazon Basin. International Journal of Environmental Research and Public Health, 2022, 19, 1153.	2.6	4
767	Linking the chemical composition and optical properties of biomass burning aerosols in Amazonia. Environmental Science Atmospheres, 2022, 2, 252-269.	2.4	7
768	"Late-stage―deforestation enhances storm trends in coastal West Africa. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
769	Hydroclimatic adaptation critical to the resilience of tropical forests. Global Change Biology, 2022, 28, 2930-2939.	9.5	9
771	Near-real time deforestation detection in the Brazilian Amazon with Sentinel-1 and neural networks. European Journal of Remote Sensing, 2022, 55, 129-149.	3.5	8
772	The Negative Impact of Excessive Moisture Contributes to the Seasonal Dynamics of Photosynthesis in Amazon Moist Forests. Earth's Future, 2022, 10, .	6.3	5
773	Climate Drives Modeled Forest Carbon Cycling Resistance and Resilience in the Upper Great Lakes Region, USA. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	4
774	High-fidelity representation of climate variations by Amburana cearensis tree-ring chronologies across a tropical forest transition in South America. Dendrochronologia, 2022, 72, 125932.	2.2	2
775	Partitioning of three phenology rhythms in American tropical and subtropical forests using remotely sensed solar-induced chlorophyll fluorescence and field litterfall observations. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102698.	2.8	3

#	Article	IF	CITATIONS
776	Long-term land use in Amazon influence the dynamic of microbial communities in soil and rhizosphere. Rhizosphere, 2022, 21, 100482.	3.0	6
777	Post-fire ecological restoration in Latin American forest ecosystems: Insights and lessons from the last two decades. Forest Ecology and Management, 2022, 509, 120083.	3.2	14
778	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	1.6	27
779	Socio-Environmental Impacts on Indigenous Lands in the Brazilian Amazon. SSRN Electronic Journal, 0,	0.4	0
780	Assessing the Wall-to-Wall Spatial and Qualitative Dynamics of the Brazilian Pasturelands 2010–2018, Based on the Analysis of the Landsat Data Archive. Remote Sensing, 2022, 14, 1024.	4.0	15
781	How wildfires increase sensitivity of Amazon forests to droughts. Environmental Research Letters, 2022, 17, 044031.	5.2	6
782	The burning island: Spatiotemporal patterns of fire occurrence in Madagascar. PLoS ONE, 2022, 17, e0263313.	2.5	13
783	Impacts of Land Use Change and Atmospheric CO ₂ on Gross Primary Productivity (GPP), Evaporation, and Climate in Southern Amazon. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
784	The Effects of Environmental Changes on Plant Species and Forest Dependent Communities in the Amazon Region. Forests, 2022, 13, 466.	2.1	12
785	Interpreting extreme climate impacts from large ensemble simulations—are they unseen or unrealistic?. Environmental Research Letters, 2022, 17, 044052.	5.2	13
786	MODWT-ANN hybrid models for daily precipitation estimates with time-delayed entries in Amazon region. Environmental Monitoring and Assessment, 2022, 194, 296.	2.7	1
787	Multi-objective forest restoration planning in Costa Rica: Balancing landscape connectivity and ecosystem service provisioning with sustainable development. Journal of Environmental Management, 2022, 310, 114717.	7.8	18
788	An observational analysis of precipitation and deforestation age in the Brazilian Legal Amazon. Atmospheric Research, 2022, 271, 106122.	4.1	11
789	Participatory Action Research for Conservation and Development: Experiences from the Amazon. Sustainability, 2022, 14, 233.	3.2	6
790	Impacto de las actividades agropecuarias y petroleras sobre las coberturas naturales del campo petrolero Samaria, Tabasco. Revista Mexicana De Ciencias Agricolas, 2021, 12, 1429-1443.	0.2	1
791	Multitemporal Analysis as a Non-Invasive Technology Indicates a Rapid Change in Land Use in the Amazon: The Case of the ITT Oil Block. Environments - MDPI, 2021, 8, 139.	3.3	9
792	Fires in Amazonian Blackwater Floodplain Forests: Causes, Human Dimension, and Implications for Conservation. Frontiers in Forests and Global Change, 2021, 4, .	2.3	3
793	Deforestation Detection with Fully Convolutional Networks in the Amazon Forest from Landsat-8 and Sentinel-2 Images. Remote Sensing, 2021, 13, 5084.	4.0	24

#	Article	IF	CITATIONS
794	Soil Quality Restoration during the Natural Succession of Abandoned Cattle Pastures in Deforested Landscapes in the Colombian Amazon. Agronomy, 2021, 11, 2484.	3.0	5
7 95	Alteration of River Flow and Flood Dynamics by Existing and Planned Hydropower Dams in the Amazon River Basin. Water Resources Research, 2022, 58, .	4.2	20
796	Soils and landscapes of Maraj \tilde{A}^3 island, Brazilian Amazonia: Holocene evolution, geoarchaeology and climatic vulnerability. Environmental Earth Sciences, 2022, 81, 1.	2.7	1
797	Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature Communications, 2022, 13, 1964.	12.8	41
798	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	23.0	182
807	Inorganic Nitrogen Enhances the Drought Tolerance of Evergreen Broad-Leaved Tree Species in the Short-Term, but May Aggravate Their Water Shortage in the Mid-Term. Frontiers in Plant Science, 2022, 13, 875293.	3.6	1
808	Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation. Nature Communications, 2022, 13, 2437.	12.8	9
809	Spatioâ€temporal, ontogenetic and sexâ€related patterns in resource use of Amazonian manatees across floodplains and estuaries as inferred by <i>î(</i>) ¹³ C and <i>î(</i>) ¹⁵ N isotopic values. Aquatic Conservation: Marine and Freshwater Ecosystems, 0, , .	2.0	0
810	River rhythmicity: A conceptual means of understanding and leveraging the relational values of rivers. People and Nature, 2022, 4, 949-962.	3.7	13
811	Embedding circularity into the transition towards sustainable agroforestry systems in Peru. Science of the Total Environment, 2022, , 156376.	8.0	2
812	Impacts of land-use change on soil microbial communities and their function in the Amazon Rainforest. Advances in Agronomy, 2022, , 179-258.	5.2	3
813	Influence of Urban Heat Island and River Breezes on Precipitation Patterns in the Brazilian Amazon Rainforest. SSRN Electronic Journal, 0, , .	0.4	0
814	Anthropogenic Land Use and Land Cover Changesâ€"A Review on Its Environmental Consequences and Climate Change. Journal of the Indian Society of Remote Sensing, 2022, 50, 1615-1640.	2.4	53
815	Organic Molecular Signatures of the Congo River and Comparison to the Amazon. Global Biogeochemical Cycles, 2022, 36, .	4.9	14
816	Climate change effects on marginal savannas from central-north Brazil. Anais Da Academia Brasileira De Ciencias, 2022, 94, .	0.8	1
817	A New Coherence Detection Method for Mapping Inland Water Bodies Using CYGNSS Data. Remote Sensing, 2022, 14, 3195.	4.0	7
818	Global/Regional Impacts on Present and Near-Future Climate Regimes in the Metropolitan Region of Belém, Eastern Amazon. Atmosphere, 2022, 13, 1077.	2.3	3
819	Would Forest Regrowth Compensate for Climate Change in the Amazon Basin?. Applied Sciences (Switzerland), 2022, 12, 7052.	2.5	4

#	Article	IF	Citations
820	Highway Network and Fire Occurrence in Amazonian Indigenous Lands. Sustainability, 2022, 14, 9167.	3.2	8
821	WUE and CO2 Estimations by Eddy Covariance and Remote Sensing in Different Tropical Biomes. Remote Sensing, 2022, 14, 3241.	4.0	8
822	Identifying Thresholds, Regime Shifts, and Early Warning Signals Using Long-Term Streamflow Data in the Transboundary Rio Grande–Rio Bravo Basin. Water (Switzerland), 2022, 14, 2555.	2.7	2
823	Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
825	Interplay between local and landscape-scale effects on the taxonomic, functional and phylogenetic diversity of aerial insectivorous neotropical bats. Landscape Ecology, 2022, 37, 2861-2875.	4.2	7
826	Methanogenic communities and methane emissions from enrichments of Brazilian Amazonia soils under land-use change. Microbiological Research, 2022, 265, 127178.	5.3	8
827	Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Global Change Biology, 2022, 28, 6807-6822.	9.5	32
828	Anurans (Amphibia: Anura) of the Brazilian state of Amap \tilde{A}_i , eastern Amazonia: species diversity and knowledge gaps. European Journal of Taxonomy, 0, 836, .	0.6	3
829	Theoretical and paleoclimatic evidence for abrupt transitions in the Earth system. Environmental Research Letters, 2022, 17, 093006.	5.2	13
830	Prosopis L. woody growth in relation to hydrology in South America: A review. Dendrochronologia, 2022, , 126017.	2.2	2
831	Arbuscular Mycorrhizal Fungi in the Colombian Amazon: A Historical Review. Fungal Biology, 2022, , 79-106.	0.6	0
832	Environmental stressors in Amazonian riverine systems. Fish Physiology, 2022, , .	0.8	1
833	Land Use and Land Cover in Tropical Forest: Global Research. Forests, 2022, 13, 1709.	2.1	7
834	Detecting the research trends and evolution of energy resilience: a bibliometric analysis. Environmental Science and Pollution Research, 2023, 30, 21797-21814.	5.3	4
835	A Review of the Ecological and Biogeographic Differences of Amazonian Floodplain Forests. Water (Switzerland), 2022, 14, 3360.	2.7	4
836	Communication for Sustainability in the Ecuadorian Amazon: the Case of the YAsunÃ-Biosphere Reserve. Visual Review: Internacional Visual Culture Review, 2022, 10, 1-12.	0.1	0
838	On the Sensitivity of a Ground-Based Tropospheric Lidar to Aitken Mode Particles in the Upper Troposphere. Remote Sensing, 2022, 14, 4913.	4.0	0
839	Forest cover resilience to climate change over India using the MC2 dynamic vegetation model. Environmental Monitoring and Assessment, 2022, 194, .	2.7	2

#	Article	IF	CITATIONS
840	Evaluation of MODIS Dark Target AOD Product with 3 and 10 km Resolution in Amazonia. Atmosphere, 2022, 13, 1742.	2.3	4
843	Changes in land use and cover and their consequences on the spatial distribution of evapotranspiration and climatic elements in southwest PiauÃ, MATOPIBA. Journal of South American Earth Sciences, 2022, 120, 104084.	1.4	2
844	Is Poaceae pollen size a useful proxy in palaeoecological studies? New insights from a Poaceae pollen morphological study in the Amazon. Review of Palaeobotany and Palynology, 2023, 308, 104790.	1.5	4
846	Better Forests, Better Cities., 0,,.		5
848	Biogeochemistry-ecosystem-social interactions on the Chinese continental margins. Oceanologia, 2023, 65, 278-296.	2.2	3
849	Relationships between soils and plant community composition and structure in a Neotropical savanna mosaic. Australian Journal of Botany, 2022, 70, 549-559.	0.6	1
850	Effects of the loss of forest cover on odonate communities in eastern Amazonia. Journal of Insect Conservation, 2023, 27, 205-218.	1.4	3
851	Forest conservation in Indigenous territories and protected areas in the Brazilian Amazon. Nature Sustainability, 2023, 6, 295-305.	23.7	13
852	Mesoscale convective systems over the Amazon basin in a changing climate under global warming. Climate Dynamics, 2023, 61, 1815-1827.	3.8	1
853	Global review and state-of-the-art of biomass and carbon stock in the Amazon. Journal of Environmental Management, 2023, 331, 117251.	7.8	16
854	Oportunidades e vulnerabilidades do Brasil nas questões do clima e da sustentabilidade. Revista USP, 2022, , 119-136.	0.1	0
855	Ecological Protection Alone Is Not Enough to Conserve Ecosystem Carbon Storage: Evidence from Guangdong, China. Land, 2023, 12, 111.	2.9	2
856	Characterization of land cover-specific fire regimes in the Brazilian Amazon. Regional Environmental Change, 2023, 23, .	2.9	3
857	Different spatial and temporal arrangements for validating the latent heat flux obtained using the MOD16 product in a forest in the Western Amazon. International Journal of Hydrology, 2023, 7, 18-25.	0.6	1
858	Chemical Signatures of Seasonally Unique Anthropogenic Influences on Organic Aerosol Composition in the Central Amazon. Environmental Science & Enviro	10.0	1
859	The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period. Environmental Research, 2023, 224, 115522.	7.5	7
860	Climate Variability and Change in Tropical South America. The Latin American Studies Book Series, 2023, , 15-44.	0.2	0
861	Ãndice de área foliar e sua relação com o microclima em floresta e pastagem na Amazônia Ocidental. Revista Brasileira De Climatologia, 0, 32, 311-335.	0.3	0

#	Article	IF	CITATIONS
862	Past and Future Responses of Soil Water to Climate Change in Tropical and Subtropical Rainforest Systems in South America. Atmosphere, 2023, 14, 755.	2.3	1
863	Importance of Protected Areas by Brazilian States to Reduce Deforestation in the Amazon. ISPRS International Journal of Geo-Information, 2023, 12, 190.	2.9	0
864	Global projections of flash drought show increased risk in a warming climate. Communications Earth & Environment, 2023, 4, .	6.8	13
865	Assessing the Performance of the South American Land Data Assimilation System Version 2 (SALDAS-2) Energy Balance across Diverse Biomes. Atmosphere, 2023, 14, 959.	2.3	1
867	Valleys are a potential refuge for the Amazon lowland forest in the face of increased risk of drought. Communications Earth & Environment, 2023, 4, .	6.8	0
868	The potential for forest landscape restoration in the Amazon: state of the art of restoration strategies. Restoration Ecology, 0, , .	2.9	0
869	Climate feedbacks associated with land-use and land-cover change on hydrological extremes over the Yangtze River Delta Region, China. Journal of Hydrology, 2023, 623, 129855.	5.4	3
870	Oil palm plantations in an aging agricultural landscape in the eastern Amazon: Pushing Amazon forests farther from biodiversity-friendly landscapes. Biological Conservation, 2023, 283, 110095.	4.1	0
871	African biomass burning affects aerosol cycling over the Amazon. Communications Earth & Environment, 2023, 4, .	6.8	3
872	Towards a better understanding of life history strategies and the implications of habitat destruction on future mammal conservation. , 0, 2, .		1
873	Prospective analysis of deforestation determinants in the Amazonian landscapes., 2023, 3, 100076.		0
874	Contrasting effects of urbanization and fire on understory plant communities in the natural and wildland a \in urban interface. Ecosphere, 2023, 14, .	2.2	0
875	Impacts of land-surface heterogeneities and Amazonian deforestation on the wet season onset in southern Amazon. Climate Dynamics, 2023, 61, 4867-4898.	3.8	4
876	A gridded dataset of a leaf-age-dependent leaf area index seasonality product over tropical and subtropical evergreen broadleaved forests. Earth System Science Data, 2023, 15, 2601-2622.	9.9	0
877	Comparação de regiões homogêneas de precipitação a partir de duas fontes de dados distintas para o estado do Pará-Brasil. Revista Brasileira De Climatologia, 0, 32, 684-713.	0.3	0
878	Fire may prevent future Amazon forest recovery after large-scale deforestation. Communications Earth & Environment, 2023, 4, .	6.8	3
879	Carbon monoxide profile variability over the Manaus Metropolitan Region and its relations with biomass burning. Brazilian Journal of Environmental Sciences (Online), 2023, 58, 114-124.	0.4	0
880	Temporal Evolution of Vapor Pressure Deficit Observed in Six Locations of Different Brazilian Ecosystems and Its Relationship with Micrometeorological Variables. Forests, 2023, 14, 1543.	2.1	1

#	Article	IF	CITATIONS
881	Changes in the surface and atmospheric water budget due to projected Amazon deforestation: Lessons from a fully coupled model simulation. Journal of Hydrology, 2023, 625, 130082.	5.4	3
882	Surface Energy Dynamics and Canopy Structural Properties in Intact and Disturbed Forests in the Southern Amazon. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	0
884	Bio-geophysical feedback to climate caused by the conversion of Amazon Forest to soybean plantations. Science of the Total Environment, 2023, 905, 166802.	8.0	0
885	Conflict or Coordination? The Spatiotemporal Relationship Between Humans and Nature on the Qinghaiâ€√ibet Plateau. Earth's Future, 2023, 11, .	6.3	5
886	Understanding non-stationarity of hydroclimatic extremes and resilience in Peninsular catchments, India. Scientific Reports, 2023, 13, .	3.3	1
887	A biomass map of the Brazilian Amazon from multisource remote sensing. Scientific Data, 2023, 10, .	5.3	1
888	Sustainability of Colonist Land Uses in the Amazon: A Demo-Livelihoods Perspective. Sustainability, 2023, 15, 14116.	3.2	0
889	Cambio de uso del suelo en paisajes agrÃcolas-forestales: análisis espacial en cinco comunidades Kichwas de la Región Amazónica Ecuatoriana. , 2018, 7, 105-118.		4
890	How textural features can improve SAR-based tropical forest disturbance mapping. International Journal of Applied Earth Observation and Geoinformation, 2023, 124, 103492.	1.9	0
891	The South American monsoon approaches a critical transition in response to deforestation. Science Advances, 2023, 9, .	10.3	4
892	Assessing the evolution and attribution of watershed resilience in arid inland river basins, Northwest China. Science of the Total Environment, 2024, 906, 167534.	8.0	1
893	A multivariate probabilistic framework for identifying interannual fluctuation of the global land monsoon domain. Atmospheric Research, 2023, 296, 107048.	4.1	0
894	Groundwater dominates terrestrial hydrological processes in the Amazon at the basin and subbasin scales. Journal of Hydrology, 2024, 628, 130312.	5.4	0
895	Protecting Life and Lung: Protected Areas Affect Fine Particulate Matter and Respiratory Hospitalizations in the Brazilian Amazon Biome. Environmental and Resource Economics, 0, , .	3.2	0
896	Evaluation of cloud-type impact on performance of the GL model version 1.2 for estimation of solar irradiance. International Journal of Remote Sensing, 2023, 44, 6501-6522.	2.9	0
897	Spectral Patterns of Pixels and Objects of the Forest Phytophysiognomies in the Anau \tilde{A}_i National Forest, Roraima State, Brazil. Ecologies, 2023, 4, 686-703.	1.6	0
898	Anthropogenic disturbance exacerbates resilience loss in the Amazon rainforests. Global Change Biology, 2024, 30, .	9.5	0
899	Population growth and deforestation in Amazonas, Brazil, from 1985 to 2020. Population and Environment, 2023, 45, .	3.0	0

#	Article	IF	CITATIONS
900	Water Balance and the Moist Planetary Boundary Layer Driven by Land Use and Land Cover Change across the Amazon Basin. Water (Switzerland), 2023, 15, 4052.	2.7	0
901	Amazon deforestation implications in local/regional climate change. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
902	Ant habitat-use guilds response to forest-pasture shifting in the southwestern Amazon. Journal of Insect Conservation, 0, , .	1.4	0
903	Resilience of Amazon rainfall to CO ₂ removal forcing. Environmental Research Letters, 0,	5.2	0
904	African rainforest moisture contribution to continental agricultural water consumption. Agricultural and Forest Meteorology, 2024, 346, 109867.	4.8	2
906	Catasetum queirozii (Orchidaceae: Catasetinae): a new species from the Brazilian Amazon. Acta Amazonica, 2024, 54, .	0.7	0
907	Exploring CO2 anomalies in Brazilian biomes combining OCO-2 & amp; 3 data: Linkages to wildfires patterns. Advances in Space Research, 2024, 73, 4158-4174.	2.6	0
908	Measuring tropical rainforest resilience under non-Gaussian disturbances. Environmental Research Letters, 2024, 19, 024029.	5.2	0
909	Analysis of Factors Driving Subtropical Forest Phenology Differentiation, Considering Temperature and Precipitation Time-Lag Effects: A Case Study of Fujian Province. Forests, 2024, 15, 334.	2.1	0
910	Assessing the relative importance of dry-season incoming solar radiation and water storage dynamics during the 2005, 2010 and 2015 southern Amazon droughts: not all droughts are created equal. Environmental Research Letters, 2024, 19, 034027.	5.2	0
911	Assessment and characteristics of S-NPP VIIRS Deep Blue and Dark Target aerosol properties under clean, polluted and fire scenarios over the Amazon. Atmospheric Environment, 2024, 323, 120398.	4.1	0
912	Dryland Dynamics and Driving Forces. , 2024, , 23-68.		0
913	Predicting tipping points of vegetation resilience as a response to precipitation: Implications for understanding impacts of climate change in India. Biodiversity and Conservation, 0, , .	2.6	0
914	Critical transitions in the Amazon forest system. Nature, 2024, 626, 555-564.	27.8	1
915	ENSO effects on the relationship between aerosols and evapotranspiration in the south of the Amazon biome. Environmental Research, 2024, 250, 118516.	7.5	0
916	Water temperature governs organophosphate ester dynamics in the aquatic food chain of Poyang Lake. Environmental Science and Ecotechnology, 2024, 21, 100401.	13.5	0
917	The time since land-use transition drives changes in fire activity in the Amazon-Cerrado region. Communications Earth & Environment, 2024, 5, .	6.8	0
918	Legacies of multiple disturbances on fruit and seed patterns in Amazonia: Implications for forest functional traits. Ecosphere, 2024, 15, .	2.2	O

#	‡	Article	IF	CITATIONS
9	919	Regional-Scale Assessment of Burn Scar Mapping in Southwestern Amazonia Using Burned Area Products and CBERS/WFI Data Cubes. Fire, 2024, 7, 67.	2.8	0
9	921	Effects of changes in use and soil cover on real evapotranspiration from the creation of a remote sensing product in the Xingu basin. Brazilian Journal of Environmental Sciences (Online), 0, 59, .	0.4	0
9	922	Crop-Livestock-Forest System as Nature-Based Solutions to Combating Climate Change, and Achieving SDGs in Brazil., 2024, , 1-30.		O