Single-molecule imaging of DNA pairing by RecA reveal search

Nature

482, 423-427

DOI: 10.1038/nature10782

Citation Report

#	Article	IF	CITATIONS
2	RecX Facilitates Homologous Recombination by Modulating RecA Activities. PLoS Genetics, 2012, 8, e1003126.	1.5	51
3	Complementary strand relocation may play vital roles in RecA-based homology recognition. Nucleic Acids Research, 2012, 40, 10441-10451.	6.5	23
4	Electro-optofluidics: achieving dynamic control on-chip. Optics Express, 2012, 20, 22314.	1.7	24
5	Electro-optofluidics: achieving dynamic control on-chip. Optics Express, 2012, 20, 22327.	1.7	6
6	Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature, 2012, 491, 274-278.	13.7	148
7	DNA breakage drives nuclear search. Nature Cell Biology, 2012, 14, 448-450.	4.6	6
8	Holding on to stemness. Nature Cell Biology, 2012, 14, 450-452.	4.6	4
9	Homologous Recombination: How RecA Finds the Perfect Partner. Current Biology, 2012, 22, R275-R278.	1.8	2
10	There and back again: new single-molecule insights in the motion of DNA repair proteins. Current Opinion in Structural Biology, 2013, 23, 154-160.	2.6	17
11	Single-Molecule Approaches Embrace Molecular Cohorts. Cell, 2013, 154, 723-726.	13.5	29
12	Visualization of human Bloom's syndrome helicase molecules bound to homologous recombination intermediates. FASEB Journal, 2013, 27, 4954-4964.	0.2	15
13	Speed-Selectivity Paradox in the Protein Search for Targets on DNA: Is It Real or Not?. Journal of Physical Chemistry B, 2013, 117, 12695-12701.	1.2	85
14	Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization		
	of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nature Protocols, 2013, 8, 525-538.	5.5	47
15	of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nature	5.5	3
15 16	of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nature Protocols, 2013, 8, 525-538. Optical sequence probing with the homologous recombination protein RecA. Journal of		
	of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nature Protocols, 2013, 8, 525-538. Optical sequence probing with the homologous recombination protein RecA. Journal of Biotechnology, 2013, 164, 254-259.	1.9	3
16	of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nature Protocols, 2013, 8, 525-538. Optical sequence probing with the homologous recombination protein RecA. Journal of Biotechnology, 2013, 164, 254-259. Early steps of double-strand break repair in Bacillus subtilis. DNA Repair, 2013, 12, 162-176. Monitoring Homology Search during DNA Double-Strand Break Repair InÂVivo. Molecular Cell, 2013, 50,	1.9	3 40

#	Article	IF	CITATIONS
20	Imaging of Nonuniform Motion of Single DNA Molecules Reveals the Kinetics of Varying-Field Isotachophoresis. Journal of the American Chemical Society, 2013, 135, 4644-4647.	6.6	5
21	Single-molecule views on homologous recombination. Quarterly Reviews of Biophysics, 2013, 46, 323-348.	2.4	20
22	Natural Genetic Transformation Generates a Population of Merodiploids in Streptococcus pneumoniae. PLoS Genetics, 2013, 9, e1003819.	1.5	21
23	Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucleic Acids Research, 2013, 41, 6475-6489.	6.5	24
24	Midcell Recruitment of the DNA Uptake and Virulence Nuclease, EndA, for Pneumococcal Transformation. PLoS Pathogens, 2013, 9, e1003596.	2.1	53
25	DNA Damage Response: Three Levels of DNA Repair Regulation. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012724-a012724.	2.3	219
26	Modelling of crowded polymers elucidate effects of double-strand breaks in topological domains of bacterial chromosomes. Nucleic Acids Research, 2013, 41, 6808-6815.	6.5	24
27	Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes and Development, 2013, 27, 1999-2008.	2.7	114
28	Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein. Nucleic Acids Research, 2013, 41, 924-932.	6.5	39
29	Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament. Nucleic Acids Research, 2013, 41, 7023-7030.	6.5	25
30	Simplified biased random walk model for RecA-protein-mediated homology recognition offers rapid and accurate self-assembly of long linear arrays of binding sites. Physical Review E, 2013, 88, 012702.	0.8	17
31	Saltâ€Dependence of Homology Searching Step by RecA Nucleoprotein Filaments. Journal of the Chinese Chemical Society, 2013, 60, 695-698.	0.8	0
32	Imaging and Sizing of Single DNA Molecules on a Mobile Phone. ACS Nano, 2014, 8, 12725-12733.	7.3	155
33	Combining single-molecule manipulation and single-molecule detection. Current Opinion in Structural Biology, 2014, 28, 142-148.	2.6	35
34	Synthesis and application of streptavidin functionalized organosilica microparticles. Journal of Applied Polymer Science, 2015, 132, .	1.3	1
35	Efficient Detection of Unpaired DNA Requires a Member of the Rad54-Like Family of Homologous Recombination Proteins. Genetics, 2014, 198, 895-904.	1.2	35
36	A new system for the amplification of biological signals: RecA and complimentary single strand DNA probes on a leaky surface acoustic wave biosensor. Biosensors and Bioelectronics, 2014, 60, 259-264.	5.3	11
37	Discovering the Power of Single Molecules. Cell, 2014, 157, 4-7.	13.5	13

#	Article	IF	CITATIONS
38	The biogenesis of chromosome translocations. Nature Cell Biology, 2014, 16, 293-300.	4.6	140
39	Streptococcus pneumoniae, le transformiste. Trends in Microbiology, 2014, 22, 113-119.	3.5	83
40	Bacterial Genome Instability. Microbiology and Molecular Biology Reviews, 2014, 78, 1-39.	2.9	372
41	Single molecule techniques in DNA repair: A primer. DNA Repair, 2014, 20, 2-13.	1.3	9
42	Mechanisms and principles of homology search during recombination. Nature Reviews Molecular Cell Biology, 2014, 15, 369-383.	16.1	153
43	Microfluidics for biological measurements with single-molecule resolution. Current Opinion in Biotechnology, 2014, 25, 69-77.	3.3	83
44	Optical Tweezers Analysis of DNA–Protein Complexes. Chemical Reviews, 2014, 114, 3087-3119.	23.0	160
45	DNA–polymer conjugates for immune stimulation through Toll-like receptor 9 mediated pathways. Acta Biomaterialia, 2014, 10, 1134-1145.	4.1	7
46	DNA Y Structure: A Versatile, Multidimensional Single Molecule Assay. Nano Letters, 2014, 14, 6475-6480.	4.5	24
47	Single Molecule Imaging of Proteins That Recognize and Repair DNA Damages. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 223-231.	1.9	0
48	Directed Assembly of 3-nm-long RecA Nucleoprotein Filaments on Double-Stranded DNA with Nanometer Resolution. ACS Nano, 2014, 8, 3322-3330.	7.3	12
49	Excitation Spectra and Stokes Shift Measurements of Single Organic Dyes at Room Temperature. Journal of Physical Chemistry Letters, 2014, 5, 3259-3264.	2.1	24
50	Single-molecule views of MutS on mismatched DNA. DNA Repair, 2014, 20, 82-93.	1.3	37
51	Taking it one step at a time in homologous recombination repair. DNA Repair, 2014, 20, 110-118.	1.3	8
52	Mating-type Gene Switching in <i>Saccharomyces cerevisiae</i> . Microbiology Spectrum, 2015, 3, MDNA3-0013-2014.	1.2	56
53	Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe. Scientific Reports, 2015, 5, 18486.	1.6	15
54	Double-strand break repair mechanisms in Escherichia coli: recent insights. Advances in Genomics and Genetics, 2015, , 35.	0.8	8
55	DNA Sequence Alignment by Microhomology Sampling during Homologous Recombination. Cell, 2015, 160, 856-869.	13.5	182

#	Article	IF	CITATIONS
56	DNA-Pairing and Annealing Processes in Homologous Recombination and Homology-Directed Repair. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016444.	2.3	105
57	ALT Telomeres Get Together with Nuclear Receptors. Cell, 2015, 160, 811-813.	13.5	2
58	Finding the Right Match Fast. Cell, 2015, 160, 809-811.	13.5	3
59	One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca2+ or Mg2+ at Millimolar Concentrations. Journal of Molecular Biology, 2015, 427, 2663-2678.	2.0	37
60	Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria. Journal of Cell Biology, 2015, 210, 385-400.	2.3	52
61	Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination. Cell, 2015, 162, 271-286.	13.5	128
62	Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure. Nucleic Acids Research, 2015, 43, gkv883.	6.5	50
63	An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016410.	2.3	381
64	Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6852-61.	3.3	39
65	Structure/function relationships in RecA protein-mediated homology recognition and strand exchange. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 453-476.	2.3	62
66	Base triplet stepping by the Rad51/RecA family of recombinases. Science, 2015, 349, 977-981.	6.0	145
67	Biophysics of protein–DNA interactions and chromosome organization. Physica A: Statistical Mechanics and Its Applications, 2015, 418, 126-153.	1.2	49
68	Ring of Change: CDC48/p97 Drives Protein Dynamics at Chromatin. Frontiers in Genetics, 2016, 7, 73.	1.1	73
69	Recombination function and recombination kinetics of Escherichia coli single-stranded DNA-binding protein. Science Bulletin, 2016, 61, 1594-1604.	4.3	2
70	DNA Sequence Alignment during Homologous Recombination. Journal of Biological Chemistry, 2016, 291, 11572-11580.	1.6	65
71	Mechanics and Single-Molecule Interrogation of DNA Recombination. Annual Review of Biochemistry, 2016, 85, 193-226.	5.0	78
72	Recent adaptations of fluorescence techniques for the determination of mechanistic parameters of helicases and translocases. Methods, 2016, 108, 24-39.	1.9	3
73	RecA: Regulation and Mechanism of a Molecular Search Engine. Trends in Biochemical Sciences, 2016, 41, 491-507.	3.7	185

#	Article	IF	Citations
74	ATP hydrolysis Promotes Duplex DNA Release by the RecA Presynaptic Complex. Journal of Biological Chemistry, 2016, 291, 22218-22230.	1.6	28
75	Toward Understanding of RecA-promoted DNA Strand Exchange Reaction: Kinetic, Structural and Simulation Analyses. Seibutsu Butsuri, 2016, 56, 309-314.	0.0	0
76	Highâ€resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins. Biopolymers, 2016, 105, 704-714.	1.2	19
77	Chromosomal transformation in <i>Bacillus subtilis</i> is a non-polar recombination reaction. Nucleic Acids Research, 2016, 44, 2754-2768.	6.5	25
78	Mechanism of Homologous Recombination. , 2016, , 73-109.		0
79	Enhancement of RecA-mediated self-assembly in DNA nanostructures through basepair mismatches and single-strand nicks. Scientific Reports, 2017, 7, 41081.	1.6	6
80	Visualizing biological reaction intermediates with DNA curtains. Journal Physics D: Applied Physics, 2017, 50, 153001.	1.3	11
81	Twist-stretch profiles of DNA chains. Journal of Physics Condensed Matter, 2017, 29, 225101.	0.7	6
82	The cohesin-like RecN protein stimulates RecA-mediated recombinational repair of DNA double-strand breaks. Nature Communications, 2017, 8, 15282.	5.8	33
83	Single-Molecule Analysis of Bacterial DNA Repair and Mutagenesis. Annual Review of Biophysics, 2017, 46, 411-432.	4.5	29
84	On the Mechanism of Homology Search by RecA Protein Filaments. Biophysical Journal, 2017, 112, 859-867.	0.2	11
85	ATP hydrolysis provides functions that promote rejection of pairings between different copies of long repeated sequences. Nucleic Acids Research, 2017, 45, 8448-8462.	6.5	18
86	Multi-invasions Are Recombination Byproducts that Induce Chromosomal Rearrangements. Cell, 2017, 170, 760-773.e15.	13.5	101
87	A time for promiscuity in a eukaryotic recombinase. Journal of Biological Chemistry, 2017, 292, 11136-11137.	1.6	2
88	DNA Garden: A Simple Method for Producing Arrays of Stretchable DNA for Single-Molecule Fluorescence Imaging of DNA-Binding Proteins. Bulletin of the Chemical Society of Japan, 2017, 90, 34-43.	2.0	34
89	Cooperative RecA clustering: the key to efficient homology searching. Nucleic Acids Research, 2017, 45, 11743-11751.	6.5	6
90	Multiâ€Invasionâ€Induced Rearrangements as a Pathway for Physiological and Pathological Recombination. BioEssays, 2018, 40, e1700249.	1.2	28
91	Observation and Analysis of RAD51 Nucleation Dynamics at Single-Monomer Resolution. Methods in Enzymology, 2018, 600, 201-232.	0.4	15

#	ARTICLE	IF	Citations
92	Twisting short dsDNA with applied tension. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 903-915.	1.2	9
93	Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma, 2018, 127, 187-214.	1.0	242
94	Direct observation of end resection by RecBCD during double-stranded DNA break repair in vivo. Nucleic Acids Research, 2018, 46, 1821-1833.	6.5	26
95	Single-Molecule View of Small RNA–Guided Target Search and Recognition. Annual Review of Biophysics, 2018, 47, 569-593.	4.5	12
96	Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions. Methods in Molecular Biology, 2018, 1665, 3-23.	0.4	5
97	A change of view: homologous recombination at single-molecule resolution. Nature Reviews Genetics, 2018, 19, 191-207.	7.7	53
98	Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search. ACS Nano, 2018, 12, 272-278.	7.3	26
99	Mfd Dynamically Regulates Transcription via a Release and Catch-Up Mechanism. Cell, 2018, 172, 344-357.e15.	13.5	65
100	Interlace between Chromatin Structure, DNA Repair and Ubiquitination. , 0, , .		0
101	Nonfilament-forming RecA dimer catalyzes homologous joint formation. Nucleic Acids Research, 2018, 46, 10855-10869.	6.5	7
102	Single-Molecule Imaging Reveals Conformational Manipulation of Holliday Junction DNA by the Junction Processing Protein RuvA. Biochemistry, 2018, 57, 3616-3624.	1.2	23
103	Dynamics of Double-Strand Breaks: Implications for the Formation of Chromosome Translocations. Advances in Experimental Medicine and Biology, 2018, 1044, 27-38.	0.8	8
104	Application of Algebraic Topology to Homologous Recombination of DNA. IScience, 2018, 4, 64-67.	1.9	1
106	A Proximity Ligation-Based Method for Quantitative Measurement of D-Loop Extension in S. cerevisiae. Methods in Enzymology, 2018, 601, 27-44.	0.4	15
107	Mismatch tolerance during homologous recombination in mammalian cells. DNA Repair, 2018, 70, 25-36.	1.3	4
108	Keep moving and stay in a good shape to find your homologous recombination partner. Current Genetics, 2019, 65, 29-39.	0.8	29
109	Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B. Nucleic Acids Research, 2019, 47, 8337-8347.	6.5	46
110	A Tour de Force on the Double Helix: Exploiting DNA Mechanics To Study DNA-Based Molecular Machines. Biochemistry, 2019, 58, 4667-4676.	1.2	9

#	Article	IF	CITATIONS
111	Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Critical Reviews in Microbiology, 2019, 45, 301-314.	2.7	118
112	Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. Nature Communications, 2019, 10, 1006.	5.8	26
113	Strategies for Optical Trapping in Biological Samples: Aiming at Microrobotic Surgeons. Laser and Photonics Reviews, 2019, 13, 1800227.	4.4	57
114	A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability. PLoS Genetics, 2019, 15, e1008217.	1.5	10
115	Homologous Recombination under the Single-Molecule Fluorescence Microscope. International Journal of Molecular Sciences, 2019, 20, 6102.	1.8	9
116	Homologous Recombination and the Formation of Complex Genomic Rearrangements. Trends in Cell Biology, 2019, 29, 135-149.	3.6	76
117	Bio-Molecular Applications of Recent Developments in Optical Tweezers. Biomolecules, 2019, 9, 23.	1.8	67
118	Promotion of homology-directed DNA repair by polyamines. Nature Communications, 2019, 10, 65.	5.8	56
119	Fluorescence microscopy for visualizing single-molecule protein dynamics. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129362.	1.1	17
120	Single-Molecule Analysis and Engineering of DNA Motors. Chemical Reviews, 2020, 120, 36-78.	23.0	59
121	Mechanism of strand exchange from RecA–DNA synaptic and D-loop structures. Nature, 2020, 586, 801-806.	13.7	45
122	Single-Molecule Insights into ATP-Dependent Conformational Dynamics of Nucleoprotein Filaments of Deinococcus radiodurans RecA. International Journal of Molecular Sciences, 2020, 21, 7389.	1.8	4
123	Transient binding and jumping dynamics of p53 along DNA revealed by sub-millisecond resolved single-molecule fluorescence tracking. Scientific Reports, 2020, 10, 13697.	1.6	14
124	Singleâ€molecule analysis reveals two distinct states of the compressed RecA filament on singleâ€stranded DNA. FEBS Letters, 2020, 594, 3464-3476.	1.3	4
125	Polyamines stimulate RecA-mediated recombination by condensing duplex DNA and stabilizing intermediates. Physical Chemistry Chemical Physics, 2020, 22, 11928-11935.	1.3	2
126	Rad54 Drives ATP Hydrolysis-Dependent DNA Sequence Alignment during Homologous Recombination. Cell, 2020, 181, 1380-1394.e18.	13.5	77
127	DNA Repair and the Stability of the Plant Mitochondrial Genome. International Journal of Molecular Sciences, 2020, 21, 328.	1.8	86
128	Stretching DNA to twice the normal length with single-molecule hydrodynamic trapping. Lab on A Chip, 2020, 20, 1780-1791.	3.1	7

#	ARTICLE	IF	CITATIONS
129	Micro-homology intermediates: RecA's transient sampling revealed at the single molecule level. Nucleic Acids Research, 2021, 49, 1426-1435.	6.5	5
130	Single-molecule insight into stalled replication fork rescue in <i>Escherichia coli</i> Research, 2021, 49, 4220-4238.	6.5	20
131	Optical tweezers in single-molecule biophysics. Nature Reviews Methods Primers, 2021, 1, .	11.8	229
132	Single Molecule Study of the Polymerization of RecA on dsDNA: The Dynamics of Individual Domains. Frontiers in Molecular Biosciences, 2021, 8, 609076.	1.6	1
134	RecA finds homologous DNA by reduced dimensionality search. Nature, 2021, 597, 426-429.	13.7	45
135	Influences of ssDNA-RecA Filament Length on the Fidelity of Homologous Recombination. Journal of Molecular Biology, 2021, 433, 167143.	2.0	6
136	Discrete roles for Rad54 and Rdh54 during homologous recombination. Current Opinion in Genetics and Development, 2021, 71, 48-54.	1.5	8
137	Insights into homology search from cryo-EM structures of RecA-DNA recombination intermediates. Current Opinion in Genetics and Development, 2021, 71, 188-194.	1.5	6
138	Recombination-mediated genome rearrangements. Current Opinion in Genetics and Development, 2021, 71, 63-71.	1.5	11
139	Precise sequencing of single protected-DNA fragment molecules for profiling of protein distribution and assembly on DNA. Chemical Science, 2021, 12, 2039-2049.	3.7	3
140	Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments. Methods in Molecular Biology, 2017, 1486, 257-272.	0.4	10
141	Direct Fluorescent Imaging of Translocation and Unwinding by Individual DNA Helicases. Methods in Enzymology, 2016, 581, 1-32.	0.4	7
142	RecA and DNA recombination: a review of molecular mechanisms. Biochemical Society Transactions, 2019, 47, 1511-1531.	1.6	32
146	Global analysis of double-strand break processing reveals in vivo properties of the helicase-nuclease complex AddAB. PLoS Genetics, 2017, 13, e1006783.	1.5	16
147	On a Non-trivial Application of Algebraic Topology to Molecular Biology. SSRN Electronic Journal, 0, ,	0.4	2
148	RecA filament sliding on DNA facilitates homology search. ELife, 2012, 1, e00067.	2.8	95
149	Sliding to the rescue of damaged DNA. ELife, 2012, 1, e00347.	2.8	2
150	Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. ELife, 2015, 4, e08646.	2.8	57

#	Article	IF	CITATIONS
152	A study on the mechanism of RecA in homologous recognition by using single molecule fluorescence tracking. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 218701.	0.2	0
153	Mating-type Gene Switching in <i>Saccharomyces cerevisiae</i> ., 0, , 491-514.		0
157	Microfluidic flow-cell with passive flow control for microscopy applications. PLoS ONE, 2020, 15, e0244103.	1.1	5
158	Cohesin regulates homology search during recombinational DNA repair. Nature Cell Biology, 2021, 23, 1176-1186.	4.6	43
159	Observing Protein One-Dimensional Sliding: Methodology and Biological Significance. Biomolecules, 2021, 11, 1618.	1.8	3
160	Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Frontiers in Cell and Developmental Biology, 2021, 9, 745311.	1.8	7
163	The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG, and recQ. PLoS Genetics, 2021, 17, e1009972.	1.5	10
165	RADA-dependent branch migration has a predominant role in plant mitochondria and its defect leads to mtDNA instability and cell cycle arrest. PLoS Genetics, 2022, 18, e1010202.	1.5	2
167	A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions. ELife, 0, 11 , .	2.8	4
168	Molecular Link between DNA Damage Response and Microtubule Dynamics. International Journal of Molecular Sciences, 2022, 23, 6986.	1.8	14
169	The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLoS Pathogens, 2022, 18, e1010727.	2.1	6
171	Factors That Affect the Formation of Chromosomal Translocations in Cells. Cancers, 2022, 14, 5110.	1.7	6
172	ATPase Activity of Bacillus subtilis RecA Affects the Dynamic Formation of RecA Filaments at DNA Double Strand Breaks. MSphere, 2022, 7, .	1.3	1
173	SMC protein RecN drives RecA filament translocation for inÂvivo homology search. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
174	Single-Molecule DNA Visualization. , 2022, , 1-30.		0
176	Flanking strand separation activity of RecA nucleoprotein filaments in DNA strand exchange reactions. Nucleic Acids Research, 2023, 51, 2270-2283.	6.5	1
177	Allosteric effects of <i>E. coli </i> SSB and RecR proteins on RecO protein binding to DNA. Nucleic Acids Research, 2023, 51, 2284-2297.	6.5	0
179	BRCA2 chaperones RAD51 to single molecules of RPA-coated ssDNA. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	9

#	Article	IF	CITATIONS
180	Assembly mechanism and cryoEM structure of RecA recombination nucleofilaments from <i>Streptococcus pneumoniae </i> Nucleic Acids Research, 2023, 51, 2800-2817.	6.5	5
183	Single-Molecule DNA Visualization. , 2023, , 1497-1526.		0
186	Introduction to Optical Tweezers: Background, System Designs, and Applications. Methods in Molecular Biology, 2024, , 3-28.	0.4	O