Immune self-reactivity triggered by drug-modified HLA

Nature 486, 554-558 DOI: 10.1038/nature11147

Citation Report

#	Article	IF	CITATIONS
1	Drug allergy. Human Vaccines and Immunotherapeutics, 2012, 8, 1513-1524.	1.4	13
2	A false sense of non-self. Nature, 2012, 486, 479-481.	13.7	5
3	Research Highlights: Explanation for <i>HLA-B*57:01</i> -linked immune-mediated abacavir-induced hypersensitivity. Pharmacogenomics, 2012, 13, 1567-1569.	0.6	9
4	Mechanisms involved in the Abacavir-mediated hypersensitivity syndrome. Cell Research, 2012, 22, 1637-1639.	5.7	5
5	HLA and pharmacogenetics of drug hypersensitivity. Pharmacogenomics, 2012, 13, 1285-1306.	0.6	161
6	MR1 presents microbial vitamin B metabolites to MAIT cells. Nature, 2012, 491, 717-723.	13.7	1,158
7	Human leukocyte antigens (HLA) associated drug hypersensitivity: consequences of drug binding to HLA. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 1338-1346.	2.7	65
8	A structural voyage toward an understanding of the <scp>MHC</scp> â€lâ€restricted immune response: lessons learned and much to be learned. Immunological Reviews, 2012, 250, 61-81.	2.8	81
9	Drug Reaction with Eosinophilia and Systemic Symptoms: an update on pathogenesis. Current Opinion in Immunology, 2012, 24, 730-735.	2.4	64
12	Recognition of self and altered self by T cells in autoimmunity and allergy. Protein and Cell, 2013, 4, 8-16.	4.8	36
13	Rash, organ dysfunction, and eosinophiles: it is a DRESS. Intensive Care Medicine, 2013, 39, 1666-1667.	3.9	2
14	Drug Allergy. , 2013, , .		31
15	Monitoring abacavir bioactivation in humans: Screening for an aldehyde metabolite. Toxicology Letters, 2013, 219, 59-64.	0.4	20
17	Major Histocompatibility Complex Genomics and Human Disease. Annual Review of Genomics and Human Genetics, 2013, 14, 301-323.	2.5	580
18	Human leukocyte antigen-associated drug hypersensitivity. Current Opinion in Immunology, 2013, 25, 81-89.	2.4	76
19	The Genetics of Complex Cholestatic Disorders. Gastroenterology, 2013, 144, 1357-1374.	0.6	126
20	T cell recognition of beryllium. Current Opinion in Immunology, 2013, 25, 775-780.	2.4	18
21	Allopurinol hypersensitivity is primarily mediated by dose-dependent oxypurinol-specific T cell response. Clinical and Experimental Allergy, 2013, 43, 1246-1255.	1.4	103

ITATION REDOD

	CITATION		
#	Article	IF	CITATIONS
22	Status report from â€~double agent HLA': Health and disease. Molecular Immunology, 2013, 55, 2-7.	1.0	15
23	Activation of carbamazepine-responsive T-cell clones with metabolically inert halogenated derivatives. Journal of Allergy and Clinical Immunology, 2013, 132, 493-495.	1.5	12
24	Update on pathobiology in Stevens-Johnson syndrome and toxic epidermal necrolysis. Dermatologica Sinica, 2013, 31, 175-180.	0.2	23
25	A peptide's perspective on antigen presentation to the immune system. Nature Chemical Biology, 2013, 9, 769-775.	3.9	72
26	Pharmacogenomics of adverse drug reactions. Genome Medicine, 2013, 5, 5.	3.6	87
27	Clinical Pharmacogenetics Implementation Consortium Guidelines for Human Leukocyte Antigen-B Genotype and Allopurinol Dosing. Clinical Pharmacology and Therapeutics, 2013, 93, 153-158.	2.3	199
28	Micro Total Analysis Systems: Fundamental Advances and Applications in the Laboratory, Clinic, and Field. Analytical Chemistry, 2013, 85, 451-472.	3.2	193
29	Drug reaction with eosinophilia and systemic symptoms: A drug-induced hypersensitivity syndrome with variable clinical features. Dermatologica Sinica, 2013, 31, 196-204.	0.2	48
30	Consequences of drug binding to immune receptors: Immune stimulation following pharmacological interaction with immune receptors (T-cell receptor for antigen or human leukocyte antigen) with altered peptide-human leukocyte antigen or peptide. Dermatologica Sinica, 2013, 31, 181-190.	0.2	13
31	Adult-onset temporal lobe epilepsy, cognitive decline, multi-antiepileptic drug hypersensitivity, and Hashimoto's encephalopathy: Two case studies. Epilepsy & Behavior Case Reports, 2013, 1, 132-135.	1.5	6
32	Symptoms of atopic dermatitis are influenced by outdoor air pollution. Journal of Allergy and Clinical Immunology, 2013, 132, 495-498.e1.	1.5	157
33	Predisposed αβ T cell antigen receptor recognition of MHC and MHC-I like molecules?. Current Opinion in Immunology, 2013, 25, 653-659.	2.4	13
34	Rhinovirus colocalizes with CD68- and CD11b-positive macrophages following experimental infection in humans. Journal of Allergy and Clinical Immunology, 2013, 132, 758-761.e3.	1.5	23
35	Targeting the trimolecular complex. Clinical Immunology, 2013, 149, 339-344.	1.4	14
36	HLA-B*57:01+ abacavir-naive individuals have specific T cells but no patch test reactivity. Journal of Allergy and Clinical Immunology, 2013, 132, 756-758.	1.5	22
38	Not all empty MHC class I molecules are molten globules: Tryptophan fluorescence reveals a two-step mechanism of thermal denaturation. Molecular Immunology, 2013, 54, 386-396.	1.0	33
39	T-Cells from HLA-B*57:01+ Human Subjects Are Activated with Abacavir through Two Independent Pathways and Induce Cell Death by Multiple Mechanisms. Chemical Research in Toxicology, 2013, 26, 759-766.	1.7	51
40	Studies on abacavir-induced hypersensitivity reaction: a successful example of translation of pharmacogenetics to personalized medicine. Science China Life Sciences, 2013, 56, 119-124.	2.3	26

#	Article	IF	CITATIONS
41	Oxidative Bioactivation of Abacavir in Subcellular Fractions of Human Antigen Presenting Cells. Chemical Research in Toxicology, 2013, 26, 1064-1072.	1.7	12
42	The Role of Pharmacogenomics in Diabetes, HIV Infection, and Pain Management. , 2013, , 247-271.		0
43	Donor–recipient genetic diversity: the role of†pharmacogenomics in kidney transplantation. Pharmacogenomics, 2013, 14, 1369-1372.	0.6	3
44	Immune Parameters to Consider When Choosing T-Cell Receptors for Therapy. Frontiers in Immunology, 2013, 4, 229.	2.2	9
45	HLA Haplotype Determines Hapten or p-i T Cell Reactivity to Flucloxacillin. Journal of Immunology, 2013, 190, 4956-4964.	0.4	98
46	HLA-B27-mediated protection in HIV and hepatitis C virus infection and pathogenesis in spondyloarthritis. Current Opinion in Rheumatology, 2013, 25, 426-433.	2.0	39
47	<i>HLA-B*13:01</i> and the Dapsone Hypersensitivity Syndrome. New England Journal of Medicine, 2013, 369, 1620-1628.	13.9	260
48	Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease. Journal of Experimental Medicine, 2013, 210, 1403-1418.	4.2	57
49	A Possible Molecular Mechanism of Immunomodulatory Activity of Bilirubin. International Journal of Medicinal Chemistry, 2013, 2013, 1-4.	2.2	5
50	Advances in our understanding of drug hypersensitivity. Clinical and Experimental Allergy, 2013, 43, 1200-1201.	1.4	3
51	Synthesis of ximelagatran, melagatran, hydroxymelagatran, and ethylmelagatran in H-3 labeled form. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 334-337.	0.5	15
52	Idiosyncratic Adverse Drug Reactions: Current Concepts. Pharmacological Reviews, 2013, 65, 779-808.	7.1	253
53	Peptideâ€binding motifs and characteristics for <i> HLA â€B*13:01</i> molecule. Tissue Antigens, 2013, 81, 442-448.	1.0	9
54	<scp>HLA</scp> â€ <scp>B</scp> alleles associated with severe cutaneous reactions to antiepileptic drugs in <scp>H</scp> an <scp>C</scp> hinese. Epilepsia, 2013, 54, 1307-1314.	2.6	155
55	HLA Peptide Length Preferences Control CD8+T Cell Responses. Journal of Immunology, 2013, 191, 561-571.	0.4	57
56	A molecular basis for the association of the <i>HLA-DRB1</i> locus, citrullination, and rheumatoid arthritis. Journal of Experimental Medicine, 2013, 210, 2569-2582.	4.2	354
57	Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology, 2013, 57, 727-739.	3.6	212
58	Rare Variations in IL36RN in Severe Adverse Drug Reactions Manifesting as Acute Generalized Exanthematous Pustulosis. Journal of Investigative Dermatology, 2013, 133, 1904-1907.	0.3	107

		CITATION REPORT		
#	Article		IF	Citations
59	Genetic testing for prevention of severe drug-induced skin rash. The Cochrane Library,	2013, , .	1.5	6
60	Sulfamethoxazole Induces a Switch Mechanism in T Cell Receptors Containing TCRVÎ ² Recognition. PLoS ONE, 2013, 8, e76211.	20-1, Altering pHLA	1.1	55
61	<i>In Silico</i> Risk Assessment of HLA-A*02:06-Associated Stevens-Johnson Syndrome Epidermal Necrolysis Caused by Cold Medicine Ingredients. Journal of Toxicology, 2013		1.4	12
62	HLA-A, -B, -C, -DRB1, and -DQB1 Allele Lineages and Haplotype Frequencies among Sau Immunogenetics Insights, 2014, 6, III.S16769.	ıdis. Immunology and	1.0	0
63	HLA and the Pharmacogenomics of Drug Hypersensitivity. , 2014, , 437-465.			5
64	Interaction of Small Molecules with Specific Immune Receptors: The p-i Concept and it Current Immunology Reviews, 2014, 10, 7-18.	s Consequences.	1.2	11
65	HLA and TCR Recognition of Medications in Severe Cutaneous Adverse Reactions. Cur Reviews, 2014, 10, 51-61.	rent Immunology	1.2	3
66	Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles Communications, 2014, 5, 4757.	s. Nature	5.8	153
67	Digging Up the Human Genome: Current Progress in Deciphering Adverse Drug Reacti Research International, 2014, 2014, 1-9.	ons. BioMed	0.9	7
68	Development and partial validation of a mouse model for predicting drug hypersensitiv Journal of Immunotoxicology, 2014, 11, 141-147.	vity reactions.	0.9	10
69	Identification of risk factors for carbamazepine-induced serious mucocutaneous adver case-control study using data from spontaneous adverse drug reaction reports. Journa Pharmacology and Pharmacotherapeutics, 2014, 5, 100.	se reactions: A I of	0.2	4
70	Typages HLA. , 2014, , 227-236.			0
71	Soluble HLA Technology as a Strategy to Evaluate the Impact of HLA Mismatches. Jour Immunology Research, 2014, 2014, 1-8.	nal of	0.9	19
72	Human Leukocyte Antigen Typing Using a Knowledge Base Coupled with a High-Throu Oligonucleotide Probe Array Analysis. Frontiers in Immunology, 2014, 5, 597.	ghput	2.2	3
73	The Beta Cell Immunopeptidome. Vitamins and Hormones, 2014, 95, 115-144.		0.7	8
74	A comprehensive analysis of constitutive naturally processed and presented <i><scp>HLA</scp> *04:01</i> (Cw4)–Âspecific peptides. Tissue Antigens, 201	.4, 83, 174-179.	1.0	47
75	Tests for evaluating non-immediate allergic drug reactions. Expert Review of Clinical In 2014, 10, 1475-1486.	ımunology,	1.3	5
76	Bioactivation of drugs in the skin: relationship to cutaneous adverse drug reactions. D Metabolism Reviews, 2014, 46, 1-18.	rug	1.5	29

#	Article	IF	Citations
77	<scp>HLA</scp> and disease: guilt by association. International Journal of Immunogenetics, 2014, 41, 1-12.	0.8	54
78	Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nature Communications, 2014, 5, 3600.	5.8	111
79	PharmGKB summary. Pharmacogenetics and Genomics, 2014, 24, 276-282.	0.7	7
80	The study of severe cutaneous drug hypersensitivity reactions from a systems biology perspective. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 301-306.	1.1	6
81	Oxypurinol Directly and Immediately Activates the Drug-Specific T Cells via the Preferential Use of HLA-B*58:01. Journal of Immunology, 2014, 192, 2984-2993.	0.4	136
82	Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity. Journal of Immunology, 2014, 192, 2875-2884.	0.4	48
83	The importance of hapten–protein complex formation in the development of drug allergy. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 293-300.	1.1	49
84	The impact of germline mutations on targeted therapy. Journal of Pathology, 2014, 232, 230-243.	2.1	7
85	Genotyping for Severe Drug Hypersensitivity. Current Allergy and Asthma Reports, 2014, 14, 418.	2.4	35
86	Bioactivation to an aldehyde metabolite—Possible role in the onset of toxicity induced by the anti-HIV drug abacavir. Toxicology Letters, 2014, 224, 416-423.	0.4	23
87	Distinct activation phenotype of a highly conserved novel <scp>HLA</scp> â€B57â€restricted epitope during dengue virus infection. Immunology, 2014, 141, 27-38.	2.0	22
88	T Lymphocytes as Tools in Diagnostics and Immunotoxicology. Exs, 2014, , .	1.4	2
89	Erythema multiforme, Stevens–Johnson syndrome and toxic epidermal necrolysis: a comparative review. Veterinary Dermatology, 2014, 25, 406.	0.4	55
90	The versatility of the αβ Tâ€cell antigen receptor. Protein Science, 2014, 23, 260-272.	3.1	20
91	Understanding the structural dynamics of TCR-pMHC interactions. Trends in Immunology, 2014, 35, 604-612.	2.9	54
92	HLA-DQA1–HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nature Genetics, 2014, 46, 1131-1134.	9.4	165
93	HLA Restriction of Carbamazepine-Specific T-Cell Clones from an HLA-A*31:01-Positive Hypersensitive Patient. Chemical Research in Toxicology, 2014, 27, 175-177.	1.7	36
94	Structural Basis of Chronic Beryllium Disease: Linking Allergic Hypersensitivity and Autoimmunity. Cell, 2014, 158, 132-142.	13.5	101

#	Article	IF	CITATIONS
95	Molecular mechanisms for contribution of MHC molecules to autoimmune diseases. Current Opinion in Immunology, 2014, 31, 24-30.	2.4	70
96	Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes. Journal of Proteomics, 2014, 109, 240-244.	1.2	63
97	The Cellular Redox Environment Alters Antigen Presentation. Journal of Biological Chemistry, 2014, 289, 27979-27991.	1.6	52
98	Using mass spectrometry to monitor drug induced changes in antigen presentation by the human leukocyte antigen. Clinical and Translational Allergy, 2014, 4, P43.	1.4	0
99	Subangstrom Accuracy in pHLA-I Modeling by Rosetta FlexPepDock Refinement Protocol. Journal of Chemical Information and Modeling, 2014, 54, 2233-2242.	2.5	46
100	The frequency of HLA-Bâ^—57:01 and the risk of abacavir hypersensitivity reactions in the majority population of Costa Rica. Human Immunology, 2014, 75, 1092-1096.	1.2	10
101	Antiviral Drug Allergy. Immunology and Allergy Clinics of North America, 2014, 34, 645-662.	0.7	10
102	InÂVitro Diagnosis of Delayed-type Drug Hypersensitivity. Immunology and Allergy Clinics of North America, 2014, 34, 691-705.	0.7	18
103	Challenges and promises in modeling dermatologic disorders with bioengineered skin. Experimental Biology and Medicine, 2014, 239, 1215-1224.	1.1	16
104	Immediateâ€ŧype hypersensitivity drug reactions. British Journal of Clinical Pharmacology, 2014, 78, 1-13.	1.1	44
105	Abacavir Forms Novel Cross-Linking Abacavir Protein Adducts in Patients. Chemical Research in Toxicology, 2014, 27, 524-535.	1.7	21
106	Human T cells use CD1 and MR1 to recognize lipids and small molecules. Current Opinion in Chemical Biology, 2014, 23, 31-38.	2.8	19
107	Drug-Induced Liver Injury. , 2014, , 467-477.		0
108	Gout: Joints and beyond, epidemiology, clinical features, treatment and co-morbidities. Maturitas, 2014, 78, 245-251.	1.0	64
109	Fever, Rash, and Systemic Symptoms: Understanding the Role of Virus and HLA in Severe Cutaneous Drug Allergy. Journal of Allergy and Clinical Immunology: in Practice, 2014, 2, 21-33.	2.0	74
110	Pathogenesis of Idiosyncratic Drug-Induced Liver Injury and Clinical Perspectives. Gastroenterology, 2014, 146, 914-928.e1.	0.6	222
111	Antibiotic Allergy. Immunology and Allergy Clinics of North America, 2014, 34, 489-506.	0.7	34
112	HLA-DRB1*08:02 Is Associated with Bucillamine-Induced Proteinuria in Japanese Rheumatoid Arthritis Patients. Biomarker Insights, 2014, 9, BMI.S13654.	1.0	9

#	Article	IF	CITATIONS
113	Genome-Wide Association Studies in Drug-Induced Liver Injury: Step Change in Understanding the Pathogenesis. Seminars in Liver Disease, 2015, 35, 421-431.	1.8	18
116	Clinical Role of Human Leukocyte Antigen in Health and Disease. Scandinavian Journal of Immunology, 2015, 82, 283-306.	1.3	141
117	Selector function of MHC I molecules is determined by protein plasticity. Scientific Reports, 2015, 5, 14928.	1.6	69
118	Genetics of Interstitial Lung Disease: <i>Vol de Nuit</i> (Night Flight). Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine, 2015, 9s1, CCRPM.S23283.	0.5	16
119	Machine Learning Methods for Predicting HLA-Peptide Binding Activity. Bioinformatics and Biology Insights, 2015, 9s3, BBI.S29466.	1.0	68
120	Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis. BMC Bioinformatics, 2015, 16, S9.	1.2	19
121	Pathogenesis and diagnosis of delayedâ€ŧype drug hypersensitivity reactions, from bedside to bench and back. Clinical and Translational Allergy, 2015, 5, 31.	1.4	60
122	HLAâ€DQ alleleâ€restricted activation of nitroso sulfamethoxazoleâ€specific CD4â€positive T lymphocytes from patients with cystic fibrosis. Clinical and Experimental Allergy, 2015, 45, 1305-1316.	1.4	12
123	Towards depersonalized abacavir therapy. Aids, 2015, 29, 2385-2395.	1.0	15
124	Candidate HLA genes for prediction of co-trimoxazole-induced severe cutaneous reactions. Pharmacogenetics and Genomics, 2015, 25, 402-411.	0.7	73
125	Association of HLA-B*5701 Genotypes and Abacavir-Induced Hypersensitivity Reaction: A Systematic Review and Meta-Analysis. Journal of Pharmacy and Pharmaceutical Sciences, 2015, 18, 68.	0.9	40
126	Abacavir-Reactive Memory T Cells Are Present in Drug NaÃ⁻ve Individuals. PLoS ONE, 2015, 10, e0117160.	1.1	73
127	Acyclovir Has Low but Detectable Influence on HLA-B*57:01 Specificity without Inducing Hypersensitivity. PLoS ONE, 2015, 10, e0124878.	1.1	11
128	Abacavir-induced fulminant hepatic failure in a HIV/HCV co-infected patient. BMJ Case Reports, 2015, 2015, bcr2015212566.	0.2	5
129	Cost-efficient multiplex PCR for routine genotyping of up to nine classical HLA loci in a single analytical run of multiple samples by next generation sequencing. BMC Genomics, 2015, 16, 318.	1.2	68
130	αβ TCR-Mediated Recognition: Relevance to Tumor-Antigen Discovery and Cancer Immunotherapy. Cancer Immunology Research, 2015, 3, 305-312.	1.6	21
131	Human leukocyte antigen genetic risk factors of drug-induced liver toxicology. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 395-409.	1.5	47
132	Parsing interindividual drug variability: an emerging role for systems pharmacology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 221-241.	6.6	57

#	Article	IF	CITATIONS
133	Pathogenesis of drug allergy – current concepts and recent insights. Clinical and Experimental Allergy, 2015, 45, 1376-1383.	1.4	38
134	Characterization of Self-Assembled Monolayers of Peptide Mimotopes of CD20 Antigen and Their Binding with Rituximab. Langmuir, 2015, 31, 13764-13772.	1.6	14
135	Drug Hypersensitivity: How Drugs Stimulate T Cells via Pharmacological Interaction with Immune Receptors. International Archives of Allergy and Immunology, 2015, 168, 13-24.	0.9	71
136	Individualized Medicine. Advances in Predictive, Preventive and Personalised Medicine, 2015, , .	0.6	8
137	Understanding the complexity and malleability of T ell recognition. Immunology and Cell Biology, 2015, 93, 433-441.	1.0	44
138	Revisiting the Arthritogenic Peptide Theory: Quantitative Not Qualitative Changes in the Peptide Repertoire of HLA–B27 Allotypes. Arthritis and Rheumatology, 2015, 67, 702-713.	2.9	102
139	HLA-B allele and haplotype diversity among Thai patients identified by PCR-SSOP: evidence for high risk of drug-induced hypersensitivity. Frontiers in Genetics, 2014, 5, 478.	1.1	31
140	Promiscuous T-cell responses to drugs and drug-haptens. Journal of Allergy and Clinical Immunology, 2015, 136, 474-476.e8.	1.5	41
141	Report from the National Institute of Allergy and Infectious Diseases workshop on drug allergy. Journal of Allergy and Clinical Immunology, 2015, 136, 262-271.e2.	1.5	51
142	Evolving models of the immunopathogenesis of TÂcell–mediated drug allergy: The role of host, pathogens, and drug response. Journal of Allergy and Clinical Immunology, 2015, 136, 219-234.	1.5	185
143	New approaches for predicting T cell–mediated drug reactions: AÂrole for inducible and potentially preventable autoimmunity. Journal of Allergy and Clinical Immunology, 2015, 136, 252-257.	1.5	15
144	Are drug metabolites able to cause T-cell-mediated hypersensitivity reactions?. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 357-368.	1.5	15
145	The Phytotherapeutic Fenugreek as Trigger of Toxic Epidermal Necrolysis. Dermatology, 2015, 231, 99-102.	0.9	10
146	Towards the development of mechanism-based biomarkers to diagnose drug hypersensitivity. Toxicology Research, 2015, 4, 777-795.	0.9	5
147	Genetic Distinctions in Patients With Primary Sclerosing Cholangitis: Immunoglobulin G4 Elevations and HLA Risk. Gastroenterology, 2015, 148, 886-889.	0.6	5
148	Human leukocyte antigen polymorphisms and personalized medicine for rheumatoid arthritis. Journal of Human Genetics, 2015, 60, 691-696.	1.1	24
149	A comprehensive analysis of peptides presented by HLAâ€A1. Tissue Antigens, 2015, 85, 492-496.	1.0	27
150	Oxypurinol-Specific T Cells Possess Preferential TCR Clonotypes and Express Granulysin in Allopurinol-Induced Severe Cutaneous Adverse Reactions. Journal of Investigative Dermatology, 2015, 135, 2237-2248.	0.3	104

#	Article	IF	CITATIONS
151	PharmGKB summary. Pharmacogenetics and Genomics, 2015, 25, 205-221.	0.7	19
152	HLA-B27. Annual Review of Immunology, 2015, 33, 29-48.	9.5	189
153	T Cell Cross-Reactivity between a Highly Immunogenic EBV Epitope and a Self-Peptide Naturally Presented by HLA-B*18:01+ Cells. Journal of Immunology, 2015, 194, 4668-4675.	0.4	14
154	Adversomics: a new paradigm for vaccine safety and design. Expert Review of Vaccines, 2015, 14, 935-947.	2.0	48
155	New genetic findings lead the way to a better understanding of fundamental mechanisms of drug hypersensitivity. Journal of Allergy and Clinical Immunology, 2015, 136, 236-244.	1.5	80
156	Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS): AÂNational Analysis of Data from 10-Year Post-marketing Surveillance. Drug Safety, 2015, 38, 1211-1218.	1.4	12
157	HLADR: a database system for enhancing the discovery of biomarkers for predicting human leukocyte antigen-mediated idiosyncratic adverse drug reactions. Biomarkers in Medicine, 2015, 9, 1079-1093.	0.6	7
158	Personalized medicine approaches in epilepsy. Journal of Internal Medicine, 2015, 277, 218-234.	2.7	71
159	T Cell Antigen Receptor Recognition of Antigen-Presenting Molecules. Annual Review of Immunology, 2015, 33, 169-200.	9.5	603
160	T Cell–Mediated Hypersensitivity Reactions to Drugs. Annual Review of Medicine, 2015, 66, 439-454.	5.0	109
161	Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Molecular Simulation, 2015, 41, 741-751.	0.9	79
162	Clinical features of and genetic predisposition to drug-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in a single Korean tertiary institution patients—investigating the relation between the HLA -B*4403 allele and lamotrigine. European Journal of Clinical Pharmacology, 2015, 71, 35-41.	0.8	25
163	Immunological response in Stevens–Johnson syndrome and toxic epidermal necrolysis. Journal of Dermatology, 2015, 42, 42-48.	0.6	35
164	Repertoire of Classical MHC Class I and Class II Molecules. , 2016, , 200-208.		1
165	Toxic epidermal necrolysis. F1000Research, 2016, 5, 951.	0.8	19
166	<i>In silico</i> Analysis of Interactions between HLA-B*58:01 and Allopurinol-related Compounds. Chem-Bio Informatics Journal, 2016, 16, 1-4.	0.1	6
167	T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance. Asia Pacific Allergy, 2016, 6, 77-89.	0.6	38
168	Novel Concepts for Drug Hypersensitivity Based on the Use of Long-Time Scale Molecular Dynamic Simulation. Journal of Pharmaceutics, 2016, 2016, 1-6.	4.6	2

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
169	MHC Genotyping in Human and Nonhuman Species by PCRbased Next-Generation Sequencing. , 0, , .		2
170	HLA Allele Frequencies in 5802 Koreans: Varied Allele Types Associated with SJS/TEN According to Culprit Drugs. Yonsei Medical Journal, 2016, 57, 118.	0.9	51
171	The Importance of Patient-Specific Factors for Hepatic Drug Response and Toxicity. International Journal of Molecular Sciences, 2016, 17, 1714.	1.8	73
172	Severe Cutaneous Adverse Reactions: The Pharmacogenomics from Research to Clinical Implementation. International Journal of Molecular Sciences, 2016, 17, 1890.	1.8	39
173	Pharmacogenetics and Pharmacogenomics. , 2016, , 121-137.		5
174	Coupling Genotyping and Computational Modeling in Prediction of Anti-epileptic Drugs that cause Stevens Johnson Syndrome and Toxic Epidermal Necrolysis for Carrier of HLA-B*15:02. Journal of Pharmacy and Pharmaceutical Sciences, 2016, 19, 147.	0.9	8
175	Update on Advances in Research on Idiosyncratic Drug-Induced Liver Injury. Allergy, Asthma and Immunology Research, 2016, 8, 3.	1.1	52
176	HLA-DRB1*16. Pharmacogenetics and Genomics, 2016, 26, 218-224.	0.7	63
177	Deciphering the clinical relevance of allo-human leukocyte antigen cross-reactivity in mediating alloimmunity following transplantation. Current Opinion in Organ Transplantation, 2016, 21, 29-39.	0.8	15
178	A web resource for mining HLA associations with adverse drug reactions: HLA-ADR. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw069.	1.4	24
179	Toxic epidermal necrolysis: The past, the guidelines and challenges for the future. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2016, 69, 733-735.	0.5	4
180	A pharmacist's role in the individualization of treatment of HIV patients. Personalized Medicine, 2016, 13, 169-188.	, 0.8	0
181	Classification of Drug Hypersensitivity into Allergic, p-i, and Pseudo-Allergic Forms. International Archives of Allergy and Immunology, 2016, 171, 166-179.	0.9	119
182	sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides. Scientific Reports, 2016, 6, 32115.	1.6	34
183	Drug–Protein Adducts: Chemistry, Mechanisms of Toxicity, and Methods of Characterization. Chemical Research in Toxicology, 2016, 29, 2040-2057.	1.7	35
185	Towards identification of immune and genetic correlates of severe influenza disease in Indigenous Australians. Immunology and Cell Biology, 2016, 94, 367-377.	1.0	38
186	Interplay of innate and adaptive immunity in metal-induced hypersensitivity. Current Opinion in Immunology, 2016, 42, 25-30.	2.4	58
187	Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule. Journal of Immunology, 2016, 196, 4468-4476.	0.4	30

#	Article	IF	CITATIONS
188	The combination of HLA-B*15:01 and DRB1*15:01 is associated with gemcitabine plus erlotinib-induced interstitial lung disease in patients with advanced pancreatic cancer. Cancer Chemotherapy and Pharmacology, 2016, 77, 1165-1170.	1.1	13
189	Mass Spectrometric and Functional Aspects of Drug–Protein Conjugation. Chemical Research in Toxicology, 2016, 29, 1912-1935.	1.7	48
190	Classifying ADRs – does dose matter?. British Journal of Clinical Pharmacology, 2016, 81, 10-12.	1.1	27
191	Toxic epidermal necrolysis: the past, the guidelines and challenges for the future. British Journal of Dermatology, 2016, 174, 1171-1173.	1.4	5
192	CD1a on Langerhans cells controls inflammatory skin disease. Nature Immunology, 2016, 17, 1159-1166.	7.0	134
193	HLA and Delayed Drug-Induced Hypersensitivity. International Archives of Allergy and Immunology, 2016, 170, 163-179.	0.9	35
194	The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype. Vaccine, 2016, 34, 5251-5261.	1.7	28
195	MHC class II complexes sample intermediate states along the peptide exchange pathway. Nature Communications, 2016, 7, 13224.	5.8	40
196	A Review of the Pathogenesis of Toxic Epidermal Necrolysis. Journal of Nippon Medical School, 2016, 83, 216-222.	0.3	19
197	HLA-A*02 alleles are associated with tetanus antitoxin-induced exanthematous drug eruptions in Chinese patients. Pharmacogenetics and Genomics, 2016, 26, 538-546.	0.7	7
198	Old dog begging for new tricks: current practices and future directions in the diagnosis of delayed antimicrobial hypersensitivity. Current Opinion in Infectious Diseases, 2016, 29, 561-576.	1.3	15
199	Allotype specific interactions of drugs and HLA molecules in hypersensitivity reactions. Current Opinion in Immunology, 2016, 42, 31-40.	2.4	47
200	Mismatch in epitope specificities between IFNγ inflamed and uninflamed conditions leads to escape from T lymphocyte killing in melanoma. , 2016, 4, 10.		35
201	Improving drug safety with a systems pharmacology approach. European Journal of Pharmaceutical Sciences, 2016, 94, 84-92.	1.9	22
202	Extensive CD4 and CD8 T Cell Cross-Reactivity between Alphaherpesviruses. Journal of Immunology, 2016, 196, 2205-2218.	0.4	55
203	Adverse cutaneous drug eruptions: current understanding. Seminars in Immunopathology, 2016, 38, 75-86.	2.8	112
204	<i>HLA-B</i> *57:01 Confers Susceptibility to Pazopanib-Associated Liver Injury in Patients with Cancer. Clinical Cancer Research, 2016, 22, 1371-1377.	3.2	80
205	Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite–derived phospholipase. Science Translational Medicine, 2016, 8, 325ra18.	5.8	77

ARTICLE IF CITATIONS Adverse drug reactions and organ damage: The liver. European Journal of Internal Medicine, 2016, 28, 206 1.0 74 9-16. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annual Review 218 of Immunology, 2016, 34, 265-297. Reactive Metabolites: Current and Emerging Risk and Hazard Assessments. Chemical Research in 208 1.7 114 Toxicology, 2016, 29, 505-533. A Systems Approach to Understand Antigen Presentation and the Immune Response. Methods in 209 Molecular Biology, 2016, 1394, 189-209. Beryllium-Induced Hypersensitivity: Genetic Susceptibility and Neoantigen Generation. Journal of 211 0.4 48 Immunology, 2016, 196, 22-27. Structural modeling of HLA-B*1502/peptide/carbamazepine/T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1806-1817. Using GWAS to identify genetic predisposition in hepatic autoimmunity. Journal of Autoimmunity, 2016, 213 3.0 94 66, 25-39. HLA-B*59:01: a marker for Stevens–Johnson syndrome/toxic epidermal necrolysis caused by 214 methazolamide in Han Chinese. Pharmacogenomics Journal, 2016, 16, 83-87. Human leucocyte antigen–adverse drug reaction associations: from a perspective of ethnicity. 215 0.8 10 International Journal of Immunogenetics, 2017, 44, 7-26. Molecular challenges imposed by MHC-I restricted long epitopes on T cell immunity. Biological 1.2 Chemistry, 2017, 398, 1027-1036. Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir. Journal of 217 1.6 35 Biological Chemistry, 2017, 292, 2805-2814. Precision medicine in allergic disease—food allergy, drug allergy, and anaphylaxis—<scp>PRACTALL</scp> document of the European Academy of Allergy and Clinical 143 Immunology and the American Academy of Allergy, Asthma and Immunology. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1006-1021 MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape. Nature Structural 219 3.6 83 and Molecular Biology, 2017, 24, 387-394. Adverse drug reactions triggered by the common HLA-B*57:01 variant: a molecular docking study. 2.8 44 Journal of Cheminformatics, 2017, 9, 13. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. 221 7.0 175 Nature Immunology, 2017, 18, 402-411. Drug-Induced Cholestasis: Mechanisms and Importance., 2017, , 117-128. Association of the HLA-B*53:01 Allele With Drug Reaction With Eosinophilia and Systemic Symptoms 223 (DRESS) Syndrome During Treatment of HIV Infection With Raltegravir. Clinical Infectious Diseases, 2.9 27 2017, 64, 1198-1203. Definition of the Nature and Hapten Threshold of the Î²-Lactam Antigen Required for T Cell Activation 224 54 In Vitro and in Patients. Journal of Immunology, 2017, 198, 4217-4227.

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
225	HLA class I binding prediction via convolutional neural networks. Bioinformatics, 2017, 33, 2658-2665.	1.8	99
226	MAIT cells and MR1-antigen recognition. Current Opinion in Immunology, 2017, 46, 66-74.	2.4	67
227	Severe cutaneous adverse reactions to drugs. Lancet, The, 2017, 390, 1996-2011.	6.3	293
228	HLA Amino Acid Polymorphisms and Kidney Allograft Survival. Transplantation, 2017, 101, e170-e177.	0.5	23
229	Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature, 2017, 545, 243-247.	13.7	181
230	Genetic Discoveries Highlight Environmental Factors as Key Drivers of Liver Disease. Digestive Diseases, 2017, 35, 323-333.	0.8	7
231	Severe Delayed Cutaneous and Systemic Reactions to Drugs: A Global Perspective on the Science and Art of Current Practice. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 547-563.	2.0	106
232	Contact sensitizers trigger human CD1â€autoreactive Tâ€cell responses. European Journal of Immunology, 2017, 47, 1171-1180.	1.6	27
233	Human leukocyte antigen and idiosyncratic adverse drug reactions. Drug Metabolism and Pharmacokinetics, 2017, 32, 21-30.	1.1	32
234	Rational Tuning of Visual Cycle Modulator Pharmacodynamics. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 131-145.	1.3	19
235	Evidence for a higher resolution of HLA genotyping by a new NGS-based approach. Transfusion Clinique Et Biologique, 2017, 24, 120-123.	0.2	6
236	Prevalence of abacavir-associated hypersensitivity syndrome and HLA-B*5701 allele in a Portuguese HIV-positive population. Porto Biomedical Journal, 2017, 2, 59-62.	0.4	7
237	Skin sensitizers in cosmetics and beyond: potential multiple mechanisms of action and importance of T-cell assays for in vitro screening. Critical Reviews in Toxicology, 2017, 47, 422-439.	1.9	10
238	Multiple Drug Hypersensitivity. International Archives of Allergy and Immunology, 2017, 172, 129-138.	0.9	67
239	Minocycline hepatotoxicity: Clinical characterization and identification of HLA-Bâ^—35:02 as a risk factor. Journal of Hepatology, 2017, 67, 137-144.	1.8	100
240	Pharmacogenomic Advances in the Prediction and Prevention of Cutaneous Idiosyncratic Drug Reactions. Clinical Pharmacology and Therapeutics, 2017, 102, 86-97.	2.3	32
241	New insights into the understanding of MHC associations with immuneâ€mediated disorders. Hla, 2017, 89, 3-13.	0.4	9
242	Genomics of Adverse Drug Reactions. Trends in Pharmacological Sciences, 2017, 38, 100-109.	4.0	53

#	Article	IF	CITATIONS
243	Building proteomic tool boxes to monitor MHC class I and class II peptides. Proteomics, 2017, 17, 1600061.	1.3	29
244	Association of Liver Injury From Specific Drugs, or Groups ofÂDrugs, With Polymorphisms in HLA and Other Genes in aÂGenome-Wide Association Study. Gastroenterology, 2017, 152, 1078-1089.	0.6	174
245	Severe Delayed Drug Reactions. Immunology and Allergy Clinics of North America, 2017, 37, 785-815.	0.7	27
246	Dapsone and Nitroso Dapsone Activation of NaıÌ^ve T-Cells from Healthy Donors. Chemical Research in Toxicology, 2017, 30, 2174-2186.	1.7	18
247	The 3 Cs of Antibiotic Allergy—Classification, Cross-Reactivity, and Collaboration. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1532-1542.	2.0	60
248	High Frequency of Human Leukocyte Antigen-B*57:01 Allele Carriers among HIV-Infected Patients in Serbia. Intervirology, 2017, 60, 43-47.	1.2	0
249	A docking model of dapsone bound to HLA-B*13:01 explains the risk of dapsone hypersensitivity syndrome. Journal of Dermatological Science, 2017, 88, 320-329.	1.0	29
250	The molecular basis for peptide repertoire selection in the human leukocyte antigen (HLA) C*06:02 molecule. Journal of Biological Chemistry, 2017, 292, 17203-17215.	1.6	34
251	Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles. Scientific Reports, 2017, 7, 8653.	1.6	41
252	Development of HLA-B*57:01 Genotyping Real-Time PCR with Optimized Hydrolysis Probe Design. Journal of Molecular Diagnostics, 2017, 19, 742-754.	1.2	7
253	Drug-induced hypersensitivity syndrome caused by valproic acid as a monotherapy for epilepsy: First case report in Asian population. Epilepsy & Behavior Case Reports, 2017, 8, 108-110.	1.5	14
254	Dual non-contiguous peptide occupancy of HLA class I evoke antiviral human CD8 T cell response and form neo-epitopes with self-antigens. Scientific Reports, 2017, 7, 5072.	1.6	7
255	Of selfâ€lipids, CD1â€restricted T cells, and contact sensitization. European Journal of Immunology, 2017, 47, 1119-1122.	1.6	1
256	Molecules, Systems and Signaling in Liver Injury. , 2017, , .		0
257	HLA-B*57. Pharmacogenetics and Genomics, 2017, 27, 81-82.	0.7	0
258	The Critical Role of Mitochondria in Drug-Induced Liver Injury. , 2017, , 159-181.		2
259	Introduction: MHC/KIR and governance of specificity. Immunogenetics, 2017, 69, 481-488.	1.2	18
260	The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics, 2017, 69, 617-630.	1.2	63

#	Article	IF	CITATIONS
261	The Effect of Inhibitory Signals on the Priming of Drug Hapten–Specific T Cells That Express Distinct Vβ Receptors. Journal of Immunology, 2017, 199, 1223-1237.	0.4	41
262	HLA-B*57:01 allele prevalence in HIV-infected North American subjects and the impact of allele testing on the incidence of abacavir-associated hypersensitivity reaction in HLA-B*57:01-negative subjects. BMC Infectious Diseases, 2017, 17, 256.	1.3	25
263	How Reactive Metabolites Induce an Immune Response That Sometimes Leads to an Idiosyncratic Drug Reaction. Chemical Research in Toxicology, 2017, 30, 295-314.	1.7	109
264	Docking simulations between drugs and HLA molecules associated with idiosyncratic drug toxicity. Drug Metabolism and Pharmacokinetics, 2017, 32, 31-39.	1.1	14
265	New Approaches to Investigate Drug-Induced Hypersensitivity. Chemical Research in Toxicology, 2017, 30, 239-259.	1.7	18
266	Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology, 2017, 150, 127-138.	2.0	84
267	Drugâ€specific CD4 ⁺ Tâ€cell immune responses are responsible for antituberculosis drugâ€induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. British Journal of Dermatology, 2017, 176, 378-386.	1.4	42
269	Effect of Infectious Diseases on the Pathogenesis of Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis. Biological and Pharmaceutical Bulletin, 2017, 40, 1576-1580.	0.6	15
270	HLA-B*57 Allele Is Associated with Concomitant Anti-tuberculosis and Antiretroviral Drugs Induced Liver Toxicity in Ethiopians. Frontiers in Pharmacology, 2017, 8, 90.	1.6	32
271	Pathogenesis of Idiosyncratic Drug Induced Liver Injury. , 2017, , 87-100.		3
272	The HLA-A*31:01 allele: influence on carbamazepine treatment. Pharmacogenomics and Personalized Medicine, 2017, Volume10, 29-38.	0.4	31
273	In Silico and In Vitro Analysis of Interaction between Ximelagatran and Human Leukocyte Antigen (HLA)-DRB1*07:01. International Journal of Molecular Sciences, 2017, 18, 694.	1.8	9
274	Structural Elements Recognized by Abacavir-Induced T Cells. International Journal of Molecular Sciences, 2017, 18, 1464.	1.8	21
275	Proofreading of Peptide—MHC Complexes through Dynamic Multivalent Interactions. Frontiers in Immunology, 2017, 8, 65.	2.2	58
276	HLA Class I or Class II and Disease Association: Catch the Difference If You Can. Frontiers in Immunology, 2017, 8, 1475.	2.2	19
277	New Insights into Drug Reaction with Eosinophilia and Systemic Symptoms Pathophysiology. Frontiers in Medicine, 2017, 4, 179.	1.2	39
	In Medicine, 2017, 4, 179.		
278	Physiology and Pathology of Drug Hypersensitivity: Role of Human Leukocyte Antigens. , 0, , .		4

#	Article	IF	CITATIONS
280	Generalists and Specialists: A New View of How MHC Class I Molecules Fight Infectious Pathogens. Trends in Immunology, 2018, 39, 367-379.	2.9	108
281	Implications of HLA-allele associations for the study of type IV drug hypersensitivity reactions. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 261-274.	1.5	2
282	Immunologic Effects of Beryllium Exposure. Annals of the American Thoracic Society, 2018, 15, S81-S85.	1.5	24
283	Drug-Induced Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis Call for Optimum Patient Stratification and Theranostics via Pharmacogenomics. Annual Review of Genomics and Human Genetics, 2018, 19, 329-353.	2.5	29
284	The <i>HLAâ€A*30:02</i> ~ <i>C*18:02</i> ~ <i>B*57:03</i> African haplotype identified with the deletion of the HLAâ€DRB1 gene in individuals from La Réunion Island. Hla, 2018, 91, 289-291.	0.4	0
285	Vancomycin Mediates IgA Autoreactivity inÂDrug-Induced Linear IgA BullousÂDermatosis. Journal of Investigative Dermatology, 2018, 138, 1473-1480.	0.3	32
286	Identification of Native and Posttranslationally Modified HLAâ€B*57:01â€Restricted HIV Envelope Derived Epitopes Using Immunoproteomics. Proteomics, 2018, 18, e1700253.	1.3	23
287	The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. Journal of Biological Chemistry, 2018, 293, 3236-3251.	1.6	73
289	SJS/TEN 2017: Building Multidisciplinary Networks to Drive Science and Translation. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 38-69.	2.0	134
290	Immune drug-induced liver disease and drugs. Current Opinion in Toxicology, 2018, 10, 46-53.	2.6	8
291	An Animal Model of Abacavir-Induced HLA-Mediated Liver Injury. Toxicological Sciences, 2018, 162, 713-723.	1.4	24
292	Operational Experience of an Open-Access, Subscription-Based Mass Spectrometry and Proteomics Facility. Journal of the American Society for Mass Spectrometry, 2018, 29, 439-446.	1.2	3
293	Association between HLA-B*44:03-HLA-C*07:01 haplotype and cold medicine-related Stevens-Johnson syndrome with severe ocular complications in Thailand. British Journal of Ophthalmology, 2018, 102, 1303-1307.	2.1	30
294	The Function of HLA-B*13:01 Involved in the Pathomechanism of Dapsone-Induced Severe Cutaneous Adverse Reactions. Journal of Investigative Dermatology, 2018, 138, 1546-1554.	0.3	54
295	Overview of Mechanisms of Drug-Induced Liver Injury (DILI) and Key Challenges in DILI Research. Methods in Pharmacology and Toxicology, 2018, , 3-18.	0.1	11
296	Drug-Induced Skin Adverse Reactions: The Role of Pharmacogenomics in Their Prevention. Molecular Diagnosis and Therapy, 2018, 22, 297-314.	1.6	15
297	Synergetically understanding the interaction between nano/microspheres and peptide for controllable drug loading via experimental and theoretical approaches. Materials Science and Engineering C, 2018, 83, 169-176.	3.8	14
298	Immune Mechanisms of Drug Allergy. , 2018, , 27-38.		0

#	Article	IF	CITATIONS
299	Pharmacogenomics of Drug Allergy. , 2018, , 39-51.		0
300	Genomeâ€wide and Phenomeâ€wide Approaches to Understand Variable Drug Actions in Electronic Health Records. Clinical and Translational Science, 2018, 11, 112-122.	1.5	36
301	HLAs: Key regulators of Tâ€cellâ€mediated drug hypersensitivity. Hla, 2018, 91, 3-16.	0.4	72
302	Pharmacogenomic Biomarkers for Improved Drug Therapy—Recent Progress and Future Developments. AAPS Journal, 2018, 20, 4.	2.2	106
303	Cellular and Molecular Mechanisms of Autoimmune Hepatitis. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 247-292.	9.6	107
304	Evaluation of immune-mediated idiosyncratic drug toxicity using chimeric HLA transgenic mice. Archives of Toxicology, 2018, 92, 1177-1188.	1.9	19
305	Sulfasalazineâ€Induced Agranulocytosis Is Associated With the Human Leukocyte Antigen Locus. Clinical Pharmacology and Therapeutics, 2018, 103, 843-853.	2.3	18
306	Characterisation of the HLA-DRB1*07:01 biomarker for lapatinib-induced liver toxicity during treatment of early-stage breast cancer patients with lapatinib in combination with trastuzumab and/or taxanes. Pharmacogenomics Journal, 2018, 18, 480-486.	0.9	17
307	Association between HLA-Bâ^—46:01 and cutaneous adverse drug reactions in Han Chinese. Journal of Bio-X Research, 2018, 1, 73-78.	0.3	1
308	Human Leukocyte Antigen Associations in Drug Hypersensitivity Reactions. Clinics in Laboratory Medicine, 2018, 38, 669-677.	0.7	14
309	HLA-B57 micropolymorphism defines the sequence and conformational breadth of the immunopeptidome. Nature Communications, 2018, 9, 4693.	5.8	31
310	A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands. Science Immunology, 2018, 3, .	5.6	142
311	Carbamazepine-Mediated Adverse Drug Reactions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo>â^—</mml:mo>15:02. Journal of Immunology Research, 2018, 2018, 1-12.</mml:math 	0.9	19
312	HLA-A*33:03-Restricted Activation of Ticlopidine-Specific T-Cells from Human Donors. Chemical Research in Toxicology, 2018, 31, 1022-1024.	1.7	9
313	HLA and kidney disease: from associations to mechanisms. Nature Reviews Nephrology, 2018, 14, 636-655.	4.1	55
314	Pharmacogenomics of drug-induced liver injury (DILI): Molecular biology to clinical applications. Journal of Hepatology, 2018, 69, 948-957.	1.8	62
315	Mechanisms leading to T-cell activation in drug hypersensitivity. Current Opinion in Allergy and Clinical Immunology, 2018, 18, 317-324.	1.1	25
316	Recent Advances in Drug-Induced Hypersensitivity Syndrome/Drug Reaction with Eosinophilia and Systemic Symptoms. Journal of Immunology Research, 2018, 2018, 1-10.	0.9	44

#	Article	IF	CITATIONS
317	An Updated Review of the Molecular Mechanisms in Drug Hypersensitivity. Journal of Immunology Research, 2018, 2018, 1-22.	0.9	111
318	Immunopeptidomics Special Issue. Proteomics, 2018, 18, e1800145.	1.3	5
319	Discrimination Between Human Leukocyte Antigen Class I-Bound and Co-Purified HIV-Derived Peptides in Immunopeptidomics Workflows. Frontiers in Immunology, 2018, 9, 912.	2.2	40
320	Interaction of Nevirapine with the Peptide Binding Groove of HLA-DRB1*01:01 and Its Effect on the Conformation of HLA-Peptide Complex. International Journal of Molecular Sciences, 2018, 19, 1660.	1.8	8
321	Adverse drug reactions triggered by the common HLA-B*57:01 variant: virtual screening of DrugBank using 3D molecular docking. Journal of Cheminformatics, 2018, 10, 3.	2.8	4
322	Idiosyncratic Adverse Drug Reactions. , 2018, , 681-716.		4
323	Hypersensitivity Reactions to Antiepileptic Drugs in Children: Epidemiologic, Pathogenetic, Clinical, and Diagnostic Aspects. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1879-1891.e1.	2.0	21
324	Critical assessment of approaches for molecular docking to elucidate associations of HLA alleles with adverse drug reactions. Molecular Immunology, 2018, 101, 488-499.	1.0	14
325	Improvement in HLAâ€ŧyping by new sequenceâ€specific oligonucleotides kits for HLAâ€A, â€B, and â€DRB1 loci. Hla, 2018, 92, 279-287.	0.4	78
326	Pharmacogenetics of Adverse Drug Reactions. Advances in Pharmacology, 2018, 83, 155-190.	1.2	32
327	Genetic and nongenetic factors that may predispose individuals to allergic drug reactions. Current Opinion in Allergy and Clinical Immunology, 2018, 18, 325-332.	1.1	11
328	Applications of Immunopharmacogenomics: Predicting, Preventing, and Understanding Immune-Mediated Adverse Drug Reactions. Annual Review of Pharmacology and Toxicology, 2019, 59, 463-486.	4.2	42
329	Defining Regional Differences in Drugâ€Induced Stevens–Johnson Syndrome/Toxic Epidermal Necrolysis: A Tool to Improve Drug Safety?. Clinical Pharmacology and Therapeutics, 2019, 105, 22-25.	2.3	3
330	Genetic and Environmental Risk Factors for Autoimmune Hepatitis. Clinical Liver Disease, 2019, 14, 29-32.	1.0	11
331	Identification of drug-specific public TCR driving severe cutaneous adverse reactions. Nature Communications, 2019, 10, 3569.	5.8	83
332	Rapid Detection of HLA-B*57:01-Expressing Cells Using a Label-Free Interdigitated Electrode Biosensor Platform for Prevention of Abacavir Hypersensitivity in HIV Treatment. Sensors, 2019, 19, 3543.	2.1	2
333	Clinical Usefulness of HLA-Bâ^—58:01 Genotyping in Gouty Arthritis. Journal of Clinical Rheumatology and Immunology, 2019, 19, 27-33.	0.4	2
334	The Role of Conformational Dynamics in Abacavir-Induced Hypersensitivity Syndrome. Scientific Reports, 2019, 9, 10523.	1.6	6

#	Article	IF	CITATIONS
335	Virus-specific T-cell clonotypes might contribute to drug hypersensitivity reactions through heterologous immunity. Journal of Allergy and Clinical Immunology, 2019, 144, 608-611.e4.	1.5	22
336	HLA Polymorphisms And TKI-Induced Liver Injury in Patients with Cancer: A Meta-analysis. Journal of Cancer, 2019, 10, 2161-2168.	1.2	3
337	The Mechanistic Differences in HLA-Associated Carbamazepine Hypersensitivity. Pharmaceutics, 2019, 11, 536.	2.0	12
338	Structural Immunology. Advances in Experimental Medicine and Biology, 2019, , .	0.8	4
339	Exhaustive Repertoire of Druggable Cavities at Protein–Protein Interfaces of Known Three-Dimensional Structure. Journal of Medicinal Chemistry, 2019, 62, 9732-9742.	2.9	17
340	De novo generation of a functional human thymus from induced pluripotent stem cells. Journal of Allergy and Clinical Immunology, 2019, 144, 1416-1419.e7.	1.5	26
341	Identification of HLA-A*02:06:01 as the primary disease susceptibility HLA allele in cold medicine-related Stevens-Johnson syndrome with severe ocular complications by high-resolution NGS-based HLA typing. Scientific Reports, 2019, 9, 16240.	1.6	16
342	Single-cell transcriptomics reveal polyclonal memory T-cell responses in skin with positive abacavir patch test results. Journal of Allergy and Clinical Immunology, 2019, 144, 1413-1416.e7.	1.5	19
343	Drugâ€Induced Liver Injury due to Flucloxacillin: Relevance of Multiple Human Leukocyte Antigen Alleles. Clinical Pharmacology and Therapeutics, 2019, 106, 245-253.	2.3	58
344	Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. , 2019, 197, 122-152.		83
345	Pharmacogenomics as a Tool for Management of Drug Hypersensitivity Reactions. Current Treatment Options in Allergy, 2019, 6, 1-17.	0.9	1
346	Long Noncoding RNA HCP5, a Hybrid HLA Class I Endogenous Retroviral Gene: Structure, Expression, and Disease Associations. Cells, 2019, 8, 480.	1.8	60
347	HLA-B*13:01 as a Risk Allele for Antiepileptic Drugs-Induced Cutaneous Adverse Reactions: Higher Risk for Cross-Reactivity?. Frontiers in Neurology, 2019, 10, 614.	1.1	3
348	Susceptibility to adverse drug reactions. British Journal of Clinical Pharmacology, 2019, 85, 2205-2212.	1.1	24
349	Drug-induced alloreactivity: A new paradigm for allorecognition. American Journal of Transplantation, 2019, 19, 2606-2613.	2.6	8
350	Mass spectrometry–based identification of MHC-bound peptides for immunopeptidomics. Nature Protocols, 2019, 14, 1687-1707.	5.5	230
351	An Albumin Sandwich Enhances in Vivo Circulation and Stability of Metabolically Labile Peptides. Bioconjugate Chemistry, 2019, 30, 1711-1723.	1.8	13
352	Mechanisms of Severe Cutaneous Adverse Reactions: Recent Advances. Drug Safety, 2019, 42, 973-992.	1.4	66

ARTICLE IF CITATIONS # Allergic reactions to small-molecule drugs: Will we move from reaction to prediction?. American 353 0.5 2 Journal of Health-System Pharmacy, 2019, 76, 574-580. HLAâ€associated antiepileptic drugâ€induced cutaneous adverse reactions. Hla, 2019, 93, 417-435. 354 0.4 Dapsone―and nitroso dapsoneâ€specific activation of T cells from hypersensitive patients expressing the 355 2.7 37 risk allele HLAâ€B*13:01. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1533-1548. Immune pathomechanism and classification of drug hypersensitivity. Allergy: European Journal of 356 131 Allergy and Clinical Immunology, 2019, 74, 1457-1471. Beta″actamâ€induced severe neutropenia: a descriptive study. Fundamental and Clinical Pharmacology, 357 1.0 3 2019, 33, 223-224. HLA-A*32:01 is strongly associated with vancomycin-induced drug reaction with eosinophilia and systemic symptoms. Journal of Allergy and Clinical Immunology, 2019, 144, 183-192. 1.5 118 Molecular docking predictions of fragrance binding to human leukocyte antigen molecules. Contact 359 0.8 5 Dermatitis, 2019, 81, 174-183. <i>HLAâ€B*57:01</i> confers genetic susceptibility to carbamazepineâ€induced SJS/TEN in Europeans. 2.7 Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2227-2230. Epidermal necrolysis: SCORTEN performance in AIDS and non-AIDS patients. Anais Brasileiros De 361 0.5 8 Dermatologia, 2019, 94, 17-23. Purification, Crystallization and Crystallographic Analysis of HLA-B*15:02 Complexed with an 0.1 Endogenous Peptide. Crystallography Reports, 2019, 64, 1122-1125. Genetic testing for prevention of severe drug-induced skin rash. The Cochrane Library, 2019, 7, 363 7 1.5 CD010891. Crystal structure of suboptimal viral fragments of Epstein Barr Virus Rta peptide-HLA complex that 364 1.6 stimulate CD8 T cell response. Scientific Reports, 2019, 9, 16660. Rationally designed small molecules to prevent type 1 diabetes. Current Opinion in Endocrinology, 365 1.2 5 Diabetes and Obesity, 2019, 26, 90-95. Role of T cells in non-immediate drug allergy reactions. Current Opinion in Allergy and Clinical 1.1 Immunology, 2019, 19, 294-301. Assessing the clinical impact of CYP2C9 pharmacogenetic variation on phenytoin prescribing practice 368 33 0.7 and patient response in an integrated health system. Pharmacogenetics and Genomics, 2019, 29, 192-199. Controversies in drug allergy: Testing for delayed reactions. Journal of Allergy and Clinical Immunology, 2019, 143, 66-73. 1.5 144 370 Advances in Diagnosis and Management of Cutaneous Adverse Drug Reactions., 2019,,. 6

Immunology of Cutaneous Adverse Drug Reactions. , 2019, , 23-37.

(

#	Article	IF	CITATIONS
372	Application of the immunoregulatory receptor LILRB1 as a crystallisation chaperone for human class I MHC complexes. Journal of Immunological Methods, 2019, 464, 47-56.	0.6	1
373	Pharmacogenomics and Cutaneous Adverse Drug Reactions. , 2019, , 39-53.		0
374	The skin as a metabolic and immune-competent organ: Implications for drug-induced skin rash. Journal of Immunotoxicology, 2019, 16, 1-12.	0.9	20
375	Structure-based selection of human metabolite binding P4 pocket of DRB1*15:01 and DRB1*15:03, with implications for multiple sclerosis. Genes and Immunity, 2019, 20, 46-55.	2.2	8
376	T-Cell Activation by Low Molecular Weight Drugs and Factors That Influence Susceptibility to Drug Hypersensitivity. Chemical Research in Toxicology, 2020, 33, 77-94.	1.7	9
377	Definition of the Chemical and Immunological Signals Involved in Drug-Induced Liver Injury. Chemical Research in Toxicology, 2020, 33, 61-76.	1.7	17
378	Modification of the cyclopropyl moiety of abacavir provides insight into the structure activity relationship between HLAâ€B*57:01 binding and Tâ€cell activation. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 636-647.	2.7	19
379	<i>>HLAâ€B*51:01</i> and <i>CYP2C9*3</i> Are Risk Factors for Phenytoinâ€Induced Eruption in the Japanese Population: Analysis of Data From the Biobank Japan Project. Clinical Pharmacology and Therapeutics, 2020, 107, 1170-1178.	2.3	13
380	Drug-induced skin toxicity: gaps in preclinical testing cascade as opportunities for complex <i>in vitro</i> models and assays. Lab on A Chip, 2020, 20, 199-214.	3.1	28
381	Genetic Predisposition to Drug-Induced Liver Injury. Clinics in Liver Disease, 2020, 24, 11-23.	1.0	21
382	The Utility of T-Cell Clonality in Differential Diagnostics of Acute Graft-versus-Host Disease from Drug Hypersensitivity Reaction. Journal of Investigative Dermatology, 2020, 140, 1282-1285.	0.3	6
383	Immune dysregulation increases the incidence of delayedâ€ŧype drug hypersensitivity reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 781-797.	2.7	21
384	Research advances in the association of drug-induced liver injury with polymorphisms in human leukocyte antigen. International Immunopharmacology, 2020, 81, 106037.	1.7	4
385	Comparison of abacavirâ€specific effector and proliferating functions of CD8 T cells in abacavirâ€treated HIVâ€1 patients. Microbiology and Immunology, 2020, 64, 210-218.	0.7	2
386	Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products. Science Immunology, 2020, 5, .	5.6	42
387	Pharmacogenomics of Drug-Induced Liver Injury. Advances in Molecular Pathology, 2020, 3, 107-115.	0.2	3
388	Unconventional Peptide Presentation by Classical MHC Class I and Implications for T and NK Cell Activation. International Journal of Molecular Sciences, 2020, 21, 7561.	1.8	6
389	High-Throughput Sequencing to Investigate Associations Between HLA Genes and Metamizole-Induced Agranulocytosis. Frontiers in Genetics, 2020, 11, 951.	1.1	4

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
390	FuncPEP: A Database of Functional Peptides Encoded by Non-Coding RNAs. Non-coding RNA, 2020, 6, 41.	1.3	34
391	Association of HLA polymorphisms and acetaminophen-related Steven-Johnson syndrome with severe ocular complications in Thai population. British Journal of Ophthalmology, 2022, 106, 884-888.	2.1	7
392	Detailed and atypical HLAâ€E peptide binding motifs revealed by a novel peptide exchange binding assay. European Journal of Immunology, 2020, 50, 2075-2091.	1.6	24
393	Pharmacogenetic Testing for Prevention of Severe Cutaneous Adverse Drug Reactions. Frontiers in Pharmacology, 2020, 11, 969.	1.6	38
394	Identification of Flucloxacillin-Haptenated HLA-B*57:01 Ligands: Evidence of Antigen Processing and Presentation. Toxicological Sciences, 2020, 177, 454-465.	1.4	21
395	Genetic Susceptibility to Clozapine-Induced Agranulocytosis/Neutropenia Across Ethnicities: Results From a New Cohort of Turkish and Other Caucasian Participants, and Meta-Analysis. Schizophrenia Bulletin Open, 2020, 1, .	0.9	7
396	Abacavir adverse reactions related with HLA-B*57:01 haplotype in a large cohort of patients infected with HIV. Pharmacogenetics and Genomics, 2020, 30, 167-174.	0.7	2
397	Spliced Peptides and Cytokine-Driven Changes in the Immunopeptidome of Melanoma. Cancer Immunology Research, 2020, 8, 1322-1334.	1.6	45
398	The Impact of the â€~Mis-Peptidome' on HLA Class I-Mediated Diseases: Contribution of ERAP1 and ERAP2 and Effects on the Immune Response. International Journal of Molecular Sciences, 2020, 21, 9608.	1.8	22
399	New genetic predictors for abacavir tolerance in HLA-B*57:01 positive individuals. Human Immunology, 2020, 81, 300-304.	1.2	19
400	The molecular basis of how buried human leukocyte antigen polymorphism modulates natural killer cell function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11636-11647.	3.3	16
401	Clinical utility of next generation sequencing based HLA typing for disease association and pharmacogenetic testing. Human Immunology, 2020, 81, 354-360.	1.2	13
402	In-depth mining of the immunopeptidome of an acute myeloid leukemia cell line using complementary ligand enrichment and data acquisition strategies. Molecular Immunology, 2020, 123, 7-17.	1.0	18
403	Hypersensitivities following allergen antigen recognition by unconventional T cells. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2477-2490.	2.7	13
404	Stevens-Johnson syndrome and toxic epidermal necrolysis: risk factors, causality assessment and potential prevention strategies. Expert Review of Clinical Immunology, 2020, 16, 373-387.	1.3	20
405	Clinical and pathogenic aspects of the severe cutaneous adverse reaction epidermal necrolysis (EN). Journal of the European Academy of Dermatology and Venereology, 2020, 34, 1957-1971.	1.3	25
406	Preferential HLA-B27 Allorecognition Displayed by Multiple Cross-Reactive Antiviral CD8+ T Cell Receptors. Frontiers in Immunology, 2020, 11, 248.	2.2	7
407	Mechanistic insights into antiretroviral drugâ€induced liver injury. Pharmacology Research and Perspectives, 2020, 8, e00598.	1.1	14

#	Article	IF	CITATIONS
408	Detection of Abacavir-Induced Structural Alterations in Human Leukocyte Antigen-B*57 : 01 Using Phage Display. Biological and Pharmaceutical Bulletin, 2020, 43, 1007-1015.	² 0.6	9
409	How Mechanism Knowledge Can Help to Management of Drug Hypersensitivity. Current Treatment Options in Allergy, 2020, 7, 14-31.	0.9	0
410	Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. Journal of Medicinal Chemistry, 2020, 63, 6436-6461.	2.9	34
411	Informatics investigations into anti-thyroid drug induced agranulocytosis associated with multiple HLA-B alleles. PLoS ONE, 2020, 15, e0220754.	1.1	3
413	Targeted therapy guided by single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nature Medicine, 2020, 26, 236-243.	15.2	107
414	Current perspective of the etiopathogenesis of delayed-type, and T-cell–mediated drug-related skin diseases. Journal of Allergy and Clinical Immunology, 2020, 145, 1142-1144.	1.5	8
415	The complexity of T cell–mediated penicillin hypersensitivity reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 150-167.	2.7	11
416	Dynamic cytokine profiles combined with enzyme-linked immunospot assay are useful for immunologically confirming the dapsone hypersensitivity syndrome. Journal of the American Academy of Dermatology, 2021, 84, 814-816.	0.6	5
417	Risk and Association of HLA Alleles with Methimazole-Induced Cutaneous Adverse ReactionsÂin Chinese Han Population. Journal of Investigative Dermatology, 2021, 141, 437-440.	0.3	2
418	HLA-B*39:01:01 is a novel risk factor for antithyroid drug-induced agranulocytosis in Japanese population. Pharmacogenomics Journal, 2021, 21, 94-101.	0.9	4
419	Genetic risk factors in the development of idiosyncratic drug-induced liver injury. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 153-169.	1.5	22
420	Drugâ€specific Tâ€cell responses in patients with liver injury following treatment with the BACE inhibitor atabecestat. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1825-1835.	2.7	12
421	A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicological Research, 2021, 37, 1-23.	1.1	68
422	Anthem: a user customised tool for fast and accurate prediction of binding between peptides and HLA class I molecules. Briefings in Bioinformatics, 2021, 22, .	3.2	37
423	Genetic Variants Associated With Drug-Induced Hypersensitivity Reactions: towards Precision Medicine?. Current Treatment Options in Allergy, 2021, 8, 42-59.	0.9	0
424	An Updated Review of the Diagnostic Methods in Delayed Drug Hypersensitivity. Frontiers in Pharmacology, 2020, 11, 573573.	1.6	32
425	Drug Reaction with Eosinophilia and Systemic Symptoms: A Complex Interplay between Drug, T Cells, and Herpesviridae. International Journal of Molecular Sciences, 2021, 22, 1127.	1.8	7
426	Current Perspective Regarding the Immunopathogenesis of Drug-Induced Hypersensitivity Syndrome/Drug Reaction with Eosinophilia and Systemic Symptoms (DIHS/DRESS). International Journal of Molecular Sciences, 2021, 22, 2147.	1.8	49

#	Article	IF	CITATIONS
427	Alterations in the HLA-B*57:01 Immunopeptidome by Flucloxacillin and Immunogenicity of Drug-Haptenated Peptides. Frontiers in Immunology, 2020, 11, 629399.	2.2	16
428	Familial drug reaction with eosinophilia and systemic symptoms syndrome. Indian Journal of Dermatology, Venereology and Leprology, 2021, 87, 383-385.	0.2	1
431	Massive clonal expansion of polycytotoxic skin and blood CD8 ⁺ T cells in patients with toxic epidermal necrolysis. Science Advances, 2021, 7, .	4.7	20
432	Model Based Evaluation of Hypersensitivity Adverse Drug Reactions to Antimicrobial Agents in Children. Frontiers in Pharmacology, 2021, 12, 638881.	1.6	3
433	IFNÎ ³ Modulates the Immunopeptidome of Triple Negative Breast Cancer Cells by Enhancing and Diversifying Antigen Processing and Presentation. Frontiers in Immunology, 2021, 12, 645770.	2.2	25
434	Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. International Journal of Molecular Sciences, 2021, 22, 4557.	1.8	34
435	Patients with Autoimmune Hepatitis Report Lower Lifetime Coffee Consumption. Digestive Diseases and Sciences, 2022, 67, 2594-2599.	1.1	4
436	Carbamazepine Induces Focused T Cell Responses in Resolved Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis Cases But Does Not Perturb the Immunopeptidome for T Cell Recognition. Frontiers in Immunology, 2021, 12, 653710.	2.2	14
437	In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Frontiers in Immunology, 2021, 12, 630530.	2.2	13
438	Current Pharmacogenetic Perspective on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Frontiers in Pharmacology, 2021, 12, 588063.	1.6	13
439	Characterization of T-Cell Responses to SMX and SMX-NO in Co-Trimoxazole Hypersensitivity Patients Expressing HLA-B*13:01. Frontiers in Immunology, 2021, 12, 658593.	2.2	14
440	Genomic Risk Factors Driving Immune-Mediated Delayed Drug Hypersensitivity Reactions. Frontiers in Genetics, 2021, 12, 641905.	1.1	11
441	HLA Risk Alleles in Aromatic Antiepileptic Drug-Induced Maculopapular Exanthema. Frontiers in Pharmacology, 2021, 12, 671572.	1.6	8
442	Transcriptional signature in microglia associated with AÎ ² plaque phagocytosis. Nature Communications, 2021, 12, 3015.	5.8	142
443	Kinetics of Abacavir-Induced Remodelling of the Major Histocompatibility Complex Class I Peptide Repertoire. Frontiers in Immunology, 2021, 12, 672737.	2.2	8
444	The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacological Reviews, 2021, 73, 861-896.	7.1	18
445	Deciphering Adverse Drug Reactions: <i>In Vitro</i> Priming and Characterization of Vancomycin-Specific T Cells From Healthy Donors Expressing HLA-A*32:01. Toxicological Sciences, 2021, 183, 139-153.	1.4	9
446	The important role of nonâ€covalent drugâ€protein interactions in drug hypersensitivity reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 404-415.	2.7	24

#	Article	IF	CITATIONS
447	Polymorphisms in MHC class I molecules influence their interactions with components of the antigen processing and presentation pathway. International Journal of Immunogenetics, 2021, 48, 317-325.	0.8	6
448	Drug and Chemical Allergy: A Role for a Specific Naive T-Cell Repertoire?. Frontiers in Immunology, 2021, 12, 653102.	2.2	6
449	Immunopharmacogenomics: Mechanisms of HLAâ€Associated Drug Reactions. Clinical Pharmacology and Therapeutics, 2021, 110, 607-615.	2.3	29
450	Drug haptenâ€specific Tâ€cell activation: Current status and unanswered questions. Proteomics, 2021, 21, e2000267.	1.3	9
451	HLA class II immunopeptidomics reveals that coâ€inherited HLAâ€allotypes within an extended haplotype can improve proteome coverage for immunosurveillance. Proteomics, 2021, 21, e2000160.	1.3	11
452	Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d. Proceedings of the United States of America, 2021, 118, .	3.3	8
454	Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Communications Biology, 2021, 4, 1137.	2.0	8
455	The pockets guide to HLA class I molecules. Biochemical Society Transactions, 2021, 49, 2319-2331.	1.6	46
456	HLA Allele–Restricted Immune-Mediated Adverse Drug Reactions: Framework for Genetic Prediction. Annual Review of Pharmacology and Toxicology, 2022, 62, .	4.2	8
457	HLA Class-Il‒Restricted CD8+ T Cells Contribute to the Promiscuous Immune Response in Dapsone-Hypersensitive Patients. Journal of Investigative Dermatology, 2021, 141, 2412-2425.e2.	0.3	12
458	The PD1 inhibitory pathway and mature dendritic cells contribute to abacavir hypersensitivity in human leukocyte antigen transgenic PD1 knockout mice. Toxicology, 2021, 463, 152971.	2.0	0
459	Mechanisms of Hypersensitivity. , 2013, , 37-90.		3
460	Sequence-Based Typing of HLA: An Improved Group-Specific Full-Length Gene Sequencing Approach. Methods in Molecular Biology, 2014, 1109, 101-114.	0.4	33
461	Activation of the TCR Complex by Small Chemical Compounds. Exs, 2014, 104, 25-39.	1.4	5
462	Cutaneous Adverse Drug Reactions: Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis. , 2016, , 393-404.		1
463	MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins—Key Elements of Adaptive and Innate Immunity. Advances in Experimental Medicine and Biology, 2019, 1172, 21-62.	0.8	28
464	Genome-wide Study Identifies Association between HLA-Bâ^—55:01 and Self-Reported Penicillin Allergy. American Journal of Human Genetics, 2020, 107, 612-621.	2.6	34
465	Chemically Reactive <i>Versus</i> Stable Drug Metabolites: Role in Adverse Drug Reactions. RSC Drug Discovery Series, 2015, , 202-226.	0.2	1

#	Article	IF	CITATIONS
466	Characterization of the Class I MHC Peptidome Resulting From DNCB Exposure of HaCaT Cells. Toxicological Sciences, 2021, 180, 136-147.	1.4	9
471	Active suppression rather than ignorance: tolerance to abacavir-induced HLA-B*57:01 peptide repertoire alteration. Journal of Clinical Investigation, 2018, 128, 2746-2749.	3.9	13
472	Methyldopa blocks MHC class II binding to disease-specific antigens in autoimmune diabetes. Journal of Clinical Investigation, 2018, 128, 1888-1902.	3.9	43
473	Killer cell immunoglobulin–like receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1. Journal of Clinical Investigation, 2018, 128, 1903-1912.	3.9	52
474	A transgenic mouse model for HLA-B*57:01–linked abacavir drug tolerance and reactivity. Journal of Clinical Investigation, 2018, 128, 2819-2832.	3.9	47
475	Recent advances in managing and understanding Stevens-Johnson syndrome and toxic epidermal necrolysis. F1000Research, 2020, 9, 612.	0.8	67
476	<i>In silico</i> Analysis of Interactions between <i>HLA-A*31:01</i> and carbamazepine-related Compounds. Chem-Bio Informatics Journal, 2016, 16, 5-8.	0.1	1
477	<i>In silico</i> Analysis of Interactions between Nevirapine-related Compounds, <i>HLA-B*14:02 </i> and T-cell Receptor . Chem-Bio Informatics Journal, 2016, 16, 9-12.	0.1	2
478	Severe cutaneous adverse reactions: impact of immunology, genetics, and pharnacology. Seminars in Cutaneous Medicine and Surgery, 2014, 33, 17-27.	1.6	12
479	Abacavir Induced T Cell Reactivity from Drug NaÃ⁻ve Individuals Shares Features of Allo-Immune Responses. PLoS ONE, 2014, 9, e95339.	1.1	58
480	HLA Diversity in the 1000 Genomes Dataset. PLoS ONE, 2014, 9, e97282.	1.1	179
481	The Possible Mechanism of Idiosyncratic Lapatinib-Induced Liver Injury in Patients Carrying Human Leukocyte Antigen-DRB1*07:01. PLoS ONE, 2015, 10, e0130928.	1.1	11
482	HLA-DR7 and HLA-DQ2: Transgenic mouse strains tested as a model system for ximelagatran hepatotoxicity. PLoS ONE, 2017, 12, e0184744.	1.1	13
483	Molecular Structure, Vibrational Spectra and Docking Studies of Abacavir by Density Functional Theory. International Letters of Chemistry, Physics and Astronomy, 0, 72, 9-27.	0.0	6
484	Drug-Induced liver Injury Associated with Severe Cutaneous Hypersensitivity Reactions: A Complex Entity in Need of a Multidisciplinary Approach. Current Pharmaceutical Design, 2019, 25, 3855-3871.	0.9	13
485	Molecular Docking to Identify Associations Between Drugs and Class I Human Leukocyte Antigens for Predicting Idiosyncratic Drug Reactions. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 296-304.	0.6	69
486	HLA-A, -B, -C, -DRB1, and -DQB1 Allele Lineages and Haplotype Frequencies among Saudis. Immunology and Immunogenetics Insights, 0, , 1.	1.0	5
487	Activating interactions of sulfanilamides with T cell receptors. Open Journal of Immunology, 2013, 03, 139-157.	0.5	19

#	ARTICLE Pharmacogenomics and Rheumatological Practice. Journal of Clinical Rheumatology and Immunology,	IF 0.4	CITATIONS
489	O, , 1-12. Advances and highlights in T and B cell responses to drug antigens. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1129-1138.	2.7	6
490	Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health. Human Genetics, 2022, 141, 1113-1136.	1.8	17
491	Small Molecule/HLA Complexes Alter the Cellular Proteomic Content. , 0, , .		1
492	Drug hypersensitivity. , 2013, , 564-577.		0
493	The Use of Proteomics to Dissect the Molecular Specificities of T Cells in Type 1 Diabetes. Journal of Diabetes & Metabolism, 2013, , .	0.2	Ο
494	Lymphocyte Transformation Test. , 2014, , 1-5.		2
496	Pathomechanism of SJS/TEN. Nishinihon Journal of Dermatology, 2015, 77, 337-339.	0.0	1
497	The Role of Pharmacogenomics in Individualized Medicine. Advances in Predictive, Preventive and Personalised Medicine, 2015, , 93-112.	0.6	3
498	Pharmacogenetics of Adverse Drug Reactions. Advances in Predictive, Preventive and Personalised Medicine, 2015, , 109-156.	0.6	0
499	HLA and Drug Hypersensitivity. , 2016, , 310-317.		0
501	Management of Severe Skin Eruptions. , 2017, , 759-763.		0
503	Drug-Induced Liver Disease. , 2017, , 204-216.		0
506	Pharmacogenomics: A New Approach for Preventing Severe Cutaneous Adverse Drug Reactions. , 2018, , 373-409.		2
509	Using Technology to Learn About Immunology of Cutaneous Adverse Drug Reactions. , 2019, , 67-74.		0
510	<i>In silico</i> analysis of interactions of flucloxacillin and its metabolites with <i>HLA-B*57:01 </i> . Chem-Bio Informatics Journal, 2019, 19, 1-4.	0.1	0
513	An Update on the Immunological, Metabolic and Genetic Mechanisms in Drug Hypersensitivity Reactions. Current Pharmaceutical Design, 2019, 25, 3813-3828.	0.9	2
515	Mechanisms of Hypersensitivity. , 2021, , 59-137.		0

#	Article	IF	CITATIONS
516	Shedding Light on Drug-Induced Liver Injury: Activation of T Cells From Drug Naive Human Donors With Tolvaptan and a Hydroxybutyric Acid Metabolite. Toxicological Sciences, 2021, 179, 95-107.	1.4	2
517	Testing for drug hypersensitivity syndromes. Clinical Biochemist Reviews, 2013, 34, 15-38.	3.3	56
519	NEW STRATEGIES TO PREDICT AND PREVENT SERIOUS IMMUNOLOGICALLY MEDIATED ADVERSE DRUG REACTIONS. Transactions of the American Clinical and Climatological Association, 2018, 129, 74-87.	0.9	5
520	Lamotrigine and Stevens-Johnson Syndrome Prevention. Psychopharmacology Bulletin, 2021, 51, 96-114.	0.0	1
521	Critical Review of Gaps in the Diagnosis and Management of Drug-Induced Liver Injury Associated with Severe Cutaneous Adverse Reactions. Journal of Clinical Medicine, 2021, 10, 5317.	1.0	3
522	Discovering new biology with drug-resistance alleles. Nature Chemical Biology, 2021, 17, 1219-1229.	3.9	11
525	Role of Pharmacogenomics in Reducing the Risk of Drug-Related Iatrogenesis. Current Pharmacology Reports, 2022, 8, 79.	1.5	1
526	Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. Journal of Personalized Medicine, 2022, 12, 40.	1.1	2
527	HLAâ€variants associated with azathioprineâ€induced pancreatitis in patients with Crohn's disease. Clinical and Translational Science, 2022, , .	1.5	3
528	Functional and Structural Characteristics of HLA-B*13:01-Mediated Specific T Cells Reaction in Dapsone-Induced Drug Hypersensitivity. SSRN Electronic Journal, 0, , .	0.4	0
529	Abacavir inhibits but does not cause self-reactivity to HLA-B*57:01-restricted EBV specific T cell receptors. Communications Biology, 2022, 5, 133.	2.0	3
530	Editorial: The Immunology of Adverse Drug Reactions. Frontiers in Immunology, 2022, 13, 863414.	2.2	0
531	Risk Assessment in Drug Hypersensitivity: Detecting Small Molecules Which Outsmart the Immune System. Frontiers in Allergy, 2022, 3, 827893.	1.2	6
532	Genetic predisposition and the variable course of infectious diseases. Deutsches Ärzteblatt International, 2022, , .	0.6	4
533	HLA-G and the MHC Cusp Theory. Frontiers in Immunology, 2022, 13, 814967.	2.2	8
534	The emerging role of mass spectrometry-based proteomics in drug discovery. Nature Reviews Drug Discovery, 2022, 21, 637-654.	21.5	110
535	Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects. Biomedicines, 2022, 10, 693.	1.4	1
536	MHC Class I Immunopeptidome: Past, Present, and Future. Molecular and Cellular Proteomics, 2022, 21, 100230.	2.5	23

#	Article	IF	CITATIONS
537	In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals—A Systematic Review. Cells, 2022, 11, 83.	1.8	5
538	Pathogenesis of Autoimmune Hepatitis—Cellular and Molecular Mechanisms. International Journal of Molecular Sciences, 2021, 22, 13578.	1.8	33
539	Palladium-Induced Temporal Internalization of MHC Class I Contributes to T Cell-Mediated Antigenicity. Frontiers in Immunology, 2021, 12, 736936.	2.2	0
540	Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis in the Era of Systems Medicine. Methods in Molecular Biology, 2022, 2486, 37-54.	0.4	5
541	<i>In vitro</i> cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metabolism Reviews, 2022, 54, 161-193.	1.5	5
542	Drug-Induced Severe Cutaneous Adverse Reactions: Insights Into Clinical Presentation, Immunopathogenesis, Diagnostic Methods, Treatment, and Pharmacogenomics. Frontiers in Pharmacology, 2022, 13, 832048.	1.6	17
552	Progress in study on the association between HLA genetic variation and adverse drug reactions. Journal of Central South University (Medical Sciences), 2021, 46, 404-413.	0.1	0
554	Unconventional modes of peptideâ \in HLA-I presentation change the rules of TCR engagement. , 2022, 1, .		3
555	Practical Implementation of Genetics: New Concepts in Immunogenomics to Predict, Prevent, and Diagnose Drug Hypersensitivity. Journal of Allergy and Clinical Immunology: in Practice, 2022, , .	2.0	3
556	Weak complex formation of adverse drug reaction-associated HLA B57, B58, and B15 molecules. Toxicology in Vitro, 2022, , 105383.	1.1	0
557	Carbamazepine-modified HLA-A*24:02-bound peptidome: Implication of CORO1A in skin rash. International Immunopharmacology, 2022, 109, 108804.	1.7	1
558	T cells discriminate between groups C1 and C2 HLA-C. ELife, 2022, 11, .	2.8	5
561	Genetic markers of drug hypersensitivity in pediatrics: current state and promise. Expert Review of Clinical Pharmacology, 2022, 15, 715-728.	1.3	2
562	Functional and structural characteristics of HLA-B*13:01-mediated specific T cells reaction in dapsone-induced drug hypersensitivity. Journal of Biomedical Science, 2022, 29, .	2.6	9
563	Conjugation of human serum albumin and flucloxacillin provokes specific immune response in HLA-B*57:01 transgenic mice. Immunology Letters, 2022, 249, 5-11.	1.1	3
564	HLAâ€A*24:02 increase the risk of allopurinolâ€induced drug reaction with eosinophilia and systemic symptoms in HLAâ€B*58:01 carriers in a Korean population; a multicenter crossâ€sectional caseâ€control study. Clinical and Translational Allergy, 2022, 12, .	1.4	2
565	Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance. Clinical and Experimental Allergy, 2022, 52, 1379-1390.	1.4	2
566	Consensus on the Key Characteristics of Immunotoxic Agents as a Basis for Hazard Identification. Environmental Health Perspectives, 2022, 130, .	2.8	19

		CITATION REPORT		
#	Article	I	F	CITATIONS
567	Pharmacogenetics of Cutaneous Adverse Drug Reactions. Updates in Clinical Dermatology, 2022	, , 3-34. (0.1	0
568	Mechanisms of Drug Hypersensitivity. Updates in Clinical Dermatology, 2022, , 35-52.	0).1	0
569	Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis. Updates in Clinical Dermatology, 2 111-126.	.022, , ().1	0
570	Modification of the HLA-A*24:02 Peptide Binding Pocket Enhances Cognate Peptide-Binding Cap Antigen-Specific T Cell Activation. Journal of Immunology, 2022, 209, 1481-1491.	acity and	0.4	0
571	Advances in the Understanding of Drug Hypersensitivity: 2012 Through 2022. Journal of Allergy a Clinical Immunology: in Practice, 2023, 11, 80-91.	ind 2	2.0	2
572	Occupational health effect of TCE exposure: Experiment evidence of gene-environment interactic hypersensitivity reaction. Chemico-Biological Interactions, 2022, 368, 110220.	n in	L . 7	2
573	Severe abacavir hypersensitivity reaction in a patient with human immunodeficiency virus infection case report. Journal of Medical Case Reports, 2022, 16, .	on: a (0.4	3
575	Molecular Structure, Vibrational Spectra and Docking Studies of Abacavir by Density Functional Theory. International Letters of Chemistry, Physics and Astronomy, 0, 72, 9-27.	(0.0	2
576	Risk factors and drugs that trigger the onset of Stevens–Johnson syndrome and toxic epiderma necrolysis: A population-based cohort study using the Shizuoka Kokuho database. JAAD Internatio 2023, 11, 24-32.		L .1	6
577	CD1a promotes systemic manifestations of skin inflammation. Nature Communications, 2022, 1	3,. ғ	5.8	9
578	Pathophysiology of drug hypersensitivity. British Journal of Clinical Pharmacology, 0, , .	1	l.1	3
579	Chemical- and Drug-Induced Allergic, Inflammatory, and Autoimmune Diseases Via Haptenation. Biology, 2023, 12, 123.	1	L.3	4
580	Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Imm Mediators. Biomedicines, 2023, 11, 177.	une 1	1.4	2
581	TCR_Explore: A novel webtool for T cell receptor repertoire analysis. Computational and Structura Biotechnology Journal, 2023, 21, 1272-1282.	al d	L.9	4
582	Pharmacogenomics: current status and future perspectives. Nature Reviews Genetics, 2023, 24, 2	350-362. 7	7.7	46
583	Endo-lysosomal assembly variations among human leukocyte antigen class I (HLA class I) allotype ELife, Ó, 12, .	'S	2.8	3
584	Updates on the immunopathology and genomics of severe cutaneous adverse drug reactions. Jou of Allergy and Clinical Immunology, 2023, 151, 289-300.e4.	ırnal 1	L.5	13
585	The impact of immunopeptidomics: From basic research to clinical implementation. Seminars in Immunology, 2023, 66, 101727.	2	2.7	17

#	Article	IF	CITATIONS
586	HLA-B*57:01/Carbamazepine-10,11-Epoxide Association Triggers Upregulation of the NFκB and JAK/STAT Pathways. Cells, 2023, 12, 676.	1.8	1
587	Detection of Hepatic Drug Metabolite-Specific T-Cell Responses Using a Human Hepatocyte, Immune Cell Coculture System. Chemical Research in Toxicology, 2023, 36, 390-401.	1.7	4
588	Activation of Human CD8+ T Cells with Nitroso Dapsone–Modified HLA-B*13:01–Binding Peptides. Journal of Immunology, 2023, 210, 1031-1042.	0.4	2
589	Treatment-Resistant Schizophrenia, Clozapine Resistance, Genetic Associations, and Implications for Precision Psychiatry: A Scoping Review. Genes, 2023, 14, 689.	1.0	2
590	Drug Hypersensitivity. , 2023, , 630-647.		0