Probing sporadic and familial Alzheimerâ€5[™]disease usi

Nature 482, 216-220 DOI: 10.1038/nature10821

Citation Report

#	Article	IF	CITATIONS
1	Human Pluripotent Stem Cells: Applications and Challenges in Neurological Diseases. Frontiers in Physiology, 2012, 3, 267.	1.3	35
2	Vps10 Family Proteins and the Retromer Complex in Aging-Related Neurodegeneration and Diabetes. Journal of Neuroscience, 2012, 32, 14080-14086.	1.7	65
3	Functional evaluation of genetic variation in complex human traits. Human Molecular Genetics, 2012, 21, R18-R23.	1.4	10
4	Characterizing Human Ion Channels in Induced Pluripotent Stem Cell–Derived Neurons. Journal of Biomolecular Screening, 2012, 17, 1264-1272.	2.6	55
7	Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18054-18059.	3.3	115
8	Hyperphosphorylation of Tau Induced by Naturally Secreted Amyloid-β at Nanomolar Concentrations Is Modulated by Insulin-dependent Akt-GSK3β Signaling Pathway. Journal of Biological Chemistry, 2012, 287, 35222-35233.	1.6	90
9	Alzheimer's disease in a dish: promises and challenges of human stem cell models. Human Molecular Genetics, 2012, 21, R82-R89.	1.4	58
10	Enriched Environment Prevents Cognitive Impairment and Tau hyperphosphorylation after Chronic Cerebral Hypoperfusion. Current Neurovascular Research, 2012, 9, 176-184.	0.4	33
11	Genetics, genomics and the power of stem cells to identify novel treatment options in complex diseases. Personalized Medicine, 2012, 9, 821-828.	0.8	0
12	Î ³ -Secretase Modulator in Alzheimer's Disease: Shifting the End. Journal of Alzheimer's Disease, 2012, 31, 685-696.	1.2	32
13	Spatiotemporal Complexity of Fibroblast Networks Screens for Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, 165-176.	1.2	6
14	Analysis of Genome-Wide Gene Expression Data from Microarrays and Sequencing. , 2012, , 271-291.		0
15	Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects. Cell Reports, 2012, 2, 789-798.	2.9	118
16	Stem cell models of Alzheimer's disease and related neurological disorders. Alzheimer's Research and Therapy, 2012, 4, 44.	3.0	5
18	Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19172-19177.	3.3	234
19	iPSCs to the Rescue in Alzheimer's Research. Cell Stem Cell, 2012, 10, 235-236.	5.2	21
20	Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell, 2012, 10, 678-684.	5.2	692
21	Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 2012, 7, 1836-1846.	5.5	781

ARTICLE IF CITATIONS # Induced pluripotent stem cells: the new patient?. Nature Reviews Molecular Cell Biology, 2012, 13, 22 16.1 377 713-726. Decoding the non-coding RNAs in Alzheimer's disease. Cellular and Molecular Life Sciences, 2012, 69, 2.4 3543-3559. 24 Alzheimer Mechanisms and Therapeutic Strategies. Cell, 2012, 148, 1204-1222. 13.5 1,548 Accelerating progress in induced pluripotent stem cell research for neurological diseases. Annals of Neurology, 2012, 72, 167-174. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of 26 1.3 204 Huntington's disease patient cells. Molecular Brain, 2012, 5, 17. Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder. Molecular Autism, 2012, 3, 8. 2.6 Cellular reprogramming: a new approach to modelling Parkinson's disease. Biochemical Society 28 1.6 21 Transactions, 2012, 40, 1152-1157. Concise Review: Can Stem Cells be Used to Treat or Model Alzheimer's Disease?. Stem Cells, 2012, 30, 29 1.4 2612-2618. iPSC technology to study human aging and aging-related disorders. Current Opinion in Cell Biology, 30 2.6 56 2012, 24, 765-774. New lessons learned from disease modeling with induced pluripotent stem cells. Current Opinion in 1.5 Genetics and Development, 2012, 22, 500-508. Human disease modeling with induced pluripotent stem cells. Current Opinion in Genetics and 32 1.5 47 Development, 2012, 22, 509-516. Axonal transport and neurodegenerative disease: Can we see the elephant?. Progress in Neurobiology, 2.8 2012, 99, 186-190. A Human Stem Cell Model of Early Alzheimer's Disease Pathology in Down Syndrome. Science 34 5.8 276 Translational Medicine, 2012, 4, 124ra29. Establishment of Induced Pluripotent Stem Cells from Centenarians for Neurodegenerative Disease 1.1 Research. PLoS ONE, 2012, 7, e41572. The paradox of syndromic diversity in Alzheimer disease. Nature Reviews Neurology, 2012, 8, 451-464. 36 4.9 174 Caspase-9 mediates synaptic plasticity and memory deficits of Danish dementia knock-in mice: caspase-9 4.4 inhibition provides therapeutic protection. Molecular Neurodegeneration, 2012, 7, 60. Recent Alzheimer's disease research highlights. Alzheimer's Research and Therapy, 2012, 4, 14. 38 3.0 0 Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research. 1.1 44 PLoS ONE, 2012, 7, e43099.

#	Article	IF	CITATIONS
40	Genotype-Specific Differences between Mouse CNS Stem Cell Lines Expressing Frontotemporal Dementia Mutant or Wild Type Human Tau. PLoS ONE, 2012, 7, e39328.	1.1	8
41	Induced Tauopathy in a Novel 3D-Culture Model Mediates Neurodegenerative Processes: A Real-Time Study on Biochips. PLoS ONE, 2012, 7, e49150.	1.1	33
42	State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation. Journal of Blood Transfusion, 2012, 2012, 1-10.	3.3	14
43	Induced Pluripotent Stem Cells to Model and Treat Neurogenetic Disorders. Neural Plasticity, 2012, 2012, 1-15.	1.0	20
44	Implications of aneuploidy for stem cell biology and brain therapeutics. Frontiers in Cellular Neuroscience, 2012, 6, 36.	1.8	21
45	Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons. Frontiers in Cellular Neuroscience, 2012, 6, 59.	1.8	4
46	Trisomy for Synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Human Molecular Genetics, 2012, 21, 3156-3172.	1.4	92
47	The genomic stability of induced pluripotent stem cells. Protein and Cell, 2012, 3, 271-277.	4.8	14
48	Dishing up Alzheimer's disease. Nature Reviews Neuroscience, 2012, 13, 149-149.	4.9	1
49	Human induced pluripotent stem cells—from mechanisms to clinical applications. Journal of Molecular Medicine, 2012, 90, 735-745.	1.7	51
50	Direct Reprogramming of Mouse and Human Fibroblasts into Multipotent Neural Stem Cells with a Single Factor. Cell Stem Cell, 2012, 11, 100-109.	5.2	491
51	Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012, 4, 141ra90.	5.8	444
52	Converted neural cells: induced to a cure?. Protein and Cell, 2012, 3, 91-97.	4.8	5
53	Neural stem cells: mechanisms and modeling. Protein and Cell, 2012, 3, 251-261.	4.8	44
54	Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders. Frontiers in Biology, 2012, 7, 179-188.	0.7	6
55	Modeling Parkinson's Disease Using Induced Pluripotent Stem Cells. Current Neurology and Neuroscience Reports, 2012, 12, 237-242.	2.0	62
56	The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiology of Disease, 2012, 47, 126-134.	2.1	102
57	The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer's disease. European Journal of Neuroscience, 2012, 35, 1917-1937.	1.2	77

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
58	Modeling the blood–brain barrier using stem cell sources. Fluids and Barriers of the CNS, 2013, 10, 2.	2.4	105
59	Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nature Communications, 2013, 4, 2250.	5.8	184
60	Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathologica, 2013, 126, 385-399.	3.9	289
61	Progress in Alzheimer's disease research in the last year. Journal of Neurology, 2013, 260, 1936-1941.	1.8	11
63	ls aging a barrier to reprogramming? Lessons from induced pluripotent stem cells. Biogerontology, 2013, 14, 591-602.	2.0	16
64	Genetic Correction of Tauopathy Phenotypes in Neurons Derived from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2013, 1, 226-234.	2.3	113
65	The Presenilin-1 ΔE9 Mutation Results in Reduced γ-Secretase Activity, but Not Total Loss of PS1 Function, in Isogenic Human Stem Cells. Cell Reports, 2013, 5, 974-985.	2.9	168
66	What is the point of large-scale collections of human induced pluripotent stem cells?. Nature Biotechnology, 2013, 31, 875-877.	9.4	58
67	Neural Stem Cells: Generating and Regenerating the Brain. Neuron, 2013, 80, 588-601.	3.8	479
68	Inducing Cellular Aging: Enabling Neurodegeneration-in-a-Dish. Cell Stem Cell, 2013, 13, 635-636.	5.2	13
70	The Advent of the Golden Era of Animal Alternatives. , 2013, , 49-73.		2
71	Models of Alzheimer's Disease. , 2013, , 595-632.		0
72	Future Viable Models of Psychiatry Drug Discovery in Pharma. Journal of Biomolecular Screening, 2013, 18, 509-521.	2.6	14
73	Induced Pluripotency for Translational Research. Genomics, Proteomics and Bioinformatics, 2013, 11, 288-293.	3.0	9
74	Optogenetic manipulation of neural and nonâ€neural functions. Development Growth and Differentiation, 2013, 55, 474-490.	0.6	49
75	Increased Tau Phosphorylation and Impaired Brain Insulin/IGF Signaling in Mice Fed a High Fat/High Cholesterol Diet. Journal of Alzheimer's Disease, 2013, 36, 781-789.	1.2	95
76	Alzheimer's Disease Modeling: Ups, Downs, and Perspectives for Human Induced Pluripotent Stem Cells. Journal of Alzheimer's Disease, 2013, 34, 563-588.	1.2	34
77	Generation of integration-free neural progenitor cells from cells in human urine. Nature Methods, 2013, 10, 84-89.	9.0	184

#	Article	IF	CITATIONS
78	Genetic insights in Alzheimer's disease. Lancet Neurology, The, 2013, 12, 92-104.	4.9	310
79	Cognitive Enhancers (Nootropics). Part 3: Drugs Interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs. Journal of Alzheimer's Disease, 2013, 34, 1-114.	1.2	23
80	ISSCR 2013: Back to Bean Town. Stem Cell Reports, 2013, 1, 479-485.	2.3	0
81	APP Processing in Human Pluripotent Stem Cell-Derived Neurons Is Resistant to NSAID-Based Î ³ -Secretase Modulation. Stem Cell Reports, 2013, 1, 491-498.	2.3	58
82	Phenotypic Assays for β-Amyloid in Mouse Embryonic Stem Cell-Derived Neurons. Chemistry and Biology, 2013, 20, 956-967.	6.2	7
83	Modeling Human Disease with Pluripotent Stem Cells: from Genome Association to Function. Cell Stem Cell, 2013, 12, 656-668.	5.2	176
84	The Cellular Memory Disc of Reprogrammed Cells. Stem Cell Reviews and Reports, 2013, 9, 190-209.	5.6	4
85	Modeling Alzheimer's Disease with iPSCs Reveals Stress Phenotypes Associated with Intracellular Aβ and Differential Drug Responsiveness. Cell Stem Cell, 2013, 12, 487-496.	5.2	652
86	Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology Letters, 2013, 219, 49-58.	0.4	141
87	Cell and Gene Therapy in Alzheimer's Disease. Stem Cells and Development, 2013, 22, 1490-1496.	1.1	33
88	Prevention of β-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of Cyclin-dependent kinases and associated cell cycle events. Stem Cell Research, 2013, 10, 213-227.	0.3	109
89	How induced pluripotent stem cells are redefining personalized medicine. Gene, 2013, 520, 1-6.	1.0	51
90	"Seq-ing―Insights into the Epigenetics of Neuronal Gene Regulation. Neuron, 2013, 77, 606-623.	3.8	73
91	DNA Repair Mechanisms in Huntington's Disease. Molecular Neurobiology, 2013, 47, 1093-1102.	1.9	14
92	Bioreactor engineering of stem cell environments. Biotechnology Advances, 2013, 31, 1020-1031.	6.0	53
93	Xeno-Free Production of Human Embryonic Stem Cells in Stirred Microcarrier Systems Using a Novel Animal/Human-Component-Free Medium. Tissue Engineering - Part C: Methods, 2013, 19, 146-155.	1.1	33
94	Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases. Protein and Cell, 2013, 4, 415-424.	4.8	5
95	New Frontier in Regenerative Medicine: Site-Specific Gene Correction in Patient-Specific Induced Pluripotent Stem Cells. Human Gene Therapy, 2013, 24, 571-583.	1.4	32

#	Article	IF	CITATIONS
96	Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells. Stem Cell Research, 2013, 11, 743-757.	0.3	125
98	Remodeling Neurodegeneration: Somatic Cell Reprogramming-Based Models of Adult Neurological Disorders. Neuron, 2013, 78, 957-969.	3.8	54
99	Therapeutic Translation of iPSCs for Treating Neurological Disease. Cell Stem Cell, 2013, 12, 678-688.	5.2	84
100	Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells. Acta Pharmacologica Sinica, 2013, 34, 755-764.	2.8	59
101	Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron, 2013, 78, 785-798.	3.8	1,209
102	Bioengineered stem cells in neural development and neurodegeneration research. Ageing Research Reviews, 2013, 12, 739-748.	5.0	20
103	A new controlled concept of immune-sensing platform for specific detection of Alzheimer's biomarkers. Biosensors and Bioelectronics, 2013, 40, 329-335.	5.3	40
104	Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases. Neuroscience, 2013, 228, 47-59.	1.1	16
105	Toward pluripotency by reprogramming: mechanisms and application. Protein and Cell, 2013, 4, 820-832.	4.8	21
106	Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. Human Molecular Genetics, 2013, 22, 4241-4252.	1.4	116
107	Can We Teach Old Dogs New Tricks? Neuroprotective Cell Therapy in Alzheimer's and Parkinson's Disease. Journal of Alzheimer's Disease, 2013, 37, 251-272.	1.2	10
108	From frontotemporal lobar degeneration pathology to frontotemporal lobar degeneration biomarkers. International Review of Psychiatry, 2013, 25, 210-220.	1.4	13
109	Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer's disease. Journal of Neural Transmission, 2013, 120, 103-111.	1.4	47
110	Plurigon: three dimensional visualization and classification of high-dimensionality data. Frontiers in Physiology, 2013, 4, 190.	1.3	17
111	iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Human Molecular Genetics, 2013, 22, 593-607.	1.4	194
112	Human Pluripotent and Multipotent Stem Cells as Tools for Modeling Neurodegeneration. Research and Perspectives in Neurosciences, 2013, , 57-66.	0.4	0
113	Programmed Cells from Basic Neuroscience to Therapy. Research and Perspectives in Neurosciences, 2013, , .	0.4	1
114	Induced Pluripotent Stem Cells and Disorders of the Nervous System. Neuroscientist, 2013, 19, 567-577.	2.6	13

#	Article	IF	CITATIONS
115	Synaptic Protein Â1-Takusan Mitigates Amyloid-Â-Induced Synaptic Loss via Interaction with Tau and Postsynaptic Density-95 at Postsynaptic Sites. Journal of Neuroscience, 2013, 33, 14170-14183.	1.7	17
116	Pluripotent stem cell-derived dopaminergic neurons as models of neurodegeneration. Future Neurology, 2013, 8, 649-661.	0.9	1
117	Current concepts in Alzheimer's Disease: molecules, models and translational perspectives. Molecular Neurodegeneration, 2013, 8, 33.	4.4	11
118	Can patient-specific transdifferentiated neuronal cells help us understand the cellular pathology of Parkinson's disease?. Future Neurology, 2013, 8, 605-607.	0.9	0
120	Novel Insights into Disease Modeling Using Induced Pluripotent Stem Cells. Biological and Pharmaceutical Bulletin, 2013, 36, 182-188.	0.6	33
121	Medicine, 2013, 102, 112b-113a.	0.0	0
123	Modelling Human Disease with Pluripotent Stem Cells. Current Gene Therapy, 2013, 13, 99-110.	0.9	46
124	Multiple Paths to Reprogramming. , 2013, , .		0
125	Combined Flow Cytometric Analysis of Surface and Intracellular Antigens Reveals Surface Molecule Markers of Human Neuropoiesis. PLoS ONE, 2013, 8, e68519.	1.1	37
126	Modeling Alzheimer's disease: from past to future. Frontiers in Pharmacology, 2013, 4, 77.	1.6	40
127	Patient-derived stem cells: pathways to drug discovery for brain diseases. Frontiers in Cellular Neuroscience, 2013, 7, 29.	1.8	26
128	Comparative neuronal differentiation of self-renewing neural progenitor cell lines obtained from human induced pluripotent stem cells. Frontiers in Cellular Neuroscience, 2013, 7, 175.	1.8	28
129	Deconstructing Mitochondrial Dysfunction in Alzheimer Disease. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-13.	1.9	98
130	Human Pluripotent Stem Cells Modeling Neurodegenerative Diseases. , 2013, , .		2
131	The Use of Human Samples to Study Familial and Sporadic Amyotrophic Lateral Sclerosis: New Frontiers and Challenges. , 0, , .		0
132	A Hypothesis for Regenerative Therapy for Neuronal Disease: Stem Cells within Artificial Niche. Current Signal Transduction Therapy, 2014, 9, 38-43.	0.3	0
133	Characterization and Molecular Profiling of PSEN1 Familial Alzheimer's Disease iPSC-Derived Neural Progenitors. PLoS ONE, 2014, 9, e84547.	1.1	148
134	A Time Course Analysis of the Electrophysiological Properties of Neurons Differentiated from Human Induced Pluripotent Stem Cells (iPSCs). PLoS ONE, 2014, 9, e103418.	1.1	103

#	Article	IF	CITATIONS
135	Altered Proteolysis in Fibroblasts of Alzheimer Patients with Predictive Implications for Subjects at Risk of Disease. International Journal of Alzheimer's Disease, 2014, 2014, 1-8.	1,1	18
136	Modeling physiological and pathological human neurogenesis in the dish. Frontiers in Neuroscience, 2014, 8, 183.	1.4	31
137	Induced Pluripotent Stem Cells Derived from Alzheimer's Disease Patients: The Promise, the Hope and the Path Ahead. Journal of Clinical Medicine, 2014, 3, 1402-1436.	1.0	17
139	Opportunities and Limitations of Modelling Alzheimer's Disease with Induced Pluripotent Stem Cells. Journal of Clinical Medicine, 2014, 3, 1357-1372.	1.0	12
140	Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Research, 2014, 49, 7.	0.5	59
141	Genomics in Neurological Disorders. Genomics, Proteomics and Bioinformatics, 2014, 12, 156-163.	3.0	23
144	Models of β-amyloid induced Tau-pathology: the long and "folded―road to understand the mechanism. Molecular Neurodegeneration, 2014, 9, 51.	4.4	220
146	Oligomeric Aβ-induced synaptic dysfunction in Alzheimer's disease. Molecular Neurodegeneration, 2014, 9, 48.	4.4	424
147	Signaling Adaptor Protein SH2B1 Enhances Neurite Outgrowth and Accelerates the Maturation of Human Induced Neurons. Stem Cells Translational Medicine, 2014, 3, 713-722.	1.6	13
148	Nanomedicine-Based Neuroprotective Strategies in Patient Specific-iPSC and Personalized Medicine. International Journal of Molecular Sciences, 2014, 15, 3904-3925.	1.8	15
149	Structure of N-Terminal Sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-Peptide with Phospholipase A2 from Venom of Andaman Cobra Sub-Species Naja naja sagittifera at 2.0 Ã Resolution. International Journal of Molecular Sciences, 2014, 15, 4221-4236.	1.8	2
150	Electrophysiological Profiles of Induced Neurons Converted Directly from Adult Human Fibroblasts Indicate Incomplete Neuronal Conversion. Cellular Reprogramming, 2014, 16, 439-446.	0.5	8
151	The non-cell-autonomous component of ALS: new <i>in vitro</i> models and future challenges. Biochemical Society Transactions, 2014, 42, 1270-1274.	1.6	17
153	Modelling and rescuing neurodevelopmental defect of <scp>D</scp> own syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Molecular Medicine, 2014, 6, 259-277.	3.3	168
154	Generating induced pluripotent stem cells for multiple sclerosis therapy. Regenerative Medicine, 2014, 9, 709-711.	0.8	10
155	Human Stem Cells for Craniomaxillofacial Reconstruction. Stem Cells and Development, 2014, 23, 1437-1451.	1.1	9
156	Alzheimer's disease research and development: a call for a new research roadmap. Annals of the New York Academy of Sciences, 2014, 1313, 1-16.	1.8	31
157	Chapter 8. Utility of Human Stem Cells for Drug Discovery. RSC Drug Discovery Series, 2014, , 162-193.	0.2	2

#	Article	IF	CITATIONS
158	Effect of Potent γ-Secretase Modulator in Human Neurons Derived From Multiple Presenilin 1–Induced Pluripotent Stem Cell Mutant Carriers. JAMA Neurology, 2014, 71, 1481.	4.5	84
159	Genetic validation of a therapeutic target in a mouse model of ALS. Science Translational Medicine, 2014, 6, 248ra104.	5.8	27
160	Relationship Between β-Secretase, Inflammation and Core Cerebrospinal Fluid Biomarkers for Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 157-167.	1.2	106
161	Targeted manipulation of the sortilin–progranulin axis rescues progranulin haploinsufficiency. Human Molecular Genetics, 2014, 23, 1467-1478.	1.4	96
162	Human Neurons Derived From Induced Pluripotent Stem Cells as a New Platform for Preclinical Drug Screening and Development. JAMA Neurology, 2014, 71, 1475.	4.5	4
163	Stem Cells and Neuronal Differentiation. , 2014, , 71-101.		0
164	UV Irradiation Accelerates Amyloid Precursor Protein (APP) Processing and Disrupts APP Axonal Transport. Journal of Neuroscience, 2014, 34, 3320-3339.	1.7	37
165	Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology. International Journal of Neuropsychopharmacology, 2014, 17, 1327-1341.	1.0	10
166	Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: A model system to study neurotoxicity in Alzheimer's disease. Neurobiology of Disease, 2014, 62, 62-72.	2.1	84
167	Considering a new paradigm for Alzheimer's disease research. Drug Discovery Today, 2014, 19, 1114-1124.	3.2	33
168	Instant Neurons: Directed Somatic Cell Reprogramming Models of Central Nervous System Disorders. Biological Psychiatry, 2014, 75, 945-951.	0.7	19
169	Genetic approach to track neural cell fate decisions using human embryonic stem cells. Protein and Cell, 2014, 5, 69-79.	4.8	7
170	Comparison of different protocols for neural differentiation of human induced pluripotent stem cells. Molecular Biology Reports, 2014, 41, 1713-1721.	1.0	37
171	Stem cell derived basal forebrain cholinergic neurons from Alzheimer's disease patients are more susceptible to cell death. Molecular Neurodegeneration, 2014, 9, 3.	4.4	134
172	Stemâ€Cell Challenges in the Treatment of Alzheimer's Disease: A Long Way from Bench to Bedside. Medicinal Research Reviews, 2014, 34, 957-978.	5.0	56
173	Modeling human neurological disorders with induced pluripotent stem cells. Journal of Neurochemistry, 2014, 129, 388-399.	2.1	93
174	Induced pluripotent stem (iPS) cells: A new source for cell-based therapeutics?. Journal of Controlled Release, 2014, 185, 37-44.	4.8	60
175	iPSCs, aging and age-related diseases. New Biotechnology, 2014, 31, 411-421.	2.4	24

# 176	ARTICLE iPS cells: a game changer for future medicine. EMBO Journal, 2014, 33, 409-417.	IF 3.5	CITATIONS 374
177	A Commentary on iPS Cells: Potential Applications in Autologous Transplantation, Study of Illnesses and Drug Screening. Journal of Cellular Physiology, 2014, 229, 148-152.	2.0	21
178	Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathologica, 2014, 127, 151-173.	3.9	44
179	Human pluripotent stem cell models of autism spectrum disorder: emerging frontiers, opportunities, and challenges towards neuronal networks in a dish. Psychopharmacology, 2014, 231, 1089-1104.	1.5	18
180	Stuck in traffic: an emerging theme in diseases of the nervous system. Trends in Neurosciences, 2014, 37, 66-76.	4.2	87
181	Integrating the molecular and the population approaches to dementia research to help guide the future development of appropriate therapeutics. Biochemical Pharmacology, 2014, 88, 652-660.	2.0	6
182	Phenotypic Screens Targeting Neurodegenerative Diseases. Journal of Biomolecular Screening, 2014, 19, 1-16.	2.6	26
183	Induced neural stem cells: Methods of reprogramming and potential therapeutic applications. Progress in Neurobiology, 2014, 114, 15-24.	2.8	39
184	Amyloid precursor protein α―and βâ€cleaved ectodomains exert opposing control of cholesterol homeostasis <i>via</i> SREBP2. FASEB Journal, 2014, 28, 849-860.	0.2	20
186	More than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration. Neuron, 2014, 83, 771-787.	3.8	127
187	Induced Pluripotent Stem Cells from Familial Alzheimer's Disease Patients Differentiate into Mature Neurons with Amyloidogenic Properties. Stem Cells and Development, 2014, 23, 2996-3010.	1.1	75
188	Investigating human disease using stem cell models. Nature Reviews Genetics, 2014, 15, 625-639.	7.7	225
189	Chemical Engineering of Self-Assembled Alzheimer's Peptide on a Silanized Silicon Surface. Langmuir, 2014, 30, 5863-5872.	1.6	9
190	Concise Review: Generation of Neurons From Somatic Cells of Healthy Individuals and Neurological Patients Through Induced Pluripotency or Direct Conversion. Stem Cells, 2014, 32, 2811-2817.	1.4	38
191	Between disease and a dish. Nature Biotechnology, 2014, 32, 712-715.	9.4	5
192	Long-Distance Axonal Growth from Human Induced Pluripotent Stem Cells after Spinal Cord Injury. Neuron, 2014, 83, 789-796.	3.8	312
193	A three-dimensional human neural cell culture model of Alzheimer's disease. Nature, 2014, 515, 274-278.	13.7	950
194	Human stem cell models of dementia. Human Molecular Genetics, 2014, 23, R35-R39.	1.4	23

#	Article	IF	CITATIONS
195	Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients. Translational Psychiatry, 2014, 4, e375-e375.	2.4	140
196	iPS cell derived neuronal cells for drug discovery. Trends in Pharmacological Sciences, 2014, 35, 510-519.	4.0	57
197	Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature, 2014, 513, 507-511.	13.7	186
198	Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease. Molecular Neurodegeneration, 2014, 9, 25.	4.4	55
199	Development of a novel cellular model of Alzheimer's disease utilizing neurosphere cultures derived from B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J embryonic mouse brain. SpringerPlus, 2014, 3, 161.	1.2	12
200	Bimodal Imprint Chips for Peptide Screening: Integration of High-Throughput Sequencing by MS and Affinity Analyses by Surface Plasmon Resonance Imaging. Analytical Chemistry, 2014, 86, 3703-3707.	3.2	27
201	Genomic Editing Tools to Model Human Diseases with Isogenic Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 2673-2686.	1.1	51
202	Isolating Pathogenic Mechanisms Embedded within the Hippocampal Circuit through Regional Vulnerability. Neuron, 2014, 84, 32-39.	3.8	44
203	iPS cell technologies: significance and applications to CNS regeneration and disease. Molecular Brain, 2014, 7, 22.	1.3	204
204	Modeling ALS with iPSCs Reveals that Mutant SOD1 Misregulates Neurofilament Balance in Motor Neurons. Cell Stem Cell, 2014, 14, 796-809.	5.2	270
205	A Quantitative Framework to Evaluate Modeling of Cortical Development by Neural Stem Cells. Neuron, 2014, 83, 69-86.	3.8	184
206	Capillary electrophoresis of induced pluripotent stem cells during differentiation toward neurons. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2096-2105.	2.7	4
207	Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Human Molecular Genetics, 2014, 23, R17-R26.	1.4	101
208	How multi-organ microdevices can help foster drug development. Advanced Drug Delivery Reviews, 2014, 69-70, 158-169.	6.6	134
209	Dementia in a Dish. Biological Psychiatry, 2014, 75, 558-564.	0.7	9
210	A 3D Alzheimer's disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials, 2014, 35, 1420-1428.	5.7	151
211	Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends in Neurosciences, 2014, 37, 334-342.	4.2	89
212	Modeling heart disease in a dish: From somatic cells to disease-relevant cardiomyocytes. Trends in Cardiovascular Medicine, 2014, 24, 32-44.	2.3	18

#	Article	IF	CITATIONS
213	Stemming the Hype: What Can We Learn from iPSC Models of Parkinson's Disease and How Can We Learn It?. Journal of Parkinson's Disease, 2014, 4, 15-27.	1.5	14
214	Stem Cells on the Brain: Modeling Neurodevelopmental and Neurodegenerative Diseases Using Human Induced Pluripotent Stem Cells. Journal of Neurogenetics, 2014, 28, 5-29.	0.6	52
215	Small regulators, major consequences – Ca2+ and cholesterol at the endosome–ER interface. Journal of Cell Science, 2014, 127, 929-38.	1.2	79
216	The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Human Molecular Genetics, 2014, 23, 3523-3536.	1.4	311
217	iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nature Communications, 2014, 5, 4028.	5.8	436
218	Stem cells and the treatment of Parkinson's disease. Experimental Neurology, 2014, 260, 3-11.	2.0	22
219	Significance of epigenetics for understanding brain development, brain evolution and behaviour. Neuroscience, 2014, 264, 207-217.	1.1	57
221	Induced Pluripotent Stem Cell Potential in Medicine, Specifically Focused on Reproductive Medicine. Frontiers in Surgery, 2014, 1, 5.	0.6	9
222	Research progress in animal models and stem cell therapy for Alzheimer's disease. Journal of Neurorestoratology, 0, , 11.	1.1	5
223	Stem cells slow cognitive decline in Alzheimer's disease via neurotrophin action. Bioscience Horizons, 2014, 7, hzu013-hzu013.	0.6	1
224	Induced pluripotent stem cells: Landscape for studying and treating hereditary hearing loss. Journal of Otology, 2014, 9, 151-155.	0.4	5
225	Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes. Stem Cell Reports, 2015, 5, 1010-1022.	2.3	84
226	Neuron–astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clinical and Experimental Neuroimmunology, 2015, 6, 245-263.	0.5	44
227	Rapid and robust generation of long-term self-renewing human neural stem cells with the ability to generate mature astroglia. Scientific Reports, 2015, 5, 16321.	1.6	44
229	Direct reprogramming of induced neural progenitors: a new promising strategy for AD treatment. Translational Neurodegeneration, 2015, 4, 7.	3.6	10
230	Isolation, identification and differentiation of human embryonic cartilage stem cells. Cell Biology International, 2015, 39, 777-787.	1.4	6
231	Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of <scp>GSK</scp> 3l² signaling pathway. Journal of Neurochemistry, 2015, 135, 630-637.	2.1	60
232	Alzheimer's in 3D culture: Challenges and perspectives. BioEssays, 2015, 37, 1139-1148.	1.2	83

ARTICLE IF CITATIONS # Neural Cell Fate Determination., 2015, , 283-296. 233 3 Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced 234 1.5 Pluripotent Stem Cell-Derived Systems. Viruses, 2015, 7, 3835-3856. Alzheimer's Disease: Mechanism and Approach to Cell Therapy. International Journal of Molecular 235 1.8 82 Sciences, 2015, 16, 26417-26451. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. 1.8 International Journal of Molecular Sciences, 2015, 16, 28614-28634. Inter-Dependent Mechanisms Behind Cognitive Dysfunction, Vascular Biology and Alzheimer's Dementia in Down Syndrome: Multi-Faceted Roles of APP. Frontiers in Behavioral Neuroscience, 2015, 237 1.0 5 9.299. A Î³-Secretase Inhibitor, but Not a Î³-Secretase Modulator, Induced Defects in BDNF Axonal Trafficking and Signaling: Evidence for a Role for APP. PLoS ONE, 2015, 10, e0118379. 1.1 37 Neural Differentiation of Human Pluripotent Stem Cells for Nontherapeutic Applications: Toxicology, 239 1.2 28 Pharmacology, and <i>In Vitro </i> Disease Modeling. Stem Cells International, 2015, 2015, 1-11. Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases. Stem Cells 1.2 International, 2015, 2015, 1-11. iPSC technology-Powerful hand for disease modeling and therapeutic screen. BMB Reports, 2015, 48, 241 1.1 45 256-265. Adult human neural stem cell therapeutics: Current developmental status and prospect. World 242 1.3 Journal of Stem Cells, 2015, 7, 126. A Human-Based Integrated Framework forAlzheimer's Disease Research. Journal of Alzheimer's Disease, 243 1.2 16 2015, 47, 857-868. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional 2.8 114 genomics. ELife, 2015, 4, e07103. N-butylidenephthalide Attenuates Alzheimer's Disease-Like Cytopathy in Down Syndrome Induced 245 1.6 54 Pluripotent Stem Cell-Derived Neurons. Scientific Reports, 2015, 5, 8744. The role of DNA base excision repair in brain homeostasis and disease. DNA Repair, 2015, 32, 172-179. 246 1.3 Genetic cell reprogramming: A new technology for basic research and applied usage. Russian Journal 247 0.2 8 of Genetics, 2015, 51, 386-396. Systems biology of neurodegenerative diseases. Integrative Biology (United Kingdom), 2015, 7, 758-775. 248 Probing disorders of the nervous system using reprogramming approaches. EMBO Journal, 2015, 34, 249 3.545 1456-1477. The potential of induced pluripotent stem cells in models of neurological disorders: implications on 1.4 future therapy. Expert Review of Neurotherapeutics, 2015, 15, 295-304.

#	Article	IF	CITATIONS
251	Stem cell reprogramming: Basic implications and future perspective for movement disorders. Movement Disorders, 2015, 30, 301-312.	2.2	5
252	Drug Repositioning Approaches for the Discovery of New Therapeutics for Alzheimer's Disease. Neurotherapeutics, 2015, 12, 132-142.	2.1	58
253	Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nature Reviews Neuroscience, 2015, 16, 126-132.	4.9	197
254	A practical guide to induced pluripotent stem cell research using patient samples. Laboratory Investigation, 2015, 95, 4-13.	1.7	58
255	Concise Review: Modeling Multiple Sclerosis With Stem Cell Biological Platforms: Toward Functional Validation of Cellular and Molecular Phenotypes in Inflammation-Induced Neurodegeneration. Stem Cells Translational Medicine, 2015, 4, 252-260.	1.6	20
256	Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics, 2015, 16, 84.	1.2	103
257	Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Molecular Psychiatry, 2015, 20, 703-717.	4.1	164
258	The epigenetics of aging and neurodegeneration. Progress in Neurobiology, 2015, 131, 21-64.	2.8	334
259	Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimerââ,¬â"¢s disease. Frontiers in Cellular Neuroscience, 2015, 9, 191.	1.8	284
260	Cell reprogramming and neuronal differentiation applied to neurodegenerative diseases: Focus on Parkinson's disease. FEBS Letters, 2015, 589, 3396-3406.	1.3	5
261	Alzheimer's Disease. International Review of Neurobiology, 2015, 121, 1-24.	0.9	7
262	Dysfunction of autophagy as the pathological mechanism of motor neuron disease based on a patient-specific disease model. Neuroscience Bulletin, 2015, 31, 445-451.	1.5	9
263	Induced Pluripotent Stem Cells and Their Use in Cardiac and Neural Regenerative Medicine. International Journal of Molecular Sciences, 2015, 16, 4043-4067.	1.8	20
264	Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimer's and Dementia, 2015, 11, 792-814.	0.4	241
265	The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a short isoform of p53, through an IRES-dependent mechanism. Neurobiology of Aging, 2015, 36, 2725-2736.	1.5	18
266	Metabolic factors-triggered inflammatory response drives antidepressant effects of exercise in CUMS rats. Psychiatry Research, 2015, 228, 257-264.	1.7	28
267	Genetic and Morphological Features of Human iPSC-Derived Neurons with Chromosome 15q11.2 (BP1-BP2) Deletions. Molecular Neuropsychiatry, 2015, 1, 116-123.	3.0	32
268	A 3D human neural cell culture system for modeling Alzheimer's disease. Nature Protocols, 2015, 10, 985-1006.	5.5	209

#	Article	IF	CITATIONS
269	Axonal amyloid precursor protein and its fragments undergo somatodendritic endocytosis and processing. Molecular Biology of the Cell, 2015, 26, 205-217.	0.9	44
270	Being human: The role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer's disease models. Molecular Aspects of Medicine, 2015, 43-44, 54-65.	2.7	24
271	KLF4 N-Terminal Variance Modulates Induced Reprogramming to Pluripotency. Stem Cell Reports, 2015, 4, 727-743.	2.3	35
272	Alzheimer's disease-related amyloid-β induces synaptotoxicity in human iPS cell-derived neurons. Cell Death and Disease, 2015, 6, e1709-e1709.	2.7	86
273	Cell-Based Screening: Extracting Meaning from Complex Data. Neuron, 2015, 86, 160-174.	3.8	37
274	Advances in Reprogramming-Based Study of Neurologic Disorders. Stem Cells and Development, 2015, 24, 1265-1283.	1.1	20
275	Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery. Expert Opinion on Drug Discovery, 2015, 10, 615-629.	2.5	49
276	APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons. Cell Reports, 2015, 11, 689-696.	2.9	158
277	Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2725-34.	3.3	317
278	Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System. Stem Cells and Development, 2015, 24, 1852-1864.	1.1	34
279	Probing the Secrets of Alzheimer's Disease Using Human-induced Pluripotent Stem Cell Technology. Neurotherapeutics, 2015, 12, 121-125.	2.1	20
280	Cellular Functions of the Amyloid Precursor Protein from Development to Dementia. Developmental Cell, 2015, 32, 502-515.	3.1	191
281	Elucidating Molecular Phenotypes Caused by the SORL1 Alzheimer's Disease Genetic Risk Factor Using Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2015, 16, 373-385.	5.2	143
282	Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 2015, 3, 2.	1.8	307
283	Multiparameter Flow Cytometry Applications for Analyzing and Isolating Neural Cell Populations Derived from Human Pluripotent Stem Cells. , 2015, , 187-198.		0
284	Rat embryonic hippocampus and induced pluripotent stem cell derived cultured neurons recover from laser-induced subaxotomy. Neurophotonics, 2015, 2, 015006.	1.7	1
285	Overcoming the hurdles for a reproducible generation of human functionally mature reprogrammed neurons. Experimental Biology and Medicine, 2015, 240, 787-794.	1.1	10
286	The Use of Induced Pluripotent Stem Cell Technology to Advance Autism Research and Treatment. Neurotherapeutics, 2015, 12, 534-545.	2.1	24

#	Article	IF	CITATIONS
287	Direct somatic lineage conversion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140368.	1.8	26
288	Development and function of human cerebral cortex neural networks from pluripotent stem cells <i>in vitro</i> . Development (Cambridge), 2015, 142, 3178-3187.	1.2	103
289	Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery, 2015, 14, 681-692.	21.5	226
290	Pluripotent stem cells to model Hutchinson-Gilford progeria syndrome (HGPS): Current trends and future perspectives for drug discovery. Ageing Research Reviews, 2015, 24, 343-348.	5.0	25
291	Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres. Stem Cell Research, 2015, 15, 731-741.	0.3	36
292	Using human induced pluripotent stem cells to model cerebellar disease: Hope and hype. Journal of Neurogenetics, 2015, 29, 95-102.	0.6	10
293	Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biology, 2015, 5, 150056.	1.5	38
294	Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases. Cellular Reprogramming, 2015, 17, 275-287.	0.5	18
295	Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell Stem Cell, 2015, 17, 705-718.	5.2	545
296	Evaluation of established human iPSC-derived neurons to model neurodegenerative diseases. Neuroscience, 2015, 301, 204-212.	1.1	17
297	Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Hormones and Behavior, 2015, 74, 228-242.	1.0	21
298	ÎSecretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 2015, 526, 443-447.	13.7	308
299	Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing AÎ ² Generation and Amyloid Plaque Pathogenesis. Journal of Neuroscience, 2015, 35, 12137-12151.	1.7	193
300	Aging Mechanisms. , 2015, , .		4
301	Integrating phenotypic small-molecule profiling and human genetics: the next phase in drug discovery. Trends in Genetics, 2015, 31, 16-23.	2.9	16
302	Label-free detection microarray for novel peptide ligands screening base on MS–SPRi combination. Talanta, 2015, 134, 705-711.	2.9	13
303	Pluripotent stem cell-based models of spinal muscular atrophy. Molecular and Cellular Neurosciences, 2015, 64, 44-50.	1.0	28
304	The Use of Pharmacological Retromer Chaperones in Alzheimer's Disease and other Endosomal-related Disorders. Neurotherapeutics, 2015, 12, 12-18.	2.1	30

	CHATION I	REPORT	
#	Article	IF	CITATIONS
306	Reprint of "iPSCs, aging and age-related diseases― New Biotechnology, 2015, 32, 169-179.	2.4	5
307	Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 2015, 32, 212-228.	2.4	34
308	Coordinated Messenger RNA/MicroRNA Changes in Fibroblasts of Patients with Major Depression. Biological Psychiatry, 2015, 77, 256-265.	0.7	57
309	The role of the retromer complex in aging-related neurodegeneration: a molecular and genomic review. Molecular Genetics and Genomics, 2015, 290, 413-427.	1.0	34
310	Neurodegenerative diseases in a dish: the promise of iPSC technology in disease modeling and therapeutic discovery. Neurological Sciences, 2015, 36, 21-27.	0.9	18
311	Modeling type II collagenopathy skeletal dysplasia by directed conversion and induced pluripotent stem cells. Human Molecular Genetics, 2015, 24, 299-313.	1.4	35
312	iPS cell technologies and cartilage regeneration. Bone, 2015, 70, 48-54.	1.4	110
313	Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells. , 2016, , .		1
314	Intracerebral haemorrhage in Down syndrome: protected or predisposed?. F1000Research, 2016, 5, 876.	0.8	30
315	Modeling Keratoconus Using Induced Pluripotent Stem Cells. , 2016, 57, 3685.		25
316	Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells. International Journal of Molecular Sciences, 2016, 17, 594.	1.8	6
317	hiPSC Models Relevant to Schizophrenia. Handbook of Behavioral Neuroscience, 2016, , 391-406.	0.7	0
318	Alzheimer disease research in the 21st century: past and current failures, new perspectives and funding priorities. Oncotarget, 2016, 7, 38999-39016.	0.8	56
319	The Application of Human iPSCs in Neurological Diseases: From Bench to Bedside. Stem Cells International, 2016, 2016, 1-10.	1.2	15
320	Modeling Alzheimer's Disease with Induced Pluripotent Stem Cells: Current Challenges and Future Concerns. Stem Cells International, 2016, 2016, 1-12.	1.2	17
321	Generation of Cholinergic and Dopaminergic Interneurons from Human Pluripotent Stem Cells as a Relevant Tool for In Vitro Modeling of Neurological Disorders Pathology and Therapy. Stem Cells International, 2016, 2016, 1-16.	1.2	10
322	Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models. Stem Cells International, 2016, 2016, 1-16.	1.2	13
323	Extracellular Matrix Enhances Therapeutic Effects of Stem Cells in Regenerative Medicine. , 0, , .		3

#	Article	IF	CITATIONS
324	Advances in Stem Cell Research- A Ray of Hope in Better Diagnosis and Prognosis in Neurodegenerative Diseases. Frontiers in Molecular Biosciences, 2016, 3, 72.	1.6	11
325	Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Frontiers in Cellular Neuroscience, 2016, 10, 215.	1.8	120
326	iPS Cells—The Triumphs and Tribulations. Dentistry Journal, 2016, 4, 19.	0.9	8
327	An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs. International Journal of Molecular Sciences, 2016, 17, 141.	1.8	32
328	Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. International Journal of Molecular Sciences, 2016, 17, 530.	1.8	36
329	Resurrection of neurodegenerative diseases via stem cells. Biomedical Research and Therapy, 2016, 3, .	0.3	0
330	Multiple Sclerosis Patient-Specific Primary Neurons Differentiated from Urinary Renal Epithelial Cells via Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0155274.	1.1	14
331	Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes. PLoS ONE, 2016, 11, e0161969.	1.1	405
332	Cancer Stem Cell Hierarchy in Glioblastoma Multiforme. Frontiers in Surgery, 2016, 3, 21.	0.6	204
333	Nontargeted Metabolite Profiling of Induced Pluripotent Stem Cells (iPSCs) Derived Neural Cells: Insights Into Mechanisms of Brain Diseases. , 0, , .		0
334	Neural Engineering. , 2016, , .		8
335	Epigenetic Mechanisms Regulating the Transition from Embryonic Stem Cells Towards a Differentiated Neural Progeny. , 2016, , 151-173.		0
336	Induced pluripotent stem cells in Alzheimer's disease: applications for disease modeling and cell-replacement therapy. Molecular Neurodegeneration, 2016, 11, 39.	4.4	57
337	In Vitro Modeling of Nervous System: Engineering of the Reflex Arc. , 2016, , 261-298.		1
338	Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Research and Therapy, 2016, 7, 98.	2.4	13
339	Moving from the Dish to the Clinical Practice: A Decade of Lessons andÂPerspectives from the Pre-Clinical andÂClinical Stem Cell Studies forÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2016, 53, 1209-1230.	1.2	5
340	Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Scientific Reports, 2016, 6, 20833.	1.6	87
341	3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish― Molecular Neurodegeneration, 2016, 11, 75.	4.4	109

#	Article	IF	CITATIONS
342	Impaired ROS Scavenging System in Human Induced Pluripotent Stem Cells Generated from Patients with MERRF Syndrome. Scientific Reports, 2016, 6, 23661.	1.6	32
343	2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size. Cell Stem Cell, 2016, 18, 467-480.	5.2	292
344	Treatment of multiple sclerosis by transplantation of neural stem cells derived from induced pluripotent stem cells. Science China Life Sciences, 2016, 59, 950-957.	2.3	40
345	Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Seminars in Cell and Developmental Biology, 2016, 57, 40-50.	2.3	11
346	High-throughput platforms for the screening of new therapeutic targets for neurodegenerative diseases. Drug Discovery Today, 2016, 21, 1355-1366.	3.2	16
347	Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews Neuroscience, 2016, 17, 424-437.	4.9	239
348	Alzheimer's Disease Mechanisms and Emerging Roads to Novel Therapeutics. Annual Review of Neuroscience, 2016, 39, 57-79.	5.0	97
349	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
350	Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 2016, 533, 125-129.	13.7	738
351	Common pitfalls of stem cell differentiation: a guide to improving protocols for neurodegenerative disease models and research. Cellular and Molecular Life Sciences, 2016, 73, 3693-3709.	2.4	57
352	Mutations modifying sporadic Alzheimer's disease age of onset. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1116-1130.	1.1	20
353	Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 148, 49-58.	2.5	111
354	MMP-9 and MMP-2 Contribute to Neuronal Cell Death in iPSC Models of Frontotemporal Dementia with MAPT Mutations. Stem Cell Reports, 2016, 7, 316-324.	2.3	27
355	Modeling neurodegenerative disorders in adult somatic cells: A critical review. Frontiers in Biology, 2016, 11, 232-245.	0.7	5
356	Modeling Cystic Fibrosis Using Pluripotent Stem Cell-Derived Human Pancreatic Ductal Epithelial Cells. Stem Cells Translational Medicine, 2016, 5, 572-579.	1.6	48
357	Disease modelling using human iPSCs. Human Molecular Genetics, 2016, 25, R173-R181.	1.4	26
358	hi <scp>PSC</scp> â€derived <scp>iMSC</scp> s: NextGen <scp>MSC</scp> s as an advanced therapeutically active cell resource for regenerative medicine. Journal of Cellular and Molecular Medicine, 2016, 20, 1571-1588.	1.6	86
359	Differential transgene expression patterns in Alzheimer mouse models revealed by novel human amyloid precursor proteinâ€specific antibodies. Aging Cell, 2016, 15, 953-963.	3.0	22

#	Article	IF	CITATIONS
361	Meta-Analysis of Transcriptome Data Related to Hippocampus Biopsies and iPSC-Derived Neuronal Cells from Alzheimer's Disease Patients Reveals an Association with FOXA1 and FOXA2 Gene Regulatory Networks. Journal of Alzheimer's Disease, 2016, 50, 1065-1082.	1.2	22
363	One-Step Seeding of Neural Stem Cells with Vitronectin-Supplemented Medium for High-Throughput Screening Assays. Journal of Biomolecular Screening, 2016, 21, 1112-1124.	2.6	11
364	Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Reports, 2016, 17, 759-773.	2.9	86
365	Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Scientific Reports, 2016, 6, 36529.	1.6	120
366	BMS-708163 and Nilotinib restore synaptic dysfunction in human embryonic stem cell-derived Alzheimer's disease models. Scientific Reports, 2016, 6, 33427.	1.6	22
367	Personalized Medicine. Europeanization and Globalization, 2016, , .	0.1	5
368	Gain of BDNF Function in Engrafted Neural Stem Cells Promotes the Therapeutic Potential for Alzheimer's Disease. Scientific Reports, 2016, 6, 27358.	1.6	65
370	TGFÎ ² signaling regulates the choice between pluripotent and neural fates during reprogramming of human urine derived cells. Scientific Reports, 2016, 6, 22484.	1.6	16
371	Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Scientific Reports, 2016, 6, 31450.	1.6	186
372	Stretch Injury of Human Induced Pluripotent Stem Cell Derived Neurons in a 96 Well Format. Scientific Reports, 2016, 6, 34097.	1.6	37
373	lmaging organelle transport in primary hippocampal neurons treated with amyloid-β oligomers. Methods in Cell Biology, 2016, 131, 425-451.	0.5	7
374	Therapeutic Targeting of AÎ ² 42. , 2016, , 77-96.		0
375	RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease. Neurochemical Research, 2016, 41, 2470-2480.	1.6	19
376	Direct Tracking of Amyloid and Tau Dynamics in Neuroblastoma Cells Using Nanoplasmonic Fiber Tip Probes. Nano Letters, 2016, 16, 3989-3994.	4.5	20
377	The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF. Differentiation, 2016, 92, 183-194.	1.0	10
378	Apolipoprotein E as a Therapeutic Target in Alzheimer's Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs, 2016, 30, 773-789.	2.7	93
379	Forced cell cycle exit and modulation of GABA _A , CREB, and GSK3β signaling promote functional maturation of induced pluripotent stem cell-derived neurons. American Journal of Physiology, 2016, 310, C520-C541.	2.1	66
380	iPSCs: On the Road to Reprogramming Aging. Trends in Molecular Medicine, 2016, 22, 713-724.	3.5	45

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
381	Organâ€onâ€a hip Systems: Microengineering to Biomimic Living Systems. Small, 2016, 12, 2253-228	32. 5.2	245
382	Stem cellâ€derived astrocytes: are they physiologically credible?. Journal of Physiology, 2016, 594, 6595-6606.	1.3	17
383	Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses. Acta Biomaterialia, 2016, 42, 114-126.	4.1	43
384	Pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Molecular Cell Biology, 2016, 17, 170-182.	16.1	488
385	Recent approaches and challenges in iPSCs: modeling and cell-based therapy of Alzheimer's disease. Reviews in the Neurosciences, 2016, 27, 457-464.	1.4	4
386	Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). International Journal of Molecular Medicine, 2016, 37, 271-283.	1.8	53
387	Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF. Neurobiology of Aging, 2016, 39, 90-98.	1.5	73
388	Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Molecular and Cellular Neurosciences, 2016, 73, 13-31.	1.0	100
389	The rise and fall of insulin signaling in Alzheimer's disease. Metabolic Brain Disease, 2016, 31, 497-51.	5. 1.4	42
390	Human dermal fibroblasts in psychiatry research. Neuroscience, 2016, 320, 105-121.	1.1	31
391	Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Molecular and Cellular Neurosciences, 2016, 73, 104-115.	1.0	49
392	Improving the physiological realism of experimental models. Interface Focus, 2016, 6, 20150076.	1.5	4
393	The Amyloid β Precursor Protein and Cognitive Function in Alzheimer's Disease. , 2016, , 97-133.		2
394	Potential Animal Models of Alzheimer Disease and Their Importance in Investigating the Pathogenesis of Alzheimer Disease. , 2016, , 77-111.		0
395	Accelerating stem cell trials for Alzheimer's disease. Lancet Neurology, The, 2016, 15, 219-230.	4.9	76
396	Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics. Human Molecular Genetics, 2016, 25, 989-1000.	1.4	86
397	Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2016, 56, 489-510.	4.2	72
398	High-Throughput Peptide Screening on a Bimodal Imprinting Chip Through MS-SPRi Integration. Methods in Molecular Biology, 2016, 1352, 111-125.	0.4	2

#	Article	IF	CITATIONS
399	Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods in Molecular Biology, 2016, 1303, 3-48.	0.4	33
400	Gene Expression Studies on Human Trisomy 21 iPSCs and Neurons: Towards Mechanisms Underlying Down's Syndrome and Early Alzheimer's Disease-Like Pathologies. Methods in Molecular Biology, 2016, 1303, 247-265.	0.4	9
401	Neuroregeneration: Disease Modeling and Therapeutic Strategies for Alzheimer's and Parkinson's Diseases. Biosystems and Biorobotics, 2016, , 293-325.	0.2	2
402	Cortical Differentiation of Human Pluripotent Cells for In Vitro Modeling of Alzheimer's Disease. Methods in Molecular Biology, 2016, 1303, 267-278.	0.4	6
404	Patient-Specific Induced Pluripotent Stem Cells for Disease Modeling and Phenotypic Drug Discovery. Journal of Medicinal Chemistry, 2016, 59, 2-15.	2.9	31
405	Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease. Molecular Psychiatry, 2016, 21, 707-716.	4.1	168
406	Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?. Molecular Neurobiology, 2017, 54, 1858-1873.	1.9	13
407	The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders. Progress in Neurobiology, 2017, 157, 212-229.	2.8	25
408	Back and forth in time: Directing age in iPSC-derived lineages. Brain Research, 2017, 1656, 14-26.	1.1	38
409	Induced pluripotent stem cells as a discovery tool for Alzheimer׳s disease. Brain Research, 2017, 1656, 98-106.	1.1	35
410	New approaches for direct conversion of patient fibroblasts into neural cells. Brain Research, 2017, 1656, 2-13.	1.1	23
411	Current status of treating neurodegenerative disease with induced pluripotent stem cells. Acta Neurologica Scandinavica, 2017, 135, 57-72.	1.0	29
412	Astrocytic transporters in Alzheimer's disease. Biochemical Journal, 2017, 474, 333-355.	1.7	19
413	Stem Cells in Alzheimer's Disease Therapy. Stem Cells in Clinical Applications, 2017, , 49-64.	0.4	0
414	Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain. Neuron, 2017, 93, 1066-1081.e8.	3.8	204
415	Recent Progress in Alzheimer's Disease Research, Part 1: Pathology. Journal of Alzheimer's Disease, 2017, 57, 1-28.	1.2	75
416	Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments. Molecular Neurodegeneration, 2017, 12, 25.	4.4	70
417	Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases. , 2017, 177, 32-43.		36

#	Article	IF	CITATIONS
418	High-Throughput and Cost-Effective Characterization of Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 1101-1111.	2.3	64
419	Paving the Way Toward Complex Blood-Brain Barrier Models Using Pluripotent Stem Cells. Stem Cells and Development, 2017, 26, 857-874.	1.1	40
420	Reprogramming cells from Gulf War veterans into neurons to study Gulf War illness. Neurology, 2017, 88, 1968-1975.	1.5	11
422	A CRISPR Approach to Neurodegenerative Diseases. Trends in Molecular Medicine, 2017, 23, 483-485.	3.5	41
423	Circadian alterations during early stages of Alzheimer's disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimer's and Dementia, 2017, 13, 689-700.	0.4	83
424	Novel human neuronal tau model exhibiting neurofibrillary tangles and transcellular propagation. Neurobiology of Disease, 2017, 106, 222-234.	2.1	48
426	Stem Cell Technology for (Epi)genetic Brain Disorders. Advances in Experimental Medicine and Biology, 2017, 978, 443-475.	0.8	5
427	Concise Review: Induced Pluripotent Stem Cell-Based Drug Discovery for Mitochondrial Disease. Stem Cells, 2017, 35, 1655-1662.	1.4	29
428	Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges. New Biotechnology, 2017, 39, 190-198.	2.4	42
429	Modeling tau pathology in human stem cell derived neurons. Brain Pathology, 2017, 27, 525-529.	2.1	11
430	Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports, 2017, 8, 1743-1756.	2.3	28
431	Stem cell models of Alzheimer's disease: progress and challenges. Alzheimer's Research and Therapy, 2017, 9, 42.	3.0	112
432	Aberrant iPSC-derived human astrocytes in Alzheimer's disease. Cell Death and Disease, 2017, 8, e2696.	2.7	136
433	An update on stem cell biology and engineering for brain development. Molecular Psychiatry, 2017, 22, 808-819.	4.1	27
434	Paradigm shift from diagnosing patients based on common symptoms to categorizing patients into subtypes with different pathogenic mechanisms to guide treatment for Alzheimer's disease. Journal of Biochemistry, 2017, 161, 463-470.	0.9	3
435	Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer's Disease. Stem Cell Reports, 2017, 8, 870-882.	2.3	53
436	Induced pluripotent stem cells from patients with focal cortical dysplasia and refractory epilepsy. Molecular Medicine Reports, 2017, 15, 2049-2056.	1.1	12
437	A new era of disease modeling and drug discovery using induced pluripotent stem cells. Archives of Pharmacal Research, 2017, 40, 1-12.	2.7	27

		CITATION REPORT		
#	Article		IF	CITATIONS
438	Alzheimer's disease: experimental models and reality. Acta Neuropathologica, 201	7, 133, 155-175.	3.9	513
439	Direct induction of neural progenitor cells transiently passes through a partially reprog state. Biomaterials, 2017, 119, 53-67.	rammed	5.7	10
440	Increased susceptibility to Aβ toxicity in neuronal cultures derived from familial Alzheir (PSEN1-A246E) induced pluripotent stem cells. Neuroscience Letters, 2017, 639, 74-8		1.0	44
441	Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug 16, 115-130.	Discovery, 2017,	21.5	1,076
442	Endosomal Traffic Jams Represent a Pathogenic Hub and Therapeutic Target in Alzheim Trends in Neurosciences, 2017, 40, 592-602.	ier's Disease.	4.2	114
443	Characteristic analyses of a neural differentiation model from iPSC-derived neuron acc morphology, physiology, and global gene expression pattern. Scientific Reports, 2017,	ording to 7, 12233.	1.6	73
444	Hype and Hopes of Stem Cell Research in Neurodegenerative Diseases. , 2017, , 209-2	31.		0
445	Using induced pluripotent stem cells to explore genetic and epigenetic variation assoc Alzheimer's disease. Epigenomics, 2017, 9, 1455-1468.	iated with	1.0	13
446	A simplified and sensitive method to identify Alzheimer's disease biomarker candid patient-derived induced pluripotent stem cells (iPSCs). Journal of Biochemistry, 2017,	ates using 162, 391-394.	0.9	15
447	Neuroprotective potential of astroglia. Journal of Neuroscience Research, 2017, 95, 21	26-2139.	1.3	50
448	Inhibition of p25/Cdk5 Attenuates Tauopathy in Mouse and iPSC Models of Frontotem Journal of Neuroscience, 2017, 37, 9917-9924.	poral Dementia.	1.7	117
449	Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the agi Research Reviews, 2017, 40, 168-181.	ng brain. Ageing	5.0	23
450	Induced Pluripotent Stem Cell Therapy and Safety Concerns in Age-Related Chronic Ne Diseases. Stem Cells in Clinical Applications, 2017, , 23-65.	urodegenerative	0.4	0
451	Transflammation: Innate immune signaling in nuclear reprogramming. Advanced Drug Reviews, 2017, 120, 133-141.	Delivery	6.6	13
452	AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of C Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering. ACS Bio Science and Engineering, 2017, 3, 2033-2049.		2.6	42
453	Induced Pluripotent Stem Cells: Clobal Research Trends. BioResearch Open Access, 20	17, 6, 63-73.	2.6	14
454	What if it was easier to prevent schizophrenia than to treat it?. NPJ Schizophrenia, 201	7, 3, 9.	2.0	0
455	Integrated Genomic Medicine. Advances in Genetics, 2017, 97, 81-113.		0.8	12

			0
#	ARTICLE	IF	CITATIONS
456	Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discovery Today, 2017, 22, 1730-1739.	3.2	7
457	Human induced pluripotent stem cells as a research tool in Alzheimer's disease. Psychological Medicine, 2017, 47, 2587-2592.	2.7	27
458	Safety, Ethics and Regulations. Stem Cells in Clinical Applications, 2017, , .	0.4	1
459	Cell-type Dependent Alzheimer's Disease Phenotypes: Probing the Biology ofÂSelective Neuronal Vulnerability. Stem Cell Reports, 2017, 9, 1868-1884.	2.3	73
460	CRISPR Transcriptional Activation Analysis Unmasks an Occult γ-Secretase Processivity Defect in Familial Alzheimer's Disease Skin Fibroblasts. Cell Reports, 2017, 21, 1727-1736.	2.9	24
461	Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer's disease. Nature Communications, 2017, 8, 1403.	5.8	54
462	Engineered myocardium model to study the roles of HIF-1α and HIF1A-AS1 in paracrine-only signaling under pathological level oxidative stress. Acta Biomaterialia, 2017, 58, 323-336.	4.1	27
463	Animal Models of Alzheimer's Disease. , 2017, , 1031-1085.		9
464	Modelling APOE ɛ3/4 allele-associated sporadic Alzheimer's disease in an induced neuron. Brain, 2017, 140, 2193-2209.	3.7	21
465	Alzheimer's Disease: Insights from Genetic Mouse Models and Current Advances in Human IPSC-Derived Neurons. Advances in Neurobiology, 2017, 15, 3-29.	1.3	4
466	Amyloid precursor protein and endosomalâ€lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB Journal, 2017, 31, 2729-2743.	0.2	249
467	Neuroregeneration versus neurodegeneration: toward a paradigm shift in Alzheimer's disease drug discovery. Future Medicinal Chemistry, 2017, 9, 995-1013.	1.1	17
468	Neurotrophin Signaling and Stem Cells—Implications for Neurodegenerative Diseases and Stem Cell Therapy. Molecular Neurobiology, 2017, 54, 7401-7459.	1.9	49
469	Phenotypic screening with primary neurons to identify drug targets for regeneration and degeneration. Molecular and Cellular Neurosciences, 2017, 80, 161-169.	1.0	20
470	Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neuroscience and Therapeutics, 2017, 23, 5-22.	1.9	390
471	Filopodyan: An open-source pipeline for the analysis of filopodia. Journal of Cell Biology, 2017, 216, 3405-3422.	2.3	46
472	Stem cells in neurodegeneration: mind the gap. , 2017, , 81-100.		0
473	Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Frontiers in Molecular Neuroscience, 2017, 10, 50.	1.4	54

ARTICLE IF CITATIONS # Sortilin-Related Receptor Expression in Human Neural Stem Cells Derived from Alzheimer's Disease 1.0 27 474 Patients Carrying the APOE Epsilon 4 Allele. Neural Plasticity, 2017, 2017, 1-10. Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures. PLoS ONE, 2017, 12, 1.1 e0169506. Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, 476 3.0 161 increased amyloid levels, and GSK3B activation. Alzheimer's Research and Therapy, 2017, 9, 90. Human iPSC Models in Drug Discovery: Opportunities and Challenges., 2017,, 48-73. 477 Human Induced Pluripotent Stem Cells and the Modelling of Alzheimer's Disease: The Human Brain 478 0.4 15 Outside the Dish. The Open Neurology Journal, 2017, 11, 27-38. Convergent molecular defects underpin diverse neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 962-969. 479 Clinical Applications of Induced Pluripotent Stem Cells – Stato Attuale. Advances in Experimental 480 0.8 11 Medicine and Biology, 2018, 1079, 127-149. Disruption of ERâ⁻'mitochondria signalling in fronto-temporal dementia and related amyotrophic 481 2.7 54 lateral sclerosis. Cell Death and Disease, 2018, 9, 327. Stabilizing the Retromer Complex in a Human Stem Cell Model of Alzheimer's Disease Reduces TAU 482 2.3 82 Phosphorylation Independently of Amyloid Precursor Protein. Stem Cell Reports, 2018, 10, 1046-1058. Super-Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit Obesogenic Signatures and Hormone 5.2 Responses. Cell Stem Cell, 2018, 22, 698-712.e9. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a 484 15.2 288 small-molecule structure corrector. Nature Medicine, 2018, 24, 647-657. Human Neurospheroid Arrays for In Vitro Studies of Alzheimer's Disease. Scientific Reports, 2018, 8, 98 2450. Oxidative stress and altered mitochondrial protein expression in the absence of amyloid-l² and tau 486 pathology in iPSC-derived neurons from sporadic Alzheimer's disease patients. Stem Cell Research, 0.3 107 2018, 27, 121-130. Induced Pluripotent Stem Cells in Disease Modeling and Gene Identification. Methods in Molecular Biology, 2018, 1706, 17-38. 0.4 Cellular reprogramming: A new way to understand aging mechanisms. Wiley Interdisciplinary Reviews: 488 5.9 9 Developmental Biology, 2018, 7, e308. Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem 489 Cells. Tissue Engineering - Part A, 2018, 24, 1125-1137. Reprogramming neurodegeneration in the big data era. Current Opinion in Neurobiology, 2018, 48, 490 2.0 5 167-173. Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and 491 1.2 brain tissue from Alzheimer patients. Journal of Proteomics, 2018, 182, 21-33.

#	Article	IF	CITATIONS
492	THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Translational Psychiatry, 2018, 8, 89.	2.4	35
493	Transflammation: How Innate Immune Activation and Free Radicals Drive Nuclear Reprogramming. Antioxidants and Redox Signaling, 2018, 29, 205-218.	2.5	11
494	Characterization and transplantation of enteric neural crest cells from human induced pluripotent stem cells. Molecular Psychiatry, 2018, 23, 499-508.	4.1	55
495	A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Molecular Psychiatry, 2018, 23, 1336-1344.	4.1	166
496	Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 34-53.	2.5	24
497	Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2018, 24, 546-558.	1.6	25
499	Organâ€Onâ€Aâ€Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Advanced Healthcare Materials, 2018, 7, 1700506.	3.9	227
500	Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radical Biology and Medicine, 2018, 114, 40-51.	1.3	128
501	Threeâ€Dimensional Models of the Human Brain Development and Diseases. Advanced Healthcare Materials, 2018, 7, 1700723.	3.9	73
502	Derivation of Cortical Spheroids from Human Induced Pluripotent Stem Cells in a Suspension Bioreactor. Tissue Engineering - Part A, 2018, 24, 418-431.	1.6	35
503	Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications. Methods in Molecular Biology, 2018, 1683, 305-338.	0.4	4
504	The utility of stem cells for neural regeneration. Brain and Neuroscience Advances, 2018, 2, 239821281881807.	1.8	5
505	Cell Biology and Translational Medicine, Volume 4. Advances in Experimental Medicine and Biology, 2018, , .	0.8	4
506	Stem cell models of human synapse development and degeneration. Molecular Biology of the Cell, 2018, 29, 2913-2921.	0.9	26
507	Inhibition of HDAC3 reverses Alzheimer's disease-related pathologies in vitro and in the 3xTg-AD mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11148-E11157.	3.3	140
508	Small-molecule induction of AÎ2-42 peptide production in human cerebral organoids to model Alzheimer's disease associated phenotypes. PLoS ONE, 2018, 13, e0209150.	1.1	53
509	Altered γ-Secretase Processing of APP Disrupts Lysosome and Autophagosome Function in Monogenic Alzheimer's Disease. Cell Reports, 2018, 25, 3647-3660.e2.	2.9	95
510	Genomics: New Light on Alzheimer's Disease Research. International Journal of Molecular Sciences, 2018, 19, 3771.	1.8	14

		CITATION REPORT		
#	Article		IF	CITATIONS
511	Thiamine deficiency contributes to synapse and neural circuit defects. Biological Researc	h, 2018, 51, 35.	1.5	16
512	Functional and Sustainable 3D Human Neural Network Models from Pluripotent Stem Ce Biomaterials Science and Engineering, 2018, 4, 4278-4288.	ells. ACS	2.6	40
513	Regenerative potential of induced pluripotent stem cells derived from patients undergoin haemodialysis in kidney regeneration. Scientific Reports, 2018, 8, 14919.	וק	1.6	28
514	In vivo modeling of human neuron dynamics and Down syndrome. Science, 2018, 362, .		6.0	87
515	Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neuro Research, 2018, 43, 2179-2198.	ochemical	1.6	27
516	Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic R Genomics, 2018, 19, 522-602.	eview. Current	0.7	65
517	Neural Stem Cell Dysfunction in Human Brain Disorders. Results and Problems in Cell Dif 2018, 66, 283-305.	ferentiation,	0.2	7
518	Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overvie pluripotent stem-cell-based disease models. Open Biology, 2018, 8, .	ew of induced	1.5	126
519	Human Neural Stem Cells. Results and Problems in Cell Differentiation, 2018, , .		0.2	3
520	Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Neurodegenerative Diseases. Annual Review of Genetics, 2018, 52, 271-293.	Age-Related	3.2	206
521	Neural Stem Cells Derived from Human-Induced Pluripotent Stem Cells and Their Use in I Injury. Results and Problems in Cell Differentiation, 2018, 66, 89-102.	Viodels of CNS	0.2	6
522	Modeling amyloid beta and tau pathology in human cerebral organoids. Molecular Psych 2363-2374.	iatry, 2018, 23,	4.1	249
523	Extracellular Forms of Aβ and Tau from iPSC Models of Alzheimer's Disease Disrupt S Cell Reports, 2018, 23, 1932-1938.	Synaptic Plasticity.	2.9	60
524	Adult rat myelin enhances axonal outgrowth from neural stem cells. Science Translationa 2018, 10, .	al Medicine,	5.8	28
525	Modeling Late-Onset Sporadic Alzheimer's Disease through BMI1 Deficiency. Cell Re 2653-2666.	ports, 2018, 23,	2.9	44
526	Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Cell Transplantation, 2018, 27, 379-392.	Applications.	1.2	30
527	Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-β cle human astrocytes. Journal of Biological Chemistry, 2018, 293, 11341-11357.	earance in	1.6	49
528	Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotrans inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2018, 41, 1103-111	mission in 6.	1.7	3

#	Article	IF	CITATIONS
529	Multivesicular bodies mediate long-range retrograde NGF-TrkA signaling. ELife, 2018, 7, .	2.8	48
530	Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer's Disease. Stem Cells International, 2018, 2018, 1-14.	1.2	31
531	A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease. Nature Neuroscience, 2018, 21, 941-951.	7.1	458
532	Genome-editing applications of CRISPR–Cas9 to promote in vitro studies of Alzheimer's disease. Clinical Interventions in Aging, 2018, Volume 13, 221-233.	1.3	37
533	Human fibroblast and stem cell resource from the Dominantly Inherited Alzheimer Network. Alzheimer's Research and Therapy, 2018, 10, 69.	3.0	22
534	Human-Induced Pluripotent Stem Cell-Derived Neurons to Model and Gain Insights into Alzheimer's Disease Pathogenesis. , 2018, , 3-12.		0
535	Induced Pluripotent Stem Cells and Induced Pluripotent Cancer Cells in Cancer Disease Modeling. Advances in Experimental Medicine and Biology, 2018, 1119, 169-183.	0.8	12
536	Recent Advances: Decoding Alzheimer's Disease With Stem Cells. Frontiers in Aging Neuroscience, 2018, 10, 77.	1.7	26
537	The Retromer Complex and Sorting Nexins in Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2018, 10, 79.	1.7	55
538	Representing Diversity in the Dish: Using Patient-Derived in Vitro Models to Recreate the Heterogeneity of Neurological Disease. Frontiers in Neuroscience, 2018, 12, 56.	1.4	29
539	AMPA Receptor Trafficking in Natural and Pathological Aging. Frontiers in Molecular Neuroscience, 2017, 10, 446.	1.4	52
540	Modelling Alzheimer's disease: Insights from <i>in vivo</i> to <i>in vitro</i> three-dimensional culture platforms. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1944-1958.	1.3	18
541	Modeling Neurovascular Disorders and Therapeutic Outcomes with Human-Induced Pluripotent Stem Cells. Frontiers in Bioengineering and Biotechnology, 2018, 5, 87.	2.0	23
542	Physiological Aβ Concentrations Produce a More Biomimetic Representation of the Alzheimer's Disease Phenotype in iPSC Derived Human Neurons. ACS Chemical Neuroscience, 2018, 9, 1693-1701.	1.7	12
543	Light-activated cell identification and sorting (LACIS) for selection of edited clones on a nanofluidic device. Communications Biology, 2018, 1, 41.	2.0	40
545	Investigating pediatric disorders with induced pluripotent stem cells. Pediatric Research, 2018, 84, 499-508.	1.1	9
547	Tauopathy-Associated PERK Alleles are Functional Hypomorphs that Increase Neuronal Vulnerability to ER Stress. Human Molecular Genetics, 2018, 27, 3951-3963.	1.4	36
548	Induced Pluripotent Stem Cells. Cell Transplantation, 2018, 27, 1588-1602.	1.2	26

#	Article	IF	CITATIONS
549	Pathological human astroglia in Alzheimer's disease: opening new horizons with stem cell technology. Future Neurology, 2018, 13, 87-99.	0.9	7
550	Misfolded Protein Linked Strategies Toward Biomarker Development for Neurodegenerative Diseases. Molecular Neurobiology, 2019, 56, 2559-2578.	1.9	2
551	A Large Panel of Isogenic APP and PSEN1 Mutant Human iPSC Neurons Reveals Shared Endosomal Abnormalities Mediated by APP β-CTFs, Not Aβ. Neuron, 2019, 104, 256-270.e5.	3.8	185
552	Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. Current Topics in Behavioral Neurosciences, 2019, 42, 159-183.	0.8	9
553	Modelling mitochondrial dysfunction in Alzheimer's disease using human induced pluripotent stem cells. World Journal of Stem Cells, 2019, 11, 236-253.	1.3	13
554	Functionalization of Brain Region-specific Spheroids with Isogenic Microglia-like Cells. Scientific Reports, 2019, 9, 11055.	1.6	119
555	Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258.	3.3	53
556	Gamma secretase modulators and BACE inhibitors reduce AÎ ² production without altering gene expression in Alzheimer's disease iPSC-derived neurons and mice. Molecular and Cellular Neurosciences, 2019, 100, 103392.	1.0	8
557	Alzheimer's in a dish – induced pluripotent stem cell-based disease modeling. Translational Neurodegeneration, 2019, 8, 21.	3.6	23
558	Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. Journal of Neuroscience Methods, 2019, 325, 108350.	1.3	26
559	All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Frontiers in Neuroscience, 2019, 13, 582.	1.4	39
560	Enhancing the Utility of Preclinical Research in Neuropsychiatry Drug Development. Methods in Molecular Biology, 2019, 2011, 3-22.	0.4	18
561	Recent advances of induced pluripotent stem cells application in neurodegenerative diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 95, 109674.	2.5	19
562	Alpha7 nicotinic acetylcholine receptors and neural network synaptic transmission in human induced pluripotent stem cell-derived neurons. Stem Cell Research, 2019, 41, 101642.	0.3	15
563	Nextâ€generation disease modeling with direct conversion: a new path to old neurons. FEBS Letters, 2019, 593, 3316-3337.	1.3	38
564	Alzheimer's disease mechanisms in peripheral cells: Promises and challenges. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 652-660.	1.8	17
565	A Human Embryonic Stem Cell Model of AÎ ² -Dependent Chronic Progressive Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 1007.	1.4	6
566	Calcilytic NPS 2143 Reduces Amyloid Secretion and Increases sAβPPα Release from PSEN1 Mutant iPSC-Derived Neurons. Journal of Alzheimer's Disease, 2019, 72, 885-899.	1.2	6

#	Article	IF	CITATIONS
567	Adult Stem Cells and Induced Pluripotent Stem Cells for Stroke Treatment. Frontiers in Neurology, 2019, 10, 908.	1.1	31
568	Differential Effects of Extracellular Vesicles of Lineage-Specific Human Pluripotent Stem Cells on the Cellular Behaviors of Isogenic Cortical Spheroids. Cells, 2019, 8, 993.	1.8	29
569	Modeling cell-cell interactions in the brain using cerebral organoids. Brain Research, 2019, 1724, 146458.	1.1	12
570	Modeling of Alzheimer's Disease and Outlooks for its Therapy Using Induced Pluripotent Stem Cells. Neurochemical Journal, 2019, 13, 215-228.	0.2	0
571	Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2019, , .	0.8	18
572	Extracellular Vesicles Isolated from Familial Alzheimer's Disease Neuronal Cultures Induce Aberrant Tau Phosphorylation in the Wild-Type Mouse Brain. Journal of Alzheimer's Disease, 2019, 72, 575-585.	1.2	33
573	Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer's Disease Neurons. Cell Stem Cell, 2019, 24, 363-375.e9.	5.2	220
574	Stem Cell-Derived Neurons as Cellular Models of Sporadic Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 67, 893-910.	1.2	16
575	Human iPSC application in Alzheimer's disease and Tau-related neurodegenerative diseases. Neuroscience Letters, 2019, 699, 31-40.	1.0	27
576	REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer's Disease. Cell Reports, 2019, 26, 1112-1127.e9.	2.9	150
577	Human iPS Cell-Derived Patient Tissues and 3D Cell Culture Part 1: Target Identification and Lead Optimization. SLAS Technology, 2019, 24, 3-17.	1.0	9
578	Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cellular and Molecular Neurobiology, 2019, 39, 181-209.	1.7	44
579	DeepNEU: cellular reprogramming comes of age – a machine learning platform with application to rare diseases research. Orphanet Journal of Rare Diseases, 2019, 14, 13.	1.2	19
580	Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiology of Disease, 2019, 130, 104503.	2.1	24
581	BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. Journal of Alzheimer's Disease Reports, 2019, 3, 113-148.	1.2	6
582	Use of human pluripotent stem cell-derived cells for neurodegenerative disease modeling and drug screening platform. Future Medicinal Chemistry, 2019, 11, 1305-1322.	1.1	23
583	Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Reviews and Reports, 2019, 15, 680-689.	1.7	7
584	Prospects for the application of mesenchymal stem cells in Alzheimer's disease treatment. Life Sciences, 2019, 231, 116564.	2.0	38

#	Article	IF	CITATIONS
585	The effects of bioactive components from the rhizome of Salvia miltiorrhiza (Danshen) on the characteristics of Alzheimer's disease. Chinese Medicine, 2019, 14, 19.	1.6	27
586	Induced Pluripotent Stem Cells (iPSCs) in Developmental Toxicology. Methods in Molecular Biology, 2019, 1965, 19-34.	0.4	6
587	Development of Human in vitro Brain-blood Barrier Model from Induced Pluripotent Stem Cell-derived Endothelial Cells to Predict the in vivo Permeability of Drugs. Neuroscience Bulletin, 2019, 35, 996-1010.	1.5	26
588	A Platform for Studying Neurodegeneration Mechanisms Using Genetically Encoded Biosensors. Biochemistry (Moscow), 2019, 84, 299-309.	0.7	8
589	The vexing complexity of the amyloidogenic pathway. Protein Science, 2019, 28, 1177-1193.	3.1	25
590	Two decades of embryonic stem cells: a historical overview. Human Reproduction Open, 2019, 2019, hoy024.	2.3	59
591	The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration. Cells, 2019, 8, 242.	1.8	14
592	Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Annals of Neurology, 2019, 85, 726-739.	2.8	84
593	Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. , 2019, 9, 565-611.		88
594	Unraveling the Paradox of Statins with Human Neurons: New Leads in Alzheimer's Disease. Cell Stem Cell, 2019, 24, 347-349.	5.2	12
595	Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biology, 2019, 9, 180177.	1.5	59
596	A Novel PSEN1 M139L Mutation Found in a Chinese Pedigree with Early-Onset Alzheimer's Disease Increases Aβ42/Aβ40 ratio. Journal of Alzheimer's Disease, 2019, 69, 199-212.	1.2	11
597	Innovative Therapy for Alzheimer's Disease-With Focus on Biodelivery of NGF. Frontiers in Neuroscience, 2019, 13, 38.	1.4	103
598	Uncovering the Functional Link Between SHANK3 Deletions and Deficiency in Neurodevelopment Using iPSC-Derived Human Neurons. Frontiers in Neuroanatomy, 2019, 13, 23.	0.9	33
599	Important advances in Alzheimer's disease from the use of induced pluripotent stem cells. Journal of Biomedical Science, 2019, 26, 15.	2.6	9
600	Î ³ -Secretase and its modulators: Twenty years and beyond. Neuroscience Letters, 2019, 701, 162-169.	1.0	46
601	The application of patient-derived induced pluripotent stem cells for modeling and treatment of Alzheimer's disease. Brain Science Advances, 2019, 5, 21-40.	0.3	18
602	Comprehensive analysis of the IncRNA-associated ceRNA network identifies neuroinflammation biomarkers for Alzheimer's disease. Molecular Omics, 2019, 15, 459-469.	1.4	18

ARTICLE IF CITATIONS # Modeling Polyglutamine Expansion Diseases with Induced Pluripotent Stem Cells. Neurotherapeutics, 603 2.1 21 2019, 16, 979-998. A novel machine learning based approach for iPS progenitor cell identification. PLoS Computational 604 1.5 Biology, 2019, 15, e1007351. A post-translational modification signature defines changes in soluble tau correlating with 605 oligomerization in early stage Alzheimer's disease brain. Acta Neuropathologica Communications, 2.4 54 2019, 7, 192. Oxidative DNA Damage Signalling in Neural Stem Cells in Alzheimer's Disease. Oxidative Medicine and 606 Cellular Longevity, 2019, 2019, 1-10. Neural tissue microphysiological systems in the era of patient-derived pluripotent stem cells., 2019,, 608 3 249-296. Neuronal Exosome-Derived Human Tau is Toxic to Recipient Mouse Neurons in vivo. Journal of 609 1.2 Alzheimer's Disease, 2019, 67, 541-553. 610 Turning back time with emerging rejuvenation strategies. Nature Cell Biology, 2019, 21, 32-43. 4.6 120 Cognitive, behavioral and metabolic effects of oral galactose treatment in the transgenic Tg2576 mice. 2.0 Neuropharmacology, 2019, 148, 50-67. Harnessing cellular aging in human stem cell models of amyotrophic lateral sclerosis. Aging Cell, 612 3.0 23 2019, 18, e12862. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Reports, 2019, 26, 582-593.e5. Brain organoids: a next step for humanized Alzheimer's disease models?. Molecular Psychiatry, 2019, 614 4.1 50 24, 474-478. Treatment of Parkinson's Disease through Personalized Medicine and Induced Pluripotent Stem Cells. 1.8 Cells, 2019, 8, 26. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. 616 13.1 230 Physiological Reviews, 2019, 99, 79-114. Integrated generation of induced pluripotent stem cells in a low-cost device. Biomaterials, 2019, 189, 5.7 28 23-36. Characterization of neurite dystrophy after trauma by high speed structured illumination microscopy 618 7 1.3 and lattice light sheet microscopy. Journal of Neuroscience Methods, 2019, 312, 154-161. Alzheimer's Disease and Dementia. , 2019, , 25-82. Concise Review: The Current State of Human In Vitro Cardiac Disease Modeling: A Focus on Gene 620 1.6 27 Editing and Tissue Engineering. Stem Cells Translational Medicine, 2019, 8, 66-74. Modeling Alzheimer's Disease by Induced Pluripotent Stem Cells Carrying APP D678H Mutation. 621 Molecular Neurobiology, 2019, 56, 3972-3983.

#	Article	IF	CITATIONS
622	Neurological diseases at the blood-brain barrier: Stemming new scientific paradigms using patient-derived induced pluripotent cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165358.	1.8	13
623	Neural Progenitor Cell Derivation Methodologies for Drug Discovery Applications. Assay and Drug Development Technologies, 2020, 18, 89-95.	0.6	6
624	Human-Derived Brain Models: Windows into Neuropsychiatric Disorders and Drug Therapies. Assay and Drug Development Technologies, 2020, 18, 79-88.	0.6	8
625	Familial Alzheimer's disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Molecular Psychiatry, 2020, 25, 2919-2931.	4.1	99
626	Human pluripotent stem cell–derived models and drug screening in CNS precision medicine. Annals of the New York Academy of Sciences, 2020, 1471, 18-56.	1.8	54
627	Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165431.	1.8	22
628	The interplay between agingâ€associated loss of protein homeostasis and extracellular vesicles in neurodegeneration. Journal of Neuroscience Research, 2020, 98, 262-283.	1.3	21
629	Modeling Alzheimer's disease with iPSC-derived brain cells. Molecular Psychiatry, 2020, 25, 148-167.	4.1	263
630	Modeling Sporadic Alzheimer's Disease by Efficient Direct Reprogramming of the Elderly Derived Disease Dermal Fibroblasts into Neural Stem Cells. Journal of Alzheimer's Disease, 2020, 73, 919-933.	1.2	7
631	Exosome/microvesicle content is altered in leucineâ€rich repeat kinase 2 mutant induced pluripotent stem cellâ€derived neural cells. Journal of Comparative Neurology, 2020, 528, 1203-1215.	0.9	11
632	Back to the origins: Human brain organoids to investigate neurodegeneration. Brain Research, 2020, 1727, 146561.	1.1	12
633	Modeling Brain Disorders Using Induced Pluripotent Stem Cells. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035659.	2.3	28
634	Amyloid-Î ² -independent regulators of tau pathology in Alzheimer disease. Nature Reviews Neuroscience, 2020, 21, 21-35.	4.9	338
635	Functional genomics, genetic risk profiling and cell phenotypes in neurodegenerative disease. Neurobiology of Disease, 2020, 146, 105088.	2.1	3
636	Human-induced pluripotent stem cells as a model for studying sporadic Alzheimer's disease. Neurobiology of Learning and Memory, 2020, 175, 107318.	1.0	8
637	Neural Stem Cells and Methods for Their Generation From Induced Pluripotent Stem Cells in vitro. Frontiers in Cell and Developmental Biology, 2020, 8, 815.	1.8	45
638	Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Advanced Drug Delivery Reviews, 2020, 161-162, 124-144.	6.6	8
639	Tumour necrosis factor induces increased production of extracellular amyloid-β- and α-synuclein-containing aggregates by human Alzheimer's disease neurons. Brain Communications, 2020, 2, fcaa146.	1.5	14

#	Article	IF	CITATIONS
640	Ultrastructural and dynamic studies of the endosomal compartment in Down syndrome. Acta Neuropathologica Communications, 2020, 8, 89.	2.4	27
641	Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer's disease brain. Neurobiology of Disease, 2020, 143, 105020.	2.1	41
642	Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Medicinal Research Reviews, 2020, 40, 2386-2426.	5.0	61
643	The iNs and Outs of Direct Reprogramming to Induced Neurons. Frontiers in Genome Editing, 2020, 2, 7.	2.7	7
644	Longitudinal Characterization of Transcriptomic, Functional, and Morphological Features in Human iPSC-Derived Neurons and Their Application to Investigate Translational Progranulin Disease Biology. Frontiers in Aging Neuroscience, 2020, 12, 576678.	1.7	3
645	Endosomal Dysfunction Induced by Directly Overactivating Rab5 Recapitulates Prodromal and Neurodegenerative Features of Alzheimer's Disease. Cell Reports, 2020, 33, 108420.	2.9	58
646	Tau and other proteins found in Alzheimer's disease spinal fluid are linked to retromer-mediated endosomal traffic in mice and humans. Science Translational Medicine, 2020, 12, .	5.8	37
647	Dedifferentiation and neuronal repression define familial Alzheimer's disease. Science Advances, 2020, 6, .	4.7	44
648	Synergy between amyloid-β and tau in Alzheimer's disease. Nature Neuroscience, 2020, 23, 1183-1193.	7.1	579
649	Depletion of the AD Risk Gene SORL1 Selectively Impairs Neuronal Endosomal Traffic Independent of Amyloidogenic APP Processing. Cell Reports, 2020, 31, 107719.	2.9	99
650	Pathogenic Tau Causes a Toxic Depletion of Nuclear Calcium. Cell Reports, 2020, 32, 107900.	2.9	23
651	A microfiber scaffold-based 3D <i>in vitro</i> human neuronal culture model of Alzheimer's disease. Biomaterials Science, 2020, 8, 4861-4874.	2.6	16
652	APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nature Communications, 2020, 11, 5540.	5.8	172
653	Chromatin Interaction Changes during the iPSC-NPC Model to Facilitate the Study of Biologically Significant Genes Involved in Differentiation. Genes, 2020, 11, 1176.	1.0	2
654	Stem Cell Therapy for Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2020, 1266, 39-55.	0.8	30
655	Microglial Phagocytosis: A Disease-Associated Process Emerging from Alzheimer's Disease Genetics. Trends in Neurosciences, 2020, 43, 965-979.	4.2	104
656	Stem Cell-based Therapy for Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2020, , .	0.8	4
657	<scp>AP</scp> â€2 reduces amyloidogenesis by promoting <scp>BACE</scp> 1 trafficking and degradation in neurons. EMBO Reports, 2020, 21, e47954.	2.0	36

#	Article	IF	Citations
658	Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 6867.	1.8	26
659	CIRM tools and technologies: Breaking bottlenecks to the development of stem cell therapies. Stem Cells Translational Medicine, 2020, 9, 1129-1136.	1.6	2
660	The Other Side of Alzheimer's Disease: Influence of Metabolic Disorder Features for Novel Diagnostic Biomarkers. Journal of Personalized Medicine, 2020, 10, 115.	1.1	8
661	Prospects of Directly Reprogrammed Adult Human Neurons for Neurodegenerative Disease Modeling and Drug Discovery: iN vs. iPSCs Models. Frontiers in Neuroscience, 2020, 14, 546484.	1.4	11
662	Differentiation of Human Embryonic Stem Cells into Neuron, Cholinergic, and Glial Cells. Stem Cells International, 2020, 2020, 1-9.	1.2	5
663	BrainPhys neuronal medium optimized for imaging and optogenetics in vitro. Nature Communications, 2020, 11, 5550.	5.8	18
664	Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model. Molecular Neurodegeneration, 2020, 15, 65.	4.4	35
665	Discovery of new epigenomics-based biomarkers and the early diagnosis of neurodegenerative diseases. Ageing Research Reviews, 2020, 61, 101069.	5.0	7
666	Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles. Cells, 2020, 9, 1301.	1.8	35
667	The Role of P2X7 Receptor in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 94.	1.4	44
668	Induced pluripotent stem cells (iPSCs) as gameâ€changing tools in the treatment of neurodegenerative disease: Mirage or reality?. Journal of Cellular Physiology, 2020, 235, 9166-9184.	2.0	9
669	The Use of Patient-Derived Induced Pluripotent Stem Cells for Alzheimer's Disease Modeling. Progress in Neurobiology, 2020, 192, 101804.	2.8	15
670	NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Molecular Psychiatry, 2021, 26, 5751-5765.	4.1	43
671	A Three-Dimensional Alzheimer's Disease Cell Culture Model Using iPSC-Derived Neurons Carrying A246E Mutation in PSEN1. Frontiers in Cellular Neuroscience, 2020, 14, 151.	1.8	25
672	Use of Stem Cell Extracellular Vesicles as a "Holistic―Approach to CNS Repair. Frontiers in Cell and Developmental Biology, 2020, 8, 455.	1.8	24
673	Probing the therapeutic potential of TRPC6 for Alzheimer's disease in live neurons from patient-specific iPSCs. Journal of Molecular Cell Biology, 2020, 12, 807-816.	1.5	13
674	Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nature Medicine, 2020, 26, 952-963.	15.2	173
675	Application of Stem Cells in Stroke: A Multifactorial Approach. Frontiers in Neuroscience, 2020, 14, 473.	1.4	34

#	ARTICLE	IF	CITATIONS
676	In vitro Models of Neurodegenerative Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 328.	1.8	149
677	Amyloid-β42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer's disease. Nature Communications, 2020, 11, 1377.	5.8	88
678	Exploratory Analysis of iPSCS-Derived Neuronal Cells as Predictors of Diagnosis and Treatment of Alzheimer Disease. Brain Sciences, 2020, 10, 166.	1.1	12
679	Conducting Polymer Mediated Electrical Stimulation Induces Multilineage Differentiation with Robust Neuronal Fate Determination of Human Induced Pluripotent Stem Cells. Cells, 2020, 9, 658.	1.8	23
680	A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System—A Close Look at Chromosome 15. International Journal of Molecular Sciences, 2020, 21, 1860.	1.8	4
681	Exposure to phthalates impaired neurodevelopment through estrogenic effects and induced DNA damage in neurons. Aquatic Toxicology, 2020, 222, 105469.	1.9	40
682	Focusing on cellular biomarkers: The endo-lysosomal pathway in Down syndrome. Progress in Brain Research, 2020, 251, 209-243.	0.9	16
683	Optical induction of autophagy via Transcription factor EB (TFEB) reduces pathological tau in neurons. PLoS ONE, 2020, 15, e0230026.	1.1	16
684	Pathological manifestation of the induced pluripotent stem cellâ€derived cortical neurons from an earlyâ€onset Alzheimer's disease patient carrying a presenilinâ€1 mutation (S170F). Cell Proliferation, 2020, 53, e12798.	2.4	14
685	Modeling and Targeting Alzheimer's Disease With Organoids. Frontiers in Pharmacology, 2020, 11, 396.	1.6	71
686	Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell, 2020, 26, 309-329.	5.2	174
687	Induced pluripotent stem cells as models of human neurodevelopmental disorders. , 2020, , 99-127.		Ο
688	A human induced pluripotent stem cellâ€derived cortical neuron humanâ€onâ€a chip system to study Aβ 42 and tauâ€induced pathophysiological effects on longâ€term potentiation. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12029.	1.8	7
689	IPSC-Derived Neuronal Cultures Carrying the Alzheimer's Disease Associated TREM2 R47H Variant Enables the Construction of an Aβ-Induced Gene Regulatory Network. International Journal of Molecular Sciences, 2020, 21, 4516.	1.8	9
690	CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 2020, 16, 465-480.	4.9	89
691	Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Reports, 2020, 15, 256-273.	2.3	49
692	Neural In Vitro Models for Studying Substances Acting on the Central Nervous System. Handbook of Experimental Pharmacology, 2020, 265, 111-141.	0.9	11
693	Increased GABAergic development in iPSC-derived neurons from patients with sporadic Alzheimer's disease. Neuroscience Letters, 2020, 735, 135208.	1.0	5

#	Article	IF	CITATIONS
694	Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiology of Disease, 2020, 138, 104788.	2.1	23
695	The multiplex model of the genetics of Alzheimer's disease. Nature Neuroscience, 2020, 23, 311-322.	7.1	291
696	Benzothiazole amphiphiles promote RasGRF1â€associated dendritic spine formation in human stem cellâ€derived neurons. FEBS Open Bio, 2020, 10, 386-395.	1.0	6
697	Ethics in embryo research: a position statement by the ASRM Ethics in Embryo Research Task ForceÂandÂthe ASRM Ethics Committee. Fertility and Sterility, 2020, 113, 270-294.	0.5	18
698	A Longâ€Living Bioengineered Neural Tissue Platform to Study Neurodegeneration. Macromolecular Bioscience, 2020, 20, e2000004.	2.1	36
699	Human-Induced Pluripotent Stem Cells and Herbal Small-Molecule Drugs for Treatment of Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 1327.	1.8	10
700	Neurodegeneration in a dish: advancing human stem-cell-based models of Alzheimer's disease. Current Opinion in Neurobiology, 2020, 61, 96-104.	2.0	10
701	Harnessing the Potential of Stem Cells for Disease Modeling: Progress and Promises. Journal of Personalized Medicine, 2020, 10, 8.	1.1	16
702	The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nature Communications, 2020, 11, 319.	5.8	46
703	Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening. Molecules, 2020, 25, 2000.	1.7	75
704	Induced pluripotent stem cell technology: venturing into the second decade. , 2020, , 435-443.		2
705	Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nature Reviews Drug Discovery, 2020, 19, 447-462.	21.5	73
706	Genetic predispositions of Parkinson's disease revealed in patient-derived brain cells. Npj Parkinson's Disease, 2020, 6, 8.	2.5	90
707	The application of <i>in vitro</i> â€derived human neurons in neurodegenerative disease modeling. Journal of Neuroscience Research, 2021, 99, 124-140.	1.3	26
708	Modelling neurodegenerative disease using brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 60-66.	2.3	25
709	Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. Journal of Neurochemistry, 2021, 157, 263-296.	2.1	25
710	Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Molecular and Cellular Neurosciences, 2021, 110, 103568.	1.0	30
711	β-amyloid: The known unknowns. Ageing Research Reviews, 2021, 65, 101212.	5.0	27

#	Article	IF	CITATIONS
712	Cholesterol-lowering drugs reduce APP processing to $\hat{A^2}$ by inducing APP dimerization. Molecular Biology of the Cell, 2021, 32, 247-259.	0.9	32
713	NPC1-mTORC1 Signaling Couples Cholesterol Sensing to Organelle Homeostasis and Is a Targetable Pathway in Niemann-Pick Type C. Developmental Cell, 2021, 56, 260-276.e7.	3.1	101
714	Enhanced Neuronal Activity and Asynchronous Calcium Transients Revealed in a 3D Organoid Model of Alzheimer's Disease. ACS Biomaterials Science and Engineering, 2021, 7, 254-264.	2.6	37
715	Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomaterials Science, 2021, 9, 1088-1103.	2.6	64
716	Towards Advanced iPSC-based Drug Development for Neurodegenerative Disease. Trends in Molecular Medicine, 2021, 27, 263-279.	3.5	37
718	Genome editing in stem cells for genetic neurodisorders. Progress in Molecular Biology and Translational Science, 2021, 182, 403-438.	0.9	6
719	Human stem cell models to study host–virus interactions in the central nervous system. Nature Reviews Immunology, 2021, 21, 441-453.	10.6	35
720	3D Alzheimer's disease in a dish: Implications for drug discovery. , 2021, , 311-331.		1
721	Standardized Quality Control Workflow to Evaluate the Reproducibility and Differentiation Potential of Human iPSCs into Neurons. SSRN Electronic Journal, 0, , .	0.4	2
722	Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Current Topics in Developmental Biology, 2021, 142, 477-530.	1.0	15
724	Differentiation of Human Induced Pluripotent Stem Cells (hiPSC) into Endothelial-Type Cells and Establishment of an In Vitro Blood-Brain Barrier Model. Methods in Molecular Biology, 2021, , 521-530.	0.4	3
725	Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Molecular Psychiatry, 2021, 26, 2685-2706.	4.1	18
726	The cellular machinery of post-endocytic APP trafficking in Alzheimer's disease: A future target for therapeutic intervention?. Progress in Molecular Biology and Translational Science, 2021, 177, 109-122.	0.9	3
727	Induced pluripotent stem cells in intestinal diseases. , 2021, , 101-122.		0
728	Combining bioscaffolds and iPSCs in the treatment of neural trauma and Alzheimer's disease. , 2021, , 123-162.		0
729	A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nature Communications, 2021, 12, 280.	5.8	88
730	Flexible and Accurate Substrate Processing with Distinct Presenilin/γ-Secretases in Human Cortical Neurons. ENeuro, 2021, 8, ENEURO.0500-20.2021.	0.9	10
731	Dysregulation of Phosphoinositide 5-Phosphatases and Phosphoinositides in Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 614855.	1.4	4

#	Article	IF	CITATIONS
732	Crosstalk between Different DNA Repair Pathways Contributes to Neurodegenerative Diseases. Biology, 2021, 10, 163.	1.3	11
733	Approaches to characterize the transcriptional trajectory of human myogenesis. Cellular and Molecular Life Sciences, 2021, 78, 4221-4234.	2.4	2
734	Patient-derived iPSCs, a reliable <i>in vitro</i> model for the investigation of Alzheimer's disease. Reviews in the Neurosciences, 2021, 32, 379-402.	1.4	5
735	Efficient manipulation of gene dosage in human iPSCs using CRISPR/Cas9 nickases. Communications Biology, 2021, 4, 195.	2.0	6
736	Heterotypic interactions in amyloid function and disease. FEBS Journal, 2022, 289, 2025-2046.	2.2	18
737	Stem Cell Therapies in Alzheimer's Disease: Applications for Disease Modeling. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 207-217.	1.3	22
738	Knock-Down of HDAC2 in Human Induced Pluripotent Stem Cell Derived Neurons Improves Neuronal Mitochondrial Dynamics, Neuronal Maturation and Reduces Amyloid Beta Peptides. International Journal of Molecular Sciences, 2021, 22, 2526.	1.8	9
739	Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist, 2022, 28, 572-593.	2.6	11
740	Mass spectrometry analysis of tau and amyloidâ€beta in iPSCâ€derived models of Alzheimer's disease and dementia. Journal of Neurochemistry, 2021, 159, 305-317.	2.1	8
741	Mitochondrial dysfunction in neurodegenerative diseases: A focus on iPSC-derived neuronal models. Cell Calcium, 2021, 94, 102362.	1.1	23
742	Onset of Preclinical Alzheimer Disease in Monozygotic Twins. Annals of Neurology, 2021, 89, 987-1000.	2.8	20
744	G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer's disease. Nature Communications, 2021, 12, 1828.	5.8	21
745	The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Molecular Therapy, 2021, 29, 949-972.	3.7	10
746	Culture Variabilities of Human iPSC-Derived Cerebral Organoids Are a Major Issue for the Modelling of Phenotypes Observed in Alzheimer's Disease. Stem Cell Reviews and Reports, 2022, 18, 718-731.	1.7	40
747	APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer's disease. Molecular Psychiatry, 2021, 26, 5715-5732.	4.1	13
748	Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS Omega, 2021, 6, 13033-13056.	1.6	7
749	Understanding amphisomes. Biochemical Journal, 2021, 478, 1959-1976.	1.7	57
750	The Potential of Induced Pluripotent Stem Cells to Treat and Model Alzheimer's Disease. Stem Cells International, 2021, 2021, 1-16.	1.2	4

#	Article	IF	CITATIONS
751	Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development. Current Neuropharmacology, 2022, 20, 675-692.	1.4	29
752	Intranasally Administered L-Myc-Immortalized Human Neural Stem Cells Migrate to Primary and Distal Sites of Damage after Cortical Impact and Enhance Spatial Learning. Stem Cells International, 2021, 2021, 1-11.	1.2	5
753	SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Reports, 2021, 35, 109259.	2.9	47
754	Effect of Chronic Stress Present in Fibroblasts Derived from Patients with a Sporadic Form of AD on Mitochondrial Function and Mitochondrial Turnover. Antioxidants, 2021, 10, 938.	2.2	10
755	Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 8196.	1.8	9
756	Hypothesis and Theory: Characterizing Abnormalities of Energy Metabolism Using a Cellular Platform as a Personalized Medicine Approach for Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 697578.	1.8	4
757	The complexity of Alzheimer's disease: an evolving puzzle. Physiological Reviews, 2021, 101, 1047-1081.	13.1	110
758	Amyloid-β precursor protein processing and oxidative stress are altered in human iPSC-derived neuron and astrocyte co-cultures carrying presenillin-1 gene mutations following spontaneous differentiation. Molecular and Cellular Neurosciences, 2021, 114, 103631.	1.0	9
759	A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods and Protocols, 2021, 4, 50.	0.9	40
760	The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research. Biological Chemistry, 2022, 403, 3-26.	1.2	11
761	Optimization of cerebral organoids: a more qualified model for Alzheimer's disease research. Translational Neurodegeneration, 2021, 10, 27.	3.6	14
763	Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer's patients. Cell Stem Cell, 2021, 28, 1533-1548.e6.	5.2	119
764	Complex Organ Construction from Human Pluripotent Stem Cells for Biological Research and Disease Modeling with New Emerging Techniques. International Journal of Molecular Sciences, 2021, 22, 10184.	1.8	4
765	Dysregulation of the secretory pathway connects Alzheimer's disease genetics to aggregate formation. Cell Systems, 2021, 12, 873-884.e4.	2.9	11
766	Microfluidic Platforms to Unravel Mysteries of Alzheimer's Disease: How Far Have We Come?. Life, 2021, 11, 1022.	1.1	7
767	PICALM regulates cathepsin D processing and lysosomal function. Biochemical and Biophysical Research Communications, 2021, 570, 103-109.	1.0	4
768	Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron, 2021, 109, 3402-3420.e9.	3.8	75
769	CRISPR-activated patient fibroblasts for modeling of familial Alzheimer's disease. Neuroscience Research, 2021, 172, 7-12.	1.0	2

	CITATION	Report	
# 770	ARTICLE Therapeutic potential of glial cell line-derived neurotrophic factor and cell reprogramming for	IF 1.6	CITATIONS
771	hippocampal-related neurological disorders. Neural Regeneration Research, 2022, 17, 469. Autophagic processes in early- and late-onset Alzheimer's disease. , 2022, , 287-299.		1
772	Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms. Progress in Molecular Biology and Translational Science, 2021, 181, 271-287.	0.9	1
774	Role of Innate Immune Signaling in Nuclear Reprogramming. , 2016, , 291-305.		1
775	In Vitro Modeling of Complex Neurological Diseases. Research and Perspectives in Neurosciences, 2017, , 1-19.	0.4	3
776	Induced Pluripotent Stem Cell-Derived Astroglia: A New Tool for Research Towards the Treatment of Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2019, 1175, 383-405.	0.8	5
777	Neurodegenerative Diseases and Axonal Transport. , 2018, , 345-367.		1
778	Nutrition and the ageing brain: Moving towards clinical applications. Ageing Research Reviews, 2020, 62, 101079.	5.0	56
779	The truth about fetal tissue research. Nature, 2015, 528, 178-181.	13.7	12
781	Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 1081-1094.	2.5	8
782	Dantrolene Ameliorates Impaired Neurogenesis and Synaptogenesis in Induced Pluripotent Stem Cell Lines Derived from Patients with Alzheimer's Disease. Anesthesiology, 2020, 132, 1062-1079.	1.3	18
790	Human induced pluripotent stem cell–derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis. JCI Insight, 2019, 4, .	2.3	79
791	Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. Journal of Clinical Investigation, 2013, 123, 3802-3814.	3.9	57
792	Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer's disease. Journal of Clinical Investigation, 2013, 123, 2523-2538.	3.9	96
793	Amyloid precursor protein–mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. Journal of Clinical Investigation, 2016, 126, 1815-1833.	3.9	149
794	An Intracellular Threonine of Amyloid-β Precursor Protein Mediates Synaptic Plasticity Deficits and Memory Loss. PLoS ONE, 2013, 8, e57120.	1.1	22
795	Downregulation of MicroRNA-9 in iPSC-Derived Neurons of FTD/ALS Patients with TDP-43 Mutations. PLoS ONE, 2013, 8, e76055.	1.1	117
796	PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0154770.	1.1	62

CITATION REPORT ARTICLE IF CITATIONS Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated 1.1 127 Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0163072. Tissue engineered organoids for neural network modelling. Advances in Tissue Engineering & 0.1 Regenerative Medicine Open Access, 2017, 3, . Recapitulating Amyloid ß and Tau Pathology in Human Neural Cell Culture Modelsâ€"Clinical 0.2 19 Implications. US Neurology, 2015, 11, 102. Early pathogenic event of Alzheimer's disease documented in iPSCs from patients with PSEN1 44 mutations. Oncotarget, 2017, 8, 7900-7913. Promising Therapies for Alzheimer'; s Disease. Current Pharmaceutical Design, 2016, 22, 2050-2056. 0.9 21 Clinical Utility of Neuronal Cells Directly Converted from Fibroblasts of Patients for Neuropsychiatric Disorders: Studies of Lysosomal Storage Diseases and Channelopathy. Current Molecular Medicine, 2015, 15, 138-145. Induced Pluripotent Stem Cell-Based Studies of Parkinson's Disease: Challenges and Promises. CNS and 0.8 5 Neurological Disorders - Drug Targets, 2013, 999, 29-30. The application of patient-derived induced pluripotent stem cells for modeling and treatment of 0.3 Alzheimer's disease. Brain Science Advances, 2019, 5, 21-40. Human iPSC-derived neurons and lymphoblastoid cells for personalized medicine research in 25 1.8 neuropsychiatric disorders. Dialogues in Clinical Neuroscience, 2016, 18, 267-276. Cholesterol in the Pathogenesis of Alzheimer's, Parkinson's Diseases and Autism: Link to Synaptic 1.7 Dysfunction. Acta Naturae, 2017, 9, 26-37. Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases. 0.5 20 Journal of Korean Neurosurgical Society, 2019, 62, 493-501. Assessment of human pluripotent stem cells with PluriTest. Stembook, 2014, , . Embryonic stem cell therapy applications for autoimmune, cardiovascular, and neurological diseases: 0.4 3 A review. AIMS Cell and Tissue Engineering, 2018, 1, 191-223. Modelling neurodegenerative diseases in vitro: Recent advances in 3D iPSC 0.4 technologies. AIMS Cell and Tissue Engineering, 2018, 2, 1-23. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy. Chinese Medical Journal, 2017, 0.9 23 130, 2361-2374. Stem cells: a promising candidate to treat neurological disorders. Neural Regeneration Research, 2018, 13, 1294. 101 Current status and future prospects of stem cell therapy in Alzheimer's disease. Neural Regeneration 1.6 32 Research, 2020, 15, 242.

814Patient-specific Induced Pluripotent Stem Cells as a Platform for Disease Modeling, Drug Discovery
and Precision Personalized Medicine. Journal of Stem Cell Research & Therapy, 2012, 01, .0.39

#

797

798

799

800

801

803

804

805

807

808

809

811

#	Article	IF	CITATIONS
815	Using Induced Pluripotent Stem Cells to Model Neurodegenerative Diseases. Journal of Ancient Diseases & Preventive Remedies, 2013, 01, .	0.2	2
816	Analysis of Technological Developments in the Treatment of Alzheimer's Disease through Patent Documents. Intelligent Information Management, 2015, 07, 268-281.	0.3	6
817	Stem cell therapy for Alzheimer's disease. World Journal of Stem Cells, 2020, 12, 787-802.	1.3	77
818	Familial Alzheimer's disease modelling using induced pluripotent stem cell technology. World Journal of Stem Cells, 2014, 6, 239.	1.3	22
819	Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons. World Journal of Stem Cells, 2015, 7, 899.	1.3	10
820	Induced Pluripotent Stem Cells as a Novel Tool in Psychiatric Research. Psychiatry Investigation, 2016, 13, 8.	0.7	4
821	Cell mediated gene therapy: A guide for doctors in the clinic. World Journal of Medical Genetics, 2015, 5, 1.	1.0	1
822	Induced pluripotent stem cells for modeling neurological disorders. World Journal of Transplantation, 2015, 5, 209.	0.6	39
823	Amyloidogenic Processing of Amyloid Precursor Protein Drives Stretch-Induced Disruption of Axonal Transport in hiPSC-Derived Neurons. Journal of Neuroscience, 2021, 41, 10034-10053.	1.7	14
824	Alzheimer's 'in a dish' shows promise. Nature, 0, , .	13.7	0
826	Stem Cell Technology. , 2013, , 509-524.		0
826 827	Stem Cell Technology. , 2013, , 509-524. Modeling and Therapeutic Strategies of Pluripotent Stem Cells for Alzheimer's Disease. Journal of Stem Cell Research & Therapy, 2013, 3, .	0.3	0
	Modeling and Therapeutic Strategies of Pluripotent Stem Cells for Alzheimer's Disease. Journal of	0.3	
827	Modeling and Therapeutic Strategies of Pluripotent Stem Cells for Alzheimer's Disease. Journal of Stem Cell Research & Therapy, 2013, 3, . Current Research on Stem Cells in Parkinson's Disease: Progress and Challenges. Pancreatic Islet		0
827 828	Modeling and Therapeutic Strategies of Pluripotent Stem Cells for Alzheimer's Disease. Journal of Stem Cell Research & Therapy, 2013, 3, . Current Research on Stem Cells in Parkinson's Disease: Progress and Challenges. Pancreatic Islet Biology, 2013, , 59-84.		0
827 828 829	Modeling and Therapeutic Strategies of Pluripotent Stem Cells for Alzheimer's Disease. Journal of Stem Cell Research & Therapy, 2013, 3, . Current Research on Stem Cells in Parkinson's Disease: Progress and Challenges. Pancreatic Islet Biology, 2013, , 59-84. Efficient Enhancement of Signaling Capacity: Signaling Endosomes. , 2013, , 139-157. Human Stem Cell Approaches to Understanding and Treating Alzheimer's Disease. Research and	0.1	0 0 0
827 828 829 830	Modeling and Therapeutic Strategies of Pluripotent Stem Cells for Alzheimer's Disease. Journal of Stem Cell Research & Therapy, 2013, 3, . Current Research on Stem Cells in Parkinson's Disease: Progress and Challenges. Pancreatic Islet Biology, 2013, , 59-84. Efficient Enhancement of Signaling Capacity: Signaling Endosomes. , 2013, , 139-157. Human Stem Cell Approaches to Understanding and Treating Alzheimer's Disease. Research and Perspectives in Neurosciences, 2013, , 67-73. Disease Modeling and Drug Discovery Using Human Pluripotent Stem Cells. Pancreatic Islet Biology,	0.1	0 0 0 0

# 834	ARTICLE Stem Cell Therapy for Neurological Disorders: From Bench to Bedside. , 2014, , 41-70.	IF	Citations 0
836	Use of Induced Pluripotent Stem Cells in Aging Research. , 2015, , 67-78.		0
837	Induced Pluripotent Stem Cell, a Rising Star in Regenerative Medicine. Translational Medicine Research, 2015, , 85-109.	0.0	0
839	Patient-Derived Induced Pluripotent Stem Cells to Target Kidney Disease. , 2016, , 491-505.		0
841	Stem Cells for Drug Screening. Pancreatic Islet Biology, 2016, , 15-41.	0.1	0
842	Stem Cell-based Therapy for Neurodegenerative Diseases. Japanese Journal of Neurosurgery, 2016, 25, 985-991.	0.0	1
843	Could Stem Cells Be Used to Treat or Model Alzheimer's Disease?. , 2016, , 203-225.		1
845	Use of Stem Cells in Toxicology. , 2017, , 177-194.		0
846	Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Its Application to Clinical Medicine. , 2017, , 25-40.		0
852	The Amyloid Precursor Protein: More than Just Amyloid- Beta. Journal of Neurology and Experimental Neuroscience, 2019, 05, .	0.2	2
853	Stem Cell Therapy: A Great Leap Forward in Alzheimer's Treatment. , 2019, , 167-182.		0
860	iPSC for modeling neurodegenerative disorders. Regenerative Therapy, 2020, 15, 332-339.	1.4	22
862	Reconstruction of Alzheimer's Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient. Stem Cells International, 2020, 2020, 1-10.	1.2	2
863	Targeting Alzheimer's disease and related dementias with CRISPR and human pluripotent stem cell technologies. , 2022, , 65-80.		0
864	Chemical Probes in Cellular Assays for Target Validation and Screening in Neurodegeneration. Chemical Biology, 2020, , 276-319.	0.1	0
866	Utilization of Human Induced Pluripotent Stem Cells-Derived In vitro Models for the Future Study of Sex Differences in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 768948.	1.7	7
867	Dissecting the complexities of Alzheimer disease with in vitro models of the human brain. Nature Reviews Neurology, 2022, 18, 25-39.	4.9	30
868	Application of Induced Pluripotent Stem Cells for Disease Modeling and 3D Model Construction: Focus on Osteoarthritis. Cells, 2021, 10, 3032.	1.8	2

#	Article	IF	CITATIONS
872	Your brain under the microscope: the promise of stem cells. Cerebrum: the Dana Forum on Brain Science, 2014, 2014, 1.	0.1	5
874	Neural stem/progenitor cells in Alzheimer's disease. Yale Journal of Biology and Medicine, 2016, 89, 23-35.	0.2	47
875	Stepping back to move forward: a current review of iPSCs in the fight against Alzheimer's disease. American Journal of Stem Cells, 2016, 5, 99-106.	0.4	6
876	Cholesterol in the Pathogenesis of Alzheimer's, Parkinson's Diseases and Autism: Link to Synaptic Dysfunction. Acta Naturae, 2017, 9, 26-37.	1.7	17
877	Alzheimer's disease treatment: The share of herbal medicines. Iranian Journal of Basic Medical Sciences, 2021, 24, 123-135.	1.0	3
878	Use of induced pluripotent stem cells to model inflammatory neurodegeneration and repair in multiple sclerosis. , 2022, , 31-43.		0
879	Human induced pluripotent stem cell modeling of neurofibromatosis type 1. , 2022, , 1-30.		0
880	How induced pluripotent stem cells changed the research status of polycystic ovary syndrome. , 2022, , 127-156.		0
881	Harnessing cerebral organoids for Alzheimer's disease research. Current Opinion in Neurobiology, 2022, 72, 120-130.	2.0	17
883	Impact of increased <i>APP</i> gene dose in Down syndrome and the Dp16 mouse model. Alzheimer's and Dementia, 2022, 18, 1203-1234.	0.4	19
884	Prenatal and Postnatal Pharmacotherapy in Down Syndrome: The Search to Prevent or Ameliorate Neurodevelopmental and Neurodegenerative Disorders. Annual Review of Pharmacology and Toxicology, 2022, 62, 211-233.	4.2	7
885	The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathologica Communications, 2022, 10, 4.	2.4	29
886	Skin Mirrors Brain: A Chance for Alzheimer's Disease Research. Advances in Experimental Medicine and Biology, 2021, 1339, 371-380.	0.8	3
887	Amyloid \hat{I}^2 (A \hat{I}^2) ELISA of Human iPSC-Derived Neuronal Cultures. Methods in Molecular Biology, 2021, , 1.	0.4	0
888	Human-Induced Pluripotent Stem Cell–Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2021, , 57-88.	0.8	4
889	iPSC for modeling of metabolic and neurodegenerative disorders. , 2022, , 59-84.		0
890	Synaptic dysfunction in early phases of Alzheimer's Disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 417-438.	1.0	27
891	Dendritic Polyglycerol Amine: An Enhanced Substrate to Support Long-Term Neural Cell Culture. ASN Neuro, 2022, 14, 175909142110732.	1.5	5

#	Article	IF	CITATIONS
892	Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiology of Disease, 2022, 162, 105582.	2.1	23
893	Animal models in the study of Alzheimer's disease and Parkinson's disease: A historical perspective. Animal Models and Experimental Medicine, 2022, 5, 27-37.	1.3	10
894	Central nervous system organoids for modeling neurodegenerative diseases. IUBMB Life, 2022, 74, 812-825.	1.5	4
895	Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. International Journal of Molecular Sciences, 2022, 23, 624.	1.8	8
896	Importance of CSF-based Al̂² clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways. Communications Biology, 2022, 5, 98.	2.0	22
897	Endotype reversal as a novel strategy for screening drugs targeting familial Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 2117-2130.	0.4	9
898	Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Reviews and Reports, 2022, 18, 792-820.	1.7	25
899	iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell, 2022, 29, 189-208.	5.2	71
900	The Emergence of Model Systems to Investigate the Link Between Traumatic Brain Injury and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 813544.	1.7	5
901	Machine learning prediction and tau-based screening identifies potential Alzheimer's disease genes relevant to immunity. Communications Biology, 2022, 5, 125.	2.0	18
902	Unraveling pathological mechanisms in neurological disorders: the impact of cell-based and organoid models. Neural Regeneration Research, 2022, 17, 2131.	1.6	6
903	Insights into Human-Induced Pluripotent Stem Cell-Derived Astrocytes in Neurodegenerative Disorders. Biomolecules, 2022, 12, 344.	1.8	9
904	Modeling the Human Brain With ex vivo Slices and in vitro Organoids for Translational Neuroscience. Frontiers in Neuroscience, 2022, 16, 838594.	1.4	16
905	Ambroxol reverses tau and α-synuclein accumulation in a cholinergic N370S <i>GBA1</i> mutation model. Human Molecular Genetics, 2022, 31, 2396-2405.	1.4	10
908	Knockdown of Amyloid Precursor Protein: Biological Consequences and Clinical Opportunities. Frontiers in Neuroscience, 2022, 16, 835645.	1.4	10
909	Biobanking and Biomarkers in the Alzheimer's Disease Drug-Development Ecosystem. , 2022, , 123-134.		0
910	Translational potential of <scp>hiPSCs</scp> in predictive modeling of heart development and disease. Birth Defects Research, 2022, 114, 926-947.	0.8	2
912	Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer's disease. Molecular Neurodegeneration, 2022, 17, 27.	4.4	30

#	Article	IF	CITATIONS
913	Long-term adherence of human brain cells inÂvitro is enhanced by charged amine-based plasma polymer coatings. Stem Cell Reports, 2022, 17, 489-506.	2.3	11
914	Protective Effect of Human-Neural-Crest-Derived Nasal Turbinate Stem Cells against Amyloid-β Neurotoxicity through Inhibition of Osteopontin in a Human Cerebral Organoid Model of Alzheimer's Disease. Cells, 2022, 11, 1029.	1.8	5
915	Mitigating Effect of Estrogen in Alzheimer's Disease-Mimicking Cerebral Organoid. Frontiers in Neuroscience, 2022, 16, 816174.	1.4	10
916	Use of Induced Pluripotent Stem Cell-Derived Neuronal Disease Models from Patients with Familial Early-Onset Alzheimer's Disease in Drug Discovery. , 2022, , 95-105.		Ο
917	Cell models for Down syndrome-Alzheimer's disease research. Neuronal Signaling, 2022, 6, NS20210054.	1.7	3
918	Neural Differentiation of Human-Induced Pluripotent Stem Cells (hiPSc) on Surface-Modified Nanofibrous Scaffolds Coated with Platelet-Rich Plasma. Neurochemical Research, 2022, 47, 1991-2001.	1.6	3
919	Telomerase reverse transcriptase preserves neuron survival and cognition in Alzheimer's disease models. Nature Aging, 2021, 1, 1162-1174.	5.3	24
920	Programmed Cell Death Protein 1 Blockade Reduces Glycogen Synthase Kinase 3β Activity and Tau Hyperphosphorylation in Alzheimer's Disease Mouse Models. Frontiers in Cell and Developmental Biology, 2021, 9, 769229.	1.8	5
923	Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Frontiers in Molecular Neuroscience, 2022, 15, 883358.	1.4	17
939	Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. Journal of Tissue Engineering, 2022, 13, 204173142210953.	2.3	14
940	Advances in the Application of Induced Pluripotent Stem Cells in Alzheimer's Disease and Parkinson's Disease. Current Stem Cell Research and Therapy, 2023, 18, 154-162.	0.6	1
941	Advances in Recapitulating Alzheimer's Disease Phenotypes Using Human Induced Pluripotent Stem Cell-Based In Vitro Models. Brain Sciences, 2022, 12, 552.	1.1	4
942	Astrocytes Derived from Familial and Sporadic Alzheimer's Disease iPSCs Show Altered Calcium Signaling and Respond Differently to Misfolded Protein Tau. Cells, 2022, 11, 1429.	1.8	10
943	Induced Pluripotent Stem Cell-Based Drug Screening by Use of Artificial Intelligence. Pharmaceuticals, 2022, 15, 562.	1.7	10
945	Endosomal structure and APP biology are not altered in a preclinical mouse cellular model of Down syndrome. PLoS ONE, 2022, 17, e0262558.	1.1	0
946	Molecular Insights into Cell Type-specific Roles in Alzheimer's Disease: Human Induced Pluripotent Stem Cell-based Disease Modelling. Neuroscience, 2023, 518, 10-26.	1.1	5
947	Cell-line dependency in cerebral organoid induction: cautionary observations in Alzheimer's disease patient-derived induced pluripotent stem cells. Molecular Brain, 2022, 15, 46.	1.3	1
948	Induced Pluripotent Stem Cells. , 2022, , 1-25.		16

		CITATION REPORT		
#	Article		IF	CITATIONS
951	The future of stem cell therapies of Alzheimer's disease. Ageing Research Reviews, 2	2022, 80, 101655.	5.0	5
953	CDiP technology for reverse engineering of sporadic Alzheimerâ \in ^M s disease. Journal of 0, , .	Human Genetics,	1.1	1
956	"Cutting the Mustard―with Induced Pluripotent Stem Cells: An Overview and App Healthcare Paradigm. Stem Cell Reviews and Reports, 2022, 18, 2757-2780.	lications in	1.7	5
957	The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in n disorders. Translational Neurodegeneration, 2022, 11, .	eurological	3.6	15
958	Significance of native PLGA nanoparticles in the treatment of Alzheimer's disease patho Materials, 2022, 17, 506-525.	ology. Bioactive	8.6	12
959	Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Orga Cells, 2022, 11, 2647.	noid Models.	1.8	11
960	Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Usir Genome Editing Technologies. CRISPR Journal, 2022, 5, 517-535.	ıg Precision	1.4	3
961	An in vitro workflow of neuron-laden agarose-laminin hydrogel for studying small molec amyloidogenic condition. PLoS ONE, 2022, 17, e0273458.	cule-induced	1.1	1
962	Endosomal trafficking and related genetic underpinnings as a hub in Alzheimer's diseas Cellular Physiology, 2022, 237, 3803-3815.	e. Journal of	2.0	4
963	Brain aging, Alzheimer's disease, and the role of stem cells in primate comparative stud Comparative Neurology, 2022, 530, 2940-2953.	ies. Journal of	0.9	1
964	Native PLGA nanoparticles regulate APP metabolism and protect neurons against β-am Potential significance in Alzheimer's disease pathology. International Journal of Biologic Macromolecules, 2022, 219, 1180-1196.	yloid toxicity: :al	3.6	9
965	Human Embryonic Stem Cells as a Therapy for Alzheimer's Disease. , 2022, , 1-22.			0
966	CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Modelling, Research, and Therapeutics. Neurotoxicity Research, 2022, 40, 1597-1623.	e Disease	1.3	10
967	An in-silico approach to studying a very rare neurodegenerative disease using a disease prevalence with shared pathways and genes: Cerebral adrenoleukodystrophy and Alzhe Frontiers in Molecular Neuroscience, 0, 15, .	with higher ∙imer's disease.	1.4	3
968	Impact of the Flavonoid Quercetin on β-Amyloid Aggregation Revealed by Intrinsic Fluc Journal of Physical Chemistry B, 2022, 126, 7229-7237.	rescence.	1.2	7
969	Loss of endosomal exchanger NHE6 leads to pathological changes in tau in human neu Reports, 2022, 17, 2111-2126.	rons. Stem Cell	2.3	8
970	Building in vitro models of the brain to understand the role of <i>APOE</i> in Alzheimera Science Alliance, 2022, 5, e202201542.	쀙s disease. Life	1.3	2
971	Myocardial infarction from a tissue engineering and regenerative medicine point of view comprehensive review on models and treatments. Biophysics Reviews, 2022, 3, .	v: A	1.0	5

#	Article	IF	CITATIONS
972	Prevention of ribosome collision-induced neuromuscular degeneration by SARS CoV-2–encoded Nsp1. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
973	Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn from Cell-Based In Vitro Assays?. International Journal of Molecular Sciences, 2022, 23, 11527.	1.8	4
975	Neurons derived from individual early Alzheimer's disease patients reflect their clinical vulnerability. Brain Communications, 2022, 4, .	1.5	8
976	Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. Journal of Drug Targeting, 2023, 31, 243-260.	2.1	7
977	Brain Regional Identity and Cell Type Specificity Landscape of Human Cortical Organoid Models. International Journal of Molecular Sciences, 2022, 23, 13159.	1.8	2
978	Human cerebral organoids — a new tool for clinical neurology research. Nature Reviews Neurology, 2022, 18, 661-680.	4.9	49
979	Synaptogenic effect of <i>APP</i> -Swedish mutation in familial Alzheimer's disease. Science Translational Medicine, 2022, 14, .	5.8	29
980	Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model. Nature Communications, 2022, 13, .	5.8	14
981	Human Brain Banking as a Convergence Platform of Neuroscience and Neuropsychiatric Research. , 2022, 1, .		1
982	Emerging Role of miR-21-5p in Neuron–Glia Dysregulation and Exosome Transfer Using Multiple Models of Alzheimer's Disease. Cells, 2022, 11, 3377.	1.8	12
983	Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating. Frontiers in Chemical Engineering, 0, 4, .	1.3	0
984	Druggable transcriptomic pathways revealed in Parkinson's patient-derived midbrain neurons. Npj Parkinson's Disease, 2022, 8, .	2.5	9
985	Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells, 2022, 11, 3476.	1.8	9
986	Advantages and limitations of hiPSC-derived neurons for the study of neurodegeneration. , 2023, , 243-261.		0
987	Induced Pluripotent Stem Cells. , 2022, , 895-919.		0
988	A 3D-induced pluripotent stem cell-derived human neural culture model to study certain molecular and biochemical aspects of Alzheimer's disease. In Vitro Models, 2022, 1, 447-462.	1.0	1
989	Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons and Glia for the Elucidation of Pathogenic Mechanisms in Alzheimer's Disease. Methods in Molecular Biology, 2023, , 105-133.	0.4	3
991	Brain organoids: Establishment and application. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4

ARTICLE IF CITATIONS Induced pluripotent stem cell-derived and directly reprogrammed neurons to study 993 1.7 9 neurodegenerative diseases: The impact of aging signatures. Frontiers in Aging Neuroscience, 0, 14, . Defective proteostasis in induced pluripotent stem cell models of frontotemporal lobar 2.4 degeneration. Translational Psychiatry, 2022, 12, . 996 Models of Neurodegenerative Diseases. Learning Materials in Biosciences, 2023, , 179-209. 0.2 0 Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer's disease. Cell Stem Cell, 2022, 29, 1637-1652.e6. A threeâ€dimensional spheroid coâ€culture system of neurons and astrocytes derived from Alzheimer's 998 2.4 0 disease patients for drug efficacy testing. Cell Proliferation, 0, , . Alzheimer's disease and synapse Loss: What can we learn from induced pluripotent stem Cells?. Journal of Advanced Research, 2023, 54, 105-118. 4.4 iPS cell technologies toward overcoming neurological diseases. Folia Pharmacologica Japonica, 2023, 1000 0.1 0 158, 57-63. The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer's 1.8 10 Disease. Cells, 2023, 12, 420. A Function of Amyloid-β in Mediating Activity-Dependent Axon/Synapse Competition May Unify Its Roles 1003 1.2 2 in Brain Physiology and Pathology. Journal of Alzheimer's Disease, 2023, , 1-29. 1004 Human Embryonic Stem Cells as a Therapy for Alzheimer's Disease. , 2023, , 797-818. Reprogramming of adult human dermal fibroblasts to induced dorsal forebrain precursor cells 1005 2 1.8 maintains aging signatures. Frontiers in Cellular Neuroscience, 0, 17, . Derivation of Sendai-Virus-Reprogrammed Human iPSCs-Neuronal Precursors: <i>In Vitro</i> 1.2 Vivo</i> Post-grafting Safety Characterization. Cell Transplantation, 2023, 32, 096368972311632. Alzheimer Hastalığı'nda In Vivo ve In Vitro Modeller. , 2023, 6, 54-77. 1007 0 Comprehensive Bibliometric Analysis of Stem Cell Research in Alzheimer's Disease from 2004 to 2022. Dementia and Geriatric Cognitive Disorders, 2023, 52, 47-73. 1008 Overexpression of alpha synuclein disrupts APP and Endolysosomal axonal trafficking in a mouse 1010 2.1 1 model of synucleinopathy. Neurobiology of Disease, 2023, 178, 106010. The Amyloid-Beta Clearance: From Molecular Targets to Glial and Neural Cells. Biomolecules, 2023, 13, 1.8 313. Modifications of the endosomal compartment in fibroblasts from sporadic Alzheimer's disease 1012 2.4 3 patients are associated with cognitive impairment. Translational Psychiatry, 2023, 13, . Reverse electron transfer is activated during aging and contributes to aging and ageâ€related disease. EMBO Reports, 2023, 24, .

#	Article	IF	CITATIONS
1014	Inflammation-Mediated Responses in the Development of Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2023, , 39-70.	0.8	1
1015	Application of Human Stem Cells to Model Genetic Sensorineural Hearing Loss and Meniere Disease. Cells, 2023, 12, 988.	1.8	1
1016	Human neurons lacking amyloid precursor protein exhibit cholesterolâ€associated developmental and presynaptic deficits. Journal of Cellular Physiology, 0, , .	2.0	2
1018	Loss of CNTNAP2 Alters Human Cortical Excitatory Neuron Differentiation and Neural Network Development. Biological Psychiatry, 2023, 94, 780-791.	0.7	5
1019	Moving beyond amyloid and tau to capture the biological heterogeneity of Alzheimer's disease. Trends in Neurosciences, 2023, 46, 426-444.	4.2	11
1021	CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types. Cell Genomics, 2023, 3, 100300.	3.0	3
1022	Accelerated long-term forgetting: A sensitive paradigm for detecting subtle cognitive impairment and evaluating BACE1 inhibitor efficacy in preclinical Alzheimer's disease. , 0, 2, .		1
1023	The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells, 2023, 12, 1204.	1.8	1
1024	High-content synaptic phenotyping in human cellular models reveals a role for BET proteins in synapse assembly. ELife, 0, 12, .	2.8	3
1029	iPSCs-Derived Neurons and Brain Organoids from Patients. Handbook of Experimental Pharmacology, 2023, , .	0.9	1
1031	Cellular senescence and neurodegeneration. Human Genetics, 2023, 142, 1247-1262.	1.8	4
1032	Gut microbiota and circadian rhythm in Alzheimer's disease pathophysiology: a review and hypothesis on their association. , 2023, 9, .		0
1040	Beyond animal models: revolutionizing neurodegenerative disease modeling using 3D in vitro organoids, microfluidic chips, and bioprinting. Cell and Tissue Research, 2023, 394, 75-91.	1.5	6