Seagrass ecosystems as a globally significant carbon sto

Nature Geoscience 5, 505-509 DOI: 10.1038/ngeo1477

Citation Report

#	Article	IF	CITATIONS
1	Beyond forest carbon. Nature Geoscience, 2012, 5, 433-433.	5.4	0
2	Estimating Global "Blue Carbon―Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE, 2012, 7, e43542.	1.1	1,082
3	Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay. Marine and Freshwater Research, 2012, 63, 967.	0.7	99
4	Warming enhances sulphide stress of Mediterranean seagrass (Posidonia oceanica). Estuarine, Coastal and Shelf Science, 2012, 113, 240-247.	0.9	19
5	Legal and Institutional Framework for Effective Management of Marine Managed Areas in Tanzania, Zanzibar Report. SSRN Electronic Journal, 2012, , .	0.4	3
6	Patterns of topâ€down control in a seagrass ecosystem: could a roving apex predator induce a behaviourâ€mediated trophic cascade?. Journal of Animal Ecology, 2013, 82, 1192-1202.	1.3	153
7	Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Global Change Biology, 2013, 19, 2569-2583.	4.2	99
8	Seagrasses in tropical Australia, productive and abundant for decades decimated overnight. Journal of Biosciences, 2013, 38, 157-166.	0.5	18
9	Valuing the European â€~coastal blue carbon' storage benefit. Marine Pollution Bulletin, 2013, 71, 101-106.	2.3	96
10	Changes in Nutrient Biogeochemistry in Response to the Regression of Zostera noltii Meadows in the Arcachon Bay (France). Aquatic Geochemistry, 2013, 19, 241-259.	1.5	20
11	Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. BMC Ecology, 2013, 13, 39.	3.0	43
12	Abrupt transitions between macrobenthic faunal assemblages across seagrass bed margins. Estuarine, Coastal and Shelf Science, 2013, 131, 213-223.	0.9	27
13	Distribution patterns of macrobenthic biodiversity in the intertidal seagrass beds of an estuarine system, and their conservation significance. Biodiversity and Conservation, 2013, 22, 357-372.	1.2	34
14	The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 2013, 3, 961-968.	8.1	1,369
15	Biogeochemical classification of South Florida's estuarine and coastal waters. Marine Pollution Bulletin, 2013, 75, 187-204.	2.3	27
16	Ecological roles of zoosporic parasites in blue carbon ecosystems. Fungal Ecology, 2013, 6, 319-327.	0.7	7
17	Carbon budget of leaves of the tropical intertidal seagrass Thalassia hemprichii. Estuarine, Coastal and Shelf Science, 2013, 125, 27-35.	0.9	29
18	Seagrass Meadows, Ecosystem Services, and Sustainability. Environment, 2013, 55, 14-28.	0.8	91

ATION REDC

#	Article	IF	CITATIONS
19	Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum. Marine Biology, 2013, 160, 1465-1475.	0.7	71
20	Water clarity and eelgrass responses to nitrogen reductions in the eutrophic Skive Fjord, Denmark. Hydrobiologia, 2013, 704, 293-309.	1.0	44
21	Production and carbonate dynamics of Halimeda incrassata (Ellis) Lamouroux altered by Thalassia testudinum Banks and Soland ex König. Journal of Experimental Marine Biology and Ecology, 2013, 444, 73-80.	0.7	26
22	Novel Use of Cavity Ring-down Spectroscopy to Investigate Aquatic Carbon Cycling from Microbial to Ecosystem Scales. Environmental Science & Technology, 2013, 47, 12938-12945.	4.6	70
23	Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean). Global Change Biology, 2013, 19, 3629-3639.	4.2	39
24	Assessing the <scp>CO</scp> ₂ capture potential of seagrass restoration projects. Journal of Applied Ecology, 2013, 50, 1341-1349.	1.9	68
25	â€~Blue carbon' projects for the collective good. Carbon Management, 2013, 4, 477-479.	1.2	15
26	The conservation of coastal biodiversity. , 2014, , 1-12.		3
27	Economic Incentives for Marine and Coastal Conservation. , 0, , .		7
28	Assessing Global Marine Biodiversity Status within a Coupled Socio-Ecological Perspective. PLoS ONE, 2013, 8, e60284.	1.1	23
29	Novel Seed Adaptations of a Monocotyledon Seagrass in the Wavy Sea. PLoS ONE, 2013, 8, e74143.	1.1	14
30	Benthic Primary Production Budget of a Caribbean Reef Lagoon (Puerto Morelos, Mexico). PLoS ONE, 2013, 8, e82923.	1.1	26
31	Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service. PLoS ONE, 2013, 8, e73748.	1.1	324
32	Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea. Water (Switzerland), 2013, 5, 780-797.	1.2	39
33	Integrated Carbon Budget Models for the Everglades Terrestrial-Coastal-Oceanic Gradient: Current Status and Needs for Inter-Site Comparisons. Oceanography, 2013, 26, 98-107.	0.5	45
34	Carbon and nutrient fluxes across tropical river-coastal boundaries. , 0, , 373-394.		4
35	Herbicide Impact on Seagrass Communities. , 0, , .		2
36	Comparison of Three Methods for the Quantification of Sediment Organic Carbon in Salt Marshes of the Rubicon Estuary, Tasmania, Australia. International Journal of Biology, 2013, 5, .	0.1	5

~		~	
(15	ГАТ	DEI	
	IAL	NL	PORT

#	Article	IF	CITATIONS
37	CO ₂ and nutrient-driven changes across multiple levels of organization in <i>Zostera noltii</i> ecosystems. Biogeosciences, 2014, 11, 7237-7249.	1.3	37
38	Caribbean-Wide, Long-Term Study of Seagrass Beds Reveals Local Variations, Shifts in Community Structure and Occasional Collapse. PLoS ONE, 2014, 9, e90600.	1.1	67
39	Restoring Eelgrass (Zostera marina L.) Habitats Using a Simple and Effective Transplanting Technique. PLoS ONE, 2014, 9, e92982.	1.1	33
40	An Ecosystem-Based Approach to Assess the Status of a Mediterranean Ecosystem, the Posidonia oceanica Seagrass Meadow. PLoS ONE, 2014, 9, e98994.	1.1	82
41	Seagrass Canopy Photosynthetic Response Is a Function of Canopy Density and Light Environment: A Model for Amphibolis griffithii. PLoS ONE, 2014, 9, e111454.	1.1	18
42	Seagrasses in the age of sea turtle conservation and shark overfishing. Frontiers in Marine Science, 2014, 1, .	1.2	115
43	Expansion of vegetated coastal ecosystems in the future Arctic. Frontiers in Marine Science, 2014, 1, .	1.2	135
44	Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences, 2014, 11, 5057-5071.	1.3	221
46	Development and Use of a Bioeconomic Model for Management of Mussel Fisheries under Different Nutrient Regimes in the Temperate Estuary of the Limfjord, Denmark. Ecology and Society, 2014, 19, .	1.0	14
47	Grazer Functional Roles, Induced Defenses, and Indirect Interactions: Implications for Eelgrass Restoration in San Francisco Bay. Diversity, 2014, 6, 751-770.	0.7	16
48	Understanding Coastal Carbon Cycling by Linking Top-Down and Bottom-Up Approaches. Eos, 2014, 95, 315-315.	0.1	0
49	The future of the northeast <scp>A</scp> tlantic benthic flora in a high <scp>CO</scp> ₂ world. Ecology and Evolution, 2014, 4, 2787-2798.	0.8	176
50	Eutrophication threatens Caribbean seagrasses – An example from Curaçao and Bonaire. Marine Pollution Bulletin, 2014, 89, 481-486.	2.3	30
51	Net uptake of atmospheric <scp>CO</scp> ₂ by coastal submerged aquatic vegetation. Global Change Biology, 2014, 20, 1873-1884.	4.2	103
52	Resilience of <i>Zostera muelleri</i> seagrass to smallâ€scale disturbances: the relative importance of asexual versus sexual recovery. Ecology and Evolution, 2014, 4, 450-461.	0.8	63
53	Valuing and Evaluating Marine Ecosystem Services: Putting the Right Price on Marine Environments?. Environment and Society: Advances in Research, 2014, 5, .	0.4	8
54	Quantifying and modelling the carbon sequestration capacity of seagrass meadows – A critical assessment. Marine Pollution Bulletin, 2014, 83, 430-439.	2.3	195
55	Chronic light reduction reduces overall resilience to additional shading stress in the seagrass Halophila ovalis. Marine Pollution Bulletin, 2014, 83, 467-474.	2.3	57

ARTICLE IF CITATIONS # Ocean Acidification in the Coastal Zone from an Organism's Perspective: Multiple System Parameters, 5.1 330 56 Frequency Domains, and Habitats. Annual Review of Marine Science, 2014, 6, 221-247. Science and Management of the Introduced Seagrass Zostera japonica in North America. 1.2 Environmental Management, 2014, 53, 147-162 Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: 58 1.7 244 Opportunities & amp; steps to take. Coastal Engineering, 2014, 87, 147-157. Light requirements of seagrasses determined from historical records of light attenuation along the 59 Gulf coast of peninsular Florida. Marine Pollution Bulletin, 2014, 81, 94-102. Using MODIS data for understanding changes in seagrass meadow health: A case study in the Great 60 1.1 60 Barrier Reef (Australia). Marine Environmental Research, 2014, 98, 68-85. Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends. Marine Pollution Bulletin, 2014, 83, 408-416. 2.3 Benthic macrofaunal assemblages in multispecific seagrass meadows of the southern Philippines: Variation among vegetation dominated by different seagrass species. Journal of Experimental Marine 62 0.7 38 Biology and Ecology, 2014, 457, 71-80. Carbon Cycling and Storage in Mangrove Forests. Annual Review of Marine Science, 2014, 6, 195-219. 5.1 972 Enhancing the <scp>G</scp>lobal <scp>O</scp>cean <scp>O</scp>bserving <scp>S</scp>ystem to meet evidence based needs for the ecosystemâ€based management of coastal ecosystem services. Natural 64 1.8 13 Resources Forum, 2014, 38, 168-181. Benthic Exchange and Biogeochemical Cycling in Permeable Sediments. Annual Review of Marine 5.1 Science, 2014, 6, 23-51. No detectable impact of small-scale disturbances on â€⁻blue carbonâ€⁻ within seagrass beds. Marine 66 0.7 44 Biology, 2014, 161, 2939-2944. Organic matter stocks increase with degree of invasion in temperate inland wetlands. Plant and Soil, 1.8 2014, 385, 107-123. CO 2 concentrating mechanisms and environmental change. Aquatic Botany, 2014, 118, 24-37. 68 0.8 92 Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. 104 Journal of Ecology, 2014, 102, 1528-1536. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biological Conservation, 70 1.9 166 2014, 176, 183-190. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context. Marine Pollution Bulletin, 2014, 86, 138-146. Vegetation-driven morphodynamic adjustments of a sand bed. Geophysical Research Letters, 2014, 41, 72 1.531 3876-3883. A global estimate of carbon stored in the world's mountain grasslands and shrublands, and the implications for climate policy. Global Environmental Change, 2014, 28, 14-24.

#	Article	IF	CITATIONS
74	Genetic diversity in threatened Posidonia australis seagrass meadows. Conservation Genetics, 2014, 15, 717-728.	0.8	41
75	Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Diversity and Distributions, 2014, 20, 538-546.	1.9	111
76	Blue carbon: Knowledge gaps, critical issues, and novel approaches. Ecological Economics, 2014, 107, 22-38.	2.9	114
77	Evaluation of the combined threat from sea-level rise and sedimentation reduction to the coastal wetlands in the Yangtze Estuary, China. Ecological Engineering, 2014, 71, 346-354.	1.6	35
78	Incorporating ecosystem services into the implementation of existing U.S. natural resource management regulations: Operationalizing carbon sequestration and storage. Marine Policy, 2014, 43, 246-253.	1.5	46
79	Biodiversity differentials between the numerically-dominant macrobenthos of seagrass and adjacent unvegetated sediment in the absence of sandflat bioturbation. Marine Environmental Research, 2014, 99, 34-43.	1.1	31
80	Persistence of Zostera marina L. (eelgrass) seeds in the sediment seed bank. Journal of Experimental Marine Biology and Ecology, 2014, 459, 126-136.	0.7	32
81	Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing. Marine Pollution Bulletin, 2014, 83, 387-397.	2.3	201
82	Eelgrass Meadows Return to Frenchy's Cove, Anacapa Island: Recovery Ten Years after Successful Transplantation. Monographs of the Western North American Naturalist, 2014, 7, 500-517.	0.7	3
83	Ecosystem metabolism along a colonization gradient of eelgrass (<i>Zostera marina</i>) measured by eddy correlation. Limnology and Oceanography, 2014, 59, 1376-1387.	1.6	42
84	Influence of water depth on the carbon sequestration capacity of seagrasses. Global Biogeochemical Cycles, 2014, 28, 950-961.	1.9	114
85	Future Mars Rovers: The Next Places to Direct Our Curiosity. Eos, 2014, 95, 313-314.	0.1	1
86	Is a community still a community? Reviewing definitions of key terms in community ecology. Ecology and Evolution, 2015, 5, 4757-4765.	0.8	94
88	Ceographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Global Biogeochemical Cycles, 2015, 29, 397-415.	1.9	133
89	Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Scientific Reports, 2015, 5, 12505.	1.6	246
90	Seagrass Ecosystem and Climate Change: An Indian Perspective. Journal of Climate Change, 2015, 1, 67-74.	0.2	14
91	Evaluation of Reference Genes for RT-qPCR Studies in the Seagrass Zostera muelleri Exposed to Light Limitation. Scientific Reports, 2015, 5, 17051.	1.6	21
92	Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Global Change Biology, 2015, 21, 1463-1474.	4.2	227

#	Article	IF	CITATIONS
93	QUANTIFICATION OF THE CURRENT AND NEAR FUTURE STATUS RELATED TO REGULATING SERVICES IN TIDAL FLATS. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_1483-I_1488.	0.0	0
94	Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surface Processes and Landforms, 2015, 40, 1387-1400.	1.2	109
95	The attenuation of current―and waveâ€driven flow within submerged multispecific vegetative canopies. Limnology and Oceanography, 2015, 60, 1855-1874.	1.6	31
96	Can macroalgae contribute to blue carbon? An <scp>A</scp> ustralian perspective. Limnology and Oceanography, 2015, 60, 1689-1706.	1.6	153
98	Supervised Classification of Benthic Reflectance in Shallow Subtropical Waters Using a Generalized Pixel-Based Classifier across a Time Series. Remote Sensing, 2015, 7, 5098-5116.	1.8	20
99	Harnessing the climate mitigation, conservation and poverty alleviation potential of seagrasses: prospects for developing blue carbon initiatives and payment for ecosystem service programmes. Frontiers in Marine Science, 2015, 2, .	1.2	65
100	Specificity in Mesograzer-Induced Defences in Seagrasses. PLoS ONE, 2015, 10, e0141219.	1.1	13
101	Response of key stress-related genes of the seagrass <i>Posidonia oceanica</i> in the vicinity of submarine volcanic vents. Biogeosciences, 2015, 12, 4185-4194.	1.3	36
102	Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences, 2015, 12, 4993-5003.	1.3	104
103	Unravelling complexity in seagrass systems for management: Australia as a microcosm. Science of the Total Environment, 2015, 534, 97-109.	3.9	228
105	Spatial and temporal variability of seagrass at Lizard Island, Great Barrier Reef. Botanica Marina, 2015, 58, 35-49.	0.6	14
106	Facilitation shifts paradigms and can amplify coastal restoration efforts. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14295-14300.	3.3	191
107	Towards adaptive management of the natural capital: Disentangling trade-offs among marine activities and seagrass meadows. Marine Pollution Bulletin, 2015, 101, 29-38.	2.3	22
108	Variability of sedimentary organic carbon in patchy seagrass landscapes. Marine Pollution Bulletin, 2015, 100, 476-482.	2.3	98
109	Mapping seagrass cost-effectively in the Coral Triangle: Sabah, Malaysia as a case study. Pacific Conservation Biology, 2015, 21, 113.	0.5	4
110	Functional uniformity underlies the common spatial structure of macrofaunal assemblages in intertidal seagrass beds. Biological Journal of the Linnean Society, 2015, 115, 114-126.	0.7	18
111	A complex interaction between a sponge (Halichondria melanadocia) and a seagrass (Thalassia) Tj ETQq0 0 0 rgBT 2015, 465, 33-40.	/Overlock 0.7	10 Tf 50 10 12
112	Facies patterns of a tropical heterozoan carbonate platform under eutrophic conditions: the Banc d'Arguin, Mauritania. Facies, 2015, 61, 1.	0.7	15

#	Article	IF	CITATIONS
113	Marine urbanization: an ecological framework for designing multifunctional artificial structures. Frontiers in Ecology and the Environment, 2015, 13, 82-90.	1.9	323
114	Temporal variations in airâ€sea <scp>CO</scp> ₂ exchange near large kelp beds near <scp>S</scp> an <scp>D</scp> iego, <scp>C</scp> alifornia. Journal of Geophysical Research: Oceans, 2015, 120, 50-63.	1.0	26
115	Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. Journal of Ecology, 2015, 103, 296-302.	1.9	199
116	Space allocation for coastal aquaculture in North Africa: Data constraints, industry requirements and conservation issues. Ocean and Coastal Management, 2015, 116, 89-97.	2.0	18
117	Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon (China): Implications for restoration and management. Marine Pollution Bulletin, 2015, 94, 103-113.	2.3	45
118	Why Value â€~Blue Carbon'?. Studies in Ecological Economics, 2015, , 191-206.	0.2	0
119	Coastal Zones Ecosystem Services. Studies in Ecological Economics, 2015, , .	0.2	28
120	Pollutant tracking for 3 Western North Atlantic sea grasses by remote sensing: Preliminary diminishing white light responses of Thalassia testudinum , Halodule wrightii , and Zostera marina. Marine Pollution Bulletin, 2015, 97, 460-469.	2.3	5
121	Seagrass metabolism across a productivity gradient using the eddy covariance, <scp>E</scp> ulerian control volume, and biomass addition techniques. Journal of Geophysical Research: Oceans, 2015, 120, 3624-3639.	1.0	23
122	Carbon budgets of multispecies seagrass beds at Dongsha Island in the South China Sea. Marine Environmental Research, 2015, 106, 92-102.	1.1	31
123	Responses of three tropical seagrass species to CO2 enrichment. Marine Biology, 2015, 162, 1005-1017.	0.7	50
124	Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass Posidonia oceanica. Mycorrhiza, 2015, 25, 663-672.	1.3	43
125	Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology, 2015, 96, 3043-3057.	1.5	162
126	How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?. Clobal Change Biology, 2015, 21, 2612-2623.	4.2	119
127	The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future. Estuarine, Coastal and Shelf Science, 2015, 153, A1-A12.	0.9	84
128	An ecosystems perspective for food security in the Caribbean: Seagrass meadows in the Turks and Caicos Islands. Ecosystem Services, 2015, 11, 12-21.	2.3	31
129	A framework for the resilience of seagrass ecosystems. Marine Pollution Bulletin, 2015, 100, 34-46.	2.3	191
130	Predators help protect carbon stocks in blue carbon ecosystems. Nature Climate Change, 2015, 5, 1038-1045.	8.1	181

#	Article	IF	CITATIONS
131	Spatial analysis of carbon isotopes reveals seagrass contribution to fishery food web. Ecosphere, 2015, 6, 1-12.	1.0	36
132	Distribution, sources and biogeochemistry of organic matter in a mangrove dominated estuarine system (Indian Sundarbans) during the pre-monsoon. Estuarine, Coastal and Shelf Science, 2015, 167, 404-413.	0.9	51
133	Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151537.	1.2	102
134	Species specific effects of three morphologically different belowground seagrasses on sediment properties. Estuarine, Coastal and Shelf Science, 2015, 167, 427-435.	0.9	11
135	Unusual pattern in characteristics of the eelgrass Zostera marina L. in a shallow lagoon (Swan Lake), north China: Implications on the importance of seagrass conservation. Aquatic Botany, 2015, 120, 178-184.	0.8	38
136	Assessing dissolved organic matter dynamics and source strengths in a subtropical estuary: Application of stable carbon isotopes and optical properties. Continental Shelf Research, 2015, 92, 98-107.	0.9	21
137	Contribution of mangroves to coastal carbon cycling in low latitude seas. Agricultural and Forest Meteorology, 2015, 213, 266-272.	1.9	113
138	Blue Carbon Reservoir of the Blue Planet. , 2015, , .		52
139	Rhizome starch as indicator for temperate seagrass winter survival. Ecological Indicators, 2015, 49, 53-60.	2.6	35
140	Carbon Storage in Seagrass Beds of Abu Dhabi, United Arab Emirates. Estuaries and Coasts, 2015, 38, 242-251.	1.0	82
141	Global Warming can be Protected by Promotion of Plankton CO2 Assimilation. Journal of Marine Science: Research & Development, 2016, 06, .	0.4	1
142	Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences, 2016, 13, 313-321.	1.3	67
143	Key biogeochemical factors affecting soil carbon storage in <i>Posidonia</i> meadows. Biogeosciences, 2016, 13, 4581-4594.	1.3	74
144	Blue carbon stocks in Baltic Sea eelgrass (<i>Zostera marina</i>) meadows. Biogeosciences, 2016, 13, 6139-6153.	1.3	114
145	Seagrass and Submerged Aquatic Vegetation (VAS) Habitats off the Coast of Brazil: state of knowledge, conservation and main threats. Brazilian Journal of Oceanography, 2016, 64, 53-80.	0.6	45
146	Evaluating the Role of Seagrass in Cenozoic CO2 Variations. Frontiers in Environmental Science, 2016, 4, .	1.5	14
147	Valuing Multiple Eelgrass Ecosystem Services in Sweden: Fish Production and Uptake of Carbon and Nitrogen. Frontiers in Marine Science, 2016, 2, .	1.2	35
148	Location and Associated Carbon Storage of Erosional Escarpments of Seagrass Posidonia Mats. Frontiers in Marine Science, 2016, 3, .	1.2	46

#	Article	IF	CITATIONS
149	Novel Indicators of Anthropogenic Influence on Marine and Coastal Ecosystems. Frontiers in Marine Science, 2016, 3, .	1.2	19
150	Rhizosphere Microbiomes of European + Seagrasses Are Selected by the Plant, But Are Not Species Specific. Frontiers in Microbiology, 2016, 7, 440.	1.5	153
151	Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb) in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L PLoS ONE, 2016, 11, e0157983.	1.1	16
152	Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 639-659.	0.9	43
153	Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnology and Oceanography, 2016, 61, 938-952.	1.6	139
154	Geoengineering with seagrasses: is credit due where credit is given?. Environmental Research Letters, 2016, 11, 113001.	2.2	84
155	Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory. Scientific Reports, 2016, 6, 38017.	1.6	35
156	Plant characteristics associated with widespread variation in eelgrass wasting disease. Diseases of Aquatic Organisms, 2016, 118, 159-168.	0.5	28
157	Threats to Ecosystem Engineering Macrophytes: Climate Change. , 2016, , 201-218.		3
158	Thresholds for morphological response to light reduction for four tropical seagrass species. Ecological Indicators, 2016, 67, 358-366.	2.6	57
159	Reading the signatures of biologic–geomorphic feedbacks in salt-marsh landscapes. Advances in Water Resources, 2016, 93, 265-275.	1.7	81
160	Assessing methods for restoration of eelgrass (Zostera marina L.) in a cold temperate region. Journal of Experimental Marine Biology and Ecology, 2016, 479, 76-88.	0.7	42
161	The ecological importance of the dwarf seagrass Zostera japonica in intertidal areas on the southern coast of Korea. Ocean Science Journal, 2016, 51, 1-12.	0.6	11
162	Sedimentary Factors are Key Predictors of Carbon Storage in SE Australian Saltmarshes. Ecosystems, 2016, 19, 865-880.	1.6	96
163	Nitrogen Uptake and Internal Recycling in Zostera marina Exposed to Oyster Farming: Eelgrass Potential as a Natural Biofilter. Estuaries and Coasts, 2016, 39, 1694-1708.	1.0	16
164	Leveraging Carbon Services of Coastal Ecosystems for Habitat Protection and Restoration. Coastal Management, 2016, 44, 259-277.	1.0	32
165	Proteomic analysis of the economic seaweed Pyropia haitanensis in response to desiccation. Algal Research, 2016, 19, 198-206.	2.4	41
166	Sea level and ground water table depth (WTD): A biogeochemical pacemaker for glacial-interglacial cycling. Quaternary Science Reviews, 2016, 151, 309-314.	1.4	2

#	Article	IF	CITATIONS
167	Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea. Marine Pollution Bulletin, 2016, 110, 274-280.	2.3	36
168	Seagrass, mangrove and saltmarsh sedimentary carbon stocks in an urban estuary; Coffs Harbour, Australia. Regional Studies in Marine Science, 2016, 8, 1-6.	0.4	36
169	Reproductive properties of Zostera marina and effects of sediment type and burial depth on seed germination and seedling establishment. Aquatic Botany, 2016, 134, 68-74.	0.8	19
170	Marine <i>Phytophthora</i> species can hamper conservation and restoration of vegetated coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160812.	1.2	38
171	Multi-temporal change detection of seagrass beds using integrated Landsat TM/ETM+/OLI imageries in Cam Ranh Bay, Vietnam. Ecological Informatics, 2016, 35, 43-54.	2.3	41
172	Distribution and status of Zostera capensis in South African estuaries — A review. South African Journal of Botany, 2016, 107, 63-73.	1.2	61
173	Blue Carbon Ecosystems and Their Role in Climate Change Mitigation—An Overview. Journal of Climate Change, 2016, 2, 1-13.	0.2	6
174	Influence of New Zealand cockles (Austrovenus stutchburyi) on primary productivity in sandflat-seagrass (Zostera muelleri) ecotones. Estuarine, Coastal and Shelf Science, 2016, 181, 238-248.	0.9	27
175	Feedback between sediment and light for seagrass: Where is it important?. Limnology and Oceanography, 2016, 61, 1937-1955.	1.6	78
176	Keys to successful blue carbon projects: Lessons learned from global case studies. Marine Policy, 2016, 65, 76-84.	1.5	224
177	From mechanical to chemical impact of anchoring in seagrasses: The premises of anthropogenic patch generation in Posidonia oceanica meadows. Marine Pollution Bulletin, 2016, 109, 61-71.	2.3	27
178	Sediment carbon sink in lowâ€density temperate eelgrass meadows (Baltic Sea). Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2918-2934.	1.3	61
179	Impact of current speed on mass flux to a model flexible seagrass blade. Journal of Geophysical Research: Oceans, 2016, 121, 4763-4776.	1.0	16
180	Impact of mooring activities on carbon stocks in seagrass meadows. Scientific Reports, 2016, 6, 23193.	1.6	84
181	Mapping submerged aquatic vegetation in albemarle sound, NOrth Carolina, USA using Landsat-8 and SONAR data. , 2016, , .		1
182	Ecosystem services returned through seagrass restoration. Restoration Ecology, 2016, 24, 583-588.	1.4	67
183	Biomass and productivity of seagrasses in Africa. Botanica Marina, 2016, 59, 173-186.	0.6	20
184	Molecular composition of plant parts and sediment organic matter in a Mediterranean seagrass (Posidonia oceanica) mat. Aquatic Botany, 2016, 133, 50-61.	0.8	49

#	Article	IF	Citations
185	Nutrient dynamics in core sediments of an artificial basal medium prepared with steelmaking slag and dredged materials. Journal of Oceanography, 2016, 72, 867-881.	0.7	0
186	Utilization of carbon substrates by heterotrophic bacteria through vertical sediment profiles in coastal and estuarine seagrass meadows. Environmental Microbiology Reports, 2016, 8, 582-589.	1.0	13
187	Vertical carbon flux of marine snow in Enhalus acoroides -dominated seagrass meadows. Regional Studies in Marine Science, 2016, 5, 27-34.	0.4	6
188	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530, 331-335.	13.7	460
189	Carbon sequestration loss following Zostera noltei decline in the Arcachon Bay (France). Estuarine, Coastal and Shelf Science, 2016, 179, 4-11.	0.9	11
190	Fertilization Changes Seagrass Community Structure but not Blue Carbon Storage: Results from a 30-Year Field Experiment. Estuaries and Coasts, 2016, 39, 1422-1434.	1.0	26
191	Effects of shading and simulated grazing on carbon sequestration in a tropical seagrass meadow. Journal of Ecology, 2016, 104, 654-664.	1.9	56
192	Blue carbon in human-dominated estuarine and shallow coastal systems. Ambio, 2016, 45, 290-301.	2.8	51
193	Biomass-Cover Relationship for Eelgrass Meadows. Estuaries and Coasts, 2016, 39, 440-450.	1.0	10
194	Seagrass derived organic matter influences biogeochemistry, microbial communities, and seedling biomass partitioning in seagrass sediments. Plant and Soil, 2016, 400, 133-146.	1.8	25
195	Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves. Wetlands Ecology and Management, 2016, 24, 245-261.	0.7	52
196	From blue to black: Anthropogenic forcing of carbon and nitrogen influx to mangrove-lined estuaries in the South China Sea. Marine Pollution Bulletin, 2016, 109, 682-690.	2.3	34
197	Drought, Mutualism Breakdown, and Landscape-Scale Degradation of Seagrass Beds. Current Biology, 2016, 26, 1051-1056.	1.8	69
198	A review of seagrass economic valuations: Gaps and progress in valuation approaches. Ecosystem Services, 2016, 18, 68-77.	2.3	82
199	Long-term carbon storage and its recent loss in an estuarine Posidonia australis meadow (Albany,) Tj ETQq0 0 0	rgBT /Ove 0.9	rlock 10 Tf 50
200	Producers of the Marine and Estuarine Ecosystems. , 2016, , 137-192.		0
201	A physics-based method for the remote sensing of seagrasses. Remote Sensing of Environment, 2016, 174, 134-147.	4.6	45

000	Reconstruction of centerinal-scale nuxes of chemical elements in the Australian coastal		0.1
202	anvironment using soggrass archives. Science of the Total Environment 2016, 541, 883-894	3.9	31
	environment using seagrass archives. Science of the rotal chvironment, 2010, 341, 005-054.		

#	Article	IF	CITATIONS
203	The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents. ICES Journal of Marine Science, 2016, 73, 876-886.	1.2	39
204	Assessing the ecological status of seagrasses using morphology, biochemical descriptors and microbial community analyses. A study in Halophila stipulacea (Forsk.) Aschers meadows in the northern Red Sea. Ecological Indicators, 2016, 60, 1150-1163.	2.6	96
205	Light history-dependent respiration explains the hysteresis in the daily ecosystem metabolism of seagrass. Hydrobiologia, 2016, 766, 75-88.	1.0	15
206	Indonesia's blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetlands Ecology and Management, 2016, 24, 3-13.	0.7	138
207	Communities of Cultivable Root Mycobionts of the Seagrass Posidonia oceanica in the Northwest Mediterranean Sea Are Dominated by a Hitherto Undescribed Pleosporalean Dark Septate Endophyte. Microbial Ecology, 2016, 71, 442-451.	1.4	69
208	Estimating Seagrass Community Metabolism Using Benthic Chambers: The Effect of Incubation Time. Estuaries and Coasts, 2016, 39, 138-144.	1.0	47
209	The Functioning of Rhizosphere Biota in Wetlands – a Review. Wetlands, 2017, 37, 615-633.	0.7	34
210	Genetic Description and Remote Sensing Techniques as Management Tools for Zostera noltii Seagrass Populations along the Atlantic Moroccan Coast. Journal of Coastal Research, 2017, 33, 78.	0.1	7
211	Calcareous green algae standing stock in a tropical sedimentary coast. Journal of Applied Phycology, 2017, 29, 2685-2693.	1.5	9
212	Adjustment of photoprotection to tidal conditions in intertidal seagrasses. Journal of the Marine Biological Association of the United Kingdom, 2017, 97, 571-579.	0.4	9
213	Influence of wave climate on architecture and landscape characteristics of <i>Posidonia oceanica</i> meadows. Marine Ecology, 2017, 38, e12387.	0.4	19
214	Are seaward pneumatophore fringes transitional between mangrove and lower-shore system compartments?. Marine Environmental Research, 2017, 125, 99-109.	1.1	9
215	Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 2017, 27, 859-874.	1.8	147
216	A six thousandâ€year record of climate and landâ€use change from Mediterranean seagrass mats. Journal of Ecology, 2017, 105, 1267-1278.	1.9	21
217	Geophysical constraints for organic carbon sequestration capacity of <i>Zostera marina</i> seagrass meadows and surrounding habitats. Limnology and Oceanography, 2017, 62, 954-972.	1.6	50
218	Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: Implications of changes in seagrass blue carbon. Marine Pollution Bulletin, 2017, 117, 214-221.	2.3	33
219	Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Scientific Reports, 2017, 7, 42406.	1.6	60
220	Seagrass ecophysiological performance under ocean warming and acidification. Scientific Reports, 2017, 7, 41443.	1.6	90

#	Article	IF	CITATIONS
221	Zostera noltii development probing using chlorophyll a transient analysis (JIP-test) under field conditions: Integrating physiological insights into a photochemical stress index. Ecological Indicators, 2017, 76, 219-229.	2.6	42
222	Nutrient enrichment outweighs effects of light quality in Zostera marina (eelgrass) seed germination. Journal of Experimental Marine Biology and Ecology, 2017, 490, 23-28.	0.7	8
223	Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of volcanic CO2 vents. Marine Environmental Research, 2017, 127, 102-111.	1.1	11
224	Predicting the standing stock of organic carbon in surface sediments of the North–West European continental shelf. Biogeochemistry, 2017, 135, 183-200.	1.7	62
225	Will restored mangrove forests enhance sediment organic carbon and ecosystem carbon storage?. Regional Studies in Marine Science, 2017, 14, 43-52.	0.4	30
226	Carbon stores from a tropical seagrass meadow in the midst of anthropogenic disturbance. Marine Pollution Bulletin, 2017, 119, 253-260.	2.3	34
227	A new marine measure enhancing Zostera marina seed germination and seedling survival. Ecological Engineering, 2017, 104, 131-140.	1.6	14
228	A spatial model to improve site selection for seagrass restoration in shallow boating environments. Journal of Environmental Management, 2017, 186, 42-54.	3.8	11
229	Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecological Indicators, 2017, 74, 241-260.	2.6	110
230	Constancy despite variability: Local and regional macrofaunal diversity in intertidal seagrass beds. Journal of Sea Research, 2017, 130, 107-122.	0.6	21
231	Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment, 2017, 15, 257-265.	1.9	145
232	Sediment microbes mediate the impact of nutrient loading on blue carbon sequestration by mixed seagrass meadows. Science of the Total Environment, 2017, 599-600, 1479-1484.	3.9	29
233	Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Marine Pollution Bulletin, 2017, 122, 272-281.	2.3	251
234	Seagrass meadows. Current Biology, 2017, 27, R443-R445.	1.8	15
235	Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitatâ€forming species. Global Change Biology, 2017, 23, 4530-4543.	4.2	40
236	Using eDNA to determine the source of organic carbon in seagrass meadows. Limnology and Oceanography, 2017, 62, 1254-1265.	1.6	52
237	Seagrass metabolism and carbon dynamics in a tropical coastal embayment. Ambio, 2017, 46, 667-679.	2.8	27
238	Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of <i>Posidonia oceanica</i> meadows. Limnology and Oceanography, 2017, 62, 1436-1450.	1.6	66

#	Article	IF	Citations
239	Synergies and trade-offs between nature conservation and climate policy: Insights from the "Natural Capital Germany – TEEB DE―study. Ecosystem Services, 2017, 24, 187-199.	2.3	25
240	Land use is a better predictor of tropical seagrass condition than marine protection. Biological Conservation, 2017, 209, 454-463.	1.9	46
241	Acclimation of bloomâ€forming and perennial seaweeds to elevated <scp><i>p</i>CO</scp> ₂ conserved across levels of environmental complexity. Global Change Biology, 2017, 23, 4828-4839.	4.2	23
242	Combined effects of temperature and the herbicide diuron on Photosystem II activity of the tropical seagrass Halophila ovalis. Scientific Reports, 2017, 7, 45404.	1.6	35
243	Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure. Limnology and Oceanography, 2017, 62, 1451-1465.	1.6	39
244	Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs). Journal of Applied Phycology, 2017, 29, 2363-2373.	1.5	84
245	Landscape configuration modulates carbon storage in seagrass sediments. Estuarine, Coastal and Shelf Science, 2017, 185, 69-76.	0.9	55
246	Salt Marsh: Ecologically Important, Yet Least Studied Blue Carbon Ecosystems in India. Journal of Climate Change, 2017, 3, 59-72.	0.2	20
247	Belowground stressors and long-term seagrass declines in a historically degraded seagrass ecosystem after improved water quality. Scientific Reports, 2017, 7, 14469.	1.6	29
248	Current state of seagrass ecosystem services: Research and policy integration. Ocean and Coastal Management, 2017, 149, 107-115.	2.0	73
250	Abiotic Stress of Seagrasses: Recent Advances in Transcriptomics, Genomics, and Systems Biology. , 2017, , 119-132.		2
251	Blue carbon stores in tropical seagrass meadows maintained under green turtle grazing. Scientific Reports, 2017, 7, 13545.	1.6	26
252	Light requirements for successful restoration of eelgrass (Zostera marina L.) in a high latitude environment – Acclimatization, growth and carbohydrate storage. Journal of Experimental Marine Biology and Ecology, 2017, 496, 37-48.	0.7	23
253	Newly discovered seagrass beds and their potential for blue carbon in the coastal seas of Hainan Island, South China Sea. Marine Pollution Bulletin, 2017, 125, 513-521.	2.3	41
254	Comparing Automated Classification and Digitization Approaches to Detect Change in Eelgrass Bed Extent During Restoration of a Large River Delta. Northwest Science, 2017, 91, 272-282.	0.1	8
255	Measuring the role of seagrasses in regulating sediment surface elevation. Scientific Reports, 2017, 7, 11917.	1.6	104
256	Geochemical analyses reveal the importance of environmental history for blue carbon sequestration. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1789-1805.	1.3	39
257	Natural patches in Posidonia oceanica meadows: the seasonal biogeochemical pore water characteristics of two edge types. Marine Biology, 2017, 164, 1.	0.7	7

ARTICLE IF CITATIONS Copper treatment during storage reduces Phytophthora and Halophytophthora infection of Zostera 258 17 1.6 marina seeds used for restoration. Scientific Reports, 2017, 7, 43172. Response of the seagrass Halophila ovalis to altered light quality in a simulated dredge plume. Marine 259 2.3 Pollution Bulletin, 2017, 121, 323-330. Submersed Aquatic Vegetation in Chesapeake Bay: Sentinel Species in a Changing World. BioScience, 260 2.2 68 2017, 67, 698-712. Effects of seagrass leaf litter decomposition on sediment organic carbon composition and the key transformation processes. Science China Earth Sciences, 2017, 60, 2108-2117. Filling the gaps in ecological studies of socioecological systems. Ecological Research, 2017, 32, 262 0.7 9 873-885. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 2017, 7, 523-528. 8.1 Respiratory oxygen consumption in the seagrass Zostera marina varies on a diel basis and is partly 264 0.7 14 affected by light. Marine Biology, 2017, 164, 140. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, 57 and gains through seagrass restoration. Science of the Total Environment, 2017, 605-606, 626-636. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Scientific 266 53 1.6 Reports, 2017, 7, 4458. Sulfate Reduction and Sulfur Cycles at Two Seagrass Beds Inhabited by Cold Affinity Zostera marina and Warm Affinity Halophila nipponica in Temperate Coastal Waters. Estuaries and Coasts, 2017, 40, 1.0 1346-1357. Spatial and Temporal Patterns in Thalassia testudinum Leaf Tissue Nutrients at the Chandeleur Islands, 268 1.0 6 Louisiana, USA. Estuaries and Coasts, 2017, 40, 1288-1300. Carbon Input and Accumulation in Freshwater to Brackish Marshes on the Barrier Islands of Virginia, USA. Wetlands, 2017, 37, 729-739. Growth performance and structure of a mangrove afforestation project on a former seagrass bed, 270 1.0 21 Mindanao Island, Philippines. Hydrobiologia, 2017, 803, 359-371. Can greening of aquaculture sequester blue carbon?. Ambio, 2017, 46, 468-477. 271 2.8 A low cost fieldâ€survey method for mapping seagrasses and their potential threats: an example from 272 the northern Gulf of Agaba, Red Sea. Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, 0.9 40 27, 324-339. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems–Âa review. Biological Reviews, 2017, 92, 1521-1538. Forty years of seagrass population stability and resilience in an urbanizing estuary. Journal of 274 1.9 40 Ecology, 2017, 105, 458-470. Individual and population indicators of Zostera japonica respond quickly to experimental addition of 2.3 sediment-nutrient and organic matter. Marine Pollution Bulletin, 2017, 114, 201-209.

#	Article	IF	Citations
276	Biodiversity and food web indicators of community recovery in intertidal shellfish reefs. Biological Conservation, 2017, 213, 317-324.	1.9	31
277	Contrasting ecosystem <scp>CO</scp> ₂ fluxes of inland and coastal wetlands: a metaâ€analysis of eddy covariance data. Global Change Biology, 2017, 23, 1180-1198.	4.2	103
278	Primary Production, Cycling of Nutrients, Surface Layer and Plankton. , 0, , 119-148.		5
279	Twenty-first century climate change and submerged aquatic vegetation in a temperate estuary: the case of Chesapeake Bay. Ecosystem Health and Sustainability, 2017, 3, .	1.5	11
280	Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1455-1470.	1.0	50
281	NOx is Best Compound to Reduce CO2. European Journal of Experimental Biology, 2017, 07, .	0.3	4
282	A Global Assessment of the Chemical Recalcitrance of Seagrass Tissues: Implications for Long-Term Carbon Sequestration. Frontiers in Plant Science, 2017, 8, 925.	1.7	67
283	Scaling the Costs of Natural Ecosystem Degradation and Biodiversity Losses in Aceh Province, Sumatra. , 2017, , 231-271.		7
284	Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences, 2017, 14, 301-310.	1.3	195
285	The Seagrass Holobiont and Its Microbiome. Microorganisms, 2017, 5, 81.	1.6	98
286	Fusion of High Resolution Multispectral Imagery in Vulnerable Coastal and Land Ecosystems. Sensors, 2017, 17, 228.	2.1	14
287	Response: Commentary: Evaluating the Role of Seagrass in Cenozoic CO2 Variations. Frontiers in Environmental Science, 2017, 5, .	1.5	3
288	Export from Seagrass Meadows Contributes to Marine Carbon Sequestration. Frontiers in Marine Science, 2017, 4, .	1.2	195
289	Seagrass Meadows Provide 3D Habitat for Reef Fish. Frontiers in Marine Science, 2017, 4, .	1.2	6
290	Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation?. Frontiers in Marine Science, 2017, 4, .	1.2	350
291	Muddy Waters: Unintentional Consequences of Blue Carbon Research Obscure Our Understanding of Organic Carbon Dynamics in Seagrass Ecosystems. Frontiers in Marine Science, 2017, 4, .	1.2	30
292	Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds. Frontiers in Marine Science, 2017, 4, .	1.2	85
293	Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation. Frontiers in Marine Science, 2017, 4, .	1.2	5

#	Article	IF	CITATIONS
294	Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes. Frontiers in Microbiology, 2017, 8, 1312.	1.5	72
295	Drivers of sulfide intrusion in Zostera muelleri in a moderately affected estuary in south-eastern Australia. Marine and Freshwater Research, 2017, 68, 2134.	0.7	8
296	Seagrass blue carbon spatial patterns at the meadow-scale. PLoS ONE, 2017, 12, e0176630.	1.1	86
297	Increased sediment loads cause non-linear decreases in seagrass suitable habitat extent. PLoS ONE, 2017, 12, e0187284.	1.1	27
298	Kelp Forests and Seagrass Meadows. , 0, , 869-876.		0
299	Biogeography of Submerged Aquatic Vegetation (SAV) in the Pontchartrain Basin: Species Salinity Zonation and 1953–2016 Lake Pontchartrain Trends. Southeastern Geographer, 2017, 57, 273-293.	0.1	4
300	Habitat characteristics provide insights of carbon storage in seagrass meadows. Marine Pollution Bulletin, 2018, 134, 106-117.	2.3	145
301	Seagrass Organic Carbon Stocks Show Minimal Variation Over Short Time Scales in a Heterogeneous Subtropical Seascape. Estuaries and Coasts, 2018, 41, 1732-1743.	1.0	9
302	Sea surface temperatures and seagrass mortality in Florida Bay: Spatial and temporal patterns discerned from MODIS and AVHRR data. Remote Sensing of Environment, 2018, 208, 171-188.	4.6	39
303	Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef). Marine Environmental Research, 2018, 136, 38-47.	1.1	16
304	Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Marine Pollution Bulletin, 2018, 134, 14-26.	2.3	49
305	The Role of the Upper Tidal Estuary in Wetland Blue Carbon Storage and Flux. Global Biogeochemical Cycles, 2018, 32, 817-839.	1.9	91
306	Seagrass rhizosphere microenvironment alters plantâ€associated microbial community composition. Environmental Microbiology, 2018, 20, 2854-2864.	1.8	79
307	Quantitative realâ€ŧime polymerase chain reaction (PCR) and droplet digital PCR duplex assays for detecting <i>Zostera marina</i> DNA in coastal sediments. Limnology and Oceanography: Methods, 2018, 16, 253-264.	1.0	34
308	Turbulent Kinetic Energy in Submerged Model Canopies Under Oscillatory Flow. Water Resources Research, 2018, 54, 1734-1750.	1.7	47
309	Indonesia's globally significant seagrass meadows are under widespread threat. Science of the Total Environment, 2018, 634, 279-286.	3.9	113
310	Wetlands In a Changing Climate: Science, Policy and Management. Wetlands, 2018, 38, 183-205.	0.7	234
311	Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula). Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1498-1510.	1.3	48

#	Article	IF	CITATIONS
312	Marine Macrophyte Detritus and Degradation: the Role of Intraspecific Genetic Variation. Estuaries and Coasts, 2018, 41, 1223-1233.	1.0	1
313	Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, 2018, 24, 3285-3301.	4.2	423
314	Agent Based Modelling (ABM) of eelgrass (Zostera marina) seedbank dynamics in a shallow Danish estuary. Ecological Modelling, 2018, 371, 60-75.	1.2	16
315	A functional–structural model of ephemeral seagrass growth influenced by environment. Annals of Botany, 2018, 121, 897-908.	1.4	4
316	Vertical accretion and carbon burial rates in subtropical seagrass meadows increased following anthropogenic pressure from European colonisation. Estuarine, Coastal and Shelf Science, 2018, 202, 40-53.	0.9	32
317	Does Nutrient Availability Regulate Seagrass Response to Elevated CO2?. Ecosystems, 2018, 21, 1269-1282.	1.6	9
318	Clam harvesting decreases the sedimentary carbon stock of a Zostera marina meadow. Aquatic Botany, 2018, 146, 48-57.	0.8	16
319	Ecosystem features determine seagrass community response to sea otter foraging. Marine Pollution Bulletin, 2018, 134, 134-144.	2.3	19
320	Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading. Ecological Engineering, 2018, 112, 72-81.	1.6	16
321	Synthesis of the Conference on Management and Conservation of Seagrass Ecosystems in India. Ocean and Coastal Management, 2018, 159, 3-6.	2.0	8
322	Short-Term Spatial and Temporal Carbonate Chemistry Variability in Two Contrasting Seagrass Meadows: Implications for pH Buffering Capacities. Estuaries and Coasts, 2018, 41, 1282-1296.	1.0	48
323	Effects of smallâ€scale, shadingâ€induced seagrass loss on blue carbon storage: Implications for management of degraded seagrass ecosystems. Journal of Applied Ecology, 2018, 55, 1351-1359.	1.9	38
324	A Seagrassâ€Based Biorefinery for Generation of Single ell Oils for Biofuel and Oleochemical Production. Energy Technology, 2018, 6, 1026-1038.	1.8	18
325	Refractory organic matter in coastal salt marshes-effect on C sequestration calculations. Science of the Total Environment, 2018, 633, 391-398.	3.9	17
326	Local Regime Shifts Prevent Natural Recovery and Restoration of Lost Eelgrass Beds Along the Swedish West Coast. Estuaries and Coasts, 2018, 41, 1712-1731.	1.0	65
327	Eutrophication indirectly reduced carbon sequestration in a tropical seagrass bed. Plant and Soil, 2018, 426, 135-152.	1.8	55
328	Restoring near-shore marine ecosystems to enhance climate security for island ocean states: Aligning international processes and local practices. Marine Policy, 2018, 93, 284-294.	1.5	31
329	Ambient nutrient availability drives the outcome of an interaction between a sponge (Halichondria) Tj ETQq1 1 G Ecology, 2018, 503, 86-91.).784314 r 0.7	gBT /Overloc 11

#	Article	IF	CITATIONS
330	A marine heatwave drives massive losses from the world's largest seagrass carbon stocks. Nature Climate Change, 2018, 8, 338-344.	8.1	318
331	Impacts of Phragmites australis Invasion on Soil Enzyme Activities and Microbial Abundance of Tidal Marshes. Microbial Ecology, 2018, 76, 782-790.	1.4	15
332	In Situ Effects of Shoreline Type and Watershed Land Use on Submerged Aquatic Vegetation Habitat Quality in the Chesapeake and Mid-Atlantic Coastal Bays. Estuaries and Coasts, 2018, 41, 101-113.	1.0	9
333	Variability and Vulnerability of Coastal â€~Blue Carbon' Stocks: A Case Study from Southeast Australia. Ecosystems, 2018, 21, 263-279.	1.6	54
334	Land Use and Salinity Drive Changes in SAV Abundance and Community Composition. Estuaries and Coasts, 2018, 41, 85-100.	1.0	13
335	Does the eelgrass meadow influence the macrobenthic community structure in Swan Lake, Northern China?. Marine Biodiversity, 2018, 48, 1337-1344.	0.3	5
336	Non-flood season neap tides in the Yangtze estuary offshore: Flow mixing processes and its potential impacts on adjacent wetlands. Physics and Chemistry of the Earth, 2018, 103, 127-139.	1.2	1
337	The economic value of South African kelp forests and temperate reefs: Past, present and future. Journal of Marine Systems, 2018, 188, 172-181.	0.9	57
338	Mapping Mediterranean seagrasses with Sentinel-2 imagery. Marine Pollution Bulletin, 2018, 134, 197-209.	2.3	115
339	Large-Scale Differences in Community Structure and Ecosystem Services of Eelgrass (Zostera marina) Beds Across Three Regions in Eastern Canada. Estuaries and Coasts, 2018, 41, 177-192.	1.0	12
340	CO ₂ released by carbonate sediment production in some coastal areas may offset the benefits of seagrass "Blue Carbon―storage. Limnology and Oceanography, 2018, 63, 160-172.	1.6	79
341	Not in your usual Top 10: protists that infect plants and algae. Molecular Plant Pathology, 2018, 19, 1029-1044.	2.0	55
342	Soil organic carbon variability in Australian temperate freshwater wetlands. Limnology and Oceanography, 2018, 63, S254.	1.6	22
343	Review: Host-pathogen dynamics of seagrass diseases under future global change. Marine Pollution Bulletin, 2018, 134, 75-88.	2.3	68
344	Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass Zostera muelleri. Photosynthesis Research, 2018, 136, 147-160.	1.6	31
345	Nonâ€seagrass carbon contributions to seagrass sediment blue carbon. Limnology and Oceanography, 2018, 63, S3.	1.6	62
346	Finding some seagrass optimism in Wales, the case of Zostera noltii. Marine Pollution Bulletin, 2018, 134, 216-222.	2.3	10
348	Shading and simulated grazing increase the sulphide pool and methane emission in a tropical seagrass meadow. Marine Pollution Bulletin, 2018, 134, 89-93.	2.3	22

#	Article	IF	CITATIONS
349	Valuing the carbon sequestration regulation service by seagrass ecosystems of Palk Bay and Chilika, India. Ocean and Coastal Management, 2018, 159, 26-33.	2.0	29
350	N ₂ fixation and primary productivity in a red sea <i>Halophila stipulacea</i> meadow exposed to seasonality. Limnology and Oceanography, 2018, 63, 786-798.	1.6	35
351	Fresh carbon inputs to seagrass sediments induce variable microbial priming responses. Science of the Total Environment, 2018, 621, 663-669.	3.9	37
352	Seagrass meadows as proxy for assessment of ecosystem health. Ocean and Coastal Management, 2018, 159, 34-45.	2.0	23
353	Hypersalinity During Regional Drought Drives Mass Mortality of the Seagrass Syringodium filiforme in a Subtropical Lagoon. Estuaries and Coasts, 2018, 41, 855-865.	1.0	29
354	Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone. Estuarine, Coastal and Shelf Science, 2018, 200, 169-180.	0.9	117
355	Blue Carbon Storage in Tropical Seagrass Meadows Relates to Carbonate Stock Dynamics, Plant–Sediment Processes, and Landscape Context: Insights from the Western Indian Ocean. Ecosystems, 2018, 21, 551-566.	1.6	118
356	Contributions of the direct supply of belowground seagrass detritus and trapping of suspended organic matter to the sedimentary organic carbon stock in seagrass meadows. Biogeosciences, 2018, 15, 4033-4045.	1.3	17
357	Comment on †Geoengineering with seagrasses: is credit due where credit is given?'. Environmental Research Letters, 2018, 13, 028002.	2.2	11
358	Blue Carbon stocks of Great Barrier Reef deep-water seagrasses. Biology Letters, 2018, 14, 20180529.	1.0	15
359	Comment on Geoengineering with seagrasses: is credit due where credit is given?. Environmental Research Letters, 2018, 13, 038001.	2.2	3
360	Response of Seagrass †Blue Carbon' Stocks to Increased Water Temperatures. Diversity, 2018, 10, 115.	0.7	15
361	Climate change mitigation: From carbon cycle to policy. AIP Conference Proceedings, 2018, , .	0.3	0
362	The Dynamics of the Coastal Land Scapes Over the Last Decades: Wind Drivers for Change Along the North Western Mauritanian Coast. Journal of Earth Science & Climatic Change, 2018, 09, .	0.2	4
363	Reviews and syntheses: ²¹⁰ Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight. Biogeosciences, 2018, 15, 6791-6818.	1.3	121
364	Increased current flow enhances the risk of organic carbon loss from <i>Zostera marina</i> sediments: Insights from a flume experiment. Limnology and Oceanography, 2018, 63, 2793-2805.	1.6	28
365	Natural climate solutions for the United States. Science Advances, 2018, 4, eaat1869.	4.7	333
366	Grazers extend blue carbon transfer by slowing sinking speeds of kelp detritus. Scientific Reports, 2018, 8, 17180.	1.6	34

ARTICLE IF CITATIONS # The thin(ning) green line? Investigating changes in Kenya's seagrass coverage. Biology Letters, 2018, 14, 367 1.0 23 20180227. Sources of Greenhouse Gas Emissions from Land Reclamation Development in Indonesia. Case Studies 368 0.4 in the Environment, 2018, 2, 1-9. Sediment Stocks of Carbon, Nitrogen, and Phosphorus in Danish Eelgrass Meadows. Frontiers in 369 1.2 34 Marine Science, 2018, 5, . Elevated Turbidity and the Nutrient Removal Capacity of Seagrass. Frontiers in Marine Science, 2018, 5, . 370 1.2 Optimal soil carbon sampling designs to achieve cost-effectiveness: a case study in blue carbon 371 1.0 14 ecosystems. Biology Letters, 2018, 14, 20180416. Measurements and modeling of acoustic propagation in a seagrass meadow. Proceedings of Meetings 0.3 on Acoustics, 2018, , . Benthic primary production in emerged intertidal habitats provides resilience to high water column 373 0.6 38 turbidity. Journal of Sea Research, 2018, 142, 101-112. Variability of UK seagrass sediment carbon: Implications for blue carbon estimates and marine 374 1.1 26 conservation management. PLoS ONE, 2018, 13, e0204431. Differential effects of biological invasions on coastal blue carbon: A global review and metaâ€analysis. 375 4.2 53 Global Change Biology, 2018, 24, 5218-5230. Seagrass and macrophyte mediated CO2 and CH4 dynamics in shallow coastal waters. PLoS ONE, 2018, 376 1.1 13, e0203922. Which Genes in a Typical Intertidal Seagrass (Zostera japonica) Indicate Copper-, Lead-, and Cadmium 377 1.7 11 Pollution?. Frontiers in Plant Science, 2018, 9, 1545. 378 Carbon stocks and accumulation rates in Red Sea seagrass meadows. Scientific Reports, 2018, 8, 15037. 1.6 Machine learning-based retrieval of benthic reflectance and <i>Posidonia oceanica</i> seagrass extent using a semi-analytical inversion of Sentinel-2 satellite data. International Journal of Remote Sensing, 379 1.3 26 2018, 39, 9428-9452. Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The 380 1.8 Case Study of the Aegean and Ionian Seas. Remote Sensing, 2018, 10, 1227. Population structure and gene flow of the tropical seagrass, Syringodium filiforme, in the Florida 381 9 1.1 Keys and subtropical Atlantic region. PLoS ONE, 2018, 13, e0203644. Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Scientific Reports, 2018, 8, 14024. Widespread recovery of seagrass coverage in Southwest Florida (USA): Temporal and spatial trends 383 2.331 and management actions responsible for success. Marine Pollution Bulletin, 2018, 135, 1128-1137. Blue Carbon Storage Capacity of Temperate Eelgrass (<scp><i>Zostera marina</i></scp>) Meadows. 384 Global Biogeochemical Cycles, 2018, 32, 1457-1475.

#	Article	IF	CITATIONS
385	Ten years of conservation efforts enhance seagrass cover and carbon storage in Thailand. Botanica Marina, 2018, 61, 441-451.	0.6	10
386	A facultative mutualistic feedback enhances the stability of tropical intertidal seagrass beds. Scientific Reports, 2018, 8, 12988.	1.6	20
387	Carbon storage in seagrass ecosystems along the Andaman coast of Thailand. Botanica Marina, 2018, 61, 429-440.	0.6	13
388	Potensi Budidaya Rumput Laut dalam Kaitannya dengan Dampak Perkembangan Pariwisata di Perairan Pantai Kutuh, Badung, Bali. Journal of Marine and Aquatic Sciences, 2018, 5, 94.	0.3	0
389	Seagrass in Southeast Asia: a review of status and knowledge gaps, and a road map for conservation. Botanica Marina, 2018, 61, 269-288.	0.6	88
390	Modelling alpha-diversities of coastal lagoon fish assemblages from the Mediterranean Sea. Progress in Oceanography, 2018, 165, 100-109.	1.5	7
391	A proposed decision support tool for prioritising conservation planning of Southeast Asian seagrass meadows: combined approaches based on ecosystem services and vulnerability analyses. Botanica Marina, 2018, 61, 305-320.	0.6	11
392	Seagrass Meadows. SpringerBriefs in Climate Studies, 2018, , 37-51.	0.2	3
393	The Role of Consumers in Structuring Seagrass Communities: Direct and Indirect Mechanisms. , 2018, , 491-540.		10
394	Global Warming and Ocean Acidification: Effects on Australian Seagrass Ecosystems. , 2018, , 705-742.		5
395	Seagrasses of Southern and South-Western Australia. , 2018, , 61-89.		5
396	Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Organic Geochemistry, 2018, 124, 247-256.	0.9	31
397	Predators Shape Sedimentary Organic Carbon Storage in a Coral Reef Ecosystem. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	31
398	New Insights into Different Reproductive Effort and Sexual Recruitment Contribution between Two Geographic Zostera marina L. Populations in Temperate China. Frontiers in Plant Science, 2018, 9, 15.	1.7	46
399	Interannual Change Detection of Mediterranean Seagrasses Using RapidEye Image Time Series. Frontiers in Plant Science, 2018, 9, 96.	1.7	35
400	The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery. Frontiers in Plant Science, 2018, 9, 127.	1.7	62
401	Light Is More Important Than Nutrient Ratios of Fertilization for Cymodocea nodosa Seedling Development. Frontiers in Plant Science, 2018, 9, 768.	1.7	7
402	Secret Gardens Under the Sea: What are Seagrass Meadows and Why are They Important?. Frontiers for Young Minds, 2018, 6, .	0.8	3

#	Article	IF	CITATIONS
403	New sighting of seagrasses in the Eastern Tropical Pacific (BahÃa Potrero, Costa Rica). Aquatic Botany, 2018, 151, 25-29.	0.8	7
404	The Microbiology of Seagrasses. , 2018, , 343-392.		9
405	Characterizing blue carbon stocks in <i>Thalassia testudinum</i> meadows subjected to different phosphorus supplies: A lignin biomarker approach. Limnology and Oceanography, 2018, 63, 2630-2646.	1.6	19
406	Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecological Applications, 2018, 28, 1694-1714.	1.8	54
407	Short Term CO2 Enrichment Increases Carbon Sequestration of Air-Exposed Intertidal Communities of a Coastal Lagoon. Frontiers in Marine Science, 2018, 4, .	1.2	2
408	Iron Deficiency in Seagrasses and Macroalgae in the Red Sea Is Unrelated to Latitude and Physiological Performance. Frontiers in Marine Science, 2018, 5, .	1.2	30
409	Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biology, 2018, 24, 4919-4928.	4.2	140
410	Primary Production and Calcification Rates of Algaeâ€Dominated Reef Flat and Seagrass Communities. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2362-2375.	1.3	11
411	â€~Blue Carbon' and the Need to Integrate Mitigation, Adaptation, and Conservation Goals within the International Climate Law Framework. , 0, , 81-101.		0
412	Modeling a coastal ecosystem to estimate climate change mitigation and a model demonstration in Tokyo Bay. Ecological Modelling, 2018, 384, 261-289.	1.2	24
413	How Population Decline Can Impact Genetic Diversity: a Case Study of Eelgrass (Zostera marina) in Morro Bay, California. Estuaries and Coasts, 2018, 41, 2356-2367.	1.0	7
414	The effects of El Niñoâ€Southern Oscillation events on intertidal seagrass beds over a longâ€ŧerm timescale. Global Change Biology, 2018, 24, 4566-4580.	4.2	14
415	Pedological Studies of Subaqueous Soils as a Contribution to the Protection of Seagrass Meadows in Brazil. Revista Brasileira De Ciencia Do Solo, 2018, 42, .	0.5	5
416	Metagenomic Evidence of Microbial Community Responsiveness to Phosphorus and Salinity Gradients in Seagrass Sediments. Frontiers in Microbiology, 2018, 9, 1703.	1.5	44
417	The Importance of Marine Predators in the Provisioning of Ecosystem Services by Coastal Plant Communities. Frontiers in Plant Science, 2018, 9, 1289.	1.7	17
418	Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island. IOP Conference Series: Earth and Environmental Science, 2018, 118, 012050.	0.2	2
419	Ontogenetic transition from specialized root hairs to specific root-fungus symbiosis in the dominant Mediterranean seagrass Posidonia oceanica. Scientific Reports, 2018, 8, 10773.	1.6	29
420	Seagrass community-level controls over organic carbon storage are constrained by geophysical attributes within meadows of Zanzibar, Tanzania. Biogeosciences, 2018, 15, 4609-4626.	1.3	22

#	Article	IF	CITATIONS
421	Species richness effects on the vegetative expansion of transplanted seagrass in Indonesia. Botanica Marina, 2018, 61, 205-211.	0.6	10
422	Carbon assimilation and transfer through kelp forests in the <scp>NE</scp> Atlantic is diminished under a warmer ocean climate. Global Change Biology, 2018, 24, 4386-4398.	4.2	96
423	Short-term variability of carbon chemistry in two contrasting seagrass meadows at Dongsha Island: Implications for pH buffering and CO2 sequestration. Estuarine, Coastal and Shelf Science, 2018, 210, 36-44.	0.9	22
424	Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. Environmental Research Letters, 2018, 13, 074007.	2.2	48
425	Seagrass recovery after fish farm relocation in the eastern Mediterranean. Marine Environmental Research, 2018, 140, 221-233.	1.1	15
426	Low blue carbon storage in eelgrass (Zostera marina) meadows on the Pacific Coast of Canada. PLoS ONE, 2018, 13, e0198348.	1.1	43
427	Quantifying the importance of functional traits for primary production in aquatic plant communities. Journal of Ecology, 2019, 107, 154-166.	1.9	41
428	Role of the ocean in climate stabilization. , 2019, , 109-130.		3
429	A Systematic Review of How Multiple Stressors From an Extreme Event Drove Ecosystem-Wide Loss of Resilience in an Iconic Seagrass Community. Frontiers in Marine Science, 2019, 6, .	1.2	87
430	Important contribution of macroalgae to oceanic carbon sequestration. Nature Geoscience, 2019, 12, 748-754.	5.4	141
431	Sowing the Seeds of Seagrass Recovery Using Hessian Bags. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	35
432	Millennial-scale changes in the molecular composition of Posidonia australis seagrass deposits: Implications for Blue Carbon sequestration. Organic Geochemistry, 2019, 137, 103898.	0.9	15
433	Exotic Halophila stipulacea is an introduced carbon sink for the Eastern Mediterranean Sea. Scientific Reports, 2019, 9, 9643.	1.6	20
434	Invasive Plants in Coastal Wetlands: Patterns and Mechanisms. Ecological Studies, 2019, , 97-128.	0.4	16
435	In the blind-spot of governance – Stakeholder perceptions on seagrasses to guide the management of an important ecosystem services provider. Science of the Total Environment, 2019, 688, 1081-1091.	3.9	22
436	Effects of salinity and temperature on seed germination and seedling establishment in the endangered seagrass Zostera japonica Asch. & Graebn. in northern China. Marine Pollution Bulletin, 2019, 146, 848-856.	2.3	21
437	Implications of nutrient enrichment for the conservation and management of seagrass <i>Zostera muelleri</i> meadows. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1484-1502.	0.9	15
438	The seagrass carbon content of 0.336 of dry weight can be applied in Indonesian seagrasses. AIP Conference Proceedings, 2019, , .	0.3	2

#	Article	IF	CITATIONS
439	The Elusive Quest for Valuation of Coastal and Marine Ecosystem Services. Water (Switzerland), 2019, 11, 1518.	1.2	14
440	The spatial distribution of microplastic in the sands of a coral reef island in the South China Sea: Comparisons of the fringing reef and atoll. Science of the Total Environment, 2019, 688, 780-786.	3.9	50
441	Decadal Monitoring in Bermuda Shows a Widespread Loss of Seagrasses Attributable to Overgrazing by the Green Sea Turtle Chelonia mydas. Estuaries and Coasts, 2019, 42, 1524-1540.	1.0	35
442	Advancing land-sea integration for ecologically meaningful coastal conservation and management. Biological Conservation, 2019, 237, 81-89.	1.9	43
443	Wetlands: Ecosystem Services, Restoration and Wise Use. Ecological Studies, 2019, , .	0.4	12
444	Single beam sonar reveals the distribution of the eelgrass Zostera marina L. and threats from the green tide algae Chaetomorpha linum K. in Swan-Lake lagoon (China). Marine Pollution Bulletin, 2019, 145, 611-623.	2.3	20
445	Variation of carbon contents in eelgrass (<i>Zostera marina</i>) sediments implied from depth profiles. Biology Letters, 2019, 15, 20180831.	1.0	13
446	Blue Carbon stock in Zostera noltei meadows at Ria de Aveiro coastal lagoon (Portugal) over a decade. Scientific Reports, 2019, 9, 14387.	1.6	26
447	Structural complexity governs seagrass acclimatization to depth with relevant consequences for meadow production, macrophyte diversity and habitat carbon storage capacity. Scientific Reports, 2019, 9, 14657.	1.6	29
448	Genetic diversity of Halodule wrightii is resistant to large scale dieback: a case study from the Indian River Lagoon. Conservation Genetics, 2019, 20, 1329-1337.	0.8	3
449	Modeling Organic Carbon Accumulation Rates and Residence Times in Coastal Vegetated Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3652-3671.	1.3	13
450	The contributions of allochthonous and autochthonous materials to organic carbon in coastal sediment: A case study from Tangkhen Bay, Phuket, Thailand. Ecological Research, 2019, 34, 718-729.	0.7	11
451	Quantifying the Effects of Nutrient Enrichment and Freshwater Mixing on Coastal Ocean Acidification. Journal of Geophysical Research: Oceans, 2019, 124, 9085-9100.	1.0	39
452	Ocean Literacy to Mainstream Ecosystem Services Concept in Formal and Informal Education: The Example of Coastal Ecosystems of Southern Portugal. Frontiers in Marine Science, 2019, 6, .	1.2	23
453	Decomposition rate and invertebrate colonization of seagrass detritus along a hydrodynamic gradient in a Mediterranean coastal basin: The Stagnone di Marsala (Italy) case study. Marine Ecology, 2019, 40, e12570.	0.4	10
454	Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 2019, 12, 685-692.	5.4	176
455	Role of Eelgrass in the Coastal Filter of Contrasting Baltic Sea Environments. Estuaries and Coasts, 2019, 42, 1882-1895.	1.0	14
456	Cloning, characterization and expression analysis of a microsomal glutathione S-transferase gene from the seagrass Zostera marina. Acta Oceanologica Sinica, 2019, 38, 111-115.	0.4	0

#	Article	IF	CITATIONS
457	Heavy metal accumulation and phytoremediation potential by transplants of the seagrass Zostera marina in the polluted bay systems. Marine Pollution Bulletin, 2019, 149, 110509.	2.3	34
458	The future of Blue Carbon science. Nature Communications, 2019, 10, 3998.	5.8	406
459	The Sources of Organic Matter in Seagrass Sediments and Their Contribution to Carbon Stocks in the Spermonde Islands, Indonesia. Aquatic Geochemistry, 2019, 25, 161-178.	1.5	18
460	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 2019, 10, 4313.	5.8	150
461	The importance of coastal gorgonians in the blue carbon budget. Scientific Reports, 2019, 9, 13550.	1.6	31
462	Coupling carbon metabolism and dissolved organic carbon fluxes in benthic and pelagic coastal communities. Estuarine, Coastal and Shelf Science, 2019, 227, 106336.	0.9	18
463	Potential of Earth Observation (EO) technologies for seagrass ecosystem service assessments. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 15-29.	1.4	34
464	Macroalgae bloom decay decreases the sediment organic carbon sequestration potential in tropical seagrass meadows of the South China Sea. Marine Pollution Bulletin, 2019, 138, 598-603.	2.3	16
465	Contrasting root length, nutrient content and carbon sequestration of seagrass growing in offshore carbonate and onshore terrigenous sediments in the South China Sea. Science of the Total Environment, 2019, 662, 151-159.	3.9	30
466	High macrophyte canopy complexity enhances sediment retention and carbon storage in coastal vegetative meadows at Tangkhen Bay, Phuket, Southern Thailand. Ecological Research, 2019, 34, 201-212.	0.7	10
467	Assessment of the impact of coastal reclamation activities on seagrass meadows in Sungai Pulai estuary, Malaysia, using Landsat data (1994–2017). International Journal of Remote Sensing, 2019, 40, 3571-3605.	1.3	42
468	The benefit of one cannot replace the other: seagrass and mangrove ecosystems at Santa Fe, Bantayan Island. Journal of Ecology and Environment, 2019, 43, .	1.6	8
469	Blue Carbon Cooperation in the Maritime Silk Road with Network Game Model and Simulation. Sustainability, 2019, 11, 2748.	1.6	7
470	Toward the Ultrasonic Sensing of Organic Carbon in Seagrassâ€Bearing Sediments. Geophysical Research Letters, 2019, 46, 5968-5977.	1.5	4
471	Carbon and Nitrogen Concentrations, Stocks, and Isotopic Compositions in Red Sea Seagrass and Mangrove Sediments. Frontiers in Marine Science, 2019, 6, .	1.2	28
472	Multi-level phenotypic plasticity and the persistence of seagrasses along environmental gradients in a subtropical lagoon. Aquatic Botany, 2019, 157, 24-32.	0.8	7
473	A unique meadow of the marine angiosperm Zostera japonica, covering a large area in the turbid intertidal Yellow River Delta, China. Science of the Total Environment, 2019, 686, 118-130.	3.9	20
474	Vulnerability of seagrass blue carbon to microbial attack following exposure to warming and oxygen. Science of the Total Environment, 2019, 686, 264-275.	3.9	42

#	Article	IF	Citations
475	First measurements of the ocean-atmosphere CO2 fluxes at the Cabo Frio upwelling system region, Southwestern Atlantic Ocean. Continental Shelf Research, 2019, 181, 135-142.	0.9	14
476	Climate Change Mitigation and Adaptation: Role of Mangroves in Southeast Asia. Encyclopedia of the UN Sustainable Development Goals, 2019, , 1-13.	0.0	2
477	Carbon fluxes and stocks in a carbonate-rich chenier plain. Agricultural and Forest Meteorology, 2019, 275, 159-169.	1.9	10
478	Toward a Coordinated Clobal Observing System for Seagrasses and Marine Macroalgae. Frontiers in Marine Science, 2019, 6, .	1.2	123
479	Fingerprinting Blue Carbon: Rationale and Tools to Determine the Source of Organic Carbon in Marine Depositional Environments. Frontiers in Marine Science, 2019, 6, .	1.2	75
480	Seasonal ecosystem metabolism across shallow benthic habitats measured by aquatic eddy covariance. Limnology and Oceanography Letters, 2019, 4, 79-86.	1.6	55
481	A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrassesand Salt Marshes during 2010–2018. Sensors, 2019, 19, 1933.	2.1	93
482	The atmospheric carbon sequestration potential of man-made tidal lagoons. Continental Shelf Research, 2019, 181, 90-102.	0.9	1
483	Socioeconomic Determinants of Mangrove Exploitation and Seagrass Degradation in Zanzibar: Implications for Sustainable Development. Journal of Marine Biology, 2019, 2019, 1-11.	1.0	4
484	Empirical observations and numerical modelling of tides, channel morphology, and vegetative effects on accretion in a restored tidal marsh. Earth Surface Processes and Landforms, 2019, 44, 2223-2235.	1.2	22
485	Spatiotemporal variability in the structure of seagrass meadows and associated macrofaunal assemblages in southwest England (UK): Using citizen science to benchmark ecological pattern. Ecology and Evolution, 2019, 9, 3958-3972.	0.8	6
486	Reduced water motion enhances organic carbon stocks in temperate eelgrass meadows. Limnology and Oceanography, 2019, 64, 2389-2404.	1.6	27
487	Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome. Frontiers in Microbiology, 2019, 10, 1011.	1.5	53
488	Recent advancement on estimation of blue carbon biomass using satellite-based approach. International Journal of Remote Sensing, 2019, 40, 7679-7715.	1.3	19
489	A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 2019, 5, eaaw2869.	4.7	477
490	Relevance of carbon burial and storage in two contrasting blue carbon ecosystems of a north-east Pacific coastal lagoon. Science of the Total Environment, 2019, 675, 581-593.	3.9	22
491	Secondary dispersal of seagrass seeds in complex microtopographies. Journal of Theoretical Biology, 2019, 473, 28-37.	0.8	2
492	Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. Biogeosciences, 2019, 16, 167-175.	1.3	10

#	Article	IF	CITATIONS
493	Estimation of carbon storage in coastal wetlands and comparison of different management schemes in South Korea. Journal of Ecology and Environment, 2019, 43, .	1.6	22
494	Indirect legacy effects of an extreme climatic event on a marine megafaunal community. Ecological Monographs, 2019, 89, e01365.	2.4	47
495	The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiology Letters, 2019, 366, .	0.7	63
496	Plant and sediment properties in seagrass meadows from two Mediterranean CO2 vents: Implications for carbon storage capacity of acidified oceans. Marine Environmental Research, 2019, 146, 101-108.	1.1	14
497	Accelerated burial of petroleum hydrocarbons in Arabian Gulf blue carbon repositories. Science of the Total Environment, 2019, 669, 205-212.	3.9	25
498	Ocean acidification impacts on coral reefs: From sciences to solutions. Regional Studies in Marine Science, 2019, 28, 100558.	0.4	19
499	Role of carbonate burial in Blue Carbon budgets. Nature Communications, 2019, 10, 1106.	5.8	105
500	Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK. Ecosystem Services, 2019, 35, 67-76.	2.3	62
501	Temporal and depth-associated changes in the structure, morphometry and production of near-pristine Zostera marina meadows in western Ireland. Aquatic Botany, 2019, 155, 5-17.	0.8	13
502	Significant Organic Carbon Accumulation in Two Coastal Acid Sulfate Soil Wetlands. Geophysical Research Letters, 2019, 46, 3245-3251.	1.5	13
503	Revealing the deposition of macrophytes transported offshore: Evidence of their long-distance dispersal and seasonal aggregation to the deep sea. Scientific Reports, 2019, 9, 4331.	1.6	26
504	Impacts of land reclamation on tidal marsh â€~blue carbon' stocks. Science of the Total Environment, 2019, 672, 427-437.	3.9	35
505	Rates of Sediment Resuspension and Erosion Following Green Turtle Grazing in a Shallow Caribbean Thalassia testudinum Meadow. Ecosystems, 2019, 22, 1787-1802.	1.6	13
506	The origin of the suspended particulate matter in the seagrass meadow of tropical waters, an evidence of the stable isotope signatures. Acta Oceanologica Sinica, 2019, 38, 136-143.	0.4	5
507	Potential Environmental Impacts of Recreational Fishing on Marine Fish Stocks and Ecosystems. Reviews in Fisheries Science and Aquaculture, 2019, 27, 287-330.	5.1	71
508	Blade dynamics in combined waves and current. Journal of Fluids and Structures, 2019, 87, 137-149.	1.5	33
509	Waveâ€Driven Sediment Resuspension Within a Model Eelgrass Meadow. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1035-1053.	1.0	12
510	Changes in the windâ€wave field and related saltâ€marsh lateral erosion: inferences from the evolution of the Venice Lagoon in the last four centuries. Earth Surface Processes and Landforms, 2019, 44, 1633-1646.	1.2	52

#	Article	IF	CITATIONS
511	Superficial sedimentary stocks and sources of carbon and nitrogen in coastal vegetated assemblages along a flow gradient. Scientific Reports, 2019, 9, 610.	1.6	22
512	Optimising Seagrass Conservation for Ecological Functions. Ecosystems, 2019, 22, 1368-1380.	1.6	12
513	Wave damping by flexible vegetation: Connecting individual blade dynamics to the meadow scale. Coastal Engineering, 2019, 147, 138-148.	1.7	74
514	Recent Large Scale Environmental Changes in the Mediterranean Sea and Their Potential Impacts on Posidonia Oceanica. Remote Sensing, 2019, 11, 110.	1.8	4
515	Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows. Biogeosciences, 2019, 16, 4411-4428.	1.3	19
516	Sediment Dynamics of Natural and Restored Bolboschoenus maritimus Saltmarsh. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	8
517	A simple mooring modification reduces impacts on seagrass meadows. Scientific Reports, 2019, 9, 20062.	1.6	12
518	Mapping Submerged Aquatic Vegetation in Shallow Water of Arabian Gulf Using Water Spectral Indices, Field Observations and Landsat-OLI Data. , 2019, , .		1
519	Seed selection and storage with nano-silver and copper as potential antibacterial agents for the seagrass Zostera marina: implications for habitat restoration. Scientific Reports, 2019, 9, 20249.	1.6	16
520	Interâ€∎nnual variations over a decade of primary production of the seagrass <scp><i>Posidonia oceanica</i></scp> . Limnology and Oceanography, 2019, 64, 32-45.	1.6	17
521	CO2 Fluxes in Mangrove Ecosystems. , 2019, , 185-221.		1
522	Carbon Sequestration in Sediment as an Ecosystem Function of Seagrass Meadows. , 2019, , 33-71.		12
523	Carbon Storage in Tidal Flats. , 2019, , 129-151.		6
524	The Coastal Marine Ecosystem of South Florida, United States. , 2019, , 427-444.		9
525	CO2 Uptake in the Shallow Coastal Ecosystems Affected by Anthropogenic Impacts. , 2019, , 295-319.		6
526	Relative seaâ€level change regulates organic carbon accumulation in coastal habitats. Global Change Biology, 2019, 25, 1063-1077.	4.2	23
527	Seasonal Species Variation of Sediment Organic Carbon Stocks in Salt Marshes of Tuticorin Area, Southern India. Wetlands, 2019, 39, 483-494.	0.7	11
528	Importance of Seagrass Management for Effective Mitigation of Climate Change. , 2019, , 283-299.		15

#	ARTICLE	IF	Citations
529	Productivity and Biogeochemical Cycling in Seagrass Ecosystems. , 2019, , 443-477.		12
530	Conservation of Blue Carbon Ecosystems for Climate Change Mitigation and Adaptation. , 2019, , 965-996.		27
531	Tolerance of tropical seagrasses Zostera muelleri and Halophila ovalis to burial: Toward an understanding of threshold effects. Estuarine, Coastal and Shelf Science, 2019, 218, 131-138.	0.9	11
532	Global challenges for seagrass conservation. Ambio, 2019, 48, 801-815.	2.8	215
533	Oxygen Consumption and Sulfate Reduction in Vegetated Coastal Habitats: Effects of Physical Disturbance. Frontiers in Marine Science, 2019, 6, .	1.2	39
534	Short-Term Temperature Stress Results in Seagrass Community Shift in a Temperate Estuary. Estuaries and Coasts, 2019, 42, 755-764.	1.0	23
535	Evidence for regionalâ€scale controls on eelgrass (<scp><i>Zostera marina</i></scp>) and mesograzer community structure in upwellingâ€influenced estuaries. Limnology and Oceanography, 2019, 64, 1120-1134.	1.6	13
536	Seagrass sedimentary deposits as security vaults and time capsules of the human past. Ambio, 2019, 48, 325-335.	2.8	17
537	Linking Improvement of Soil Structure to Soil Carbon Storage Following Invasion by a C4 Plant Spartina alterniflora. Ecosystems, 2019, 22, 859-872.	1.6	17
538	Linking eutrophication indicators in eelgrass habitats to nitrogen loading and mitigating site characteristics in eastern New Brunswick, Canada. Marine Environmental Research, 2019, 144, 141-153.	1.1	9
539	Bioturbatorâ€stimulated loss of seagrass sediment carbon stocks. Limnology and Oceanography, 2019, 64, 342-356.	1.6	27
540	Decade of change in Enhalus acoroides seagrass meadows in Guam, Mariana Islands. Marine and Freshwater Research, 2019, 70, 246.	0.7	3
541	The value of information: Realising the economic benefits of mapping seagrass meadows in the British Virgin Islands. Science of the Total Environment, 2019, 650, 2107-2116.	3.9	10
542	Influence of Water Temperature Anomalies on the Growth of Zostera marina Plants Held Under High and Low Irradiance Levels. Estuaries and Coasts, 2020, 43, 463-476.	1.0	20
543	Elevated trace elements in sediments and seagrasses at CO2 seeps. Marine Environmental Research, 2020, 153, 104810.	1.1	21
544	Ocean acidification alters meiobenthic assemblage composition and organic matter degradation rates in seagrass sediments. Limnology and Oceanography, 2020, 65, 37-50.	1.6	14
545	Carbon and Nitrogen Sequestration of Melaleuca Floodplain Wetlands in Tropical Australia. Ecosystems, 2020, 23, 454-466.	1.6	26
546	Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. Annual Review of Marine Science, 2020, 12, 469-497.	5.1	50

#	ARTICLE	IF	CITATIONS
547	Bioconversion of marine waste biomass for biofuel and value-added products recovery. , 2020, , 481-507.		4
548	The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China. Science of the Total Environment, 2020, 708, 135025.	3.9	169
549	Seagrass ecosystem metabolic carbon capture in response to green turtle grazing across Caribbean meadows. Journal of Ecology, 2020, 108, 1101-1114.	1.9	14
550	Temperate coastal wetland near-surface carbon storage: Spatial patterns and variability. Estuarine, Coastal and Shelf Science, 2020, 235, 106584.	0.9	21
551	Environmental drivers of sediment carbon storage in temperate seagrass meadows. Hydrobiologia, 2020, 847, 1773-1792.	1.0	38
552	Halophila stipulacea descriptors in the native area (Red Sea): A baseline for future comparisons with native and non-native populations. Marine Environmental Research, 2020, 153, 104828.	1.1	27
553	A Synthesis of Blue Carbon Stocks, Sources, and Accumulation Rates in Eelgrass (<i>Zostera) Tj ETQq0 0 0 rgBT</i>	/Oyerlock 1.9	10 Tf 50 502
554	High Seasonal Variability in Sediment Carbon Stocks of Coldâ€Temperate Seagrass Meadows. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005430.	1.3	11
555	Detrital carbon production and export in high latitude kelp forests. Oecologia, 2020, 192, 227-239.	0.9	53
556	Changes to the structure of tropical seagrass meadows (Halophila decipiens) in the warm-temperate waters of the southwest Atlantic. Aquatic Botany, 2020, 161, 103174.	0.8	5
557	The role of soil as a carbon sink in coastal salt-marsh and agropastoral systems at La Pletera, NE Spain. Catena, 2020, 185, 104331.	2.2	8
558	Phytoplankton in the <i>Tara</i> Ocean. Annual Review of Marine Science, 2020, 12, 233-265.	5.1	96
559	Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Science Advances, 2020, 6, .	4.7	136
560	The Seagrass Methylome Is Associated With Variation in Photosynthetic Performance Among Clonal Shoots. Frontiers in Plant Science, 2020, 11, 571646.	1.7	21
561	Imaging O ₂ dynamics and microenvironments in the seagrass leaf phyllosphere with magnetic optical sensor nanoparticles. Plant Journal, 2020, 104, 1504-1519.	2.8	15
562	Seagrass Cymodocea nodosa across biogeographical regions and times: Differences in abundance, meadow structure and sexual reproduction. Marine Environmental Research, 2020, 162, 105159.	1.1	14
563	Variable Impacts of Climate Change on Blue Carbon. One Earth, 2020, 3, 195-211.	3.6	106
564	Coastal and estuarine blue carbon stocks in the greater Southeast Asia region: Seagrasses and mangroves per nation and sum of total. Marine Pollution Bulletin, 2020, 160, 111168.	2.3	41

#	Article	IF	CITATIONS
565	Mapping coastal ecosystems and features using a low-cost standard drone: case study, Nayband Bay, Persian gulf, Iran. Journal of Coastal Conservation, 2020, 24, 1.	0.7	5
566	Challenges to select suitable habitats and demonstrate â€~additionality' in Blue Carbon projects: A seagrass case study. Ocean and Coastal Management, 2020, 197, 105295.	2.0	13
567	Seagrass and rhodolith beds are important seascapes for the development of fish eggs and larvae in tropical coastal areas. Marine Environmental Research, 2020, 161, 105064.	1.1	25
568	Ocean acidification alters the responses of invertebrates to wound-activated infochemicals produced by epiphytes of the seagrass Posidonia oceanica. Journal of Experimental Marine Biology and Ecology, 2020, 530-531, 151435.	0.7	11
569	The Carbon Stock and Sequestration Rate in Tidal Flats From Coastal China. Global Biogeochemical Cycles, 2020, 34, e2020GB006772.	1.9	26
570	Carbonate-Associated Organic Matter Is a Detectable Dissolved Organic Matter Source in a Subtropical Seagrass Meadow. Frontiers in Marine Science, 2020, 7, .	1.2	4
571	Projected Rapid Habitat Expansion of Tropical Seagrass Species in the Mediterranean Sea as Climate Change Progresses. Frontiers in Plant Science, 2020, 11, 555376.	1.7	26
572	Spatial and Temporal Variability of Posidonia oceanica Monitoring Indicators, Valencian Community, Spain. Water (Switzerland), 2020, 12, 3235.	1.2	6
573	Ecosystem Services of Seagrasses. , 2020, , 1-21.		0
574	Change-mapping of estuarine intertidal seagrass (Zostera muelleri) using multispectral imagery flown by remotely piloted aircraft (RPA) at Wharekawa Harbour, New Zealand. Estuarine, Coastal and Shelf Science, 2020, 246, 107046.	0.9	5
575	Species-Specific Trait Responses of Three Tropical Seagrasses to Multiple Stressors: The Case of Increasing Temperature and Nutrient Enrichment. Frontiers in Plant Science, 2020, 11, 571363.	1.7	22
576	Performance across WorldView-2 and RapidEye for reproducible seagrass mapping. Remote Sensing of Environment, 2020, 250, 112036.	4.6	26
577	Seismic interval velocity in the matte of Posidonia oceanica meadows: Towards a non-destructive approach for large-scale assessment of blue carbon stock. Marine Environmental Research, 2020, 161, 105085.	1.1	6
578	Mangrove carbon stocks and biomass partitioning in an extreme environment. Estuarine, Coastal and Shelf Science, 2020, 244, 106940.	0.9	23
579	Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina. PLoS ONE, 2020, 15, e0236135.	1.1	35
580	Process Controls of the Live Root Zone and Carbon Sequestration Capacity of the Sundarbans Mangrove Forest, Bangladesh. Sci, 2020, 2, 51.	1.8	1
581	Process Controls of the Live Root Zone and Carbon Sequestration Capacity of the Sundarbans Mangrove Forest, Bangladesh. Sci, 2020, 2, 54.	1.8	1
582	Effects of a severe storm on seagrass meadows. Science of the Total Environment, 2020, 748, 141373.	3.9	40

ARTICLE IF CITATIONS Do beds of subtidal estuarine seagrass constitute a refuge for macrobenthic biodiversity threatened 583 1.2 16 intertidally?. Biodiversity and Conservation, 2020, 29, 3227-3244. Modeling dissolved inorganic carbon considering submerged aquatic vegetation. Ecological 584 1.2 Modelling, 2020, 431, 109188. Socio-economic valuation of seagrass meadows in the Pulai River Estuary, Peninsular Malaysia, 585 7 0.7 through a wellbeing lens. Marine and Freshwater Research, 2020, 71, 877. Evidence of surplus carrying capacity for benthic invertebrates with the poleward range extension of the tropical seagrass Halophila decipiens in SE Brazil. Marine Environmental Research, 2020, 162, 586 1.1 105108 Total ecosystem carbon stocks at the marineâ€terrestrial interface: Blue carbon of the Pacific 587 4.2 35 Northwest Coast, United States. Global Change Biology, 2020, 26, 5679-5692. Over a decade monitoring Fiji's seagrass condition demonstrates resilience to anthropogenic pressures and extreme climate events. Marine Pollution Bulletin, 2020, 160, 111636. 2.3 Variation in reproductive effort, genetic diversity and mating systems across Posidonia australis 589 1.2 8 seagrass meadows in Western Australia. AoB PLANTS, 2020, 12, plaa038. Hypersalinity affects leaf and meristem O2 dynamics exposing meristems to H2S in the dominant tropical seagrass Thalassia testudinum. Journal of Experimental Marine Biology and Ecology, 2020, 533, 590 151458. Environmental <scp>DNA</scp> identifies marine macrophyte contributions to Blue Carbon sediments. 591 1.6 35 Limnology and Oceanography, 2020, 65, 3139-3149. Variation in Seagrass Carbon Stocks Between Tropical Estuarine and Marine Mangrove-Fringed Creeks. 1.2 Frontiers in Marine Science, 2020, 7, . Effects of Fine Sediment on Seagrass Meadows: A Case Study of Zostera muelleri in PÄuatahanui Inlet, 593 1.2 12 New Zealand. Journal of Marine Science and Engineering, 2020, 8, 645. The influence of hydrodynamic exposure on carbon storage and nutrient retention in eelgrass 594 1.6 (Zostera marina L.) meadows on the Swedish Skagerrak coast. Scientific Reports, 2020, 10, 13666. Stronger Together: Do Coral Reefs Enhance Seagrass Meadows "Blue Carbon―Potential?. Frontiers in 595 1.2 19 Marine Science, 2020, 7, . Between a bog and a hard place: a global review of climate change effects on coastal freshwater wetlands. Climatic Change, 2020, 163, 161-179. 1.7 Does Warming Enhance the Effects of Eutrophication in the Seagrass Posidonia oceanica?. Frontiers 597 1.2 35 in Marine Science, 2020, 7, . Host-Specificity and Core Taxa of Seagrass Leaf Microbiome Identified Across Tissue Age and 1.1 Geographical Regions. Frontiers in Ecology and Evolution, 2020, 8, . Effectiveness of acoustic cameras as tools for assessing biogenic structures formed by Sabellaria in 599 highly turbid environments. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 0.9 9 1121-1136. The greenhouse gas offset potential from seagrass restoration. Scientific Reports, 2020, 10, 7325. 1.6

ARTICLE IF CITATIONS # Uptake of organic nitrogen by coastal wetland plants under elevated CO2. Plant and Soil, 2020, 450, 601 1.8 8 521-535. Spatial and seasonal impacts of submerged aquatic vegetation (SAV) drag force on hydrodynamics in shallow waters. Journal of Marine Systems, 2020, 209, 103373. Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences. Frontiers in 603 1.2 70 Marine Science, 2020, 7, . Pedogenic Processes in a Posidonia oceanica Mat. Soil Systems, 2020, 4, 18. 604 Resilience of the seagrass Posidonia oceanica following pulse-type disturbance. Marine Environmental 605 1.1 5 Research, 2020, 159, 105011. Stress Memory in Seagrasses: First Insight Into the Effects of Thermal Priming and the Role of Epigenetic Modifications. Frontiers in Plant Science, 2020, 11, 494. 1.7 SeaGrassDetect: A Novel Method for the Detection of Seagrass from Unlabelled Underwater Videos. 607 2.36 Ecological Informatics, 2020, 57, 101083. Application of acoustical remote sensing techniques for ecosystem monitoring of a seagrass meadow. 608 Journal of the Acoustical Society of America, 2020, 147, 2002-2019. Opportunities for seagrass research derived from remote sensing: A review of current methods. 609 2.6 62 Ecological Indicators, 2020, 117, 106560. The Tropical Seagrass Halophila stipulacea: Reviewing What We Know From Its Native and Invasive 1.2 Habitats, Alongside Identifying Knowledge Gaps. Frontiers in Marine Science, 2020, 7, . Blue Carbon Stocks and Cross-Habitat Subsidies. Frontiers in Marine Science, 2020, 7, . 611 1.2 42 Seagrass habitat in Tarawa Lagoon, Kiribati: Service benefits and links to national priority issues. 2.3 Marine Pollution Bulletin, 2020, 155, 111099. Current trends in seagrass research in China (2010-2019). Aquatic Botany, 2020, 166, 103266. 613 0.8 12 Effects of shading on seagrass morphology and thermal optimal of productivity. Marine and 614 Freshwater Research, 2020, 71, 913. Porewater Carbonate Chemistry Dynamics in a Temperate and a Subtropical Seagrass System. Aquatic 615 1.5 6 Geochemistry, 2020, 26, 375-399. Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i&gt;Halophila stipulacea&lt;/i&gt;) sediments. Biogeosciences, 2020, 17, 1717-1730. Morphological and Physiological Responses of Enhalus acoroides Seedlings Under Varying 617 1.2 23 Temperature and Nutrient Treatment. Frontiers in Marine Science, 2020, 7, . Nutrient loading diminishes the dissolved organic carbon drawdown capacity of seagrass ecosystems. Science of the Total Environment, 2020, 740, 140185.

ARTICLE IF CITATIONS # Differences in diet and foraging behaviour of commercially important rabbitfish species on coral 619 0.9 12 reefs in the Indian Ocean. Coral Reefs, 2020, 39, 977-988. Standardizing Estimates of Biomass at Recruitment and Productivity for Fin- and Shellfish in Coastal 1.0 Habitats. Estuaries and Coasts, 2020, 43, 1764-1802. Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat 621 1.9 63 restoration success. Journal of Applied Ecology, 2020, 57, 1161-1179. The global distribution of seagrass meadows. Environmental Research Letters, 2020, 15, 074041. 191 Global quantitative synthesis of ecosystem functioning across climatic zones and ecosystem types. 623 2.7 22 Global Écology and Biogeography, 2020, 29, 1139-1176. Organic chemistry insights for the exceptional soil carbon storage of the seagrass Posidonia australis. Estuarine, Coastal and Shelf Science, 2020, 237, 106662. 624 625 Deep-water Zostera marina meadows in the Mediterranean. Aquatic Botany, 2020, 166, 103269. 0.8 7 Review of Coast and Marine Ecosystems in Temperate Australia Demonstrates a Wealth of Ecosystem 1.2 Services. Frontiers in Marine Science, 2020, 7, . Host and environmental determinants of microbial community structure in the marine phyllosphere. 627 1.1 12 PLoS ONE, 2020, 15, e0235441. Seagrass losses since midâ€20th century fuelled CO₂ emissions from soil carbon stocks. 4.2 48 Global Change Biology, 2020, 26, 4772-4784. Factors Influencing Carbon Stocks and Accumulation Rates in Eelgrass Meadows Across New 629 1.0 17 England, USA. Estuaries and Coasts, 2020, 43, 2076-2091. Life cycle assessment of macroalgal ecoindustrial systems., 2020, , 663-707. Nutrient enrichment increases size of Zostera marina shoots and enriches for sulfur and nitrogen 631 1.3 22 cycling bacteria in root-associated microbiomes. FEMS Microbiology Ecology, 2020, 96, . Temporal trends of organic carbon accumulation in seagrass meadows from the northern Mexican Caribbean. Catena, 2020, 194, 104645. 2.2 633 The Extraordinary Value of Wilderness Areas in the Anthropocene., 2020, , 158-168. 1 Longâ€term trends and resilience of seagrass metabolism: A decadal aquatic eddy covariance study. 634 30 Limnology and Oceanography, 2020, 65, 1423-1438. Drivers of the Low Metabolic Rates of Seagrass Meadows in the Red Sea. Frontiers in Marine Science, 635 1.2 16 2020, 7, . Carbon burial over the last four millennia is regulated by both climatic and land use change. Global 4.2 Change Biology, 2020, 26, 2496-2504.

#	Article	IF	CITATIONS
637	A mechanistic assessment of the potential ecological risk to seagrass meadows posed by marine echosounders. Environmental Research Communications, 2020, 2, 011002.	0.9	0
638	Positive Ecological Interactions and the Success of Seagrass Restoration. Frontiers in Marine Science, 2020, 7, .	1.2	77
639	Assessing Carbon Stock and Sequestration of the Tropical Seagrass Meadows in Indonesia. Ocean Science Journal, 2020, 55, 85-97.	0.6	36
640	Estuarine submerged aquatic vegetation habitat provides organic carbon storage across a shifting landscape. Science of the Total Environment, 2020, 717, 137217.	3.9	14
641	Blue carbon conservation in West Africa: a first assessment of feasibility. Journal of Coastal Conservation, 2020, 24, 1.	0.7	13
642	Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 2020, 90, e01405.	2.4	139
643	Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nature Communications, 2020, 11, 317.	5.8	122
644	Contribution of Seagrass Blue Carbon Toward Carbon Neutral Policies in a Touristic and Environmentally-Friendly Island. Frontiers in Marine Science, 2020, 7, .	1.2	51
645	Overgrazing of Seagrass by Sea Urchins Diminishes Blue Carbon Stocks. Ecosystems, 2020, 23, 1437-1448.	1.6	23
646	Evaluation of carbon sinks by the seagrass Cymodocea nodosa at an oceanic island: Spatial variation and economic valuation. Ocean and Coastal Management, 2020, 187, 105112.	2.0	20
647	Tidal elevation is the key factor modulating burial rates and composition of organic matter in a coastal wetland with multiple habitats. Science of the Total Environment, 2020, 724, 138205.	3.9	14
648	A national approach to greenhouse gas abatement through blue carbon management. Global Environmental Change, 2020, 63, 102083.	3.6	69
649	Nutrient Supply to Seawater from Steelmaking Slag: The Coupled Effect of Gluconic Acid Usage and Slag Carbonation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1039-1047.	1.0	5
650	High variability of Blue Carbon storage in seagrass meadows at the estuary scale. Scientific Reports, 2020, 10, 5865.	1.6	65
651	Global Patterns in Marine Sediment Carbon Stocks. Frontiers in Marine Science, 2020, 7, .	1.2	92
652	Impact of seagrass establishment, industrialization and coastal infrastructure on seagrass biogeochemical sinks. Marine Environmental Research, 2020, 160, 104990.	1.1	23
653	Improving soil carbon estimates of mudflats in AraçÃ; Bay using spatial models that consider riverine input, wave exposure and biogeochemistry. Estuarine, Coastal and Shelf Science, 2020, 238, 106734.	0.9	13
654	Seasonal occurrence patterns of seagrass should influence resource assessment and management decisions: A case study in the Indian River Lagoon and Loxahatchee River Estuary, Florida. Regional Studies in Marine Science, 2020, 34, 101093.	0.4	1

#	Article	IF	CITATIONS
655	Golden carbon of Sargassum forests revealed as an opportunity for climate change mitigation. Science of the Total Environment, 2020, 729, 138745.	3.9	68
656	Soil Carbon and Nitrogen Storage in Natural and Prop-Scarred Thalassia Testudinum Seagrass Meadows. Estuaries and Coasts, 2021, 44, 178-188.	1.0	7
657	Soil Carbon Stocks Vary Across Geomorphic Settings in Australian Temperate Tidal Marsh Ecosystems. Ecosystems, 2021, 24, 319-334.	1.6	23
658	Cover loss in a seagrass Posidonia oceanica meadow accelerates soil organic matter turnover and alters soil prokaryotic communities. Organic Geochemistry, 2021, 151, 104140.	0.9	17
659	Programmed responses of different life-stages of the seagrass Ruppia sinensis to copper and cadmium exposure. Journal of Hazardous Materials, 2021, 403, 123875.	6.5	13
660	Identification of dispersal barriers for a colonising seagrass using seascape genetic analysis. Science of the Total Environment, 2021, 763, 143052.	3.9	5
661	Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Science of the Total Environment, 2021, 752, 142190.	3.9	38
662	Water temperature control on <scp>CO₂</scp> flux and evaporation over a subtropical seagrass meadow revealed by atmospheric eddy covariance. Limnology and Oceanography, 2021, 66, 510-527.	1.6	12
663	Full size microplastics in crab and fish collected from the mangrove wetland of Beibu Gulf: Evidences from Raman Tweezers (1–20Âl¼m) and spectroscopy (20–5000 l¼m). Science of the Total Environment, 20 759, 143504.)23,9	56
664	The future protection from the climate change-related hazards and the willingness to pay for home insurance in the coastal wetlands of West Sardinia, Italy. International Journal of Disaster Risk Reduction, 2021, 52, 101956.	1.8	20
665	Driving factors of biogeographical variation in seagrass herbivory. Science of the Total Environment, 2021, 758, 143756.	3.9	5
666	Effect of large-scale kelp and bivalve farming on seawater carbonate system variations in the semi-enclosed Sanggou Bay. Science of the Total Environment, 2021, 753, 142065.	3.9	18
667	Hostâ€association as major driver of microbiome structure and composition in Red Sea seagrass ecosystems. Environmental Microbiology, 2021, 23, 2021-2034.	1.8	9
668	Recognizing the complexity of soil organic carbon dynamics in vegetated coastal habitats. Global Change Biology, 2021, 27, 3-4.	4.2	1
669	Contribution of Posidonia oceanica meadows in the context of climate change mitigation in the Mediterranean Sea. Marine Environmental Research, 2021, 165, 105236.	1.1	41
670	What lies beneath: Predicting seagrass below-ground biomass from above-ground biomass, environmental conditions and seagrass community composition. Ecological Indicators, 2021, 121, 107156.	2.6	12
671	Cloudâ€native seascape mapping of Mozambique's Quirimbas National Park with Sentinelâ€2. Remote Sensing in Ecology and Conservation, 2021, 7, 275-291.	2.2	14
672	Decomposition Rates of Surficial and Buried Organic Matter and the Lability of Soil Carbon Stocks Across a Large Tropical Seagrass Landscape. Estuaries and Coasts, 2021, 44, 846-866.	1.0	9

ARTICLE IF CITATIONS # Modeling eelgrass spatial response to nutrient abatement measures in a changing climate. Ambio, 2021, 673 2.8 11 50, 400-412. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Global Change 674 4.2 Biology, 2021, 27, 202-214 THE ESTABLISHMENT AND FUTURE PROSPECTS OF BLUE CARBON OFFSET SYSTEM AT HAKATA PORT. Journal 675 0.1 2 of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, 31-48. Blue carbon storage comparing mangroves with saltmarsh and seagrass habitats at a warm temperate continental limit. , 2021, , 447-471. Biogeocycling of nutrients (C, N, P, S, and Fe) and implications on greenhouse gas emissions., 2021, 677 0 119-145. The microbiome of the seagrass Halophila ovalis: community structuring from plant parts to regional scales. Aquatic Microbial Ecology, 2021, 87, 139-150. 679 Effects of climate change on food production (fishing)., 2021, , 205-231. 3 Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks. Frontiers in 1.2 Marine Science, 2021, 7, . Responses of eelgrass seed germination and seedling establishment to water depth, sediment type, and 681 0.9 5 burial depth: implications for restoration. Marine Ecology - Progress Series, 2021, 678, 51-61. Rhizosphere microbiome dynamics in tropical seagrass under short-term inorganic nitrogen fertilization. Environmental Science and Pollution Research, 2021, 28, 19021-19033. State of biogeochemical blue carbon in South Asian mangroves., 2021, , 335-367. 683 3 From conversion to conservation to carbon: The changing policy discourse on mangrove governance 684 2.1 and use in the Philippines. Journal of Rural Studies, 2021, 82, 184-195. Two decades of seagrass area change: Organic carbon sources and stock. Marine Pollution Bulletin, 685 2.3 14 2021, 163, 111913. Growth and reproductive responses of the seagrass <i>Zostera marina</i> to sediment nutrient enrichment. ICES Journal of Marine Science, 2021, 78, 1160-1173. 1.2 Monitoring the seagrass ecosystem using the unmanned aerial vehicle (UAV) in coastal water of 687 0.2 4 Jepara. IOP Conference Series: Earth and Environmental Science, 2021, 674, 012075. Multiple Metrics of Temperature, Light, and Water Motion Drive Gradients in Eelgrass Productivity 1.2 and Resilience. Frontiers in Marine Science, 2021, 8, . Variation in Phenolic Chemistry in Zostera marina Seagrass along Environmental Gradients. Plants, 689 1.6 8 2021, 10, 334. Carbon sequestration potential increased by incomplete anaerobic decomposition of kelp detritus. 690 Marine Ecology - Progress Series, 2021, 660, 53-67.

#	Article	IF	CITATIONS
691	The Seagrass Holobiont: What We Know and What We Still Need to Disclose for Its Possible Use as an Ecological Indicator. Water (Switzerland), 2021, 13, 406.	1.2	24
692	Modeling seagrass bed dynamics under environmental impacts of intensive mariculture activities in Bolinao and Anda, the Philippines. Estuarine, Coastal and Shelf Science, 2021, 250, 107152.	0.9	6
693	Dynamics and fate of blue carbon in a mangrove–seagrass seascape: influence of landscape configuration and land-use change. Landscape Ecology, 2021, 36, 1489-1509.	1.9	21
694	Carbon Biogeochemistry of Two Contrasting Tropical Estuarine Ecosystems During Premonsoon. Estuaries and Coasts, 2021, 44, 1916-1930.	1.0	5
695	Coastâ€wide evidence of low pH amelioration by seagrass ecosystems. Global Change Biology, 2021, 27, 2580-2591.	4.2	56
697	Using Landsat Time-Series to Monitor and Inform Seagrass Dynamics: A Case Study in the Tabusintac Estuary, New Brunswick, Canada. Canadian Journal of Remote Sensing, 2021, 47, 65-82.	1.1	5
698	Historical Analysis Exposes Catastrophic Seagrass Loss for the United Kingdom. Frontiers in Plant Science, 2021, 12, 629962.	1.7	39
699	Resolving community metabolism of eelgrass Zostera marina meadows by benthic flume-chambers and eddy covariance in dynamic coastal environments. Marine Ecology - Progress Series, 2021, 661, 97-114.	0.9	9
700	Relationships Between Annual and Perennial Seagrass (Ruppia sinensis) Populations and Their Sediment Geochemical Characteristics in the Yellow River Delta. Frontiers in Plant Science, 2021, 12, 634199.	1.7	1
701	Evolution of flow velocity from the leading edge of 2-D and 3-D submerged canopies. Journal of Fluid Mechanics, 2021, 916, .	1.4	21
702	Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evolutionary Applications, 2021, 14, 1181-1201.	1.5	58
703	Field study on flow structures within aquatic vegetation under combined currents and smallâ€scale waves. Hydrological Processes, 2021, 35, e14121.	1.1	6
704	Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues. Water (Switzerland), 2021, 13, 1034.	1.2	34
705	Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass). F1000Research, 2021, 10, 289.	0.8	26
706	Seagrass (<i>Halophila stipulacea</i>) invasion enhances carbon sequestration in the Mediterranean Sea. Global Change Biology, 2021, 27, 2592-2607.	4.2	22
707	Semi-Supervised Segmentation for Coastal Monitoring Seagrass Using RPA Imagery. Remote Sensing, 2021, 13, 1741.	1.8	17
708	Global Trends in Airâ€Water CO ₂ Exchange Over Seagrass Meadows Revealed by Atmospheric Eddy Covariance. Global Biogeochemical Cycles, 2021, 35, e2020GB006848.	1.9	13
709	Alkalinity Production Coupled to Pyrite Formation Represents an Unaccounted Blue Carbon Sink. Global Biogeochemical Cycles, 2021, 35, e2020GB006785.	1.9	16

#	Article	IF	CITATIONS
710	Integral functions of marine vertebrates in the ocean carbon cycle and climate change mitigation. One Earth, 2021, 4, 680-693.	3.6	28
711	Synthesizing 35 years of seagrass spatial data from the Great Barrier Reef World Heritage Area, Queensland, Australia. Limnology and Oceanography Letters, 2021, 6, 216-226.	1.6	14
712	Ecosystem functions of confined-scale artificial tidal flats in urban areas in Japan: analysis of driving factors for function-based design. Coastal Engineering Journal, 2021, 63, 351-369.	0.7	3
713	Spatial and Structural Factors Shape Seagrass-Associated Bacterial Communities in Singapore and Peninsular Malaysia. Frontiers in Marine Science, 2021, 8, .	1.2	10
714	Seagrasses in an era of ocean warming: a review. Biological Reviews, 2021, 96, 2009-2030.	4.7	47
715	Incorporating facilitative interactions into smallâ€scale eelgrass restoration—challenges and opportunities. Restoration Ecology, 2021, 29, e13398.	1.4	10
716	Blue carbon dynamics in mangroves and conservation of their services in the Coral Triangle Ecoregion, Southeast Sulawesi, Indonesia. Journal of Physics: Conference Series, 2021, 1899, 012016.	0.3	1
717	What drives putative bacterial pathogens removal within seagrass meadows?. Marine Pollution Bulletin, 2021, 166, 112229.	2.3	13
718	Can the Non-native Salt Marsh Halophyte Spartina alterniflora Threaten Native Seagrass (Zostera) Tj ETQq0 0 0 n	rgBT /Ove 1.7	rlock 10 Tf 50 12
	643425.		
719	643425. Global Diversity and Biogeography of the <i>Zostera marina</i> Mycobiome. Applied and Environmental Microbiology, 2021, 87, e0279520.	1.4	19
719 720	 643425. Global Diversity and Biogeography of the <i>Zostera marina</i> Mycobiome. Applied and Environmental Microbiology, 2021, 87, e0279520. Variable contributions of seafloor communities to ecosystem metabolism across a gradient of habitat-forming species. Marine Environmental Research, 2021, 167, 105321. 	1.4	19 6
719 720 721	 643425. Global Diversity and Biogeography of the <i>Zostera marina</i> Mycobiome. Applied and Environmental Microbiology, 2021, 87, e0279520. Variable contributions of seafloor communities to ecosystem metabolism across a gradient of habitat-forming species. Marine Environmental Research, 2021, 167, 105321. Changes in seagrass carbon stock: implications of decreasing area and percentage cover of seagrass beds in Barranglompo Island, Spermonde archipelago, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 763, 012014. 	1.4 1.1 0.2	19 6 0
 719 720 721 722 	 643425. Global Diversity and Biogeography of the <i>Zostera marina</i> Mycobiome. Applied and Environmental Microbiology, 2021, 87, e0279520. Variable contributions of seafloor communities to ecosystem metabolism across a gradient of habitat-forming species. Marine Environmental Research, 2021, 167, 105321. Changes in seagrass carbon stock: implications of decreasing area and percentage cover of seagrass beds in Barranglompo Island, Spermonde archipelago, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 763, 012014. Processes driving seagrass soils composition along the western Mediterranean: The case of the southeast Iberian Peninsula. Science of the Total Environment, 2021, 768, 144352. 	1.4 1.1 0.2 3.9	19 6 0 8
 719 720 721 722 723 	643425. Global Diversity and Biogeography of the <i>Zostera marina</i> Mycobiome. Applied and Environmental Microbiology, 2021, 87, e0279520. Variable contributions of seafloor communities to ecosystem metabolism across a gradient of habitat-forming species. Marine Environmental Research, 2021, 167, 105321. Changes in seagrass carbon stock: implications of decreasing area and percentage cover of seagrass beds in Barranglompo Island, Spermonde archipelago, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 763, 012014. Processes driving seagrass soils composition along the western Mediterranean: The case of the southeast Iberian Peninsula. Science of the Total Environment, 2021, 768, 144352. Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 2021, 11, 11067.	1.4 1.1 0.2 3.9 1.6	19 6 0 8
 719 720 721 722 723 724 	 643425. Global Diversity and Biogeography of the <i>Zostera marina </i> Mycobiome. Applied and Environmental Microbiology, 2021, 87, e0279520. Variable contributions of seafloor communities to ecosystem metabolism across a gradient of habitat-forming species. Marine Environmental Research, 2021, 167, 105321. Changes in seagrass carbon stock: implications of decreasing area and percentage cover of seagrass beds in Barranglompo Island, Spermonde archipelago, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 763, 012014. Processes driving seagrass soils composition along the western Mediterranean: The case of the southeast Iberian Peninsula. Science of the Total Environment, 2021, 768, 144352. Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 2021, 11, 11067. Detecting Multi-Decadal Changes in Seagrass Cover in Tauranga Harbour, New Zealand, Using Landsat Imagery and Boosting Ensemble Classification Techniques. ISPRS International Journal of Geo-Information, 2021, 10, 371. 	1.4 1.1 0.2 3.9 1.6 1.4	19 6 0 8 19 18
 719 720 721 722 723 724 725 	 643425. Global Diversity and Biogeography of the <i>Zostera marina </i> Mycobiome. Applied and Environmental Microbiology, 2021, 87, e0279520. Variable contributions of seafloor communities to ecosystem metabolism across a gradient of habitat-forming species. Marine Environmental Research, 2021, 167, 105321. Changes in seagrass carbon stock: implications of decreasing area and percentage cover of seagrass beds in Barranglompo Island, Spermonde archipelago, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 763, 012014. Processes driving seagrass soils composition along the western Mediterranean: The case of the southeast Iberian Peninsula. Science of the Total Environment, 2021, 768, 144352. Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 2021, 11, 11067. Detecting Multi-Decadal Changes in Seagrass Cover in Tauranga Harbour, New Zealand, Using Landsat Imagery and Boosting Ensemble Classification Techniques. ISPRS International Journal of Geo-Information, 2021, 10, 371. The Condition of Seagrass Beds in North Sulawesi following the implementation of Community-Based Coastal Management Program. IOP Conference Series: Earth and Environmental Science, 2021, 789, 012013. 	1.4 1.1 0.2 3.9 1.6 1.4	19 6 0 8 19 18 0
 719 720 721 722 723 724 725 726 	 643425. Global Diversity and Biogeography of the <i>Zostera marina</i>Mycobiome. Applied and Environmental Microbiology, 2021, 87, e0279520. Variable contributions of seafloor communities to ecosystem metabolism across a gradient of habitat-forming species. Marine Environmental Research, 2021, 167, 105321. Changes in seagrass carbon stock: implications of decreasing area and percentage cover of seagrass beds in Barranglompo Island, Spermonde archipelago, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 763, 012014. Processes driving seagrass soils composition along the western Mediterranean: The case of the southeast Iberian Peninsula. Science of the Total Environment, 2021, 768, 144352. Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 2021, 11, 11067. Detecting Multi-Decadal Changes in Seagrass Cover in Tauranga Harbour, New Zealand, Using Landsat Imagery and Boosting Ensemble Classification Techniques. ISPRS International Journal of Geo-Information, 2021, 10, 371. The Condition of Seagrass Beds in North Sulawesi following the implementation of Community-Based Coastal Management Program. IOP Conference Series: Earth and Environment Program. IOP Conference Series: Earth and Environment Program. IOP Conference Series: Earth and Environment Program. IOP Conference Series: Earth and Environmental Science, 2021, 789, 012013. Geochemical mapping of a blue carbon zone: Investigation of the influence of riverine input on tidal affected zones in Bull Island. Regional Studies in Marine Science, 2021, 45, 101834. 	1.4 1.1 0.2 3.9 1.6 1.4 0.2 0.2	19 6 0 8 19 18 0 6

#	Article	IF	CITATIONS
728	Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot. Marine Pollution Bulletin, 2021, 167, 112308.	2.3	12
729	Carbon and Nitrogen Stocks and Burial Rates in Intertidal Vegetated Habitats of a Mesotidal Coastal Lagoon. Ecosystems, 2022, 25, 372-386.	1.6	13
730	Diversity, distribution and conservation of seagrass in coastal waters of the Liaodong Peninsula, North Yellow Sea, northern China: Implications for seagrass conservation. Marine Pollution Bulletin, 2021, 167, 112261.	2.3	21
731	Sediment Characteristics Determine the Flowering Effort of Zostera noltei Meadows Inhabiting a Human-Dominated Lagoon. Plants, 2021, 10, 1387.	1.6	6
732	Macrofauna communities across a seascape of seagrass meadows: environmental drivers, biodiversity patterns and conservation implications. Biodiversity and Conservation, 2021, 30, 3023-3043.	1.2	22
733	Low altitude spatial assessment and monitoring of intertidal seagrass meadows beyond the visible spectrum using a remotely piloted aircraft system. Estuarine, Coastal and Shelf Science, 2021, 255, 107299.	0.9	10
734	An unintended ecological benefit from human intervention: The enhancement of carbon storage in seagrass meadows. Journal of Applied Ecology, 2021, 58, 2441.	1.9	4
735	Unusually Warm Summer Temperatures Exacerbate Population and Plant Level Response of Posidonia oceanica to Anthropogenic Nutrient Stress. Frontiers in Plant Science, 2021, 12, 662682.	1.7	7
736	Impact of Extreme Disturbances on Suspended Sediment in Western Florida Bay: Implications for Seagrass Resilience. Frontiers in Marine Science, 2021, 8, .	1.2	8
737	The diversity of alkane-degrading bacterial communities in seagrass ecosystem of the South China Sea. Ecotoxicology, 2021, 30, 1799-1807.	1.1	1
738	Major impacts and societal costs of seagrass loss on sediment carbon and nitrogen stocks. Ecosphere, 2021, 12, e03658.	1.0	24
739	Food-web comparisons between two shallow vegetated habitat types in the Baltic Sea. Marine Environmental Research, 2021, 169, 105402.	1.1	5
740	Distribution, Temporal Change, and Conservation Status of Tropical Seagrass Beds in Southeast Asia: 2000–2020. Frontiers in Marine Science, 2021, 8, .	1.2	28
741	Photo-physiology and morphology reveal divergent warming responses in northern and southern hemisphere seagrasses. Marine Biology, 2021, 168, 1.	0.7	5
742	Biodiversity consequences of Caulerpa prolifera takeover of a coastal lagoon. Estuarine, Coastal and Shelf Science, 2021, 255, 107344.	0.9	5
743	Estimating blue carbon sequestration under coastal management scenarios. Science of the Total Environment, 2021, 777, 145962.	3.9	31
744	The blue carbon wealth of nations. Nature Climate Change, 2021, 11, 704-709.	8.1	97
745	Sensitivity of Photosynthesis to Warming in Two Similar Species of the Aquatic Angiosperm Ruppia from Tropical and Temperate Habitats. Sustainability, 2021, 13, 9433.	1.6	6

#	Article	IF	CITATIONS
746	POTENSI SIMPANAN KARBON PADANG LAMUN DI PANTAI POKEMON, KARIMUNJAWA. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 2021, 13, 319-332.	0.1	1
747	Recycling of Steelmaking Slag in Seawater as an Iron Supplier: Effects of Slag Composition, Carbonation and Usage of Gluconic Acid. Materials Transactions, 2021, 62, 1253-1262.	0.4	3
749	The first nation-wide assessment identifies valuable blue‑carbon seagrass habitat in Indonesia is in moderate condition. Science of the Total Environment, 2021, 782, 146818.	3.9	21
750	Sizing the carbon sink associated with Posidonia oceanica seagrass meadows using very high-resolution seismic reflection imaging. Marine Environmental Research, 2021, 170, 105415.	1.1	15
751	Variability of the low-frequency acoustic response along leaf blades and between species of seagrass (Posidonia oceanica and Cymodocea nodosa). JASA Express Letters, 2021, 1, 080801.	0.5	1
752	Blue carbon stocks and exchanges along the California coast. Biogeosciences, 2021, 18, 4717-4732.	1.3	19
753	Assessment of restoration success in a transplanted seagrass bed based on isotopic niche metrics. Ecological Engineering, 2021, 166, 106239.	1.6	9
754	Blue Carbon Ecosystem Services Through a Vulnerability Lens: Opportunities to Reduce Social Vulnerability in Fishing Communities. Frontiers in Marine Science, 2021, 8, .	1.2	9
755	Sequential overgrazing by green turtles causes archipelago-wide functional extinctions of seagrass meadows. Biological Conservation, 2021, 260, 109195.	1.9	22
756	Quantification of blue carbon in seagrass ecosystems of Southeast Asia and their potential for climate change mitigation. Science of the Total Environment, 2021, 783, 146858.	3.9	67
757	Lower Vibrio spp. abundances in Zostera marina leaf canopies suggest a novel ecosystem function for temperate seagrass beds. Marine Biology, 2021, 168, 1.	0.7	21
758	Trait gradients inform predictions of seagrass meadows changes to future warming. Scientific Reports, 2021, 11, 18107.	1.6	13
759	Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments. Annual Review of Marine Science, 2022, 14, 431-455.	5.1	33
760	Effects of seagrass overgrazing on sediment erosion and carbon sink capacity: Current understanding and future priorities. Limnology and Oceanography Letters, 2021, 6, 309-319.	1.6	6
761	Mapping the Delivery of Ecological Functions Combining Field Collected Data and Unmanned Aerial Vehicles (UAVs). Ecosystems, 2022, 25, 948-959.	1.6	5
762	Seagrass contribution to blue carbon in a shallow karstic coastal area of the Gulf of Mexico. PeerJ, 2021, 9, e12109.	0.9	3
763	The sediment carbon stocks of intertidal seagrass meadows in Scotland. Estuarine, Coastal and Shelf Science, 2021, 258, 107442.	0.9	19
764	Dissolved and particulate carbon export from a tropical mangroveâ€dominated riverine system. Limnology and Oceanography, 2021, 66, 3944-3962.	1.6	12

#	Article	IF	CITATIONS
765	Suspended Sediment Concentration Profile in a <i>Typha Latifolia</i> Canopy. Water Resources Research, 2021, 57, e2021WR029902.	1.7	11
766	Evaluation of the baseline carbon sequestration rates of <scp>Indoâ€Pacific</scp> temperate and tropical seagrass meadow sediments. Ecological Research, 2022, 37, 9-20.	0.7	6
767	Particle capture by seagrass canopies under an oscillatory flow. Coastal Engineering, 2021, 169, 103972.	1.7	17
768	Mapping coastal marine ecosystems of the National Park of Banc d'Arguin (PNBA) in Mauritania using Sentinel-2 imagery. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102419.	1.4	5
769	Small-scale patches of detritus as habitat for invertebrates within a Zostera noltei meadow. Marine Environmental Research, 2021, 171, 105474.	1.1	8
770	Importance of elongation and organogenesis on the rhizome length of Zostera marina in an individual-based simulation model. Estuarine, Coastal and Shelf Science, 2021, 261, 107530.	0.9	1
771	Fine sediment effects on seagrasses: A global review, quantitative synthesis and multi-stressor model. Marine Environmental Research, 2021, 171, 105480.	1.1	5
772	Carbon stock of disturbed and undisturbed mangrove ecosystems in Klang Straits, Malaysia. Journal of Sea Research, 2021, 176, 102113.	0.6	11
773	The super typhoon Lekima (2019) resulted in massive losses in large seagrass (Zostera japonica) meadows, soil organic carbon and nitrogen pools in the intertidal Yellow River Delta, China. Science of the Total Environment, 2021, 793, 148398.	3.9	14
774	Seagrass contributes substantially to the sedimentary lignin pool in an estuarine seagrass meadow. Science of the Total Environment, 2021, 793, 148488.	3.9	10
775	Functional dynamics of vegetated model patches: The minimum patch size effect for canopy restoration. Science of the Total Environment, 2021, 795, 148854.	3.9	9
776	Significance of belowground production to the long-term carbon sequestration of intertidal seagrass beds. Science of the Total Environment, 2021, 800, 149579.	3.9	8
777	National scale predictions of contemporary and future blue carbon storage. Science of the Total Environment, 2021, 800, 149573.	3.9	24
778	Principles and concepts about seagrasses: Towards a sustainable future for seagrass ecosystems. Marine Pollution Bulletin, 2021, 173, 112936.	2.3	9
779	The morphometric acclimation to depth explains the long-term resilience of the seagrass Cymodocea nodosa in a shallow tidal lagoon. Journal of Environmental Management, 2021, 299, 113452.	3.8	17
780	Nitrogen and Phosphorus Budget in Mangrove Ecosystem. , 2021, , 127-155.		0
781	Impact of Marine Heatwaves on Seagrass Ecosystems. Ecological Studies, 2021, , 345-364.	0.4	12
782	Defining the Zostera marina (Eelgrass) Niche from Long-Term Success of Restored and Naturally Colonized Meadows: Implications for Seagrass Restoration. Estuaries and Coasts, 2021, 44, 396-411.	1.0	11

#	Article	IF	CITATIONS
783	Spatial Connectivity and Drivers of Shark Habitat Use Within a Large Marine Protected Area in the Caribbean, The Bahamas Shark Sanctuary. Frontiers in Marine Science, 2021, 7, .	1.2	21
784	Ecosystem Services of Seagrasses. , 2021, , 837-856.		0
785	Impact of Cyclones and Floods on Seagrass Habitats. Sustainable Development Goals Series, 2021, , 279-288.	0.2	3
786	Role of Mangroves in Pollution Abatement. , 2021, , 257-278.		1
787	Challenges in Marine Restoration Ecology: How Techniques, Assessment Metrics, and Ecosystem Valuation Can Lead to Improved Restoration Success. , 2020, , 83-99.		26
788	Marine Animal Forests as Carbon Immobilizers or Why We Should Preserve These Three-Dimensional Alive Structures. , 2020, , 333-400.		7
789	Regional Comparison of the Ecosystem Services from Seagrass Beds in Asia. Structure and Function of Mountain Ecosystems in Japan, 2014, , 367-391.	0.1	8
790	Climate Regulation and Wetlands: Overview. , 2018, , 1167-1173.		1
791	Climate Regulation and Wetlands: Overview. , 2016, , 1-7.		2
792	Increasing salinization and organic carbon burial rates in seagrass meadows from an anthropogenically-modified coastal lagoon in southern Gulf of Mexico. Estuarine, Coastal and Shelf Science, 2020, 242, 106843.	0.9	12
793	Temporal records of organic carbon stocks and burial rates in Mexican blue carbon coastal ecosystems throughout the Anthropocene. Global and Planetary Change, 2020, 192, 103215.	1.6	16
794	A Novel Phagomyxid Parasite Produces Sporangia in Root Hair Galls of Eelgrass (Zostera marina). Protist, 2019, 170, 64-81.	0.6	6
795	A fine-tuned global distribution dataset of marine forests. Scientific Data, 2020, 7, 119.	2.4	45
796	Oyster reefs as carbon sources and sinks. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170891.	1.2	70
801	Climate change and Mediterranean seagrass meadows: a synopsis for environmental managers. Mediterranean Marine Science, 2014, 15, 462.	0.6	82
802	Evaluation of Relationships Between Cover Estimates and Biomass in Subtropical Seagrass Meadows and Application to Landscape Estimates of Carbon Storage. Southeastern Geographer, 2017, 57, 231-245.	0.1	9
803	Effects of Posidonia Oceanica Beach-Cast on Germination, Growth and Nutrient Uptake of Coastal Dune Plants. PLoS ONE, 2013, 8, e70607.	1.1	25
804	Seagrass Restoration Enhances "Blue Carbon―Sequestration in Coastal Waters. PLoS ONE, 2013, 8, e72469.	1.1	236

#ARTICLEIFCITATIONS805Conservation of Eelgrass (Zostera marina) Genetic Diversity in a Mesocosm-Based Restoration
Experiment. PLoS ONE, 2014, 9, e89316.1.19806A Miniature Bioassay for Testing the Acute Phytotoxicity of Photosystem II Herbicides on Seagrass.
PLoS ONE, 2015, 10, e0117541.1.120807Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions. PLoS ONE,
2016, 11, e0163091.1.1240808Sediment Properties as Important Predictors of Carbon Storage In Zostera marina Meadows: A1.1105

CITATION REPORT

810 RESEARCH ON CARBON STORAGE CAPABILITY OF SEAGRASS THROUGH BIOMASS (IN THE CASE OF THI NAI) TJ ETQap 0 0 rgBT /Overload

811	Carbon Content in Different Seagrass Species in Andaman Coast of Thailand. Sains Malaysiana, 2017, 46, 1441-1447.	0.3	17
812	Impacts of Submerging and Emerging Shorelines on Various Biota and Indigenous Alaskan Harvesting Patterns. Journal of Coastal Research, 2019, 35, 765.	0.1	4
813	Valuing Carbon Stocks across a Tropical Lagoon after Accounting for Black and Inorganic Carbon: Bulk Density Proxies for Monitoring. Journal of Coastal Research, 2020, 36, 1029.	0.1	4
814	Distribución espacial de la vegetación acuática sumergida en los Petenes, Campeche Terra Digitalis, 2019, 3, .	0.5	2
816	PENGARUH KONDISI pH TERHADAP RESPONS FISIOLOGIS DAUN LAMUN JENIS Cymodocea rotundata. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 2020, 12, 487-495.	0.1	2
817	Effect of oyster aquaculture on seagrass Zostera marina at the estuarine landscape scale in Willapa Bay, Washington (USA). Aquaculture Environment Interactions, 2015, 7, 29-47.	0.7	36
818	Host demography influences the prevalence and severity of eelgrass wasting disease. Diseases of Aquatic Organisms, 2014, 108, 165-175.	0.5	32
819	Green turtle herbivory dominates the fate of seagrass primary production in the Lakshadweep islands (Indian Ocean). Marine Ecology - Progress Series, 2013, 485, 235-243.	0.9	41
820	Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Marine Ecology - Progress Series, 2014, 507, 1-13.	0.9	65
821	Variation at multiple trophic levels mediates a novel seagrass-grazer interaction. Marine Ecology - Progress Series, 2014, 508, 117-128.	0.9	13
822	Comparison of the influence of patch-scale and meadow-scale characteristics on flow within seagrass meadows: a flume study. Marine Ecology - Progress Series, 2014, 516, 49-59.	0.9	19
823	Nitrogen dynamics on Guam as revealed by the seagrass Enhalus acoroides. Marine Ecology - Progress Series, 2015, 528, 117-126.	0.9	6
824	Sub-tropical seagrass ecosystem metabolism measured by eddy covariance. Marine Ecology - Progress Series, 2015, 529, 75-90.	0.9	31

#	Article	IF	CITATIONS
825	Rapid monitoring of seagrass biomass using a simple linear modelling approach, in the field and from space. Marine Ecology - Progress Series, 2015, 530, 1-14.	0.9	24
826	Impacts of physical disturbance on ecosystem structure in subtropical seagrass meadows. Marine Ecology - Progress Series, 2015, 540, 27-41.	0.9	26
827	Linking environmental variables with regional- scale variability in ecological structure and standing stock of carbon within UK kelp forests. Marine Ecology - Progress Series, 2016, 542, 79-95.	0.9	71
828	Benthic oxygen exchange over a heterogeneous Zostera noltei meadow in a temperate coastal ecosystem. Marine Ecology - Progress Series, 2016, 543, 55-71.	0.9	10
829	Functional implications of changes in seagrass species composition in two shallow coastal lagoons. Marine Ecology - Progress Series, 2016, 557, 111-121.	0.9	11
830	Zostera marina root demography in an intertidal estuarine environment measured using minirhizotron technology. Marine Ecology - Progress Series, 2016, 557, 123-132.	0.9	4
831	Predicting seagrass recovery times and their implications following an extreme climate event. Marine Ecology - Progress Series, 2017, 567, 79-93.	0.9	45
832	Environmental influences on growth and morphology of Thalassia testudinum. Marine Ecology - Progress Series, 2017, 570, 57-70.	0.9	10
833	Model-based approach for estimating biomass and organic carbon in tropical seagrass ecosystems. Marine Ecology - Progress Series, 2018, 596, 61-70.	0.9	11
834	Ecosystem metabolism of benthic and pelagic zones of a shallow productive estuary: spatio-temporal variability. Marine Ecology - Progress Series, 2018, 601, 15-32.	0.9	11
835	Simultaneous measurements of nitrogen fixation in different plant tissues of the seagrass Posidonia oceanica. Marine Ecology - Progress Series, 2019, 611, 111-127.	0.9	13
836	Importance of habitat diversity to changes in benthic metabolism over land-use gradients: evidence from three subtropical estuaries. Marine Ecology - Progress Series, 2019, 631, 31-47.	0.9	7
837	Quantifying Contemporary Organic Carbon Stocks of the Baltic Sea Ecosystem. Frontiers in Marine Science, 2020, 7, .	1.2	9
838	Interactive Effects of Rising Temperature and Nutrient Enrichment on Aquatic Plant Growth, Stoichiometry, and Palatability. Frontiers in Plant Science, 2020, 11, 58.	1.7	31
839	In situ Responses of the Eelgrass Zostera marina L. to Water Depth and Light Availability in the Context of Increasing Coastal Water Turbidity: Implications for Conservation and Restoration. Frontiers in Plant Science, 2020, 11, 582557.	1.7	7
840	Process Controls of the Live Root Zone and Carbon Sequestration Capacity of the Sundarbans Mangrove Forest, Bangladesh. Sci, 2020, 2, 35.	1.8	2
841	How Blue Carbon Ecosystems Are Perceived by Local Communities in the Coral Triangle: Comparative and Empirical Examinations in the Philippines and Indonesia. Sustainability, 2021, 13, 127.	1.6	23
842	A global map of saltmarshes. Biodiversity Data Journal, 2017, 5, e11764.	0.4	280

#	Article	IF	CITATIONS
843	Extensive sampling and high-throughput sequencing reveal Posidoniomyces atricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidonia oceanica. MycoKeys, 2019, 55, 59-86.	0.8	34
844	Valuation of Seagrass Ecosystem Services in Kotania Bay Marine Nature Tourism Park, Western Seram, Indonesia. Asian Journal of Scientific Research, 2014, 7, 591-600.	0.3	6
845	Carbon Sequestration in a Pacific Northwest Eelgrass (<i>Zostera marina</i>) Meadow. Northwest Science, 2018, 92, 80-91.	0.1	24
850	CUBESAT-DERIVED DETECTION OF SEAGRASSES USING PLANET IMAGERY FOLLOWING UNMIXING-BASED DENOISING: IS SMALL THE NEXT BIG?. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-1/W1, 283-287.	0.2	21
851	Volatile Fatty Acid Production from Saccharina japonica Extracts by Anaerobic Fermentation: Evaluation of Various Environmental Parameters for VFAs Productivity. Clean Technology, 2013, 19, 148-155.	0.1	1
852	Genotypic richness predicts phenotypic variation in an endangered clonal plant. PeerJ, 2016, 4, e1633.	0.9	17
853	Seed germination in a southern Australian temperate seagrass. PeerJ, 2017, 5, e3114.	0.9	18
854	Organic carbon inventories in natural and restored Ecuadorian mangrove forests. PeerJ, 2014, 2, e388.	0.9	30
855	Description of a <i>Zostera marina</i> catalase gene involved in responses to temperature stress. PeerJ, 2018, 6, e4532.	0.9	10
856	Species recovery and recolonization of past habitats: lessons for science and conservation from sea otters in estuaries. PeerJ, 2019, 7, e8100.	0.9	16
857	Blue carbon of Mexico, carbon stocks and fluxes: a systematic review. PeerJ, 2020, 8, e8790.	0.9	30
858	A halo of reduced dinoflagellate abundances in and around eelgrass beds. PeerJ, 2020, 8, e8869.	0.9	10
860	Soil Fertility Status and Sugarcane Growth Performance in the Mangrove Ecosystem of Nigeria. , 2021, , 543-613.		2
861	Dynamics of Nutrients and Colored Dissolved Organic Matter Absorption in a Wetland-Influenced Subarctic Coastal Region of Northeastern Japan: Contributions From Mariculture and Eelgrass Meadows. Frontiers in Marine Science, 2021, 8, .	1.2	12
862	Sponges facilitate primary producers in a Bahamas seagrass system. Marine Biology, 2021, 168, 1.	0.7	1
863	Macroalgal and mangrove provenances demonstrate their relevance in contributing to the blue carbon pool of a tropical seagrass meadow. Ecological Research, 2022, 37, 21-32.	0.7	10
864	Coastal Sediment Nutrient Enrichment Alters Seagrass Blue Carbon Sink Capacity. Environmental Science & amp; Technology, 2021, 55, 15466-15475.	4.6	3
865	Insight into Bacterial Community Responses to Polycyclic Aromatic Hydrocarbons and the Degradation Potentials of Three Bacterial Isolates in Seagrass Halophila ovalis Sediments. Current Microbiology, 2021, 78, 4084-4097.	1.0	3

#	Article	IF	CITATIONS
866	Seasonality and Characterization Mapping of Restored Tidal Marsh by NDVI Imageries Coupling UAVs and Multispectral Camera. Remote Sensing, 2021, 13, 4207.	1.8	12
867	Seagrass Depth Distribution Mirrors Coastal Development in the Mexican Caribbean – An Automated Analysis of 800 Satellite Images. Frontiers in Marine Science, 2021, 8, .	1.2	4
868	Soils and sediments of coastal ecology: A global carbon sink. Ocean and Coastal Management, 2021, 214, 105937.	2.0	12
869	Interspecific differences in root exudation for three tropical seagrasses and sediment pore-water dissolved organic carbon beneath them. Marine Pollution Bulletin, 2021, 173, 113059.	2.3	5
870	Bacterioplankton, Picoeukaryotes and Synechococcus Distribution Associated with Seagrass in South Coast of Hainan Island, China. Natural Resources, 2014, 05, 454-461.	0.2	1
872	Global Biogeochemical Restoration to Stabilize CO2 at Safe Levels in Time to Avoid Severe Climate Change Impacts to Earth's Life Support Systems: Implications for the United Nations Framework Convention on Climate Change. , 2014, , 5-58.		0
873	Seagrass Production Models. Encyclopedia of Earth Sciences Series, 2016, , 542-545.	0.1	0
875	Global Warming Can Be Protected by Promotion of CO2 Assimilation Using NOx. Journal of Climatology & Weather Forecasting, 2016, 4, .	0.2	2
876	Submerged Aquatic Vegetation: Seagrasses. , 0, , 858-865.		1
878	Using a Macroalgal Functional Form Approach to Assess the Level of Disturbance of Seagrass Meadows in Bahía of Nuevitas, Cuba (2000-2002). American Journal of Plant Sciences, 2019, 10, 2020-2033.	0.3	2
879	EVALUATION OF MANGROVE AND ITS ROLE IN THE ECONOMY AND STRATEGY TO CLIMATE CHANGE: CASE STUDY OF CUIARANA, PARÃ, IN THE BRAZILIAN AMAZON. Revista Arvore, 2019, 43, .	0.5	0
881	Toward the clarification of groundwater function as a diversity-producing factor in the coastal environment. Journal of Japanese Association of Hydrological Sciences, 2019, 49, 117-121.	0.2	0
882	First record of the seagrass-boring shipworm Zachsia sp. (Bivalve: Teredinidae) in natural and transplanted Enhalus acoroides (Hydrocharitaceae) rhizomes in tropical Southwest Pacific. Biodiversitas, 2019, 20, .	0.2	0
883	Climate Change Mitigation and Adaptation: Role of Mangroves in Southeast Asia. Encyclopedia of the UN Sustainable Development Goals, 2020, , 224-236.	0.0	2
885	Investigación de EcoloxÃa Escolar nunha pradarÃa de Zostera nolteii. Innovación Educativa, 2019, , 27-43.	0.2	0
886	Submerged Aquatic Vegetation: Seagrasses. , 2020, , 277-288.		1
888	Seagrass characterization on the southern Pacific coast of Costa Rica: history, vegetation, and environment. Botanica Marina, 2020, 63, 429-438.	0.6	5
890	Changes in the Dynamics and Nutrient Budget of a Macroalgal Community Exposed to Land-Based Fish Farm Discharge Off Jeju Island, Korea. Sustainability, 2021, 13, 11793.	1.6	3

#	Article		CITATIONS
891	Resolving Chemical Gradients Around Seagrass Roots—A Review of Available Methods. Frontiers in Marine Science, 2021, 8, .		10
892	Almacenes de carbono en un paisaje de humedal cárstico a lo largo de un corredor transversal costero de la PenÃnsula de Yucatán. Madera Bosques, 2021, 27, .	0.1	2
893	Examining the production, export, and immediate fate of kelp detritus on open oast subtidal reefs in the Northeast Atlantic. Limnology and Oceanography, 2022, 67, .	1.6	21
894	ESTIMASI STOK KARBON DI PADANG LAMUN PULAU NYAMUK DAN PULAU KEMUJAN, BALAI TAMAN NASIONAL KARIMUNJAWA, JEPARA. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 2020, 12, 805-819.	0.1	1
895	Ecosystem Organic Carbon Stock Estimations in the Sile River, North Eastern Italy. Water (Switzerland), 2021, 13, 80.	1.2	1
897	Long-term seed storage for desiccation sensitive seeds in the marine foundation species Zostera marina L. (eelgrass). Clobal Ecology and Conservation, 2020, 24, e01401.	1.0	2
898	The Aichi Biodiversity Targets: achievements for marine conservation and priorities beyond 2020. PeerJ, 2020, 8, e9743.	0.9	12
899	Seagrass Ecosystems of Andaman and Nicobar Islands: Status and Future Perspective. Environmental and Earth Sciences Research Journal, 2020, 7, 169-174.	0.2	2
900	ESTIMASI KANDUNGAN STOK KARBON PADA EKOSISTEM PADANG LAMUN DI PERAIRAN DOMPAK DAN BERAKIT, KEPULAUAN RIAU. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 2020, 12, 849-862.	0.1	4
901	An overview and assessment of the existing technological options for management and resource recovery from beach wrack and dredged sediments: An environmental and economic perspective. Journal of Environmental Management, 2022, 302, 113971.	3.8	28
902	Do We Ignore Tobacco's Positive Ecological Role Too Long?. Natural Science, 2020, 12, 273-280.	0.2	0
904	Short-term fate of seagrass and macroalgal detritus in Arenicola marina bioturbated sediments. Marine Ecology - Progress Series, 2020, 639, 21-35.	0.9	5
905	Bivalve facilitation mediates seagrass recovery from physical disturbance in a temperate estuary. Ecosphere, 2021, 12, e03804.	1.0	10
906	Modeling benthic solar exposure (UV and visible) in dynamic coastal systems to better inform seagrass habitat suitability. Science of the Total Environment, 2021, , 151481.	3.9	3
907	Seaweed farming and land-use impacts on seagrass meadows in the region of Rote Island, Indonesia. Estuarine, Coastal and Shelf Science, 2021, 263, 107635.	0.9	3
908	Natureâ€based Solutions to tackle climate change and restore biodiversity. Journal of Applied Ecology, 2021, 58, 2344-2348.	1.9	7
909	Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature, 2021, 600, 105-109.	13.7	48
910	Marine Macrophytes as Carbon Sinks: Comparison Between Seagrasses and the Non-native Alga Halimeda incrassata in the Western Mediterranean (Mallorca). Frontiers in Marine Science, 2021, 8, .	1.2	8

#	ARTICLE	IF	CITATIONS
912	Simulated Estuary-Wide Response of Seagrass (Zostera marina) to Future Scenarios of Temperature and Sea Level. Frontiers in Marine Science, 2020, 7, .	1.2	12
913	Environmental variables regulating organic carbon dynamics of Sundarban mangrove ecosystem, India. International Journal of Chemical and Environmental Sciences, 2020, 2, 7-17.	0.0	1
914	Groundwater and ecosystems. Journal of Groundwater Hydrology, 2020, 62, 525-545.	0.1	1
915	Thermo-priming increases heat-stress tolerance in seedlings of the Mediterranean seagrass P. oceanica. Marine Pollution Bulletin, 2022, 174, 113164.	2.3	17
916	Environmental stressors alter the composition of seagrass phyllosphere microbial communities. Climate Change Ecology, 2021, 2, 100042.	0.9	4
917	A spatial analysis of seagrass habitat and community diversity in the Great Barrier Reef World Heritage Area. Scientific Reports, 2021, 11, 22344.	1.6	13
918	Mapping the irrecoverable carbon in Earth's ecosystems. Nature Sustainability, 2022, 5, 37-46.	11.5	84
919	A review of sediment carbon sampling methods in mangroves and their broader impacts on stock estimates for blue carbon ecosystems. Science of the Total Environment, 2022, 816, 151618.	3.9	10
920	Publication Performance and Trends in Mangrove Forests: A Bibliometric Analysis. Sustainability, 2021, 13, 12532.	1.6	23
921	A Unique Diel Pattern in Carbonate Chemistry in the Seagrass Meadows of Dongsha Island: The Enhancement of Metabolic Carbonate Dissolution in a Semienclosed Lagoon. Frontiers in Marine Science, 2021, 8, .	1.2	6
922	Spatiotemporal variation in patterns of genetic diversity, genetic structure, and life history across Zostera marina meadows in North Carolina, USA. Marine Ecology - Progress Series, 2022, 683, 53-66.	0.9	1
923	Challenges in the Operationalization of the Concept of Ecosystem Services in Coastal Areas. , 2021, , .		0
924	Status of important coastal habitats of North Tamil Nadu: Diversity, current threats and approaches for conservation. Regional Studies in Marine Science, 2022, 49, 102106.	0.4	3
925	Open-Source Analysis of Submerged Aquatic Vegetation Cover in Complex Waters Using High-Resolution Satellite Remote Sensing: An Adaptable Framework. Remote Sensing, 2022, 14, 267.	1.8	7
926	Geomorphic gradients in shallow seagrass carbon stocks. Estuarine, Coastal and Shelf Science, 2022, 265, 107681.	0.9	13
927	National blue carbon assessment in Spain using InVEST: Current state and future perspectives. Ecosystem Services, 2022, 53, 101397.	2.3	12
928	Variability in blue carbon storage related to biogeochemical factors in seagrass meadows off the coast of the Korean peninsula. Science of the Total Environment, 2022, 813, 152680.	3.9	10
929	Preliminary Results on Blue Carbon Content Mapping in Coastal Waters of the Arabian Gulf Using Satellite-Based Modeling Approach. , 2020, , .		0

		CITATION REPORT		
#	Article		IF	CITATIONS
930	Decadal vision in oceanography 2021: Coastal oceans. Oceanography in Japan, 2021, 30), 87-104.	0.5	4
931	Estimation of carbon stock in seagrass communities in Central Tapanuli. IOP Conference and Environmental Science, 2021, 944, 012064.	e Series: Earth	0.2	0
932	Quantifying the Intra-Habitat Variation of Seagrass Beds with Unoccupied Aerial Vehicle Remote Sensing, 2022, 14, 480.	s (UAVs).	1.8	8
933	Preface: Blue carbon studies in <scp>Asiaâ€Pacific</scp> regions: Current status, gaps, perspectives. Ecological Research, 2022, 37, 5-8.	and future	0.7	6
934	Response of Posidonia oceanica (L.) Delile and Its Associated N2 Fixers to Different Com Temperature and Light Levels. Frontiers in Marine Science, 2022, 8, .	ibinations of	1.2	5
935	Reciprocal Field Transplant Experiment and Comparative Transcriptome Analysis Provide Differences in Seed Germination Time of Two Populations From Different Geographic Re Zostera marina L Frontiers in Plant Science, 2021, 12, 793060.	Insights Into gions of	1.7	0
936	A review of carbon monitoring in wet carbon systems using remote sensing. Environmer Letters, 2022, 17, 025009.	ıtal Research	2.2	29
937	Strategies to Improve Management of Indonesia's Blue Carbon Seagrass Habitats in Areas. Coastal Management, 2022, 50, 93-105.	Marine Protected	1.0	13
938	Positive contribution of macrofaunal biodiversity to secondary production and seagrass metabolism. Ecology, 2022, 103, e3648.	carbon	1.5	9
939	Seagrass in a Changing Estuary, the Indian River Lagoon, Florida, United States. Frontier Science, 2022, 8, .	s in Marine	1.2	23
940	Variation in sediment and seagrass characteristics reflect multiple stressors along a nitrogenâ€enrichment gradient in a New England lagoon. Limnology and Oceanography	, 2022, 67, 660-672 .	1.6	3
941	Posidonia oceanica L. (Delile) meadows regression: Long-term affection may be induced impacts. Marine Environmental Research, 2022, 174, 105557.	by multiple	1.1	8
942	Loss of surficial sedimentary carbon stocks in seagrass meadows subjected to intensive harvesting. Marine Environmental Research, 2022, 175, 105570.	clam	1.1	10
943	Critical summer irradiance requirements for biomass accrual of the seagrass Zostera mu Aquatic Botany, 2022, 178, 103499.	elleri.	0.8	0
944	Quantification of blue carbon in tropical salt marshes and their role in climate change m Science of the Total Environment, 2022, 820, 153313.	itigation.	3.9	11
945	Responses of Coastal Ecosystems to Climate Change: Insights from Long-Term Ecologic BioScience, 2022, 72, 871-888.	al Research.	2.2	16
946	Future Mangrove Carbon Storage Under Climate Change and Deforestation. Frontiers in Science, 2022, 9, .	Marine	1.2	31
947	The Economic Benefit of Coastal Blue Carbon Stocks in a Moroccan Lagoon Ecosystem: Moulay Bousselham Lagoon. Wetlands, 2022, 42, 1.	a Case Study at	0.7	6

ARTICLE

IF CITATIONS

948 Current distribution of Zostera seagrass meadows along the Bulgarian Black Sea coast (SW Black Sea,) Tj ETQq0 0 0 rgBT /Overlock 10

950	Carbon storage in coastal wetlands is related to elevation and how it changes over time. Estuarine, Coastal and Shelf Science, 2022, 267, 107775.	0.9	5
951	Acclimation to low light modifies nitrogen uptake in Halophila ovalis (R.Brown) J.D. Hooker. Journal of Experimental Marine Biology and Ecology, 2022, 549, 151705.	0.7	0
952	Seaweed: A potential climate change solution. Renewable and Sustainable Energy Reviews, 2022, 159, 112222.	8.2	49
953	Calcification-driven CO ₂ emissions exceed "Blue Carbon―sequestration in a carbonate seagrass meadow. Science Advances, 2021, 7, eabj1372.	4.7	33
956	Organism-scale interaction with hydraulic conditions. Journal of Ecohydraulics, 2022, 7, 1-3.	1.6	2
957	Ecological roles and importance of sea cows (Order: Sirenia): a review and prospectus. Marine Ecology - Progress Series, 2022, 689, 191-215.	0.9	5
961	Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	36
962	Intrinsic Photosensitivity of the Vulnerable Seagrass Phyllospadix iwatensis: Photosystem II Oxygen-Evolving Complex Is Prone to Photoinactivation. Frontiers in Plant Science, 2022, 13, 792059.	1.7	1
963	Seagrass meadows mixed with calcareous algae have higher plant productivity and sedimentary blue carbon storage. Ecology and Evolution, 2022, 12, e8579.	0.8	6
964	Effects of Epiphytes on the Seagrass Phyllosphere. Frontiers in Marine Science, 2022, 9, .	1.2	15
965	Temporal Stability of Seagrass Extent, Leaf Area, and Carbon Storage in St. Joseph Bay, Florida: a Semi-automated Remote Sensing Analysis. Estuaries and Coasts, 2022, 45, 2082-2101.	1.0	11
966	Saltâ€marsh retreat on different time scales: Issues and prospects from a 5â€year monitoring campaign in the Venice Lagoon. Earth Surface Processes and Landforms, 2022, 47, 1989-2005.	1.2	8
967	The Game Model of Blue Carbon Collaboration along MSR—From the Regret Theory Perspective. Mathematics, 2022, 10, 1006.	1.1	5
968	A Re-evaluation of Wetland Carbon Sink Mitigation Concepts and Measurements: A Diagenetic Solution. Wetlands, 2022, 42, 1.	0.7	7
969	Restoring the seagrass <i>Zostera muelleri</i> with transplants: small cores are as effective as larger plots. New Zealand Journal of Marine and Freshwater Research, 0, , 1-13.	0.8	2
970	Anchor Forces on Coir-Based Artificial Seagrass Mats: Dependence on Wave Dynamics and Their Potential Use in Seagrass Restoration. Frontiers in Marine Science, 2022, 9, .	1.2	2
971	Blue carbon storage in Fijian seagrass meadows: First insights into carbon, nitrogen and phosphorus content from a tropical southwest Pacific Island. Marine Pollution Bulletin, 2022, 176, 113432.	2.3	1

		CITATION REPO	ORT	
#	Article	I	F	CITATIONS
972	Seagrass restoration using seed ball burial in northern China. Restoration Ecology, 2023, 3	1,. :	1.4	3
973	The capabilities of Sentinel-MSI (2A/2B) and Landsat-OLI (8/9) in seagrass and algae specie differentiation using spectral reflectance. Ocean Science, 2022, 18, 361-388.	S :	1.3	6
974	Beyond habitat boundaries: Organic matter cycling requires a systemâ€wide approach for a carbon accounting. Limnology and Oceanography, 2022, 67, .	accurate blue	1.6	10
975	Net Drawdown of Greenhouse Gases (CO2, CH4 and N2O) by a Temperate Australian Seag Estuaries and Coasts, 2022, 45, 2026-2039.	rass Meadow.	1.0	12
976	Temperature Effects on Leaf and Epiphyte Photosynthesis, Bicarbonate Use and Diel O2 Bu Seagrass Zostera marina L. Frontiers in Marine Science, 2022, 9, .	idgets of the	1.2	10
977	Mechanistic support for increased primary production around artificial reefs. Ecological Applications, 2022, 32, e2617.		1.8	3
978	Analysis and global research trends on nautical tourism and green coastal infrastructures: 1 of coral reefs and seagrass meadows. Environmental Sciences Europe, 2022, 34, .	he case	2.6	8
979	Eelgrass beds can mitigate local acidification and reduce oyster malformation risk in a suba lagoon, Japan: A three-dimensional ecosystem model study. Ocean Modelling, 2022, 173, 1	rctic ,01992.	1.0	2
980	Carbon-offset potential from tropical seagrass conservation in selected areas of Indonesia. Pollution Bulletin, 2022, 178, 113605.	Marine	2.3	3
981	A review of microplastic impacts on seagrasses, epiphytes, and associated sediment comm Environmental Pollution, 2022, 303, 119108.	unities.	3.7	21
982	Temporal and spatial dynamics of tropical macroalgal contributions to blue carbon. Science Total Environment, 2022, 828, 154369.	e of the	3.9	18
983	One-Dimensional Reynolds Average Navier-Stokes Model for Submerged Canopies. , 2021,	,.		0
984	Zoning Seagrass Protection in Lap An Lagoon, Vietnam Using a Novel Integrated Framewor Sustainable Coastal Management. Wetlands, 2021, 41, 1.	'k for	0.7	3
986	Estimation of soil carbon storage under mono-specific Enhalus acoroides meadows in Pari I Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 944, 012065.	sland,	0.2	1
987	Detecting the Spatial Variability of Seagrass Meadows and Their Consequences on Associa Macrofauna Benthic Activity Using Novel Drone Technology. Remote Sensing, 2022, 14, 16	ted	1.8	2
989	Diversity, coverage, distribution and ecosystem services of seagrass in three small islands on northern Papua, Indonesia: Liki Island, Meossu Island and Befondi Island. Biodiversitas, 202	of 1, 22, .	0.2	3
990	Carbon storage and mineralization in coastal wetlands. , 2022, , 295-310.			1
991	Macrofaunal consumption as a mineralization pathway. , 2022, , 133-165.			0

#	Article	IF	CITATIONS
992	Reforming International Fisheries Law Can Increase Blue Carbon Sequestration. Frontiers in Marine Science, 2022, 9, .	1.2	11
993	Research Development, Current Hotspots, and Future Directions of Blue Carbon: A Bibliometric Analysis. Water (Switzerland), 2022, 14, 1193.	1.2	8
994	Nanoconjugate Synthesis of Elaeocarpus ganitrus and the Assessment of Its Antimicrobial and Antiproliferative Properties. Molecules, 2022, 27, 2442.	1.7	5
995	Seagrasses and local environment control the bacterial community structure and carbon substrate utilization in brackish sediments. Journal of Environmental Management, 2022, 314, 115013.	3.8	8
996	Community-specific "desired―states for seagrasses through cycles of loss and recovery. Journal of Environmental Management, 2022, 314, 115059.	3.8	4
1083	Blue Carbon Storage in a Northern Temperate Estuary Subject to Habitat Loss and Chronic Habitat Disturbance: Cowichan Estuary, British Columbia, Canada. Frontiers in Marine Science, 2022, 9, .	1.2	5
1084	Blue Carbon Ecosystems in Brazil: Overview and an Urgent Call for Conservation and Restoration. Frontiers in Marine Science, 2022, 9, .	1.2	3
1085	Trade-Offs and Synergies Between Seagrass Ecosystems and Fishing Activities: A Global Literature Review. Frontiers in Marine Science, 2022, 9, .	1.2	11
1086	Sugars dominate the seagrass rhizosphere. Nature Ecology and Evolution, 2022, 6, 866-877.	3.4	27
1087	A sweet spot in marine ecosystems. Nature Ecology and Evolution, 2022, , .	3.4	0
1087 1088	A sweet spot in marine ecosystems. Nature Ecology and Evolution, 2022, , . Fish and invertebrate use of restored vs. natural oyster reefs in a shallow temperate latitude estuary. Ecosphere, 2022, 13, .	3.4 1.0	9
1087 1088 1089	A sweet spot in marine ecosystems. Nature Ecology and Evolution, 2022, , . Fish and invertebrate use of restored vs. natural oyster reefs in a shallow temperate latitude estuary. Ecosphere, 2022, 13, . Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. Science, 2022, 376, eabn1479.	3.4 1.0 6.0	0 9 93
1087 1088 1089 1090	A sweet spot in marine ecosystems. Nature Ecology and Evolution, 2022, , . Fish and invertebrate use of restored vs. natural oyster reefs in a shallow temperate latitude estuary. Ecosphere, 2022, 13, . Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. Science, 2022, 376, eabn1479. Effects of Epiphytic Biofilm Activity on the Photosynthetic Activity, pH and Inorganic Carbon Microenvironment of Seagrass Leaves (Zostera marina L.). Frontiers in Marine Science, 2022, 9, .	3.41.06.01.2	0 9 93 2
1087 1088 1089 1090	A sweet spot in marine ecosystems. Nature Ecology and Evolution, 2022, , . Fish and invertebrate use of restored vs. natural oyster reefs in a shallow temperate latitude estuary. Ecosphere, 2022, 13, . Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. Science, 2022, 376, eabn1479. Effects of Epiphytic Biofilm Activity on the Photosynthetic Activity, pH and Inorganic Carbon Microenvironment of Seagrass Leaves (Zostera marina L.). Frontiers in Marine Science, 2022, 9, . Quantification of blue carbon stocks associated with Posidonia oceanica seagrass meadows in Corsica (NW Mediterranean). Science of the Total Environment, 2022, 838, 155864.	 3.4 1.0 6.0 1.2 3.9 	0 9 93 2 9
1087 1088 1089 1090 1091	A sweet spot in marine ecosystems. Nature Ecology and Evolution, 2022, , . Fish and invertebrate use of restored vs. natural oyster reefs in a shallow temperate latitude estuary. Ecosphere, 2022, 13, . Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. Science, 2022, 376, eabn1479. Effects of Epiphytic Biofilm Activity on the Photosynthetic Activity, pH and Inorganic Carbon Microenvironment of Seagrass Leaves (Zostera marina L.). Frontiers in Marine Science, 2022, 9, . Quantification of blue carbon stocks associated with Posidonia oceanica seagrass meadows in Corsica (NW Mediterranean). Science of the Total Environment, 2022, 838, 155864. Mapping seagrass meadows in coastal China using CEE. Geocarto International, 2022, 37, 12602-12617.	 3.4 1.0 6.0 1.2 3.9 1.7 	0 9 93 2 9 9
1087 1088 1089 1090 1091 1092	A sweet spot in marine ecosystems. Nature Ecology and Evolution, 2022, , . Fish and invertebrate use of restored vs. natural oyster reefs in a shallow temperate latitude estuary. Ecosphere, 2022, 13, . Recovering wetland biogeomorphic feedbacks to restore the worlda€™s biotic carbon hotspots. Science, 2022, 376, eabn1479. Effects of Epiphytic Biofilm Activity on the Photosynthetic Activity, pH and Inorganic Carbon Microenvironment of Seagrass Leaves (Zostera marina L). Frontiers in Marine Science, 2022, 9, . Quantification of blue carbon stocks associated with Posidonia oceanica seagrass meadows in Corsica (NW Mediterranean). Science of the Total Environment, 2022, 838, 155864. Mapping seagrass meadows in coastal China using GEE. Geocarto International, 2022, 37, 12602-12617. An examination of seed germination and seedling growth of Zostera marina for planting-time selection in Rongcheng Bay, Shandong Peninsula, China. Marine Polution Bulletin, 2022, 179, 113740.	 3.4 1.0 6.0 1.2 3.9 1.7 2.3 	0 9 93 2 9 4 2
1087 1088 1089 1090 1091 1092 1095	A sweet spot in marine ecosystems. Nature Ecology and Evolution, 2022, , . Fish and invertebrate use of restored vs. natural oyster reefs in a shallow temperate latitude estuary. Ecosphere, 2022, 13, . Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. Science, 2022, 376, eabn1479. Effects of Epiphytic Biofilm Activity on the Photosynthetic Activity, pH and Inorganic Carbon Microenvironment of Seagrass Leaves (Zostera marina L). Frontiers in Marine Science, 2022, 9, . Quantification of blue carbon stocks associated with Posidonia oceanica seagrass meadows in Corsica (NW Mediterranean). Science of the Total Environment, 2022, 838, 155864. Mapping seagrass meadows in coastal China using GEE. Geocarto International, 2022, 37, 12602-12617. An examination of seed germination and seedling growth of Zostera marina for planting-time selection in Rongcheng Bay, Shandong Peninsula, China. Marine Pollution Bulletin, 2022, 179, 113740. New possibilities for climate change countermeasures in ports: Organic carbon containment and creation of blue carbon ecosystems through beneficial utilization of dredged soil. Marine Policy, 2022, 141, 105072.	 3.4 1.0 6.0 1.2 3.9 1.7 2.3 1.5 	0 9 93 2 9 4 2 2

#	Article	IF	CITATIONS
1097	Mapping and Spatial Variation of Seagrasses in Xincun, Hainan Province, China, Based on Satellite Images. Remote Sensing, 2022, 14, 2373.	1.8	6
1098	Greenhouse Gas Emissions from Managed Freshwater Wetlands Under Intensified Aquaculture. SSRN Electronic Journal, 0, , .	0.4	0
1099	Assessment of WorldView-2 images for aboveground seagrass carbon stock mapping in patchy and continuous seagrass meadows. International Journal of Remote Sensing, 2022, 43, 2915-2941.	1.3	4
1100	Tidal Flats as a Significant Carbon Reservoir in Global Coastal Ecosystems. Frontiers in Marine Science, 2022, 9, .	1.2	10
1101	Improving Approaches to Mapping Seagrass within the Great Barrier Reef: From Field to Spaceborne Earth Observation. Remote Sensing, 2022, 14, 2604.	1.8	11
1102	Status, Biodiversity, and Ecosystem Services of Seagrass Habitats Within the Coral Triangle in the Western Pacific Ocean. Ocean Science Journal, 2022, 57, 147-173.	0.6	5
1104	Wave damping by seagrass meadows in combined wave urrent conditions. Limnology and Oceanography, 2022, 67, 1554-1565.	1.6	6
1105	Implication of Macroalgal Bloom to Soil Organic Carbon Stock in Seagrass Meadows - A Case Study in South Hainan, China. Frontiers in Marine Science, 2022, 9, .	1.2	0
1106	Epiphytic foraminifers as indicators of heavy-metal pollution in Posidonia oceanica seagrass meadows. Ecological Indicators, 2022, 140, 109006.	2.6	7
1107	Carbon metabolism and bioavailability of dissolved organic carbon (DOC) fluxes in seagrass communities are altered under the presence of the tropical invasive alga Halimeda incrassata. Science of the Total Environment, 2022, 839, 156325.	3.9	16
1108	Remote Sensing of Surface and Subsurface Soil Organic Carbon in Tidal Wetlands: A Review and Ideas for Future Research. Remote Sensing, 2022, 14, 2940.	1.8	5
1109	Combining Ecological Niche Models and ecosystem services indicators to assess impacts of climate change on kelp: application to French coasts. Ecosystems and People, 2022, 18, 358-377.	1.3	2
1110	Increased Coastal Nutrient Loading Enhances Reproductive Intensity of Zostera marina: Implications for Seagrass Meadow Resilience. Frontiers in Marine Science, 0, 9, .	1.2	4
1111	Trace element concentrations in forage seagrass species of Chelonia mydas along the Great Barrier Reef. PLoS ONE, 2022, 17, e0269806.	1.1	2
1112	Sea level rise drives carbon and habitat loss in the U.S. mid-Atlantic coastal zone. , 2022, 1, e0000044.		10
1113	Blue Ceramics: Co-designing Morphing Ceramics for Seagrass Meadow Restoration. , 2022, , .		1
1114	Carbon stocks in southern England's intertidal seagrass meadows. Estuarine, Coastal and Shelf Science, 2022, 275, 107947.	0.9	4
1115	Multitemporal seagrass carbon assimilation and aboveground carbon stock mapping using Sentinel-2 in Labuan Bajo 2019–2020. Remote Sensing Applications: Society and Environment, 2022, 27, 100803.	0.8	4

#	Article	IF	Citations
1116	Haematological and biochemical reference intervals for wild green turtles (<i>Chelonia mydas</i>): a Bayesian approach for small sample sizes. , 2022, 10, .		6
1117	Earth observation for ecosystem accounting: spatially explicit national seagrass extent and carbon stock in Kenya, Tanzania, Mozambique and Madagascar. Remote Sensing in Ecology and Conservation, 2022, 8, 778-792.	2.2	11
1118	State of Play in Marine Soundscape Assessments. Frontiers in Marine Science, 0, 9, .	1.2	8
1119	Consistency assessment of multi-date PlanetScopeÂimagery for seagrass percent cover mapping in different seagrass meadows. Geocarto International, 2024, 37, 15161-15186.	1.7	7
1120	Eutrophication reduced the release of dissolved organic carbon from tropical seagrass roots through exudation and decomposition. Marine Environmental Research, 2022, 179, 105703.	1.1	5
1121	The present state-of-the-art of blue carbon repository in India: a meta-analysis. Sustainability Science, 2023, 18, 1031-1042.	2.5	3
1122	Warming northward shifting southern limits of the iconic temperate seagrass (Zostera marina). IScience, 2022, 25, 104755.	1.9	5
1123	Seasonal growth and senescence of seagrass alters sediment accumulation rates and carbon burial in a coastal lagoon. Limnology and Oceanography, 2022, 67, 1931-1942.	1.6	3
1124	Effects of flooding on the Mediterranean <i>Cymodocea nodosa</i> population in relation to environmental degradation. Botanica Marina, 2022, .	0.6	1
1125	Accumulation and fluxes of potentially toxic elements in a large coastal lagoon (southern Gulf of) Tj ETQq1 1 0.7	84314 rgE 2.3	BT /Overlock
1126	Massive loss and microbial decomposition in reproductive biomass of Zostera marina. Estuarine, Coastal and Shelf Science, 2022, 275, 107986.	0.9	2
1127	Blue carbon and nutrient stocks in salt marsh and seagrass from an urban African estuary. Science of the Total Environment, 2022, 842, 156955.	3.9	8
1128	Spatially Explicit Seagrass Extent Mapping Across the Entire Mediterranean. Frontiers in Marine Science, 0, 9, .	1.2	14
1129	Influence of Rising Water Temperature on the Temperate Seagrass Species Eelgrass (Zostera marina L.) in the Northeast USA. Frontiers in Marine Science, 0, 9, .	1.2	3
1130	Substantial seagrass blue carbon pools in the southwestern Baltic Sea include relics of terrestrial peatlands. Frontiers in Marine Science, 0, 9, .	1.2	9
1131	Global trends and prospects of blue carbon sinks: a bibliometric analysis. Environmental Science and Pollution Research, 2022, 29, 65924-65939.	2.7	8
1132	Predicted warming intensifies the negative effects of nutrient increase on tropical seagrass: A physiological and fatty acid approach. Ecological Indicators, 2022, 142, 109184.	2.6	9
1133	A Blueprint for the Estimation of Seagrass Carbon Stock Using Remote Sensing-Enabled Proxies. Remote Sensing, 2022, 14, 3572.	1.8	6

#	Article	IF	Citations
1134	Consideration of the carbon sequestration potential of seagrass to inform recovery and restoration projects within the Essex Estuaries Special Area of Conservation (SAC), United Kingdom. Journal of Coastal Conservation, 2022, 26, .	0.7	0
1135	Contribution of the seagrass Syringodium isoetifolium to the metabolic functioning of a tropical reef lagoon. Frontiers in Marine Science, 0, 9, .	1.2	0
1136	The planetary role of seagrass conservation. Science, 2022, 377, 609-613.	6.0	38
1137	Experimental carbon emissions from degraded Mediterranean seagrass (Posidonia oceanica) meadows under current and future summer temperatures Journal of Geophysical Research G: Biogeosciences, 0, , .	1.3	0
1138	Seagrass (<i>Zostera marina</i>) transplant experiment reveals core microbiota and resistance to environmental change. Molecular Ecology, 2022, 31, 5107-5123.	2.0	4
1139	Drift macroalgae positively influence seagrass-associated nekton communities of the northern Gulf of Mexico. Frontiers in Environmental Science, 0, 10, .	1.5	4
1140	The Contribution of Subtidal Seagrass Meadows to the Total Carbon Stocks of Gazi Bay, Kenya. Diversity, 2022, 14, 646.	0.7	3
1141	Environment predicts seagrass genotype, phenotype, and associated biodiversity in a temperate ecosystem. Frontiers in Plant Science, 0, 13, .	1.7	1
1142	Marine priority habitat mapping in a Mediterranean conservation area (Gyaros, South Aegean) through multi-platform marine remote sensing techniques. Frontiers in Marine Science, 0, 9, .	1.2	9
1143	Numerical investigation of the effects of rigid emergent vegetation on wave runup and overtopping. Ocean Engineering, 2022, 264, 112502.	1.9	1
1144	Spatial heterogeneity in sediment and carbon accretion rates within a seagrass meadow correlated with the hydrodynamic intensity. Science of the Total Environment, 2023, 854, 158685.	3.9	4
1145	Advancement in Measurement and Estimation Methods of Blue Carbon Studies. Science for Sustainable Societies, 2022, , 127-142.	0.2	1
1146	Engaging students in seagrass-focused activities. Science Activities, 2020, 57, 122-131.	0.4	0
1147	Overcoming legal barriers to coastal wetland restoration: lessons from Australia's Blue Carbon methodology. Restoration Ecology, 2023, 31, .	1.4	1
1149	Variation in Fish Abundance, Diversity and Assemblage Structure in Seagrass Meadows across the Atlanto-Mediterranean Province. Diversity, 2022, 14, 808.	0.7	2
1150	Mediterranean seagrasses as carbon sinks: methodological and regional differences. Biogeosciences, 2022, 19, 4619-4637.	1.3	1
1151	Reconstruction of Cymodocea nodosa's dynamics as a tool to examine the conservation status of a Mediterranean declared marine protected area. Mediterranean Marine Science, 2022, 23, 754-765.	0.6	0
1152	Species Traits and Geomorphic Setting as Drivers of Global Soil Carbon Stocks in Seagrass Meadows. Global Biogeochemical Cycles, 2022, 36, .	1.9	17

#	Article	IF	CITATIONS
1154	Interaction between seawater carbon dioxide dynamics and stratification in shallow coastal waters: A preliminary study based on a weekly validated three-dimensional ecological model. Frontiers in Marine Science, 0, 9, .	1.2	0
1155	Seagrass ecosystems along the Vietnamese coastline: Current state of research and future perspectives. Estuarine, Coastal and Shelf Science, 2022, 277, 108085.	0.9	4
1156	Megaherbivore exclusion led to more complex seagrass canopies and increased biomass and sediment Corg pools in a tropical meadow. Frontiers in Marine Science, 0, 9, .	1.2	1
1157	Explainable artificial intelligence reveals environmental constraints in seagrass distribution. Ecological Indicators, 2022, 144, 109523.	2.6	7
1158	Pricing of Carbon Sequestration and Environmental Regulation. , 2022, , 59-81.		0
1159	Mangroves and Seagrasses. , 2022, , 55-85.		0
1160	Blue Carbon Potential of India: The Present State of the Art. , 2022, , 159-180.		0
1161	è¥å»ç›å⁻¹æ³°æ¥è‰å‰å•̂æ—æœºç¢³åˆ©ç""æ−¹å¼çš"å½±å"ç"ç©¶. Chinese Science Bulletin, 2022, , .	0.4	0
1162	Climate change challenges, plant science solutions. Plant Cell, 2023, 35, 24-66.	3.1	52
1163	Review of the physical and chemical properties of seagrass soils. Geoderma, 2022, 428, 116219.	2.3	5
1164	Fluctuating fortunes: Stressor synchronicity and fluctuating intensity influence biological impacts. Ecology Letters, 2022, 25, 2611-2623.	3.0	5
1165	The use of habitat suitability modelling for seagrass: A review. Frontiers in Marine Science, 0, 9, .	1.2	2
1166	Current advances in seagrass research: A review from Viet Nam. Frontiers in Plant Science, 0, 13, .	1.7	4
1167	State of Climate Action 2022. , 0, , .		18
1168	Two temperate seagrass meadows are negligible sources of methane and nitrous oxide. Limnology and Oceanography, 2022, 67, .	1.6	3
1169	Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A review. Aquaculture and Fisheries, 2023, 8, 463-480.	1.2	21
1170	Limited recovery following a massive seagrass decline in subarctic eastern Canada. Global Change Biology, 2023, 29, 432-450.	4.2	5
1171	Organic matter composition regulates residual potential of organic carbon of the seagrass Zostera marina L. during its decomposition process in seawater. Marine Environmental Research, 2022, , 105790.	1.1	1

#	Article	IF	CITATIONS
1172	Flowering effort and reproductive phenology of intertidal colonizing Zostera marina. Estuarine, Coastal and Shelf Science, 2022, 278, 108110.	0.9	1
1173	Fossilized diatoms as indirect indicators of the origin of carbon stored in intertidal flats. Frontiers in Marine Science, 0, 9, .	1.2	2
1174	Understanding the depth limit of the seagrass Cymodocea nodosa as a critical transition: Field and modeling evidence. Marine Environmental Research, 2022, 182, 105765.	1.1	3
1175	Ecosystem Services and Vulnerability Assessments of Seagrass Ecosystems: Basic Tools for Prioritizing Conservation Management Actions Using an Example from Thailand. Water (Switzerland), 2022, 14, 3650.	1.2	2
1176	Conservation implications of herbicides on seagrasses: sublethal glyphosate exposure decreases fitness in the endangered <i>Zostera capensis</i> . PeerJ, 0, 10, e14295.	0.9	1
1177	A bayesian network to inform the management of key species in Kosterhavet National Park under contrasting storylines of environmental change. Estuarine, Coastal and Shelf Science, 2022, , 108158.	0.9	0
1178	The Evolution of Blue Carbon Science. Wetlands, 2022, 42, .	0.7	14
1179	Experimental effects of warming and epiphyte grazing on the ecophysiology of two seagrass morphotypes. Journal of Experimental Marine Biology and Ecology, 2023, 558, 151834.	0.7	3
1180	A Meta-analysis of Tropical Cyclone Effects on Seagrass Meadows. Wetlands, 2022, 42, .	0.7	5
1181	Ocean-Based Climate Action in New and Updated Nationally Determined Contributions. , 0, , .		1
1182	Developing seagrass index for long term monitoring of Zostera japonica seagrass bed: A case study in Yellow River Delta, China. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 194, 286-301.	4.9	6
1183	Conservation status, research, and knowledge of seagrass habitats in World Heritage properties. Conservation Science and Practice, 2022, 4, .	0.9	2
1184	Temporal dynamics of lateral carbon export from an onshore aquaculture farm. Science of the Total Environment, 2023, 859, 160258.	3.9	3
1185	Sediment organic carbon stocks were similar among four species compositions in a tropical seagrass meadow. Limnology and Oceanography, 0, , .	1.6	1
1186	Organic Carbon Burial With Reactive Iron Across Global Environments. Global Biogeochemical Cycles, 2022, 36, .	1.9	8
1187	Sediment carbon sequestration and sources in peri-urban tidal flats and adjacent wetlands in a megacity. Marine Pollution Bulletin, 2022, 185, 114368.	2.3	2
1188	Ranking the risk of CO2 emissions from seagrass soil carbon stocks under global change threats. Global Environmental Change, 2023, 78, 102632.	3.6	6
1189	The role of seagrass meadows in the accumulation of microplastics: Insights from a South African estuary. Marine Pollution Bulletin, 2023, 186, 114403.	2.3	5

#	Article	IF	CITATIONS
1190	The influence of seagrass and its associated sediment on organic carbon storage: A case of Halodule uninervis and Syringodium isoetifolium meadows of Western India Ocean, Tanzania. Marine Environmental Research, 2023, 183, 105836.	1.1	2
1191	Economic losses related to the reduction of Posidonia ecosystem services in the Gulf of Gabes (Southern Mediterranean Sea). Marine Pollution Bulletin, 2023, 186, 114418.	2.3	1
1192	Sunscreen exposure interferes with physiological processes while inducing oxidative stress in seagrass Posidonia oceanica (L.) Delile. Marine Pollution Bulletin, 2023, 187, 114507.	2.3	4
1193	Investigating causes and implications of morphological variation in a native pondweed (Stuckenia) Tj ETQq1 1 0.7	′84314 rg 0.8	BT /Overlock
1194	The Changes in Biochemical Compositions of Five Different Macroalgae and Segrass (Halophila) Tj ETQq0 0 0 rgB	T /Oyerloc	k 10 Tf 50 58

1195	Seed bank dynamics and quality in the seagrass Halophila ovalis along estuarine salinity gradients—a case in the Swan-Canning Estuary. Frontiers in Marine Science, 0, 9, .	1.2	0
1197	Potential of seagrass habitat restorations as nature-based solutions: Practical and scientific implications in Indonesia. Ambio, 2023, 52, 546-555.	2.8	6
1198	Dwindling seagrasses: A multi-temporal analysis on Google Earth Engine. Ecological Informatics, 2023, 74, 101964.	2.3	3
1199	Blue carbon stock in sediments of mangroves and seagrass ecosystems at Southeast Sulawesi, Indonesia. Ecological Research, 2023, 38, 508-520.	0.7	2
1200	Dublin's saltmarshes contain climate-relevant carbon pools. Frontiers in Marine Science, 0, 9, .	1.2	2
1201	Total organic carbon estimation in seagrass beds in Tauranga Harbour, New Zealand using multi-sensors imagery and grey wolf optimization. Geocarto International, 2023, 38, .	1.7	4
1202	Mapping the structure of mixed seagrass meadows in the Mexican Caribbean. Frontiers in Marine Science, 0, 9, .	1.2	4
1204	Computational estimation of sediment symbiotic bacterial structures of seagrasses overgrowing downstream of onshore aquaculture. Environmental Research, 2023, 219, 115130.	3.7	9
1205	Inter-seasonal comparison of acoustic propagation in a <i>Thalassia testudinum</i> seagrass meadow in a shallow sub-tropical lagoon. JASA Express Letters, 2023, 3, .	0.5	2
1206	First assessment of seagrass carbon accumulation rates in Sweden: A field study from a fjord system at the Skagerrak coast. , 2023, 2, e0000099.		1
1207	Capturing of organic carbon and nitrogen in eelgrass sediments of southern Scandinavia. Limnology and Oceanography, 2023, 68, 631-648.	1.6	6
1208	Mapping seagrasses on the basis of Sentinel-2 images under tidal change. Marine Environmental Research, 2023, 185, 105880.	1.1	4
1209	Marine Biodiversity and Climate Change: Multidimensional Approaches for "The Ocean We Want―by 2030. , 2023, , 1-31.		2

#	Article	IF	CITATIONS
1210	Simulated Green Turtle Grazing Reduces Seagrass Productivity and Alters Benthic Community Structure While Triggering Further Disturbance by Feeding Stingrays. Caribbean Journal of Science, 2022, 52, .	0.2	2
1211	Dynamics of O2 and pCO2 in a Southeast Asia seagrass meadow: Metabolic rates and carbon sink capacity. Frontiers in Marine Science, 0, 10, .	1.2	1
1212	Inorganic carbon outwelling from a Mediterranean seagrass meadow using radium isotopes. Estuarine, Coastal and Shelf Science, 2023, , 108248.	0.9	2
1213	KLASIFIKASI HABITAT BENTIK ATOL KALEDUPA TAMAN NASIONAL WAKATOBI DENGAN ALGORITMA SUPPORT VECTOR MACHINE. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 2023, 14, 427-438.	0.1	0
1214	Sediment Carbon Sequestration and Driving Factors in Seagrass Beds from Hainan Island and the Xisha Islands. Processes, 2023, 11, 456.	1.3	4
1215	Combined effects of temperature and burial on seed germination and seedling growth rates of the tropical seagrass Enhalus acoroides. Journal of Experimental Marine Biology and Ecology, 2023, 562, 151881.	0.7	2
1217	Progress of blue carbon research: 12 years of global trends based on content analysis of peer-reviewed and †̃gray literature' documents. Ocean and Coastal Management, 2023, 236, 106495.	2.0	7
1218	Belize Blue Carbon: Establishing a national carbon stock estimate for mangrove ecosystems. Science of the Total Environment, 2023, 870, 161829.	3.9	3
1220	Mapping and assessing seagrass meadows changes and blue carbon under past, current, and future scenarios. Science of the Total Environment, 2023, 872, 162244.	3.9	5
1221	Blue carbon stocks in southern Africa's Endangered seagrass Zostera capensis. Estuarine, Coastal and Shelf Science, 2023, 284, 108296.	0.9	2
1222	Framework for fostering just and equitable seagrass policy, management, and social-ecological outcomes: Lessons learned from Belizean marine resource managers. Marine Policy, 2023, 152, 105606.	1.5	2
1223	Diversity and phylogeny of seagrasses in Singapore. Aquatic Botany, 2023, 187, 103648.	0.8	0
1224	Status, limitations, and challenges of blue carbon studies in the Philippines: A bibliographic analysis. Regional Studies in Marine Science, 2023, 62, 102916.	0.4	2
1225	A facultative mutualism facilitates European seagrass meadows. Ecography, 2023, 2023, .	2.1	0
1226	Providing a framework for seagrass mapping in United States coastal ecosystems using high spatial resolution satellite imagery. Journal of Environmental Management, 2023, 337, 117669.	3.8	6
1228	Northeast Pacific eelgrass dynamics: interannual expansion distances and meadow area variation over time. Marine Ecology - Progress Series, 2023, 705, 61-75.	0.9	4
1229	Seagrass macrobenthic biodiversity does not vary in conformity with a leaky-lagoonal confinement gradient. Marine Environmental Research, 2023, 185, 105897.	1.1	4
1230	A Seagrass Mapping Toolbox for South Pacific Environments. Remote Sensing, 2023, 15, 834.	1.8	2

#	Article	IF	CITATIONS
1231	Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy. Sustainability, 2023, 15, 2682.	1.6	17
1232	Mapping seagrass habitats of potential suitability using a hybrid machine learning model. Frontiers in Ecology and Evolution, 0, 11, .	1.1	1
1233	Strong Genetic Structure and Limited Gene Flow among Populations of the Tropical Seagrass Thalassia hemprichii in the Philippines. Journal of Marine Science and Engineering, 2023, 11, 356.	1.2	1
1234	Bahamian seagrass extent and blue carbon accounting using Earth Observation. Frontiers in Marine Science, 0, 10, .	1.2	6
1235	Determining effect of seagrass-mediated CO2 flux on the atmospheric cooling potential of a subtropical intertidal seagrass meadow. Marine Pollution Bulletin, 2023, 188, 114676.	2.3	1
1236	Drivers of variation in seagrass-associated amphipods across biogeographical areas. Marine Environmental Research, 2023, 186, 105918.	1.1	2
1237	Seagrass meadows are important sources of reef island-building sediment. Communications Earth & Environment, 2023, 4, .	2.6	2
1238	Deoxygenation, Acidification and Warming in Waquoit Bay, USA, and a Shift to Pelagic Dominance. Estuaries and Coasts, 2023, 46, 941-958.	1.0	2
1239	A systematic overview, trends and global perspectives on blue carbon: A bibliometric study (2003–2021). Ecological Indicators, 2023, 148, 110063.	2.6	7
1240	Sentinel-2 mapping of a turbid intertidal seagrass meadow in Southern Vietnam. Geocarto International, 2023, 38, .	1.7	1
1241	Insights into the regulation of energy metabolism during the seed-to-seedling transition in marine angiosperm Zostera marina L.: Integrated metabolomic and transcriptomic analysis. Frontiers in Plant Science, 0, 14, .	1.7	4
1242	Masked diversity and contrasting soil processes in tropical seagrass meadows: the control of environmental settings. Soil, 2023, 9, 189-208.	2.2	1
1243	Understanding community awareness of seagrass ecosystem services for their blue carbon conservation in marine protected areas: A case study of Karimunjawa National Park. Ecological Research, 2023, 38, 541-556.	0.7	3
1244	Seagrass detritus as marine macroinvertebrates attractor. , 0, , 619-626.		0
1245	The role of macroalgal habitats as ocean acidification refugia within coastal seascapes. , 2023, 1, .		1
1246	Sea Grape Caulerpa Racemosa Carbon Stock Productivity with Enviteg Aquafarm Cultivation Technology. IOP Conference Series: Earth and Environmental Science, 2023, 1148, 012021.	0.2	0
1247	Air–sea gas exchange in a seagrass ecosystem – results from a ³ He â^• SF _{6release experiment. Biogeosciences, 2023, 20, 1075-1087.}	> tracer 1.3	5
1248	Studies on the Composition and Diversity of Seagrass Ruppia sinensis Rhizosphere Mmicroorganisms in the Yellow River Delta. Plants, 2023, 12, 1435.	1.6	1

#	Article	IF	CITATIONS
1249	Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink. Nature Communications, 2023, 14, .	5.8	12
1250	Geographic variation in organic carbon storage by seagrass beds. Limnology and Oceanography, 2023, 68, 1256-1268.	1.6	3
1251	Seed Provision Efficacy of Detached Reproductive Shoots in Restoration Projects for Degraded Eelgrass (Zostera marina L.) Meadows. Sustainability, 2023, 15, 5904.	1.6	0
1252	Soil Carbon, Nitrogen, and Phosphorus Stoichiometry and Fractions in Blue Carbon Ecosystems: Implications for Carbon Accumulation in Allochthonous-Dominated Habitats. Environmental Science & Technology, 2023, 57, 5913-5923.	4.6	9
1256	Is the Mangrove Restoration and Rehabilitation Program Successful in Riau Province, Indonesia?. , 2022, , .		0
1257	æµ·è‰åºŠé€€åŒ−ä,Žäį®åø1aೆ…¶æ²‰ç§¯ç‰©æœ‰æœºç¢³å,¨å~çš,,å½±å"è;‡ç¨‹. Chinese Science Bulletin, 202	2 .	0
1258	The influence of increased seawater HCO3â^' concentration on the survival, growth and physiology of the eelgrass Zostera marina. Estuarine, Coastal and Shelf Science, 2023, 287, 108340.	0.9	1
1267	Study of water-air CO2 gas exchange (CO2 flux) in seagrass ecosystems on the West Coast of Karimunjawa Island. AIP Conference Proceedings, 2023, , .	0.3	0
1271	Marine food webs, ecosystem models and stable isotopes. , 2023, , .		1
1296	Ocean ecosystem degradation and human populations. , 2023, , 243-264.		0
1316	Organic Carbon Cycling and Transformation. , 2023, , .		1
1318	Status and conservation challenges of the second-largest seagrass bed in India: Chilika lagoon. Environmental Science and Pollution Research, 2023, 30, 100265-100281.	2.7	1
1319	Phytoplankton/Seagrass Response to Management Interventions in Eutrophic Estuaries. , 2023, , .		1
1324	Blue Carbon Credit: An Approach Towards Net Zero Livelihood. , 2023, , 237-297.		0
1339	Practical Guide to Measuring Wetland Carbon Pools and Fluxes. Wetlands, 2023, 43, .	0.7	2
1355	Physical Ecosystem Engineers and the Functioning of Estuaries and Coasts. , 2023, , .		0
1360	Coastal Management: Adaptation and Resilience of Coastal Ecosystems to Environmental Change. , 2023, , .		0