Effects of chemical bonding on heat transport across in

Nature Materials 11, 502-506 DOI: 10.1038/nmat3303

Citation Report

#	Article	IF	CITATIONS
3	Electronic and Magnetic Properties of Mn12 Molecular Magnets on Sulfonate and Carboxylic Acid Prefunctionalized Gold Surfaces. Journal of Physical Chemistry C, 2012, 116, 14936-14942.	1.5	24
4	Origins of thermal boundary conductance of interfaces involving organic semiconductors. Journal of Applied Physics, 2012, 112, .	1.1	41
5	Carbon nanotube thermal interfaces enhanced with sprayed on nanoscale polymer coatings. Nanotechnology, 2013, 24, 105401.	1.3	32
6	Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon, 2013, 61, 441-457.	5.4	42
7	Active control of thermal transport in molecular spin valves. Physical Review B, 2013, 88, .	1.1	5
8	Enhancement of thermal and mechanical properties of flexible graphene oxide/carbon nanotube hybrid films though direct covalent bonding. Journal of Materials Science, 2013, 48, 7011-7021.	1.7	14
9	Effect of Surfactant and Solvent on Spin–Lattice Relaxation Dynamics of Magnetic Nanocrystals. Journal of Physical Chemistry B, 2013, 117, 4399-4405.	1.2	1
10	Ultrasensitive Molecular Detection Using Thermal Conductance of a Hydrophobic Gold–Water Interface. Nano Letters, 2013, 13, 4142-4147.	4.5	13
11	Effect of diamond surface orientation on the thermal boundary conductance between diamond and aluminum. Diamond and Related Materials, 2013, 39, 8-13.	1.8	31
12	Ultralow Thermal Conductivity of Atomic/Molecular Layer-Deposited Hybrid Organic–Inorganic Zincone Thin Films. Nano Letters, 2013, 13, 5594-5599.	4.5	94
13	The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces. Nanotechnology, 2013, 24, 165702.	1.3	92
14	Influence of interfacial properties on thermal transport at gold:silicon contacts. Applied Physics Letters, 2013, 102, .	1.5	69
15	Tuning Phonon Transport: From Interfaces to Nanostructures. Journal of Heat Transfer, 2013, 135, .	1.2	38
16	Polyhedral Oligosilsesquioxaneâ€Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. Advanced Functional Materials, 2013, 23, 1824-1831.	7.8	529
17	Breaking through barriers. Nature Materials, 2013, 12, 382-384.	13.3	21
18	Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nature Materials, 2013, 12, 410-415.	13.3	218
19	Nanoscale heat transfer – from computation to experiment. Physical Chemistry Chemical Physics, 2013, 15, 3389.	1.3	218
20	Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Review of Scientific Instruments, 2013 84 034902	0.6	120

		CITATION REPORT		
#	Article		IF	CITATIONS
21	Van der Waals interaction-tuned heat transfer in nanostructures. Nanoscale, 2013, 5,	128-133.	2.8	29
22	Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their e thermophysical properties. Journal of Solid State Chemistry, 2013, 202, 168-172.	nhanced	1.4	4
23	Ultralow Thermal Conductivity in Organoclay Nanolaminates Synthesized via Simple S Nano Letters, 2013, 13, 2215-2219.	elf-Assembly.	4.5	68
24	Post-degradation forces kick in. Nature Materials, 2013, 12, 384-386.		13.3	16
25	Influence of diamond surface termination on thermal boundary conductance between diamond. Journal of Applied Physics, 2013, 113, .	Al and	1.1	39
27	An ab initio study of ZrB2–SiC interface strength as a function of temperature: Corr and electronic thermal contributions. Journal of the European Ceramic Society, 2013,	elating phononic 33, 615-625.	2.8	11
28	Thermal rectification at silicon/horizontally aligned carbon nanotube interfaces. Journa Physics, 2013, 113, 194307.	al of Applied	1.1	51
29	Thermal Transfer in Graphene-Interfaced Materials: Contact Resistance and Interface E Applied Materials & Interfaces, 2013, 5, 2599-2603.	Ingineering. ACS	4.0	47
30	Formation of <scp>C</scp> u <scp>A</scp> l <scp>O</scp> ₂ at the <scp>C</scp> u/ <scp>A</scp> l ₂ <scp>O</scp> ₃ Interface a Interface Strength and Thermal Conductivity. International Journal of Applied Ceramic 2013, 10, 780-789.	nd its Influence on Technology,	1.1	10
31	Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Ron Disorder, Dislocations, and Bonding on Thermal Boundary Conductance. ISRN Mechan Engineering, 2013, 2013, 1-19.		0.9	212
32	Phonon interference effects in molecular junctions. Journal of Chemical Physics, 2013,	, 139, 244101.	1.2	32
33	Effect of interface adhesion and impurity mass on phonon transport at atomic junctio Applied Physics, 2013, 113, .	ns. Journal of	1.1	36
34	Orientation dependence of electron and phonon thermal conduction and its correlation mechanical strength in aluminum interfaces. Journal of Applied Physics, 2013, 114, 03		1.1	3
35	Thermal resistance at Al-Ge2Sb2Te5 interface. Applied Physics Letters, 2013, 102, .		1.5	17
36	Improving thermoelectric efficiency in organic-metal nanocomposites via extra-low the conductance. Journal of Applied Physics, 2013, 114, 194303.	ermal boundary	1.1	18
37	Impedance Matching of Atomic Thermal Interfaces Using Primitive Block Decomposition and Microscale Thermophysical Engineering, 2013, 17, 263-279.	on. Nanoscale	1.4	18
38	Evaluation of Thermal Conductive Resistance at Organic–Inorganic Interface and Eff on Thermal Conductivity of Composite Materials. Japanese Journal of Applied Physics,	fect of Interfaces 2013, 52, 081601.	0.8	4
39	Transient lattice distortion induced by ultrashort heat pulse propagation through thin metal/metal interface. Applied Physics Letters, 2013, 102, 051915.	film	1.5	4

#	Article	IF	CITATIONS
40	Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire. Chinese Physics B, 2014, 23, 107307.	0.7	13
41	Designing <i>Ï€</i> -stacked molecular structures to control heat transport through molecular junctions. Applied Physics Letters, 2014, 105, .	1.5	32
42	Size effect on the thermal conductivity of ultrathin polystyrene films. Applied Physics Letters, 2014, 104, 153110.	1.5	43
43	Ballistic vs. diffusive heat transfer across nanoscopic films of layered crystals. Journal of Applied Physics, 2014, 115, .	1.1	17
44	Remote optoâ€acoustic probing of singleâ€cell adhesion on metallic surfaces. Journal of Biophotonics, 2014, 7, 453-459.	1.1	10
45	Thermal boundary conductance across rough interfaces probed by molecular dynamics. Physical Review B, 2014, 89, .	1.1	76
46	Time-resolved X-ray diffraction studies of laser-induced acoustic wave propagation in bilayer metallic thin crystals. Journal of Applied Physics, 2014, 116, 093509.	1.1	2
47	Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces. Physical Review B, 2014, 90, .	1.1	53
48	Spatial nonuniformity in heat transport across hybrid material interfaces. Physical Review B, 2014, 90,	1.1	12
49	A Pyrenylpropyl Phosphonic Acid Surface Modifier for Mitigating the Thermal Resistance of Carbon Nanotube Contacts. Advanced Functional Materials, 2014, 24, 465-471.	7.8	48
50	Seebeck Effect at the Atomic Scale. Physical Review Letters, 2014, 112, 136601.	2.9	32
51	Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1, 011305.	5.5	1,277
52	Wellâ€Ordered and High Density Coordinationâ€īype Bonding to Strengthen Contact of Silver Nanowires on Highly Stretchable Polydimethylsiloxane. Advanced Functional Materials, 2014, 24, 3276-3283.	7.8	64
53	Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polymer Composites, 2014, 35, 1087-1092.	2.3	113
54	Thermal Conductivity of Mechanically Joined Semiconducting/Metal Nanomembrane Superlattices. Nano Letters, 2014, 14, 2387-2393.	4.5	20
55	Heat flow at nanoparticle interfaces. Nano Energy, 2014, 6, 137-158.	8.2	128
56	Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications, 2014, 5, 3689.	5.8	735
57	Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces. Journal of Applied Physics, 2014, 115, .	1.1	46

#	Article	IF	CITATIONS
58	Thermoelectric Properties of Two-Phase PbTe with Indium Inclusions. Journal of Electronic Materials, 2014, 43, 1630-1638.	1.0	12
59	Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nature Communications, 2014, 5, 3082.	5.8	125
60	Heat transfer in heterogeneous nanostructures can be described by a simple chain model. Physical Chemistry Chemical Physics, 2014, 16, 16914-16918.	1.3	5
61	Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Advances, 2014, 4, 22101-22105.	1.7	98
62	Surface polarization enhanced Seebeck effects in vertical multi-layer metal–polymer–metal thin-film devices. Physical Chemistry Chemical Physics, 2014, 16, 22201-22206.	1.3	17
63	Enhancement of Optical and Electrochemical Properties via Bottom-Up Assembly of Binary Oligomer System. Journal of Physical Chemistry C, 2014, 118, 9578-9587.	1.5	16
64	Eutectic bonding of copper to ceramics for thermal dissipation applications – A review. Journal of the European Ceramic Society, 2014, 34, 4117-4130.	2.8	42
65	Molecular Tailoring of Interfacial Failure. Langmuir, 2014, 30, 11096-11102.	1.6	23
66	Length-Dependent Thermal Transport along Molecular Chains. Physical Review Letters, 2014, 113, 060801.	2.9	127
67	Thermal Characterization of Diamond Films through Modulated Photothermal Radiometry. ACS Applied Materials & Interfaces, 2014, 6, 2095-2102.	4.0	6
68	Coupling of Organic and Inorganic Vibrational States and Their Thermal Transport in Nanocrystal Arrays. Journal of Physical Chemistry C, 2014, 118, 7288-7295.	1.5	68
69	The critical power to maintain thermally stable molecular junctions. Nature Communications, 2014, 5, 4297.	5.8	26
70	Giant ultrafast photo-induced shear strain in ferroelectric BiFeO3. Nature Communications, 2014, 5, 4301.	5.8	129
71	Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments. Nature Communications, 2014, 5, 5075.	5.8	182
72	Tuning the Adsorption of Aromatic Molecules on Platinum via Halogenation. Journal of Physical Chemistry C, 2014, 118, 6235-6241.	1.5	21
73	Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions. Organic Electronics, 2014, 15, 1884-1889.	1.4	16
74	Thermal boundary conductance between refractory metal carbides and diamond. Acta Materialia, 2014, 73, 337-346.	3.8	42
75	Emerging challenges and materials for thermal management of electronics. Materials Today, 2014, 17, 163-174.	8.3	1,359

#	Article	IF	Citations
76	Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage. Journal of Materials Research, 2015, 30, 1403-1412.	1.2	47
77	Heat transport across a gold nanowire/water interface enhanced by the solution ionic strength. Materials Research Society Symposia Proceedings, 2015, 1779, 33-38.	0.1	1
78	Optical Probe Thermometry Using Optically Trapped Erbium Oxide Nanoparticles. Materials Research Society Symposia Proceedings, 2015, 1779, 59-67.	0.1	0
79	Thermal Resistance of Transferred-Silicon-Nanomembrane Interfaces. Physical Review Letters, 2015, 115, 256101.	2.9	28
80	Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures. Journal of Applied Physics, 2015, 117, .	1.1	29
81	Beating the amorphous limit in thermal conductivity by superlattices design. Scientific Reports, 2015, 5, 14116.	1.6	54
82	The contact area dependent interfacial thermal conductance. AIP Advances, 2015, 5, .	0.6	10
83	Characterization of Carbon Nanotube Forest Interfaces Using Time Domain Thermoreflectance. , 2015, ,		1
84	Thermal Boundary Conductance at Metal-Graphene-Metal Interfaces Using Time-Domain Thermoreflectance Method. , 2015, , .		0
85	Effect of Covalent Functionalization on Thermal Transport across Graphene–Polymer Interfaces. Journal of Physical Chemistry C, 2015, 119, 12731-12738.	1.5	126
86	Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry. ACS Nano, 2015, 9, 12079-12087.	7.3	32
87	Anisotropic Thermal Transport in Organic–Inorganic Hybrid Crystal β-ZnTe(en)0.5. Journal of Physical Chemistry C, 2015, 119, 28300-28308.	1.5	16
88	Influence of a Nanometric Al ₂ O ₃ Interlayer on the Thermal Conductance of an Al/(Si, Diamond) Interface. Advanced Engineering Materials, 2015, 17, 68-75.	1.6	12
89	Comprehensive Study of Thermal Transport and Coherent Acoustic-Phonon Wave Propagation in Thin Metal Film–Substrate by Applying Picosecond Laser Pump–Probe Method. Journal of Physical Chemistry C, 2015, 119, 5152-5159.	1.5	40
90	Metal Matrix–Metal Nanoparticle Composites with Tunable Melting Temperature and High Thermal Conductivity for Phase-Change Thermal Storage. ACS Nano, 2015, 9, 1341-1351.	7.3	84
91	Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory. Physical Review B, 2015, 91, .	1.1	74
92	Exploring the implications of the Lorentz number approaches one in organic thermoelectrics. Journal of Materials Science: Materials in Electronics, 2015, 26, 830-832.	1.1	2
93	Thermal conductance of metal–diamond interfaces at high pressure. Nature Communications, 2015, 6, 6578.	5.8	146

#	ARTICLE	IF	CITATIONS
94	Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Composites Part A: Applied Science and Manufacturing, 2015, 78, 95-101.	3.8	118
95	Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces. Nano Letters, 2015, 15, 4876-4882.	4.5	68
96	Tunable heat conduction through coupled Fermi-Pasta-Ulam chains. Physical Review E, 2015, 91, 012136.	0.8	8
97	Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method. Materials Characterization, 2015, 106, 346-351.	1.9	32
98	Optical and electrochemical properties of covalent assembled bis(4â€2-carboxylic phenyl terpyridyl) Ru(<scp>ii</scp>)-monolayer. New Journal of Chemistry, 2015, 39, 7403-7408.	1.4	6
99	Cooling dynamics of self-assembled monolayer coating for integrated gold nanocrystals on a glassÂsubstrate. Journal of Synchrotron Radiation, 2015, 22, 29-33.	1.0	2
100	Interfacial Wettability and Thermal Conductivity of Diamond/Al Based Composites with Ti and B Additions. Materials Science Forum, 0, 816, 169-176.	0.3	1
101	Tuning thermal conductance across sintered silicon interface by local nanostructures. Nano Energy, 2015, 13, 601-608.	8.2	24
102	Vibrational Mismatch of Metal Leads Controls Thermal Conductance of Self-Assembled Monolayer Junctions. Nano Letters, 2015, 15, 2985-2991.	4.5	104
103	Engineering Synergy: Energy and Mass Transport in Hybrid Nanomaterials. Advanced Materials, 2015, 27, 5744-5752.	11.1	36
104	Manipulation of interfacial thermal conductance via Rhodamine 6G. Science Bulletin, 2015, 60, 654-656.	4.3	1
105	High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Advances, 2015, 5, 36334-36339.	1.7	194
106	Thermal conductance of strongly bonded metal-oxide interfaces. Physical Review B, 2015, 91, .	1.1	65
107	飞秒æ;€å‰æŠ½è;æŽ¢æµ‹æ–¹æ³•æµ‹é‡æ¶²ä½"çfå⁻¼çއ. Chinese Science Bulletin, 2015, 60, 1320-1327.	0.4	3
108	Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks. ACS Applied Materials & Interfaces, 2015, 7, 11755-11764.	4.0	37
109	Band-Selective Ballistic Energy Transport in Alkane Oligomers: Toward Controlling the Transport Speed. Journal of Physical Chemistry B, 2015, 119, 6448-6456.	1.2	34
110	Phonon Dynamics at Surfaces and Interfaces and Its Implications in Energy Transport in Nanostructured Materials—An opinion Paper. Nanoscale and Microscale Thermophysical Engineering, 2015, 19, 166-182.	1.4	46
111	Flexible n-type thermoelectric materials by organic intercalation of layered transition metalÂdichalcogenide TiS2. Nature Materials, 2015, 14, 622-627.	13.3	612

#	Article	IF	CITATIONS
112	Tuning the Interfacial Thermal Conductance between Polystyrene and Sapphire by Controlling the Interfacial Adhesion. ACS Applied Materials & Interfaces, 2015, 7, 23644-23649.	4.0	40
113	Microscopic Origin of Thermal Conductivity Reduction in Disordered van der Waals Solids. Chemistry of Materials, 2015, 27, 5511-5518.	3.2	33
114	A detailed microscopic study of the heat transfer at a water gold interface coated with a polymer. Applied Physics Letters, 2015, 106, .	1.5	17
115	Room-temperature ballistic energy transport in molecules with repeating units. Journal of Chemical Physics, 2015, 142, 212412.	1.2	25
116	Enhancing solid-liquid interface thermal transport using self-assembled monolayers. Applied Physics Letters, 2015, 106, .	1.5	65
117	Efficiency fluctuations in quantum thermoelectric devices. Physical Review B, 2015, 91, .	1.1	53
118	Mechanisms of nonequilibrium electron-phonon coupling and thermal conductance at interfaces. Journal of Applied Physics, 2015, 117, .	1.1	71
119	Mechanical Tuning of Thermal Transport in a Molecular Junction. Journal of Physical Chemistry C, 2015, 119, 24636-24642.	1.5	49
120	Thermal transport across carbon nanotube-graphene covalent and van der Waals junctions. Journal of Applied Physics, 2015, 118, .	1.1	52
121	Thermal Conductance across Phosphonic Acid Molecules and Interfaces: Ballistic versus Diffusive Vibrational Transport in Molecular Monolayers. Journal of Physical Chemistry C, 2015, 119, 20931-20939.	1.5	24
122	Ballistic Energy Transport in Oligomers. Accounts of Chemical Research, 2015, 48, 2547-2555.	7.6	45
123	Engineering Acoustic Phonons and Electron–Phonon Coupling by the Nanoscale Interface. Nano Letters, 2015, 15, 6282-6288.	4.5	31
124	Self-assembled block copolymer micelles with silver–carbon nanotube hybrid fillers for high performance thermal conduction. Nanoscale, 2015, 7, 1888-1895.	2.8	16
125	Magneto-ionic control of interfacial magnetism. Nature Materials, 2015, 14, 174-181.	13.3	444
126	Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology, 2015, 10, 277-283.	15.6	1,103
127	Probing single-cell mechanics with picosecond ultrasonics. Ultrasonics, 2015, 56, 160-171.	2.1	32
128	Exceptional Thermal Conductance across Hydrogenâ€Bonded Graphene/Polymer Interfaces. Advanced Materials Interfaces, 2016, 3, 1600211.	1.9	38
129	Boron Nitride Nanosheets (BNNSs) Chemically Modified by "Graftingâ€From―Polymerization of Poly(caprolactone) for Thermally Conductive Polymer Composites. Chemistry - an Asian Journal, 2016, 11, 1921-1928.	1.7	44

#	Article	IF	CITATIONS
130	Resistive Switching in Allâ€Oxide Ferroelectric Tunnel Junctions with Ionic Interfaces. Advanced Materials, 2016, 28, 6852-6859.	11.1	75
131	Enhanced energy transport owing to nonlinear interface interaction. Scientific Reports, 2016, 6, 19628.	1.6	7
132	Watching the Vibration and Cooling of Ultrathin Gold Nanotriangles by Ultrafast X-ray Diffraction. Journal of Physical Chemistry C, 2016, 120, 28894-28899.	1.5	19
133	Ceramic-Metal Composite Filler for Thermally Conductive Underfill. , 2016, , .		Ο
135	Understanding and eliminating artifact signals from diffusely scattered pump beam in measurements of rough samples by time-domain thermoreflectance (TDTR). Review of Scientific Instruments, 2016, 87, 064901.	0.6	35
136	Morse potential-based model for contacting composite rough surfaces: Application to self-assembled monolayer junctions. Journal of Applied Physics, 2016, 119, .	1.1	9
137	Thermal properties measurements of a silica/pyrocarbon composite at the microscale. Journal of Applied Physics, 2016, 120, 245101.	1.1	0
138	Effect of interlayer on interfacial thermal transport and hot electron cooling in metal-dielectric systems: An electron-phonon coupling perspective. Journal of Applied Physics, 2016, 119, .	1.1	38
139	Investigation of phonon transport and thermal boundary conductance at the interface of functionalized SWCNT and poly (ether-ketone). Journal of Applied Physics, 2016, 120, .	1.1	11
140	Nanostructures Significantly Enhance Thermal Transport across Solid Interfaces. ACS Applied Materials & Interfaces, 2016, 8, 35505-35512.	4.0	50
141	Interfacial thermal conductance of thiolate-protected gold nanospheres. Journal of Applied Physics, 2016, 119, .	1.1	29
142	Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer. Review of Scientific Instruments, 2016, 87, 094902.	0.6	41
143	Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.2	328
144	Phononic thermal resistance due to a finite periodic array of nano-scatterers. Journal of Applied Physics, 2016, 120, 044305.	1.1	1
145	Highly thermally conductive polymer nanocomposites based on boron nitride nanosheets decorated with silver nanoparticles. RSC Advances, 2016, 6, 41630-41636.	1.7	58
146	Vibrational Heat Transport in Molecular Junctions. Annual Review of Physical Chemistry, 2016, 67, 185-209.	4.8	96
147	Heat transport in low-dimensional materials: A review and perspective. Theoretical and Applied Mechanics Letters, 2016, 6, 113-121.	1.3	39
148	Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites. Nano Letters, 2016, 16, 3585-3593.	4.5	289

#	Article	IF	CITATIONS
149	Nanoscale mechanical tailoring of interfaces using self-assembled monolayers. Mechanics of Materials, 2016, 98, 71-80.	1.7	6
150	Enhancing thermal transport in nanocomposites by polymer-graft modification of particle fillers. Polymer, 2016, 93, 72-77.	1.8	20
151	Covalent bonding modulated graphene–metal interfacial thermal transport. Nanoscale, 2016, 8, 10993-11001.	2.8	35
152	Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons. Nano Letters, 2016, 16, 6178-6187.	4.5	59
153	Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3828-3831.	0.9	31
154	Enhancing the Thermal Conductance of Polymer and Sapphire Interface <i>via</i> Self-Assembled Monolayer. ACS Nano, 2016, 10, 7792-7798.	7.3	61
155	Toward highly thermally conductive all-carbon composites: Structure control. Carbon, 2016, 109, 575-597.	5.4	132
156	Thermalization and Thermal Transport in Molecules. Journal of Physical Chemistry Letters, 2016, 7, 5062-5067.	2.1	37
157	Length dependence of the thermal conductance of alkane-based single-molecule junctions: An <i>ab initio</i> study. Physical Review B, 2016, 94, .	1.1	40
158	Nanolaminated composite materials: structure, interface role and applications. RSC Advances, 2016, 6, 109361-109385.	1.7	50
159	Thermal Conductance of Poly(3-methylthiophene) Brushes. ACS Applied Materials & Interfaces, 2016, 8, 25578-25585.	4.0	19
160	Effect of functionalization on thermal conductivities of graphene/epoxy composites. Carbon, 2016, 108, 412-422.	5.4	184
161	Enhancement of Thermal Conductance at Metal-Dielectric Interfaces Using Subnanometer Metal Adhesion Layers. Physical Review Applied, 2016, 5, .	1.5	51
162	Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices. Physical Review B, 2016, 93, .	1.1	29
163	Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices. Physical Review B, 2016, 93, .	1.1	40
164	Electron transfer across a thermal gradient. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9421-9429.	3.3	50
165	Intercalated water layers promote thermal dissipation at bio–nano interfaces. Nature Communications, 2016, 7, 12854.	5.8	52
166	- Switching Mechanisms in Molecular Switches. , 2016, , 278-313.		0

#	Article	IF	CITATIONS
167	Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies. Scientific Reports, 2016, 6, 33471.	1.6	22
168	Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity. ACS Applied Materials & Interfaces, 2016, 8, 31248-31255.	4.0	139
169	Multi-scale Thermal Conductivity Measurements for Cryobiological Applications. Frontiers in Nanobiomedical Research, 2016, , 125-171.	0.1	2
170	Nonlinear transport in an out-of-equilibrium single-site Bose-Hubbard model: Scaling, rectification, and time dynamics. Physical Review A, 2016, 94, .	1.0	13
171	Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces – analytical study combined with molecular dynamics simulation. Physical Chemistry Chemical Physics, 2016, 18, 16794-16801.	1.3	23
172	A synergistic model for thermal conductivity with hybrid fillers in polymeric matrix composites. , 2016, , .		1
173	Thermopower measurements in molecular junctions. Chemical Society Reviews, 2016, 45, 4285-4306.	18.7	126
174	Effect of Ions and Ionic Strength on Surface Plasmon Absorption of Single Gold Nanowires. ACS Nano, 2016, 10, 6080-6089.	7.3	8
175	Highly thermal conductivity silicon nitride/carbon fibres/bismaleimide composites. Polymer Composites, 2016, 37, 468-471.	2.3	9
176	Thermal Conductivity of Self-Assembling Symmetric Block Copolymer Thin Films of Polystyrene-Block-Poly(methyl methacrylate). Journal of Heat Transfer, 2016, 138, .	1.2	8
177	Nanophononics: state of the art and perspectives. European Physical Journal B, 2016, 89, 1.	0.6	149
178	Nanothermometry using optically trapped erbium oxide nanoparticle. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	16
179	Thermal Boundary Conductance: A Materials Science Perspective. Annual Review of Materials Research, 2016, 46, 433-463.	4.3	185
180	Interface-facilitated energy transport in coupled Frenkel–Kontorova chains. Frontiers of Physics, 2016, 11, 1.	2.4	4
181	Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution. ACS Applied Materials & Interfaces, 2016, 8, 10581-10589.	4.0	50
182	An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface. Nanoscale, 2016, 8, 1994-2002.	2.8	59
183	Aerogels and Foamed Nanostructured Polymer Blends. , 2016, , 75-99.		7
184	Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Nanotechnology, 2017, 28, 095403.	1.3	6

#	Article	IF	CITATIONS
185	Molecular Tuning of the Vibrational Thermal Transport Mechanisms in Fullerene Derivative Solutions. ACS Nano, 2017, 11, 1389-1396.	7.3	10
186	Plasma-based chemical functionalization of graphene to control the thermal transport at graphene-metal interfaces. Surface and Coatings Technology, 2017, 314, 148-154.	2.2	12
187	Effects of interface roughness on cohesive strength of self-assembled monolayers. Applied Surface Science, 2017, 397, 192-198.	3.1	2
188	Bonding-induced thermal transport enhancement across a hard/soft material interface using molecular monolayers. Physical Chemistry Chemical Physics, 2017, 19, 7352-7358.	1.3	9
189	Progress in oxygen behaviors in two-dimensional thin films. Rare Metals, 2017, 36, 155-167.	3.6	8
190	A Strategy to Suppress Phonon Transport in Molecular Junctions Using π-Stacked Systems. Journal of Physical Chemistry C, 2017, 121, 7175-7182.	1.5	47
191	Enhanced Thermal Conduction Through Nanostructured Interfaces. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 134-144.	1.4	18
192	Metal–Organic–Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances. ACS Applied Materials & Interfaces, 2017, 9, 10120-10127.	4.0	17
193	Modification of thermal conductivity and thermal boundary resistance of amorphous Si thin films by Al doping. RSC Advances, 2017, 7, 7901-7905.	1.7	11
194	Effects of anisotropic nonconductive film properties on 3D IC integration. , 2017, , .		0
195	Developing heat conduction pathways through short polymer chains in a hydrogen bonded polymer system. Composites Science and Technology, 2017, 148, 97-105.	3.8	49
196	Assessment of Selfâ€Assembled Monolayers as Highâ€Performance Thermal Interface Materials. Advanced Materials Interfaces, 2017, 4, 1700355.	1.9	16
197	Multi-scale model of effects of roughness on the cohesive strength of self-assembled monolayers. International Journal of Fracture, 2017, 208, 131-143.	1.1	0
198	The Ultrafast Laser Pump-Probe Technique for Thermal Characterization of Materials With Micro/Nanostructures. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 177-198.	1.4	69
199	High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires. Nanoscale, 2017, 9, 5299-5304.	2.8	37
200	Flyweight 3D Graphene Scaffolds with Microinterface Barrier-Derived Tunable Thermal Insulation and Flame Retardancy. ACS Applied Materials & Interfaces, 2017, 9, 14232-14241.	4.0	67
201	Perspective: Thermal and thermoelectric transport in molecular junctions. Journal of Chemical Physics, 2017, 146, .	1.2	144
202	Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale, 2017, 9, 5996-6009.	2.8	124

#	Article	IF	Citations
203	Energy Transport across the Thin Films Pair with Presence of Minute Vacuum Gap at Interface. Journal of Non-Equilibrium Thermodynamics, 2017, 42, 113-131.	2.4	7
204	Multiscale Thermal Property Measurements for Biomedical Applications. ACS Biomaterials Science and Engineering, 2017, 3, 2669-2691.	2.6	18
205	How to characterize thermal transport capability of 2D materials fairly? – Sheet thermal conductance and the choice of thickness. Chemical Physics Letters, 2017, 669, 233-237.	1.2	103
206	Loads transfer across static electrical phase interfaces in silica aerogel/polymethyl methacrylate composites. Composites Science and Technology, 2017, 138, 169-178.	3.8	23
207	Cooperative Molecular Behavior Enhances the Thermal Conductance of Binary Self-Assembled Monolayer Junctions. Nano Letters, 2017, 17, 220-227.	4.5	36
208	Elastic Modulus and Thermal Conductivity of Thiolene/TiO ₂ Nanocomposites. Journal of Physical Chemistry C, 2017, 121, 25568-25575.	1.5	18
209	Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide. Nano Letters, 2017, 17, 7218-7225.	4.5	42
210	Thermal conductivity modeling of hybrid organic-inorganic crystals and superlattices. Nano Energy, 2017, 41, 394-407.	8.2	32
211	Thermally induced chain orientation for improved thermal conductivity of P(VDF-TrFE) thin films. Journal of Materials Chemistry C, 2017, 5, 10834-10838.	2.7	13
212	Influence of thermalization on thermal conduction through molecular junctions: Computational study of PEG oligomers. Journal of Chemical Physics, 2017, 147, 084701.	1.2	31
213	Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard–Soft Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 33740-33748.	4.0	21
214	Role of interfacial mode coupling of optical phonons on thermal boundary conductance. Scientific Reports, 2017, 7, 11011.	1.6	13
215	Thermal Energy Transport across Hard–Soft Interfaces. ACS Energy Letters, 2017, 2, 2283-2292.	8.8	64
216	Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement. ACS Nano, 2017, 11, 7915-7924.	7.3	32
217	Energy confinement and thermal boundary conductance effects on short-pulsed thermal ablation thresholds in thin films. Physical Review B, 2017, 96, .	1.1	9
218	Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 28949-28958.	4.0	33
219	Prediction of thermal boundary resistance by the machine learning method. Scientific Reports, 2017, 7, 7109.	1.6	71
220	Current status and progress of organic functionalization of CNT based thermal interface materials for electronics cooling applications. , 2017, , .		3

#	Article	IF	CITATIONS
221	Role of field-induced nanostructures, zippering and size polydispersity on effective thermal transport in magnetic fluids without significant viscosity enhancement. Journal of Magnetism and Magnetic Materials, 2017, 444, 29-42.	1.0	30
222	Thermal Conduction across Metal–Dielectric Sidewall Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 30100-30106.	4.0	9
223	Superlight, Mechanically Flexible, Thermally Superinsulating, and Antifrosting Anisotropic Nanocomposite Foam Based on Hierarchical Graphene Oxide Assembly. ACS Applied Materials & Interfaces, 2017, 9, 44010-44017.	4.0	60
224	Overview of polymer nanocomposites: Computer simulation understanding of physical properties. Polymer, 2017, 133, 272-287.	1.8	170
225	Interfacial thermal resistance across graphene/Al2O3 and graphene/metal interfaces and post-annealing effects. Carbon, 2017, 123, 18-25.	5.4	20
226	Study of the effect of adhesion and anharmonicity of atomic vibrations on the thermal conductance of "metal–dielectric―interfaces. Physics of the Solid State, 2017, 59, 1468-1476.	0.2	8
227	Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces. Physical Review B, 2017, 95, .	1.1	82
228	Thermal conductivity enhancement of poly(3-hydroxylbutyrate) composites by constructing segregated structure with the aid of poly(ethylene oxide). Composites Science and Technology, 2017, 149, 185-191.	3.8	32
229	Thermal conductance of interfaces with amorphous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">SiO<mml:mn>2</mml:mn></mml:mi </mml:msub> measured by time-resolved magneto-optic Kerr-effect thermometry. Physical Review B, 2017, 95, .</mml:math 	1.1	46
230	Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films. Acta Materialia, 2017, 122, 92-98.	3.8	72
231	Vibrational energy transport in molecules and the statistical properties of vibrational modes. Chemical Physics, 2017, 482, 81-85.	0.9	19
232	Vibrational energy transfer from photoexcited carbon nanotubes to proteins observed by coherent phonon spectroscopy. Applied Physics Express, 2017, 10, 125101.	1.1	3
233	Thermal insulation of silica aerogel/PMMA composites with amino-capped polydivinylsiloxane phase interfaces. Science and Engineering of Composite Materials, 2018, 25, 1107-1114.	0.6	5
234	Experimental evidence for the significant role of initial cluster size and liquid confinement on thermo-physical properties of magnetic nanofluids under applied magnetic field. Journal of Molecular Liquids, 2018, 257, 1-11.	2.3	33
235	A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Advanced Composites and Hybrid Materials, 2018, 1, 415-439.	9.9	139
236	Small Organic Linkers with Hybrid Terminal Groups Drive Efficient Phonon Transport in Polymers. Journal of Physical Chemistry C, 2018, 122, 10327-10333.	1.5	20
237	Transmission eigenchannels for coherent phonon transport. Physical Review B, 2018, 97, .	1.1	16
238	Opto-acoustic microscopy reveals adhesion mechanics of single cells. Review of Scientific Instruments, 2018, 89, 014901.	0.6	19

#	Article	IF	CITATIONS
239	The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites. Journal of Applied Physics, 2018, 123, .	1.1	16
240	Two-Dimensional Materials for Thermal Management Applications. Joule, 2018, 2, 442-463.	11.7	353
241	Thermal transport in semicrystalline polyethylene by molecular dynamics simulation. Journal of Applied Physics, 2018, 123, .	1.1	39
242	Enhanced thermal transport across multilayer graphene and water by interlayer functionalization. Applied Physics Letters, 2018, 112, .	1.5	62
243	Steepest entropy ascent quantum thermodynamic model of electron and phonon transport. Physical Review B, 2018, 97, .	1.1	20
244	Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification. Applied Surface Science, 2018, 442, 170-177.	3.1	16
245	Thermal conductivity anisotropy in nanostructures and nanostructured materials. Journal Physics D: Applied Physics, 2018, 51, 094003.	1.3	14
246	Shape and Size Control of Substrate-Grown Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy Detection of Chemical Analytes. Journal of Physical Chemistry C, 2018, 122, 2307-2314.	1.5	49
247	Coherent Discriminatory Modal Manipulation of Acoustic Phonons at the Nanoscale. Nano Letters, 2018, 18, 1124-1129.	4.5	9
248	Thermal transport in polymeric materials and across composite interfaces. Applied Materials Today, 2018, 12, 92-130.	2.3	299
249	Thermoelectricity in single-molecule devices. Materials Science and Technology, 2018, 34, 1275-1286.	0.8	7
250	Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS 2 using electron beam self-heating technique. Science Bulletin, 2018, 63, 452-458.	4.3	54
251	Synergistic effects of segregated network by polymethylmethacrylate beads and sintering of copper nanoparticles on thermal and electrical properties of epoxy composites. Composites Science and Technology, 2018, 155, 144-150.	3.8	40
252	A Theoretical Review on Interfacial Thermal Transport at the Nanoscale. Small, 2018, 14, 1702769.	5.2	83
253	Bioprosthesis of Core–Shell Gold Nanorod/Serum Albumin Nanoimitation: A Half-Native and Half-Artificial Nanohybrid for Cancer Theranostics. Chemistry of Materials, 2018, 30, 729-747.	3.2	18
254	Acoustic Mismatch Model for Thermal Contact Conductance of Van Der Waals Contacts Under Static Force. Nanoscale and Microscale Thermophysical Engineering, 2018, 22, 1-5.	1.4	8
255	Molecules and the Eigenstate Thermalization Hypothesis. Entropy, 2018, 20, 673.	1.1	9
256	Thermal insulation with 2D materials: liquid phase exfoliated vermiculite functional nanosheets. Nanoscale, 2018, 10, 23182-23190.	2.8	40

#	Article	IF	Citations
257	Heat transfer statistics in mixed quantum-classical systems. Journal of Chemical Physics, 2018, 149, 224104.	1.2	14
258	Aminopropyltrimethoxysilane-functionalized boron nitride nanotube based epoxy nanocomposites with simultaneous high thermal conductivity and excellent electrical insulation. Journal of Materials Chemistry A, 2018, 6, 20663-20668.	5.2	56
259	Acetone Gas Sensing Properties of Au-activated Ni-doped ZnO Nanoparticles Prepared by Coprecipitation Method. Rare Metal Materials and Engineering, 2018, 47, 1682-1688.	0.8	6
260	New Approach for Large-Area Thermoelectric Junctions with a Liquid Eutectic Gallium–Indium Electrode. Nano Letters, 2018, 18, 7715-7718.	4.5	86
261	Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. Journal of Applied Physics, 2018, 124, .	1.1	197
262	Thermal Transport: Overview. , 2018, , 1-11.		2
263	Tuning the Oxidation Degree of Graphite toward Highly Thermally Conductive Graphite/Epoxy Composites. Chemistry of Materials, 2018, 30, 7473-7483.	3.2	29
264	An electrochemical thermal transistor. Nature Communications, 2018, 9, 4510.	5.8	105
265	Influence of the thickness of a nanometric copper interlayer on Au/dielectric thermal boundary conductance. Journal of Applied Physics, 2018, 124, .	1.1	19
266	Effect of Ti interlayer on interfacial thermal conductance between CuÂand diamond. Acta Materialia, 2018, 160, 235-246.	3.8	111
267	Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nature Communications, 2018, 9, 2019.	5.8	71
268	The influence of titanium adhesion layer oxygen stoichiometry on thermal boundary conductance at gold contacts. Applied Physics Letters, 2018, 112, 171602.	1.5	23
269	Thermal conductivity and thermal boundary resistance of atomic layer deposited high- <i>k</i> dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon. APL Materials, 2018, 6, .	2.2	82
270	Small Saccharides as a Blanket around Proteins: A Computational Study. Journal of Physical Chemistry B, 2018, 122, 7277-7285.	1.2	11
271	Significant Strainâ€Induced Orbital Reconstruction and Strong Interfacial Magnetism in TiNi(Nb)/Ferromagnet/Oxide Heterostructures via Oxygen Manipulation. Advanced Functional Materials, 2018, 28, 1803335.	7.8	30
272	Optimizing the Interfacial Thermal Conductance at Gold–Alkane Junctions From "First Principles― Journal of Heat Transfer, 2018, 140, .	1.2	8
273	Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches. Nanotechnology, 2018, 29, 432001.	1.3	50
274	Thermal Transport across SiC–Water Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 29179-29186.	4.0	25

#	Article	IF	CITATIONS
275	The impact of tilt grain boundaries on the thermal transport in perovskite SrTiO ₃ layered nanostructures. A computational study. Nanoscale, 2018, 10, 15010-15022.	2.8	14
276	Photocarrier Radiometry for Non-contact Evaluation of Monocrystalline Silicon Solar Cell Under Low-Energy (< 200ÂkeV) Proton Irradiation. International Journal of Thermophysics, 2018, 39, 1.	1.0	0
277	Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip–surface contact resistance models. Nanoscale Horizons, 2018, 3, 505-516.	4.1	21
278	High Performance Metal-Based Nanocomposite Thermal Interface Materials Toward Enhanced Cooling Efficiency in Electronic Applications. , 2018, , .		0
279	Thermal Rectification via Heterojunctions of Solid-State Phase-Change Materials. Physical Review Applied, 2018, 10, .	1.5	28
280	Energy Relaxation and Thermal Transport in Molecules. , 2018, , 1-22.		0
281	Oxidation limited thermal boundary conductance at metal-graphene interface. Carbon, 2018, 139, 913-921.	5.4	13
282	Low-energy, nanoparticle reshaping for large-area, patterned, plasmonic nanocomposites. Journal of Materials Chemistry C, 2018, 6, 7157-7169.	2.7	7
283	High Thermal Boundary Conductance across Bonded Heterogeneous GaN–SiC Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 33428-33434.	4.0	82
284	Enhancing the interfacial thermal conduction of the graphene sheets <i>via</i> chemical bond–bond connections. AIP Advances, 2019, 9, 085106.	0.6	0
285	Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications. ACS Applied Materials & Interfaces, 2019, 11, 26507-26517.	4.0	41
286	Two Different Length-Dependent Regimes in Thermoelectric Large-Area Junctions of <i>n</i> -Alkanethiolates. Chemistry of Materials, 2019, 31, 5973-5980.	3.2	27
287	Nanoscale thermal mapping of few-layer organic crystals. CrystEngComm, 2019, 21, 5402-5409.	1.3	5
288	Effect of light atoms on thermal transport across solid–solid interfaces. Physical Chemistry Chemical Physics, 2019, 21, 17029-17035.	1.3	17
289	Cross-plane thermal transport measurements across CVD grown few layer graphene films on a silicon substrate. AIP Advances, 2019, 9, .	0.6	4
290	Chemical bonding mechanism in SERS effect of pyridine by CuO nanoparticles. Journal of Raman Spectroscopy, 2019, 50, 1395-1404.	1.2	5
291	Self-Assembled Monolayers for the Polymer/Semiconductor Interface with Improved Interfacial Thermal Management. ACS Applied Materials & amp; Interfaces, 2019, 11, 42708-42714.	4.0	27
292	Energy Transport across Interfaces in Biomolecular Systems. Journal of Physical Chemistry B, 2019, 123, 9507-9524.	1.2	33

#	Article	IF	CITATIONS
293	Enhancing Thermal Boundary Conductance of Graphite–Metal Interface by Triazine-Based Molecular Bonding. ACS Applied Materials & Interfaces, 2019, 11, 37295-37301.	4.0	13
294	Thermal Transport through Single-Molecule Junctions. Nano Letters, 2019, 19, 7614-7622.	4.5	55
295	Phononic heat transport in molecular junctions: Quantum effects and vibrational mismatch. Journal of Chemical Physics, 2019, 150, 024105.	1.2	26
296	Predicting interfacial thermal resistance by machine learning. Npj Computational Materials, 2019, 5, .	3.5	85
297	Mean field theory of thermal energy transport in molecular junctions. Journal of Chemical Physics, 2019, 150, 204107.	1.2	10
298	Phonon–Grain-Boundary-Interaction-Mediated Thermal Transport in Two-Dimensional Polycrystalline MoS2. ACS Applied Materials & Interfaces, 2019, 11, 25547-25555.	4.0	22
299	Effect of titanium and zirconium carbide interphases on the thermal conductivity and interfacial heat transfers in copper/diamond composite materials. AIP Advances, 2019, 9, .	0.6	14
300	Ambipolar thin-film transistors based on organic semiconductor blend. Synthetic Metals, 2019, 253, 40-47.	2.1	19
301	Thermal Interface Resistance Between Silicon and Single Wall Carbon Nanotubes. , 2019, , 603-621.		1
302	Tunable Thermal Energy Transport across Diamond Membranes and Diamond–Si Interfaces by Nanoscale Graphoepitaxy. ACS Applied Materials & Interfaces, 2019, 11, 18517-18527.	4.0	49
303	Impact of bonding energy on thermal conductance of metal/graphene/metal interfaces. Materials Research Express, 2019, 6, 085015.	0.8	1
304	Epoxy filled with bare and oxidized multi-layered graphene nanoplatelets: a comparative study of filler loading impact on thermal properties. Journal of Materials Science, 2019, 54, 9247-9266.	1.7	17
305	Maximization of thermal conductance at interfaces <i>via</i> exponentially mass-graded interlayers. Nanoscale, 2019, 11, 6254-6262.	2.8	29
306	Towards a coherent database of thermal boundary conductance at metal/dielectric interfaces. Journal of Applied Physics, 2019, 125, 095302.	1.1	18
307	Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nature Communications, 2019, 10, 1188.	5.8	71
308	Thermal conductance across β-Ga2O3-diamond van der Waals heterogeneous interfaces. APL Materials, 2019, 7, .	2.2	87
309	Elastic and Inelastic Contributions to Thermal Transport between Chemical Groups and Thermal Rectification in Molecules. Journal of Physical Chemistry C, 2019, 123, 6256-6264.	1.5	13
310	First-principles calculations of interfacial thermal transport properties between SiC/Si substrates and compounds of boron with selected group V elements. Physical Chemistry Chemical Physics, 2019, 21, 6011-6020.	1.3	14

#	Article	IF	CITATIONS
311	Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance. Nanoscale, 2019, 11, 3656-3664.	2.8	45
312	Molecular dynamics study on thermal energy transfer in bulk polyacrylic acid. AIP Advances, 2019, 9, .	0.6	16
313	Enhanced thermal conductance at the graphene–water interface based on functionalized alkane chains. RSC Advances, 2019, 9, 4563-4570.	1.7	17
314	Thermal conductance of aluminum oxy-fluoride passivation layers. Applied Physics Letters, 2019, 115, .	1.5	1
315	Short chain thiols induce better plasmon resonance sensitivity in Au(111). Journal of Materials Chemistry C, 2019, 7, 13803-13810.	2.7	11
316	Spectral Control of Thermal Boundary Conductance between Copper and Carbon Crystals by Self-Assembled Monolayers. ACS Applied Electronic Materials, 2019, 1, 2594-2601.	2.0	25
317	Power Factor of One Molecule Thick Films and Length Dependence. ACS Central Science, 2019, 5, 1975-1982.	5.3	47
318	Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale. Journal of Applied Physics, 2019, 126, .	1.1	30
319	Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Advances, 2019, 1, 4895-4903.	2.2	27
320	Nanoscale Wetting and Energy Transmission at Solid/Liquid Interfaces. Langmuir, 2019, 35, 2106-2114.	1.6	20
321	Covalent Anchoring of Carbon Nanotube-Based Thermal Interface Materials Using Epoxy-Silane Monolayers. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 427-433.	1.4	6
322	Thermal and Thermoelectric Properties of Molecular Junctions. Advanced Functional Materials, 2020, 30, 1904534.	7.8	72
323	A Review of Experimental and Computational Advances in Thermal Boundary Conductance and Nanoscale Thermal Transport across Solid Interfaces. Advanced Functional Materials, 2020, 30, 1903857.	7.8	166
324	Women in Nanotechnology. Women in Engineering and Science, 2020, , .	0.2	1
325	Improvement of thermal conductivity and dielectric constant of graphene-filled epoxy nanocomposites using colloidal polymerization approach. Polymer Bulletin, 2020, 77, 2385-2404.	1.7	7
326	Engineering Interfaces at the Nanoscale. Women in Engineering and Science, 2020, , 101-120.	0.2	0
327	Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement. Angewandte Chemie - International Edition, 2020, 59, 1286-1294.	7.2	26
328	Nanoscale Organic Thermoelectric Materials: Measurement, Theoretical Models, and Optimization Strategies. Advanced Functional Materials, 2020, 30, 1903873.	7.8	97

#	Article	IF	CITATIONS
329	Impact of Nanoscale Roughness on Heat Transport across the Solid–Solid Interface. Advanced Materials Interfaces, 2020, 7, 1901582.	1.9	24
330	Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities. Journal of Materials Chemistry C, 2020, 8, 10568-10586.	2.7	99
331	Impact of field ramp rate on magnetic field assisted thermal transport in ferrofluids. Journal of Molecular Liquids, 2020, 298, 112047.	2.3	18
332	A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Physics Reports, 2020, 843, 1-81.	10.3	344
333	Self-Assembled Boron Nitride Nanotube Reinforced Graphene Oxide Aerogels for Dielectric Nanocomposites with High Thermal Management Capability. ACS Applied Materials & Interfaces, 2020, 12, 1436-1443.	4.0	51
334	Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement. Angewandte Chemie, 2020, 132, 1302-1310.	1.6	6
335	Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures. Journal of Applied Physics, 2020, 128, .	1.1	44
336	Thermal conductance across harmonic-matched epitaxial Al-sapphire heterointerfaces. Communications Physics, 2020, 3, .	2.0	41
337	On the definitions and simulations of vibrational heat transport in nanojunctions. Journal of Chemical Physics, 2020, 153, 174101.	1.2	6
338	The effects of contact atom distribution at the interface on the phonon transport. Physical Chemistry Chemical Physics, 2020, 22, 27690-27697.	1.3	3
339	Complexion dictated thermal resistance with interface density in reactive metal multilayers. Physical Review B, 2020, 101, .	1.1	8
340	Chain-Length Dependence of Thermal Conductivity in 2D Alkylammonium Lead Iodide Single Crystals. ACS Applied Materials & Interfaces, 2020, 12, 53705-53711.	4.0	10
341	Thermally Insulating Nanocelluloseâ€Based Materials. Advanced Materials, 2021, 33, e2001839.	11.1	153
342	A Miniaturized 3D Heat Flux Sensor to Characterize Heat Transfer in Regolith of Planets and Small Bodies. Sensors, 2020, 20, 4135.	2.1	4
343	Energy Transfer across Nonpolar and Polar Contacts in Proteins: Role of Contact Fluctuations. Journal of Physical Chemistry B, 2020, 124, 9852-9861.	1.2	13
344	Surface Oxidation Modulates the Interfacial and Lateral Thermal Migration of MXene (Ti3C2Tx) Flakes. Journal of Physical Chemistry Letters, 2020, 11, 9521-9527.	2.1	13
345	Sacrificial layer-assisted nanoscale transfer printing. Microsystems and Nanoengineering, 2020, 6, 80.	3.4	13
346	Molecular dynamics simulations of separator-cathode interfacial thermal transport in a Li-ion cell. Surfaces and Interfaces, 2020, 21, 100674.	1.5	11

#	Article	IF	CITATIONS
347	The reservoir area dependent thermal transport at the nanoscale interface. Physical Chemistry Chemical Physics, 2020, 22, 22016-22022.	1.3	6
348	Thermal conductance in single molecules and self-assembled monolayers: physicochemical insights, progress, and challenges. Journal of Materials Chemistry A, 2020, 8, 19746-19767.	5.2	30
349	Time-Domain Investigations of Coherent Phonons in van der Waals Thin Films. Nanomaterials, 2020, 10, 2543.	1.9	25
350	Heat dissipation effects on the stability of planar perovskite solar cells. Energy and Environmental Science, 2020, 13, 5059-5067.	15.6	44
351	Structure and Nonequilibrium Heatâ€Transfer of a Physisorbed Molecular Layer on Graphene. Advanced Materials Interfaces, 2020, 7, 2000473.	1.9	1
352	Water dynamics affects thermal transport at the surface of hydrophobic and hydrophilic irradiated nanoparticles. Nanoscale Advances, 2020, 2, 3181-3190.	2.2	11
353	Study of phononic thermal transport across nanostructured interfaces using phonon Monte Carlo method. International Journal of Heat and Mass Transfer, 2020, 154, 119762.	2.5	16
354	Graphene Fieldâ€Effect Transistors on Hexagonalâ€Boron Nitride for Enhanced Interfacial Thermal Dissipation. Advanced Electronic Materials, 2020, 6, 2000059.	2.6	8
355	Thermal conductance at nanoscale amorphous boron nitride/metal interfaces. Surface and Coatings Technology, 2020, 397, 126017.	2.2	9
356	A carbon nanotube approach for efficient thermally insulating material with high mechanical stability and fire-retardancy. RSC Advances, 2020, 10, 21772-21780.	1.7	4
357	Spectral attributes of sub-amorphous thermal conductivity in cross-linked organic–inorganic hybrids. Nanoscale, 2020, 12, 13491-13500.	2.8	3
358	Nitrene functionalization as a new approach for reducing the interfacial thermal resistance in graphene nanoplatelets/epoxy nanocomposites. Carbon, 2020, 167, 646-657.	5.4	11
359	Ballistic-diffusive phonon transport and thermal rectification across single-molecule junctions. International Journal of Heat and Mass Transfer, 2020, 157, 119851.	2.5	13
360	A molecular dynamics study on interfacial heat transport of alkanethiol surfactant coated nanofluids-effect of chain length and stiffness. Molecular Physics, 2020, 118, .	0.8	10
361	Optimized interfacial thermal coupling between two nonlinear systems. Journal of Physics Condensed Matter, 2020, 32, 19LT02.	0.7	8
362	Energy, Work, Entropy, and Heat Balance in Marcus Molecular Junctions. Journal of Physical Chemistry B, 2020, 124, 2632-2642.	1.2	10
363	The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond. Applied Surface Science, 2020, 515, 146046.	3.1	32
364	Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 2020, 193, 108134.	3.8	434

#	Article	IF	CITATIONS
365	Construction and characterization of versatile flexible composite nanofibrous aerogels based on thermoplastic polymeric nanofibers. Journal of Materials Science, 2020, 55, 8155-8169.	1.7	7
366	Nonequilibrium Thermodynamics of Colloidal Gold Nanocrystals Monitored by Ultrafast Electron Diffraction and Optical Scattering Microscopy. ACS Nano, 2020, 14, 4792-4804.	7.3	20
367	Improving thermal conduction across cathode/electrolyte interfaces in solid-state lithium-ion batteries by hierarchical hydrogen-bond network. Materials and Design, 2020, 194, 108927.	3.3	16
368	Cross-Plane Thermal Conductance of Phosphonate-Based Self-Assembled Monolayers and Self-Assembled Nanodielectrics. ACS Applied Materials & Interfaces, 2020, 12, 34901-34909.	4.0	3
369	Anisotropic and hierarchical SiC@SiO ₂ nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Science Advances, 2020, 6, eaay6689.	4.7	164
370	Effect of the Thermal Boundary Resistance in Metal/Dielectric Thermally Conductive Layers on Power Generation of Silicon Nanowire Microthermoelectric Generators. ACS Applied Materials & Interfaces, 2020, 12, 34441-34450.	4.0	9
371	Efficient construction of boron nitride network in epoxy composites combining reaction-induced phase separation and three-roll milling. Composites Part B: Engineering, 2020, 198, 108232.	5.9	22
372	Integration of polycrystalline Ga2O3 on diamond for thermal management. Applied Physics Letters, 2020, 116, .	1.5	68
373	Physical and chemical descriptors for predicting interfacial thermal resistance. Scientific Data, 2020, 7, 36.	2.4	9
374	Ultrafast Transient Spectra and Dynamics of MXene (Ti ₃ C ₂ T _{<i>x</i>>(j>x}) in Response to Light Excitations of Various Wavelengths. Journal of Physical Chemistry C, 2020, 124, 6441-6447.	1.5	39
375	Thermal Transport in Graphene Oxide Films: Theoretical Analysis and Molecular Dynamics Simulation. Nanomaterials, 2020, 10, 285.	1.9	12
376	Thermal diffusivity modulation driven by the interfacial elastic dynamics between cellulose nanofibers. Nanoscale Advances, 2020, 2, 1024-1030.	2.2	8
377	The effect of thermal mismatch on the thermal conductance of Al/SiC and Cu/diamond composites. Journal of Applied Physics, 2020, 127, 045101.	1.1	10
378	N-Heterocyclic Carbenes for the Self-Assembly of Thin and Highly Insulating Monolayers with High Quality and Stability. ACS Nano, 2020, 14, 6043-6057.	7.3	28
379	Directional Freeze asting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Advanced Engineering Materials, 2020, 22, 2000033.	1.6	100
380	Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: Effect of diamond surface termination and processing conditions. Diamond and Related Materials, 2020, 106, 107842.	1.8	9
381	Hydrogen Bond Interaction Promotes Flash Energy Transport at MXene-Solvent Interface. Journal of Physical Chemistry C, 2020, 124, 10306-10314.	1.5	32
382	Effect of Thermal Boundary Resistance between the Interconnect Metal and Dielectric Interlayer on Temperature Increase of Interconnects in Deeply Scaled VLSI. ACS Applied Materials & Interfaces, 2020, 12, 22347-22356.	4.0	10

#	Article	IF	CITATIONS
383	Condensation Induced Blistering as a Measurement Technique for the Adhesion Energy of Nanoscale Polymer Films. Nano Letters, 2020, 20, 3918-3924.	4.5	32
384	Perhydropolysilazane derived SiON interfacial layer for Cu/epoxy molding compound composite. Surface and Coatings Technology, 2020, 391, 125703.	2.2	10
385	Quantitative prediction of grain boundary thermal conductivities from local atomic environments. Nature Communications, 2020, 11, 1854.	5.8	46
386	Modeling and analysis for thermal management in gallium oxide field-effect transistors. Journal of Applied Physics, 2020, 127, .	1.1	41
387	Enhancement of Thermal Boundary Conductance of Metal–Polymer System. Nanomaterials, 2020, 10, 670.	1.9	20
388	Identifying the Bottleneck for Heat Transport in Metal–Organic Frameworks. Advanced Theory and Simulations, 2021, 4, 2000211.	1.3	14
389	Humidity-Dependent Thermal Boundary Conductance Controls Heat Transport of Super-Insulating Nanofibrillar Foams. Matter, 2021, 4, 276-289.	5.0	20
390	Unveiling the interface characteristics and their influence on the heat transfer behavior of hot-forged Cu–Cr/Diamond composites. Carbon, 2021, 172, 390-401.	5.4	43
391	High thermal conductive copper/diamond composites: state of the art. Journal of Materials Science, 2021, 56, 2241-2274.	1.7	35
392	Molecular insights into MXene destructing the cell membrane as a "nano thermal blade― Physical Chemistry Chemical Physics, 2021, 23, 3341-3350.	1.3	21
393	Thermal conductivity of benzothieno-benzothiophene derivatives at the nanoscale. Nanoscale, 2021, 13, 3800-3807.	2.8	12
394	Recent Advances in the Rational Design of Thermal Conductive Polymer Composites. Industrial & Engineering Chemistry Research, 2021, 60, 1137-1154.	1.8	63
395	Advances in thermal conductivity for energy applications: a review. Progress in Energy, 2021, 3, 012002.	4.6	24
396	Order-Determined Structural and Energy Transport Dynamics in Solid-Supported Interfacial Methanol. Nano Letters, 2021, 21, 1440-1445.	4.5	2
397	Strategies for Manipulating Phonon Transport in Solids. ACS Nano, 2021, 15, 2182-2196.	7.3	22
398	Thermally Stable and Highly Conductive SAMs on Ag Substrate—The Impact of the Anchoring Group. Advanced Electronic Materials, 2021, 7, 2000947.	2.6	8
399	Role of the phonon confinement effect and boundary scattering in reducing the thermal conductivity of argon nanowire. Journal of Chemical Physics, 2021, 154, 054702.	1.2	3
400	Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.2	38

#	Article	IF	CITATIONS
401	Evolution of β phase and mechanical mechanisms in an α-type Zr alloy processed by rolling at different temperatures. Materials Characterization, 2021, 172, 110873.	1.9	9
402	Thermal transport properties of an oriented thin film of a paraffinic tripodal triptycene. Japanese Journal of Applied Physics, 2021, 60, 038002.	0.8	3
403	Measurement Technique for High Thermal Conductivity Nanomaterials. Ceramist, 2021, 24, 109-119.	0.0	2
404	Thickness-Independent Vibrational Thermal Conductance across Confined Solid-Solution Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 12541-12549.	4.0	3
405	The time-resolved hard X-ray diffraction endstation KMC-3 XPP at BESSYâ€II. Journal of Synchrotron Radiation, 2021, 28, 948-960.	1.0	5
406	A High-throughput Plasma-based Approach for Improving the Thermal Conductivity of Epoxy Resin/Boron Nitride. , 2021, , .		0
407	Scalable monolayer-functionalized nanointerface for thermal conductivity enhancement in copper/diamond composite. Carbon, 2021, 175, 299-306.	5.4	17
408	Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2021, 13, 21905-21913.	4.0	5
409	Thermal Transport in Polymers: A Review. Journal of Heat Transfer, 2021, 143, .	1.2	32
410	Femtosecond Laser Assisted Crystallization of Gold Thin Films. Nanomaterials, 2021, 11, 1186.	1.9	11
411	Modulation of Interfacial Thermal Transport between Fumed Silica Nanoparticles by Surface Chemical Functionalization for Advanced Thermal Insulation. ACS Applied Materials & Interfaces, 2021, 13, 17404-17411.	4.0	12
412	Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks. Composites Communications, 2021, 24, 100650.	3.3	55
413	Weaker bonding can give larger thermal conductance at highly mismatched interfaces. Science Advances, 2021, 7, .	4.7	35
414	Facilitating thermal transport across Si/Ge interface via mass-graded interlayer: The role of elastic and inelastic phonon processes. Journal of Applied Physics, 2021, 129, .	1.1	9
415	Harmonic chains and the thermal diode effect. Physical Review E, 2021, 103, 052130.	0.8	14
416	Thermal conductance of nanostructured interfaces from Monte Carlo simulations with <i>ab initio</i> -based phonon properties. Journal of Applied Physics, 2021, 129, .	1.1	4
417	Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications. Nano Energy, 2021, 85, 105948.	8.2	164
418	Large Thermal Rectification in a Solid-State Thermal Diode Constructed of Iron-Doped Nickel Sulfide and Alumina. Physical Review Applied, 2021, 16, .	1.5	6

#	Article	IF	CITATIONS
419	Interface thermal resistance induced by geometric shape mismatch: A multiparticle Lorentz gas model. Physical Review E, 2021, 104, 024801.	0.8	5
420	Comparison with Experiment, Model, and Simulation for Thermal Conductive Mechanism of Polymer Composites without Particle Network. Macromolecular Chemistry and Physics, 2021, 222, 2100200.	1.1	1
421	Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal Linker. Advanced Materials, 2021, 33, e2103104.	11.1	79
422	Bridging overwhelms binding for enhancing thermal boundary conductance. Matter, 2021, , .	5.0	0
423	Enhanced Thermal Transport across Selfâ€Interfacing van der Waals Contacts in Flexible Thermal Devices. Advanced Functional Materials, 2021, 31, 2107023.	7.8	23
424	Covalently bonded silica interfacial layer for simultaneously improving thermal and dielectric performance of copper/epoxy composite. Surfaces and Interfaces, 2021, 26, 101404.	1.5	5
425	On the dynamics of contact line freezing of water droplets on superhydrophobic carbon soot coatings. Current Applied Physics, 2021, 31, 74-86.	1.1	12
426	Effect of time and spatial domains on monolayer 2D material interface thermal conductance measurement using ns ET-Raman. International Journal of Heat and Mass Transfer, 2021, 179, 121644.	2.5	5
427	Orientation independent heat transport characteristics of diamond/copper interface with ion beam bombardment. Acta Materialia, 2021, 220, 117283.	3.8	8
428	Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. Journal of Materials Science and Technology, 2022, 105, 194-202.	5.6	60
429	Realizing the large current field emission characteristics of single vertical few-layer graphene by constructing a lateral graphite heat dissipation interface. Nanoscale, 2021, 13, 5234-5242.	2.8	13
430	A numerical fitting routine for frequency-domain thermoreflectance measurements of nanoscale material systems having arbitrary geometries. Journal of Applied Physics, 2021, 129, .	1.1	3
431	Modulating thermal conductance across the metal/graphene/SiO ₂ interface with ion irradiation. Physical Chemistry Chemical Physics, 2021, 23, 22760-22767.	1.3	4
432	Structural property-induced different phonon-twin-boundary scattering in diamond. Physical Chemistry Chemical Physics, 2021, 23, 3874-3882.	1.3	2
433	Understanding Thermal Insulation in Porous, Particulate Materials. Advanced Functional Materials, 2017, 27, 1702256.	7.8	74
434	Phonon transport probed at carbon nanotube yarn/sheet boundaries by ultrafast structural dynamics. Carbon, 2020, 170, 165-173.	5.4	5
435	Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia. Journal of Biomechanical Engineering, 2021, 143, .	0.6	7
436	Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers. PLoS ONE, 2016, 11, e0151708.	1.1	10

#	Article	IF	CITATIONS
437	Macroscopic thermoelectric efficiency of carbon nanocomposites. Nanosystems: Physics, Chemistry, Mathematics, 2016, , 919-924.	0.2	5
438	Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation. Composites Research, 2015, 28, 270-276.	0.1	1
439	Giant Thermal Transport Tuning at a Metal/Ferroelectric Interface. Advanced Materials, 2022, 34, e2105778.	11.1	13
440	Effect of Dynamic Film Debonding on Self-Assembled Monolayers. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 1-6.	0.3	0
442	Adhesion strategies for heterogeneous soft materials $\hat{a} \in $ A review. Engineering Research Express, O, , .	0.8	1
443	Visualization of Thermal Transport Properties of Self-Assembled Monolayers on Au(111) by Contact and Noncontact Scanning Thermal Microscopy. Journal of the American Chemical Society, 2021, 143, 18777-18783.	6.6	4
444	Tuning thermal transport via phonon localization in nanostructures. Chinese Physics B, 2020, 29, 126502.	0.7	2
445	Energy Relaxation and Thermal Transport in Molecules. , 2020, , 865-885.		0
446	Thermal Transport: Overview. , 2020, , 723-733.		0
447	Ballistic electrical-thermal transport properties and their applications in graphene-nanoribbon-stacked heterojunctions. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 136, 115025.	1.3	4
449	Coherent control of interlayer vibrations in Bi ₂ Se ₃ van der Waals thin-films. Nanoscale, 2021, 13, 19264-19273.	2.8	8
450	Enhanced thermal transport across the interface between charged graphene and poly(ethylene oxide) by non-covalent functionalization. International Journal of Heat and Mass Transfer, 2022, 183, 122188.	2.5	15
451	Interfacial thermal transport in spin caloritronic material systems. Physical Review Materials, 2021, 5,	0.9	4
452	Interfacial Thermal Conductance between Alumina and Epoxy. Journal of Physics: Conference Series, 2021, 2109, 012018.	0.3	0
453	Experimental observation of localized interfacial phonon modes. Nature Communications, 2021, 12, 6901.	5.8	46
454	Ladder-structured boron nitride nanosheet skeleton in flexible polymer films for superior thermal conductivity. Applied Materials Today, 2022, 26, 101299.	2.3	16
455	Effect of interfacial roughness on thermal boundary conductance: An elastic wave model using the Kirchhoff approximation. International Journal of Mechanical Sciences, 2022, 218, 106993.	3.6	4
456	A frequency-domain thermoreflectance method for measuring the thermal boundary conductance of a metal-polymer system. , 2020, , .		0

#	Article	IF	CITATIONS
457	Modification and Characterization of Interfacial Bonding for Thermal Management of Ruthenium Interconnects in Next-Generation Very-Large-Scale Integration Circuits. ACS Applied Materials & Interfaces, 2022, 14, 7392-7404.	4.0	8
459	Thermal conductivity of Cu-matrix composites reinforced with coated SiC particles: Numerical modeling and experimental verification. International Journal of Heat and Mass Transfer, 2022, 188, 122633.	2.5	15
460	A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. Materials Horizons, 2022, 9, 1690-1699.	6.4	55
461	Thermal Percolation in Well-Defined Nanocomposite Thin Films. ACS Applied Materials & Interfaces, 2022, 14, 14579-14587.	4.0	7
462	Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface. Nanotechnology, 2022, 33, 235401.	1.3	10
463	Enhancement of the mechanical and thermal transport properties of carbon nanotube yarns by boundary structure modulation. Nanotechnology, 2022, 33, 235707.	1.3	5
464	Thermal transport mechanism at a solid-liquid interface based on the heat flux detected at a subatomic spatial resolution. Physical Review E, 2022, 105, 034803.	0.8	2
465	Heat conduction in polymer chains: Effect of substrate on the thermal conductance. Journal of Chemical Physics, 2022, 156, 144901.	1.2	9
466	3D self-bonded porous graphite fiber monolith for phase change material composite with high thermal conductivity. Chemical Engineering Journal, 2022, 438, 135496.	6.6	22
467	Thermal and Thermoelectric Properties of SAM-Based Molecular Junctions. ACS Applied Materials & Interfaces, 2022, 14, 22818-22825.	4.0	11
468	Quantum phonon transport through channels and molecules—A Perspective. Applied Physics Letters, 2022, 120, .	1.5	11
469	Interfacial thermal resistance: Past, present, and future. Reviews of Modern Physics, 2022, 94, .	16.4	178
470	Interfacial thermal conductance between gold and SiO ₂ : A molecular dynamics study. Nanoscale and Microscale Thermophysical Engineering, 2022, 26, 40-51.	1.4	2
471	Interfacial thermal resistance in polymer composites: a molecular dynamic perspective. Molecular Simulation, 2022, 48, 902-925.	0.9	1
472	Thermopower of Molecular Junction in Harsh Thermal Environments. Nano Letters, 2022, 22, 3953-3960.	4.5	15
473	Advances on Thermally Conductive Epoxyâ€Based Composites as Electronic Packaging Underfill Materials—A Review. Advanced Materials, 2022, 34, e2201023.	11.1	61
474	碳纳米ç®jåj«åèšå•̂物基å⁻¼çfå å ææ−™çš"ç"ç©¶èչ›å±•. Chinese Science Bulletin, 2022, , .	0.4	1
475	Experimental Investigations on Thermal Transport Properties of Nanoscale-Graphite-Film. Journal of Thermal Science, 2022, 31, 1008-1015.	0.9	6

#	Article	IF	CITATIONS
476	Enhanced thermal conductivity of epoxy resin by incorporating pitch-based carbon fiber modified by Diels-Alder reaction. Diamond and Related Materials, 2022, 127, 109148.	1.8	3
477	Research progress on thermal transprot of graphene-based composite thermal interface materials. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	3
478	Fundamental understanding of thermal transport across solid interfaces. , 2022, , 69-82.		1
479	Ultimate optimization of interface thermal resistance by utilizing interfacial nonlinear interaction. Europhysics Letters, 0, , .	0.7	2
480	Interfacial thermal transport properties and its effect on thermal conductivity of functionalized BNNS/epoxy composites. International Journal of Heat and Mass Transfer, 2022, 195, 123031.	2.5	9
481	Highâ€Performance Liquid Crystalline Polymer for Intrinsic Fireâ€Resistant and Flexible Triboelectric Nanogenerators. Advanced Materials, 2022, 34, .	11.1	48
482	Enhanced Heat Transport Capability across Boron Nitride/Copper Interface through Inelastic Phonon Scattering. Advanced Functional Materials, 2022, 32, .	7.8	12
483	Construction of compressible dual thermally conductive boron nitride network supported by Polyurethane@Polydopamine skeleton for improved thermal management performance. Composites Part A: Applied Science and Manufacturing, 2022, 161, 107104.	3.8	4
484	Interfacial Modification to Anomalously Facilitate Thermal Transport Through Cathode-Separator Composite in Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
485	Interfacial modification to anomalously facilitate thermal transport through cathode-separator composite in lithium-ion batteries. Applied Surface Science, 2022, 606, 155010.	3.1	2
486	Bondingâ€Enhanced Interfacial Thermal Transport: Mechanisms, Materials, and Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	24
487	Oxidation behavior of SiC nanowires: A nanowire radiusâ€dependent growth of oxide scale thickness. Journal of the American Ceramic Society, 0, , .	1.9	1
488	Largeâ€scale plasma grafts voltage stabilizer on hexagonal boron nitride for improving electrical insulation and thermal conductivity of epoxy composite. High Voltage, 2023, 8, 550-559.	2.7	5
489	Highly Thermally Conductive Adhesion Elastomer Enhanced by Vertically Aligned Folded Graphene. Advanced Science, 2022, 9, .	5.6	31
490	Studying the thermal resistance of superhydrophobic carbon soot coatings for heat transfer management in cryogenic facilities. Applied Thermal Engineering, 2023, 219, 119590.	3.0	7
491	Effective interface engineering for phonon manipulation in an Al/ErAs/GaAs system. Materials Today Physics, 2022, 28, 100897.	2.9	0
492	Simulations of heat transport in single-molecule junctions: Investigations of the thermal diode effect. Journal of Chemical Physics, 2022, 157, .	1.2	5
493	Adaptable thermal conductive, high toughness and compliant Poly(dimethylsiloxane) elastomer composites based on interfacial coordination bonds. Composites Science and Technology, 2023, 231, 109840.	3.8	7

#	Article	IF	Citations
494	Molecular dynamic study on modulating the interfacial thermal conductivity of carbon fiber/epoxy interfaces. Computational Materials Science, 2023, 217, 111914.	1.4	8
495	Molecular self-assembled monolayers anomalously enhance thermal conductance across polymer–semiconductor interfaces. Nanoscale, 2022, 14, 17681-17693.	2.8	2
496	Highly enhanced thermal conductance across metal/graphene/SiO2 interface by ion bombardment. International Communications in Heat and Mass Transfer, 2023, 140, 106560.	2.9	1
497	Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films. Nano-Micro Letters, 2023, 15, .	14.4	12
499	Superior Thermal Conductivity of Graphene Film/Cu-Zr Alloy Composites for Thermal Management Applications. ACS Applied Materials & Interfaces, 2022, 14, 56156-56168.	4.0	5
500	Recent development of E-field control of interfacial magnetism in multiferroic heterostructures. Nano Research, 2023, 16, 5983-6000.	5.8	5
501	Unstructured Self-Assembled Molecular Lamella Induces Ultrafast Thermal Transfer through a Cathode/Separator Interphase in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 56268-56279.	4.0	0
502	Reducing interfacial thermal resistance by interlayer. Journal of Physics Condensed Matter, 2023, 35, 053001.	0.7	5
503	A data driven approach to model thermal boundary resistance from molecular dynamics simulations. Physical Chemistry Chemical Physics, 0, , .	1.3	0
504	Device-Level Thermal Analysis for Gallium Oxide Lateral Field-Effect Transistor. IEEE Transactions on Electron Devices, 2023, 70, 953-958.	1.6	5
505	Theories and mechanisms of thermal conduction. , 2023, , 57-77.		0
506	Improving thermal conductivity of poly(aryl ether nitrile ketone) composites by incorporating functionalized boron nitride and silicon carbide via electrospinning-hot press method. Journal of Polymer Research, 2023, 30, .	1.2	1
507	Molecular design of a highly matched and bonded interface achieves enhanced thermal boundary conductance. Nanoscale, 2023, 15, 8706-8715.	2.8	3
508	Hierarchically multifunctional thermally conductive Boron Nitride/Polyurethane fibrous membranes via constructing alternating multi-layer orientation structure. Composites Part A: Applied Science and Manufacturing, 2023, 168, 107498.	3.8	4
509	In-operando spectroscopic interrogation of macromolecular conformational changes in polyurea elastomers under high strain rate loading. Journal of the Mechanics and Physics of Solids, 2023, 175, 105297.	2.3	3
510	Effects of interfacial molecular mobility on thermal boundary conductance at solid–liquid interface. Journal of Chemical Physics, 2023, 158, .	1.2	1
511	Nano-phononic metamaterials enable an anomalous enhancement in the interfacial thermal conductance of the GaN/AlN heterojunction. Nanoscale, 2023, 15, 6732-6737.	2.8	3
512	Regulated Thermal Boundary Conductance between Copper and Diamond through Nanoscale Interfacial Rough Structures. ACS Applied Materials & Interfaces, 2023, 15, 16162-16176.	4.0	8

#	Article	IF	CITATIONS
513	Thermal transport across flat and curved gold–water interfaces: Assessing the effects of the interfacial modeling parameters. Journal of Chemical Physics, 2023, 158, .	1.2	4
514	Ab initio quantum dynamics of plasmonic charge carriers. Trends in Chemistry, 2023, 5, 634-645.	4.4	5
515	Superelastic Carbon Aerogels: An Emerging Material for Advanced Thermal Protection in Extreme Environments. Advanced Functional Materials, 2023, 33, .	7.8	10
516	Linking Interfacial Bonding and Thermal Conductivity in Molecularlyâ€Confined Polymerâ€Glass Nanocomposites with Ultraâ€High Interfacial Density. Small, 0, , .	5.2	0
517	Time-Domain Thermoreflectance Study of the Thermal Transport Properties of All-Solid-State Ionic Thermoelectric Material. International Journal of Thermophysics, 2023, 44, .	1.0	1
526	Recent Progress and Perspective of an Evolving Carbon Family From 0D to 3D: Synthesis, Biomedical Applications, and Potential Challenges. ACS Applied Bio Materials, 2023, 6, 2043-2088.	2.3	3
532	Ultrafast and Nanoscale Energy Transduction Mechanisms and Coupled Thermal Transport across Interfaces. ACS Nano, 2023, 17, 14253-14282.	7.3	8
549	Quantifying spectral thermal transport properties in framework of molecular dynamics simulations: a comprehensive review. Rare Metals, 2023, 42, 3914-3944.	3.6	5
552	Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. Materials Horizons, 0, , .	6.4	1