Outcomes in Advanced Heart Failure Patients With Left Destination Therapy

Circulation: Heart Failure 5, 241-248 DOI: 10.1161/circheartfailure.111.963991

Citation Report

#	Article	IF	CITATIONS
1	Charting the Unfamiliar. ASAIO Journal, 2012, 58, 296.	0.9	0
2	Psychosocial factors and quality-of-life after heart transplantation and mechanical circulatory support. Current Opinion in Organ Transplantation, 2012, 17, 558-563.	0.8	27
3	Influence of LVAD Cannula Outflow Tract Location on Hemodynamics in the Ascending Aorta. ASAIO Journal, 2012, 58, 562-567.	0.9	46
4	Should Left Ventricular Assist Device Should Be Standard of Care for Patients With Refractory Heart Failure Who Are Not Transplantation Candidates?. Circulation, 2012, 126, 3081-3087.	1.6	7
5	Eptifibatide for the Treatment of HeartMate II Left Ventricular Assist Device Thrombosis. Circulation: Heart Failure, 2012, 5, e68-70.	1.6	39
6	Long-term mechanical circulatory support (destination therapy): OnÂtrack to compete with heart transplantation?. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 584-603.	0.4	229
8	Development of a Novel Echocardiography Ramp Test for Speed Optimization and Diagnosis of Device Thrombosis in Continuous-Flow Left Ventricular Assist Devices. Journal of the American College of Cardiology, 2012, 60, 1764-1775.	1.2	322
10	Current Status of Left Ventricular Assist Device Technology. Seminars in Thoracic and Cardiovascular Surgery, 2013, 25, 56-63.	0.4	34
11	Impact of Adverse Events on Ventricular Assist Device Outcomes. Current Heart Failure Reports, 2013, 10, 89-100.	1.3	23
12	Translational Approach to Heart Failure. , 2013, , .		3
13	Hospital to Home with Mechanical Circulatory Support. Current Heart Failure Reports, 2013, 10, 212-218.	1.3	8
14	Ventricular Assist Devices: Is Destination Therapy a Viable Alternative in the Non-Transplant Candidate?. Current Heart Failure Reports, 2013, 10, 101-107.	1.3	17
15	The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary. Journal of Heart and Lung Transplantation, 2013, 32, 157-187.	0.3	1,225
16	Should Eligibility for Heart Transplantation Be a Requirement for Left Ventricular Assist Device Use? Recommendations Based on a Systematic Review. Canadian Journal of Cardiology, 2013, 29, 1712-1720.	0.8	7
17	Pre-operative health status and outcomes after continuous-flow left ventricular assist device implantation. Journal of Heart and Lung Transplantation, 2013, 32, 1249-1254.	0.3	17
18	Mechanical circulatory support: devices, outcomes and complications. Heart Failure Reviews, 2013, 18, 35-53.	1.7	37
19	Pump Replacement for Left Ventricular Assist Device Failure Can Be Done Safely and Is Associated With Low Mortality. Annals of Thoracic Surgery, 2013, 95, 500-505.	0.7	115
20	Durable left ventricular assist devices - the minimum for referring cardiologists. Cor Et Vasa, 2013, 55, e377-e382.	0.1	0

ATION RED

#	Article	IF	CITATIONS
21	Outcomes of pediatric patients supported by the HeartMate II left ventricular assist device in the United States. Journal of Heart and Lung Transplantation, 2013, 32, 1107-1113.	0.3	102
22	Predicting Survival in Patients Receiving Continuous Flow Left Ventricular Assist Devices. Journal of the American College of Cardiology, 2013, 61, 313-321.	1.2	289
23	Septuagenarians Bridged to Heart Transplantation With a Ventricular Assist Device Have Outcomes Similar to Younger Patients. Annals of Thoracic Surgery, 2013, 95, 1251-1261.	0.7	13
24	Heart Failure. JACC: Heart Failure, 2013, 1, 1-20.	1.9	612
25	Con: Patient's Desire for Termination of Destination LVAD Therapy Should Be Respected. Journal of Cardiothoracic and Vascular Anesthesia, 2013, 27, 1051-1052.	0.6	4
26	Sympathetic Neural and Hemodynamic Responses to Upright Tilt in Patients With Pulsatile and Nonpulsatile Left Ventricular Assist Devices. Circulation: Heart Failure, 2013, 6, 293-299.	1.6	98
27	Low Bearing Wear in Explanted HeartMate II Left Ventricular Assist Devices After Chronic Clinical Support. ASAIO Journal, 2013, 59, 41-45.	0.9	25
28	Ethical challenges in advanced heart failure. Current Opinion in Supportive and Palliative Care, 2013, 7, 21-28.	0.5	15
29	Results with an Anticoagulation Protocol in 99 SynCardia Total Artificial Heart Recipients. ASAIO Journal, 2013, 59, 216-220.	0.9	27
30	Measuring Nonpulsatile Blood Pressure. Circulation: Heart Failure, 2013, 6, 879-880.	1.6	10
31	DYNAMICS OF DEVICE INNOVATION: IMPLICATIONS FOR ASSESSING VALUE. International Journal of Technology Assessment in Health Care, 2013, 29, 365-373.	0.2	19
32	Renal Failure in Patients with Left Ventricular Assist Devices. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 484-496.	2.2	80
33	Ten-Year Experience With Extended Criteria Cardiac Transplantation. Circulation: Heart Failure, 2013, 6, 1230-1238.	1.6	39
34	Cost of Ventricular Assist Devices. Circulation, 2013, 127, 743-748.	1.6	80
35	Electromagnetic Interference of Automatic Implantable Cardioverter Defibrillator and HeartWare Left Ventricular Assist Device. ASAIO Journal, 2013, 59, 136-139.	0.9	22
36	Heart transplantation vs long-term mechanical assist devices: clinical equipoise?. European Journal of Cardio-thoracic Surgery, 2013, 44, 195-197.	0.6	4
37	Left Ventricular Assist Devices: From the Bench to the Clinic. Cardiology, 2013, 125, 1-12.	0.6	18
38	Ethical Dilemm as Surrounding the Use of Ventricular Assist Devices in Supporting Patients with End-STage Organ Dysfunction. Methodist DeBakey Cardiovascular Journal, 2013, 9, 11-14.	0.5	13

#	Article	IF	CITATIONS
39	Autologous Muscular Treatment Options for Endstage Heart Failure — A Critical Appraisal of the Dynamic Cardiomyoplasty (DCMP) vs. a New Concept of a Closed-Loop Controlled DCMP (CLC-DCMP). , 0, , .		0
40	Current Status of Heart Transplantation and Left Ventricular Assist Device: Major Changes in the Last Decade. Hanyang Medical Reviews, 2014, 34, 185.	0.4	3
41	Left ventricular assist devices for prolonged mechanical circulatory support: a change of paradigm for end-stage heart failure. Sang Thrombose Vaisseaux, 2014, 26, 6-14.	0.1	0
42	The Successful Implantation of Continuous-Flow Left Ventricular Assist Device as a Destination Therapy in Korea: Echocardiographic Assessment. Journal of Korean Medical Science, 2014, 29, 137.	1.1	5
43	Ventricular assist device implantation improves skeletal muscle function, oxidative capacity, and growth hormone/insulinâ€like growth factorâ€1 axis signaling in patients with advanced heart failure. Journal of Cachexia, Sarcopenia and Muscle, 2014, 5, 297-305.	2.9	45
45	Thromboresistance Comparison of the HeartMate II Ventricular Assist Device With the Device Thrombogenicity Emulation-Optimized HeartAssist 5 VAD. Journal of Biomechanical Engineering, 2014, 136, 021014.	0.6	73
46	Ventricular Assist Devices: A Review of Psychosocial Risk Factors and Their Impact on Outcomes. Journal of Cardiac Failure, 2014, 20, 996-1003.	0.7	42
47	In-Hospital Cardiopulmonary Arrests in Patients With Left Ventricular Assist Devices. Journal of Cardiac Failure, 2014, 20, 899-904.	0.7	27
48	Left ventricular support adjustment to aortic valve opening with analysis of exercise capacity. Journal of Cardiothoracic Surgery, 2014, 9, 93.	0.4	22
49	An update on mechanical circulatory support for heart failure therapy. Current Opinion in Cardiology, 2014, 29, 167-173.	0.8	8
50	Thrombus Formation Patterns in the HeartMate II Ventricular Assist Device. ASAIO Journal, 2014, 60, 237-240.	0.9	52
51	Safety of Anticoagulation Reversal in Patients Supported with Continuous-Flow Left Ventricular Assist Devices. ASAIO Journal, 2014, 60, 381-384.	0.9	18
52	Is a Palpable Pulse Always Restored During Cardiopulmonary Resuscitation in a Patient With a Left Ventricular Assist Device?. American Journal of the Medical Sciences, 2014, 347, 322-327.	0.4	10
53	ls anti-platelet therapy needed in continuous flow left ventricular assist device patients? A single-centre experience. European Journal of Cardio-thoracic Surgery, 2014, 45, 55-60.	0.6	35
54	A contemporary review of mechanical circulatory support. Journal of Heart and Lung Transplantation, 2014, 33, 667-674.	0.3	73
55	Impact of pre-diabetes on heart transplant outcomes in patients with advanced heart failure. Journal of Heart and Lung Transplantation, 2014, 33, 215-217.	0.3	3
56	Late Bleeding and Neurological Sequelae After HeartMate II Left Ventricular Assist Device. Journal of the American College of Cardiology, 2014, 63, 889-890.	1.2	11
57	Pre-Operative Risk Factors of Bleeding and Stroke During Left Ventricular Assist Device Support. Journal of the American College of Cardiology, 2014, 63, 880-888.	1.2	203

#	Article	IF	CITATIONS
58	Long-term outcome of patients on continuous-flow left ventricular assist device support. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1606-1614.	0.4	31
59	Results of the Destination Therapy Post-Food and Drug Administration Approval Study With a Continuous Flow Left Ventricular Assist Device. Journal of the American College of Cardiology, 2014, 63, 1751-1757.	1.2	233
60	Impact of concurrent surgical valve procedures in patients receiving continuous-flow devices. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 581-589.	0.4	85
61	The usefulness of FDG PET/CT imaging in suspicion of LVAD infection. Journal of Nuclear Cardiology, 2014, 21, 845-848.	1.4	23
62	Results of the prospective multicenter Japanese bridge to transplant study with a continuous-flow left ventricular assist device. Journal of Artificial Organs, 2014, 17, 142-148.	0.4	7
63	Hepatic and Renal Function with Successful Long-term Support on a Continuous Flow Left Ventricular Assist Device. Heart Lung and Circulation, 2014, 23, 229-233.	0.2	39
64	Ventricular Assist Devices in Advanced-Stage Heart Failure. , 2014, , .		9
65	Body Position and Activity, But Not Heart Rate, Affect Pump Flows in Patients With Continuous-Flow Left Ventricular Assist Devices. JACC: Heart Failure, 2014, 2, 323-330.	1.9	37
66	Challenge of Informing Patient Decision Making: What Can We Tell Patients Considering Long-Term Mechanical Circulatory Support About Outcomes, Daily Life, and End-of-Life Issues?. Circulation: Cardiovascular Quality and Outcomes, 2014, 7, 179-187.	0.9	14
67	Diagnosis, Nonsurgical Management, and Prevention of LVAD Thrombosis. Journal of Cardiac Surgery, 2014, 29, 83-94.	0.3	33
68	Ambulatory Extra-Aortic Counterpulsation in Patients With Moderate to Severe Chronic Heart Failure. JACC: Heart Failure, 2014, 2, 526-533.	1.9	21
69	Current Options and Practices in Long-Term Ventricular Assist Devices. Current Surgery Reports, 2014, 2, 1.	0.4	0
70	A retrospective evaluation of fondaparinux for confirmed or suspected heparin-induced thrombocytopenia in left-ventricular-assist device patients. Journal of Cardiothoracic Surgery, 2014, 9, 55.	0.4	9
71	Effect of mechanical assistance of the systemic ventricle in single ventricle circulation with cavopulmonary connection. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1271-1275.	0.4	28
72	Institutional volume of heart transplantation with left ventricular assist device explantation influences graft survival. Journal of Heart and Lung Transplantation, 2014, 33, 931-936.	0.3	15
73	Trends in the Use and Outcomes of Ventricular AssistÂDevices Among MedicareÂBeneficiaries, 2006ÂThrough 2011. Journal of the American College of Cardiology, 2014, 63, 1395-1404.	1.2	56
74	Percutaneous Lead Dysfunction in the HeartMate II Left Ventricular Assist Device. Annals of Thoracic Surgery, 2014, 97, 1373-1378.	0.7	24
75	An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. Journal of Heart and Lung Transplantation, 2014, 33, 23-34.	0.3	421

#	Article	IF	CITATIONS
76	Hemolysis in left ventricular assist device: A retrospective analysis of outcomes. Journal of Heart and Lung Transplantation, 2014, 33, 44-50.	0.3	84
77	Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1326-1333.e1.	0.4	65
78	The use of eptifibatide for suspected pump thrombus or thrombosis in patients with left ventricular assist devices. Journal of Heart and Lung Transplantation, 2014, 33, 94-101.	0.3	52
79	The vexing problem of thrombosis in long-term mechanical circulatory support. Journal of Heart and Lung Transplantation, 2014, 33, 1-11.	0.3	176
80	Peak exercise capacity is a poor indicator of functional capacity for patients supported by a continuous-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 2014, 33, 213-215.	0.3	18
81	Current indications for heart transplantation and left ventricular assist device: A practical point of view. European Journal of Internal Medicine, 2014, 25, 422-429.	1.0	47
82	Early elevations in pump power with the HeartMate II left ventricular assist device do not predict late adverse events. Journal of Heart and Lung Transplantation, 2014, 33, 809-815.	0.3	15
83	Family Caregivers' inside Perspectives: Caring for an Adult with a Left Ventricular Assist Device as a Destination Therapy. Progress in Transplantation, 2014, 24, 332-340.	0.4	27
84	Challenges in Deactivating a Total Artificial Heart for a Patient With Capacity. Chest, 2014, 145, 625-631.	0.4	14
86	Characteristics of the Electrocardiogram in Patients with Continuous-Flow Left Ventricular Assist Devices. , 2015, 20, 62-68.		25
87	Circulatory support exceeding five years with a continuous-flow left ventricular assist device for advanced heart failure patients. Journal of Cardiothoracic Surgery, 2015, 10, 107.	0.4	19
88	Factors Related to Pump Thrombosis With the Heartmate II Left Ventricular Assist Device. Journal of Cardiac Surgery, 2015, 30, 775-780.	0.3	22
89	Left Ventricular Assist Devices Improve Functional Class without Normalizing Peak Oxygen Consumption. ASAIO Journal, 2015, 61, 237-243.	0.9	17
90	Early Physical Rehabilitation after Continuous Flow Left Ventricular Assist Device Implantation: Suggested Protocol and a Pilot Study. International Journal of Physical Medicine & Rehabilitation, 2015, 03, .	O.5	0
91	Durable Mechanical Circulatory Support versus Organ Transplantation: Past, Present, and Future. BioMed Research International, 2015, 2015, 1-11.	0.9	11
92	Anticoagulation strategies for left ventricular assist devices. Current Opinion in Cardiology, 2015, 30, 192-196.	0.8	11
93	Management of Pump Thrombosis in Patients with Left Ventricular Assist Devices. American Journal of Cardiovascular Drugs, 2015, 15, 89-94.	1.0	25
94	Health-related quality of life in mechanical circulatory support: Development of a new conceptual model and items for self-administration. Journal of Heart and Lung Transplantation, 2015, 34, 1292-1304.	0.3	29

#	Article	IF	CITATIONS
95	Pump Thrombosis: A Limitation of Contemporary Left Ventricular Assist Devices. Current Problems in Cardiology, 2015, 40, 511-540.	1.1	4
96	Safety of reduced anti-thrombotic strategies in HeartMate II patients: A one-year analysis of the US-TRACE Study. Journal of Heart and Lung Transplantation, 2015, 34, 1542-1548.	0.3	95
97	Radiologic assessment of HeartMate II position: Minimal pump migration after long-term support. Journal of Heart and Lung Transplantation, 2015, 34, 1617-1623.	0.3	24
99	Cardiac Tamponade in a Patient with a 50 mL SynCardia Total Artificial Heart. Journal of Cardiothoracic and Vascular Anesthesia, 2015, 29, e86-e89.	0.6	2
100	Comparison of 2-Year Outcomes of Extended Criteria Cardiac Transplantation Versus Destination Left Ventricular Assist Device Therapy Using Continuous Flow. American Journal of Cardiology, 2015, 116, 573-579.	0.7	17
101	Clinical Characteristics and Outcomes of Intravenous Inotropic Therapy in Advanced Heart Failure. Circulation: Heart Failure, 2015, 8, 880-886.	1.6	108
102	Intravenous Home Inotropic Use Is Safe in Pediatric Patients Awaiting Transplantation. Circulation: Heart Failure, 2015, 8, 64-70.	1.6	21
103	Kidney Dysfunction and Left Ventricular Assist Device Support: A Comprehensive Perioperative Review. CardioRenal Medicine, 2015, 5, 48-60.	0.7	29
104	Outcomes of Patients Implanted With a Left Ventricular Assist Device at Nontransplant Mechanical Circulatory Support Centers. American Journal of Cardiology, 2015, 115, 1254-1259.	0.7	20
105	Reduction in driveline infection rates: Results from the HeartMate II Multicenter Driveline Silicone Skin Interface (SSI) Registry. Journal of Heart and Lung Transplantation, 2015, 34, 781-789.	0.3	72
106	Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2015, 34, 522-529.	0.3	45
107	Left ventricular assist devices: a kidney's perspective. Heart Failure Reviews, 2015, 20, 519-532.	1.7	51
108	Advanced (Stage D) Heart Failure: A Statement From the Heart Failure Society of America Guidelines Committee. Journal of Cardiac Failure, 2015, 21, 519-534.	0.7	283
109	Device Exchange in HeartMate II Recipients. ASAIO Journal, 2015, 61, 144-149.	0.9	35
110	Cavopulmonary Support with a Microaxial Pump for the Failing Fontan Physiology. ASAIO Journal, 2015, 61, 49-54.	0.9	20
111	The Heartmate Risk Score Predicts Morbidity and Mortality in Unselected Left Ventricular Assist Device Recipients and Risk Stratifies INTERMACS Class 1 Patients. JACC: Heart Failure, 2015, 3, 283-290.	1.9	26
112	Left ventricular dimension decrement index early after axial flow assist device implantation: A novel risk marker for late pump thrombosis. Journal of Heart and Lung Transplantation, 2015, 34, 1561-1569.	0.3	5
113	Adverse neurologic events in patients bridged with long-term mechanical circulatory support: A device-specific comparative analysis. Journal of Heart and Lung Transplantation, 2015, 34, 1578-1585.	0.3	33

#	Article	IF	CITATIONS
114	Risk Assessment and Comparative Effectiveness of Left Ventricular AssistÂDevice and Medical Management inÂAmbulatory Heart Failure Patients. Journal of the American College of Cardiology, 2015, 66, 1747-1761.	1.2	311
115	Intraplatelet reactive oxygen species, mitochondrial damage and platelet apoptosis augment non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist device. Platelets, 2015, 26, 536-544.	1.1	19
117	Continuous-flow ventricular assist device exchange is safe and effective in prolonging support time in patients with end-stage heart failure. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 267-278.e1.	0.4	21
118	Noncardiac Surgical Procedures After Left Ventricular Assist Device Implantation. ASAIO Journal, 2016, 62, 370-374.	0.9	19
119	Systemic Thrombolysis Versus Device Exchange for Pump Thrombosis Management: A Single-Center Experience. ASAIO Journal, 2016, 62, 246-251.	0.9	32
120	Reduction of INCOR® driveline infection rate with silicone at the driveline exit site. Interactive Cardiovascular and Thoracic Surgery, 2016, 24, ivw336.	0.5	10
121	Left ventricular assist device: a bridge to transplant or destination therapy?. Postgraduate Medical Journal, 2016, 92, 271-281.	0.9	17
122	Thrombolytics in VAD management — A single-center experience. IJC Heart and Vasculature, 2016, 11, 49-54.	0.6	15
124	Watchful Waiting in Continuous-Flow Left Ventricular Assist Device Patients With Ongoing Hemolysis Is Associated With an Increased Risk for Cerebrovascular Accident or Death. Circulation: Heart Failure, 2016, 9, .	1.6	41
125	The NHLBI REVIVE-IT study: Understanding its discontinuation in the context of current left ventricular assist device therapy. Journal of Heart and Lung Transplantation, 2016, 35, 1277-1283.	0.3	67
126	Current Treatment Strategies for Heart Failure: Role of Device Therapy and LV Reconstruction. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 57.	0.4	10
128	Thrombosis in Continuous Flow Left Ventricular Assist Devices: Our Clinical Experience With Medical and Surgical Management. Transplantation Proceedings, 2016, 48, 2162-2167.	0.3	12
129	Quality of Life and Functional Capacity Assessment After Mechanical Circulatory Support: Divergent Study Results Exemplify the Need for Standardized and Dedicated Studies on Non-Mortality End-Points. Journal of Cardiac Failure, 2016, 22, 806-807.	0.7	1
130	Multicentre clinical trial experience with the HeartMate 3 left ventricular assist device: 30-day outcomes. European Journal of Cardio-thoracic Surgery, 2016, 50, 548-554.	0.6	39
131	Challenges faced in long term ventricular assist device support. Expert Review of Medical Devices, 2016, 13, 727-740.	1.4	2
132	The hemodynamic effects of the LVAD outflow cannula location on the thrombi distribution in the aorta: A primary numerical study. Computer Methods and Programs in Biomedicine, 2016, 133, 217-227.	2.6	10
133	Physical Capacity in LVAD Patients: Hemodynamic Principles, Diagnostic Tools and Training Control. International Journal of Artificial Organs, 2016, 39, 451-459.	0.7	19
134	HeartMate II Left Ventricular Assist Device Geometry on Chest Radiograph Does Not Correlate with Risk of Pump Thrombosis. ASAIO Journal, 2016, 62, 128-132.	0.9	7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
135	Role of echocardiography in patients with stroke. Journal of Cardiology, 2016, 68, 91-	99.	0.8	27
136	Vascular inflammation and abnormal aortic histomorphometry in patients after pulsat continuous-flow left ventricular assist device placement. Journal of Heart and Lung Tra 2016, 35, 1085-1091.	ile- and nsplantation,	0.3	13
137	Managing VAD Complications. Journal of the American College of Cardiology, 2016, 6	7, 2769-2771.	1.2	7
138	Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment le concentration. Acta Biomaterialia, 2016, 41, 247-252.	ngth and	4.1	25
139	Device Thrombosis During Destination Therapy. American Journal of the Medical Scien 441-446.	ces, 2016, 351,	0.4	1
140	A randomized controlled pilot trial to improve advance care planning for LVAD patient surrogates. Heart and Lung: Journal of Acute and Critical Care, 2016, 45, 186-192.	s and their	0.8	24
141	The Experience of Family Caregivers of Patients With a Left Ventricular Assist Device. F Transplantation, 2016, 26, 135-148.	Progress in	0.4	17
142	Hemorrhoids screening and treatment prior to LVAD: is it a necessity?. Journal of Card Surgery, 2016, 11, 58.	othoracic	0.4	1
143	Continuous-Flow Left Ventricular Assist Device Thrombosis. ASAIO Journal, 2016, 62, 3	3-5.	0.9	4
146	Right ventricular assist device results in worse post-transplant survival. Journal of Hear Transplantation, 2016, 35, 236-241.	t and Lung	0.3	19
147	Antiplatelet Therapy and Adverse Hematologic Events During Heart Mate II Support. C Failure, 2016, 9, e002296.	irculation: Heart	1.6	20
148	Adverse events in contemporary continuous-flow left ventricular assist devices: A mult comparison shows significant differences. Journal of Thoracic and Cardiovascular Surg 177-189.		0.4	120
149	Mid-term survival after continuous-flow left ventricular assist device versus heart trans Heart and Vessels, 2016, 31, 722-733.	plantation.	0.5	17
150	Correlation of Pre-Explant Lactate Dehydrogenase Concentrations and Findings During Pump Analysis of the HeartMate II Left Ventricular Assist Device. Annals of Thoracic Su 1207-1213.	g Post-Explant Irgery, 2017, 103,	0.7	4
151	Intrapericardial Left Ventricular Assist Device for Advanced Heart Failure. New England Medicine, 2017, 376, 451-460.	Journal of	13.9	628
152	Integrating palliative care into routine care of patients with heart failure: models for cl collaboration. Heart Failure Reviews, 2017, 22, 517-524.	inical	1.7	25
153	Bridge with a left ventricular assist device to a simultaneous heart and kidney transpla the United Network for Organ Sharing database. Journal of Cardiac Surgery, 2017, 32,		0.3	12
154	Perioperative Care of the Patient With the Total Artificial Heart. Anesthesia and Analge 1412-1422.	esia, 2017, 124,	1.1	7

~			-			
Сіт	ATI	ON	່ວ	ED.	\cap	ЭΤ
	A I I		- 10	LP		X I -

#	Article	IF	CITATIONS
155	Accuracy of Seattle Heart Failure Model and HeartMate II Risk Score in Non–Inotrope-Dependent Advanced Heart Failure Patients. Circulation: Heart Failure, 2017, 10, .	1.6	29
156	Mechanical and Surgical Options for Patients with End-Stage Heart Failure. , 2017, , 11-19.		0
157	Left Ventricular Assist Devices for LifelongÂSupport. Journal of the American College of Cardiology, 2017, 69, 2845-2861.	1.2	91
158	Heart assist devices and their impact on arterial Doppler: When the waveform appears flat or serrated. Australasian Journal of Ultrasound in Medicine, 2017, 20, 77-82.	0.3	0
159	Left Ventricular Assist Device in Older Adults. Heart Failure Clinics, 2017, 13, 619-632.	1.0	5
160	Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients. JACC: Heart Failure, 2017, 5, 518-527.	1.9	159
161	Stroke and Intracranial Hemorrhage in HeartMate II and HeartWare Left Ventricular Assist Devices: A Systematic Review. Neurocritical Care, 2017, 27, 17-25.	1.2	80
162	INTERMACS Analysis of Stroke During Support With Continuous-Flow LeftÂVentricular Assist Devices. JACC: Heart Failure, 2017, 5, 703-711.	1.9	134
163	Pharmacotherapeutic Management of Gastrointestinal Bleeding in Patients with Continuousâ€Flow Left Ventricular Assist Devices. Pharmacotherapy, 2017, 37, 1432-1448.	1.2	29
164	Ventricular Assist Devices: Current State and Challenges. Journal of Medical Devices, Transactions of the ASME, 2017, 11, .	0.4	7
165	Lactic Dehydrogenase in the In Vitro Evaluation of Hemolytic Properties of Ventricular Assist Device. Artificial Organs, 2017, 41, E274-E284.	1.0	7
166	Effect of Gender on the Risk of Neurologic Events and Subsequent Outcomes in Patients With Left Ventricular Assist Devices. American Journal of Cardiology, 2017, 119, 297-301.	0.7	22
167	Warfarin and Aspirin Versus Warfarin Alone for Prevention of Embolic Events in Patients with a HeartMate II Left Ventricular Assist Device. ASAIO Journal, 2017, 63, 731-735.	0.9	6
169	Advances in Continuous Flow Left Ventricular Assist Device Support for End-Stage Heart Failure. Cardiology in Review, 2017, 25, 84-88.	0.6	13
170	Percutaneous Driveline Fracture After Implantation of the HeartMate II Left Ventricular Assist Device: How Durable is Driveline Repair?. ASAIO Journal, 2017, 63, 542-545.	0.9	12
171	Driveline Infection in Ventricular Assist Devices and Its Implication in the Present Era of Destination Therapy. Open Journal of Cardiovascular Surgery, 2017, 9, 117906521771421.	0.6	30
172	Prevention and Infection Management in Mechanical Circulatory Support Device Recipients. Clinical Infectious Diseases, 2017, 64, 222-228.	2.9	23
173	Discriminatory performance of positive urine hemoglobin for detection of significant hemolysis in patients with continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2017, 36, 59-63.	0.3	11

#	Article	IF	CITATIONS
174	Long-term use of left ventricular assist devices: a report on clinical outcomes. Canadian Journal of Surgery, 2017, 60, 236-246.	0.5	11
175	False positive hepatitis C antibody test results in left ventricular assist device recipients: increased risk with age and transfusions. Journal of Thoracic Disease, 2017, 9, 205-210.	0.6	6
176	Regional Variation in Mortality, Major Complications, and Cost After Left Ventricular Assist Device Implantation in the United States (2009 to 2014). American Journal of Cardiology, 2018, 121, 1575-1580.	0.7	13
177	Incidence, Predictors, and Significance ofÂVentricular Arrhythmias in Patients WithÂContinuous-Flow Left Ventricular Assist Devices. JACC: Clinical Electrophysiology, 2018, 4, 257-264.	1.3	31
178	Platelet activation is a preoperative risk factor for the development of thromboembolic complications in patients with continuousâ€flow left ventricular assist device. European Journal of Heart Failure, 2018, 20, 792-800.	2.9	40
179	Reviewing the use of ventricular assist devices in the elderly: where do we stand today?. Expert Review of Cardiovascular Therapy, 2018, 16, 11-20.	0.6	3
180	Diagnosis of Device Thrombosis. , 2018, , 191-197.		0
181	Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate Under Continuous Flow Left Ventricular Assist Device Support. Artificial Organs, 2018, 42, 800-813.	1.0	15
182	Mechanical Circulatory Support Device Utilization and Heart Transplant Waitlist Outcomes in Patients With Restrictive and Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2018, 11, e004665.	1.6	22
183	Outcomes After Continuous-Flow Left Ventricular Assist Device Implantation as Destination Therapy at Transplant Versus Nontransplant Centers. Circulation: Heart Failure, 2018, 11, e004384.	1.6	14
184	Left Ventricular Assist Devices and the Kidney. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 348-355.	2.2	42
185	Catheter-directed Thrombolysis for Intermediate-Risk Pulmonary Embolism. Annals of the American Thoracic Society, 2018, 15, 134-144.	1.5	41
186	Long-Term Mechanical Durability of Left Ventricular Assist Devices: An Urgent Call for Periodic Assessment of Technical Integrity. ASAIO Journal, 2018, 64, 521-528.	0.9	2
187	Left Ventricular Assist Device Infections: A Systematic Review. ASAIO Journal, 2018, 64, 287-294.	0.9	105
188	Mechanical Circulatory Support for Advanced Heart Failure. , 2018, , .		1
189	Long-Term Survival in Patients Receiving a Continuous-Flow Left Ventricular Assist Device. Annals of Thoracic Surgery, 2018, 105, 696-701.	0.7	44
190	Acute kidney injury and 1-year mortality after left ventricular assist device implantation. Journal of Heart and Lung Transplantation, 2018, 37, 116-123.	0.3	33
191	Pump in Parallel—Mechanical Assistance of Partial Cavopulmonary Circulation Using a Conventional Ventricular Assist Device. ASAIO Journal, 2018, 64, 238-244.	0.9	5

#	Article	IF	CITATIONS
192	Successful establishment of a left ventricular assist device program in an emerging country: one year experience. Journal of Thoracic Disease, 2018, 10, S1743-S1750.	0.6	4
193	MitraClip procedure prior to left ventricular assist device implantation. Journal of Thoracic Disease, 2018, 10, S1763-S1768.	0.6	16
194	Continuous-Flow Device Engineering and Pump Technology. Cardiology Clinics, 2018, 36, 451-463.	0.9	7
195	Neurologic Events in Continuous-Flow Left Ventricular Assist Devices. Cardiology Clinics, 2018, 36, 531-539.	0.9	8
196	Artificial Lungs for Lung Failure. Journal of the American College of Cardiology, 2018, 72, 1640-1652.	1.2	20
197	Anticoagulation Therapy After Left Ventricular Assist Device Implantation. Circulation Journal, 2018, 82, 1245-1246.	0.7	1
198	Ambulatory Intravenous Inotropic Support and or Levosimendan in Pediatric and Congenital Heart Failure: Safety, Survival, Improvement, or Transplantation. Pediatric Cardiology, 2018, 39, 1315-1322.	0.6	7
199	Prevalence, Predictors, and Prognostic Value of Residual Tricuspid Regurgitation in Patients With Left Ventricular Assist Device. Journal of the American Heart Association, 2018, 7, .	1.6	28
200	Adult Experience With Long Term Devices. , 2018, , 719-732.		0
201	HVAD: The ENDURANCE SupplementalÂTrial. JACC: Heart Failure, 2018, 6, 792-802.	1.9	185
201 202	HVAD: The ENDURANCE SupplementalÂTrial. JACC: Heart Failure, 2018, 6, 792-802. Impact of Concomitant Mitral Valve Surgery With LVAD Placement: Systematic Review and Metaâ€Analysis. Artificial Organs, 2018, 42, 1139-1147.	1.9 1.0	185 22
	Impact of Concomitant Mitral Valve Surgery With LVAD Placement: Systematic Review and		
202	Impact of Concomitant Mitral Valve Surgery With LVAD Placement: Systematic Review and Metaâ€Analysis. Artificial Organs, 2018, 42, 1139-1147.		22
202 203	 Impact of Concomitant Mitral Valve Surgery With LVAD Placement: Systematic Review and Metaâ€Analysis. Artificial Organs, 2018, 42, 1139-1147. Descent into heart and lung failure. , 2018, , 3-36. Device Management and Flow Optimization on Left Ventricular Assist Device Support. Critical Care 	1.0	22 3
202 203 204	 Impact of Concomitant Mitral Valve Surgery With LVAD Placement: Systematic Review and Metaâ€Analysis. Artificial Organs, 2018, 42, 1139-1147. Descent into heart and lung failure. , 2018, , 3-36. Device Management and Flow Optimization on Left Ventricular Assist Device Support. Critical Care Clinics, 2018, 34, 453-463. Atrial Fibrillation Is Not Associated With Thromboembolism in Left Ventricular Assist Device Patients: 	1.0	22 3 18
202 203 204 205	Impact of Concomitant Mitral Valve Surgery With LVAD Placement: Systematic Review and Metaâ€Analysis. Artificial Organs, 2018, 42, 1139-1147. Descent into heart and lung failure. , 2018, , 3-36. Device Management and Flow Optimization on Left Ventricular Assist Device Support. Critical Care Clinics, 2018, 34, 453-463. Atrial Fibrillation Is Not Associated With Thromboembolism in Left Ventricular Assist Device Patients: A Systematic Review and Meta-Analysis. ASAIO Journal, 2019, 65, 456-464. Medical Therapy As Compared To Surgical Device Exchange for Left Ventricular Assist Device	1.0 1.0 0.9	22 3 18 5
202 203 204 205 206	Impact of Concomitant Mitral Valve Surgery With LVAD Placement: Systematic Review and Metaâ€Analysis. Artificial Organs, 2018, 42, 1139-1147. Descent into heart and lung failure. , 2018, , 3-36. Device Management and Flow Optimization on Left Ventricular Assist Device Support. Critical Care Clinics, 2018, 34, 453-463. Atrial Fibrillation Is Not Associated With Thromboembolism in Left Ventricular Assist Device Patients: A Systematic Review and Meta-Analysis. ASAIO Journal, 2019, 65, 456-464. Medical Therapy As Compared To Surgical Device Exchange for Left Ventricular Assist Device Thrombosis: A Systematic Review and Meta-Analysis. ASAIO Journal, 2019, 65, 307-317.	1.0 1.0 0.9 0.9	22 3 18 5 30

#	Article	IF	CITATIONS
210	Impact of preoperative atrial fibrillation on thromboembolic events and pump thrombosis in long-term left ventricular assist device therapy. European Journal of Cardio-thoracic Surgery, 2020, 57, 325-330.	0.6	4
211	An in silico twin for epicardial augmentation of the failingÂheart. International Journal for Numerical Methods in Biomedical Engineering, 2019, 35, e3233.	1.0	24
212	In Vitro Endothelialization of Surface-Integrated Nanofiber Networks for Stretchable Blood Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 5740-5751.	4.0	11
213	Arteriovenous fistula creation in a patient without a pulse: Vascular access in patients with left ventricular assist devices. Journal of Vascular Access, 2019, 20, 760-762.	0.5	3
214	Effect of Hospital Ownership on Outcomes After Left Ventricular Assist Device Implantation in the United States. Annals of Thoracic Surgery, 2019, 107, 527-532.	0.7	7
215	Developing a patient individualized flexible silicone implant using SLS and vacuum die casting. AIP Conference Proceedings, 2019, , .	0.3	2
216	Left ventricular assist devices and their complications: A review for emergency clinicians. American Journal of Emergency Medicine, 2019, 37, 1562-1570.	0.7	57
217	2019 EACTS Expert Consensus on long-term mechanical circulatory support. European Journal of Cardio-thoracic Surgery, 2019, 56, 230-270.	0.6	255
218	Triple bridge of mechanical circulatory support to heart transplantation listing: A case report. SAGE Open Medical Case Reports, 2019, 7, 2050313X1983481.	0.2	0
219	Creation of the Fontan circulation in sheep: a survival model. Interactive Cardiovascular and Thoracic Surgery, 2019, 29, 15-21.	0.5	8
220	Evaluation of anticoagulation and nonsurgical major bleeding in recipients of continuousâ€flow left ventricular assist devices. Artificial Organs, 2019, 43, 736-744.	1.0	7
221	Effect of Angiotensin II Inhibitors on Gastrointestinal Bleeding in Patients With LeftÂVentricular Assist Devices. Journal of the American College of Cardiology, 2019, 73, 1769-1778.	1.2	55
222	Mechanical Circulatory Support Part II; Management of Devices After Implantation, Incl. Complications. Cardiovascular Medicine, 2019, , 307-317.	0.0	0
223	Fatal Neurologic Dysfunction During Continuous-Flow Left Ventricular Assist Device Support. Annals of Thoracic Surgery, 2019, 107, 1132-1138.	0.7	7
225	Left Ventricular Assist Devices: How Do We Define Success?. ASAIO Journal, 2019, 65, 430-435.	0.9	8
226	Bloodstream Infections in Continuous Flow Left Ventricular Assist Device Recipients: Diagnostic and Clinical Implications. ASAIO Journal, 2019, 65, 798-805.	0.9	11
227	Electrocardiographic changes after implantation of a left ventricular assist device – Potential implications for subcutaneous defibrillator therapy. Journal of Electrocardiology, 2019, 52, 29-34.	0.4	10
228	Noninvasive Blood Pressure Monitor Designed for Patients With Heart Failure Supported with Continuous-Flow Left Ventricular Assist Devices. ASAIO Journal, 2019, 65, 127-133.	0.9	11

#	Article	IF	CITATIONS
229	Trends in utilization, mortality, major complications, and cost after total artificial heart implantation in the United States (2009-2015). Hellenic Journal of Cardiology, 2020, 61, 407-412.	0.4	8
230	Factors defining occurrence of ischemic and hemorrhagic strokes during continuous flow left ventricular assist device support. General Thoracic and Cardiovascular Surgery, 2020, 68, 319-327.	0.4	13
231	Circulatory Assist Devices in Heart Failure. , 2020, , 649-664.e3.		0
233	Quality of life and treatment preference for ventricular assist device therapy in ambulatory advanced heart failure: A report from the REVIVAL study. Journal of Heart and Lung Transplantation, 2020, 39, 27-36.	0.3	15
234	Clinical Significance of Early Hospital Readmission in Continuous-Flow Left Ventricular Assist Device Patients. ASAIO Journal, 2020, 66, 760-765.	0.9	5
235	Treatment of HeartMate II Short-to-Shield Patients With an Ungrounded Cable: Indications and Long-Term Outcomes. ASAIO Journal, 2020, 66, 381-387.	0.9	7
236	Impact of Socioeconomic Factors on Patient Desire for Early LVAD Therapy Prior to Inotrope Dependence. Journal of Cardiac Failure, 2020, 26, 316-323.	0.7	9
237	Clinical Trial Results in Mechanical Circulatory Support. , 2020, , 175-188.		0
238	Psychosocial and Quality of Life Issues in Mechanical Circulatory Support. , 2020, , 189-201.		0
239	Survival on the Heart Transplant Waiting List. JAMA Cardiology, 2020, 5, 1227.	3.0	52
241	Redo sternotomy versus left ventricular assist device explant as risk factors for early mortality following heart transplantation. Interactive Cardiovascular and Thoracic Surgery, 2020, 31, 603-610.	0.5	6
242	Strategies of Wait-listing for Heart Transplant vs Durable Mechanical Circulatory Support Alone for Patients With Advanced Heart Failure. JAMA Cardiology, 2020, 5, 652.	3.0	26
243	Incidence and impact of acute kidney injury on patients with implantable left ventricular assist devices: a Meta-analysis. Renal Failure, 2020, 42, 495-512.	0.8	15
244	Acquired von Willebrand Syndrome and Platelet Function Defects during Extracorporeal Life Support (Mechanical Circulatory Support). Hamostaseologie, 2020, 40, 221-225.	0.9	27
245	American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. Journal of Heart and Lung Transplantation, 2020, 39, 187-219.	0.3	71
246	Sex differences in eligibility for advanced heart failure therapies. Clinical Transplantation, 2020, 34, e13839.	0.8	16
247	American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 865-896.	0.4	41
248	Ultrasoundâ€based estimation of remaining cardiac function in LVADâ€supported ex vivo hearts. Artificial Organs, 2020, 44, E326-E336.	1.0	3

#	Article	IF	CITATIONS
249	Eligibility for subcutaneous implantable cardioverter-defibrillator in patients with left ventricular assist device. Journal of Interventional Cardiac Electrophysiology, 2021, 60, 303-311.	0.6	7
250	Identification of characteristics, risk factors, and predictors of recurrent LVAD thrombosis: conditions in HeartWare devices. Journal of Artificial Organs, 2021, 24, 173-181.	0.4	14
251	Considerations for Long-Term Dialysis Access in Patients with Left Ventricular Assist Devices. Annals of Vascular Surgery, 2021, 70, 568.e13-568.e17.	0.4	2
252	Therapeutic advances in cardiac targeted drug delivery: from theory to practice. Journal of Drug Targeting, 2021, 29, 235-248.	2.1	8
253	Contemporary outcomes of continuous-flow left ventricular assist devices—a systematic review. Annals of Cardiothoracic Surgery, 2021, 10, 186-208.	0.6	26
254	Exercise Tolerance in Patients Treated With a Durable Left Ventricular Assist Device: Importance of Myocardial Recovery. Journal of Cardiac Failure, 2021, 27, 486-493.	0.7	5
255	The Impact of Adverse Events on Functional Capacity and Quality of Life After HeartWare Ventricular Assist Device Implantation. ASAIO Journal, 2021, Publish Ahead of Print, 1159-1162.	0.9	1
256	A Comprehensive Review of Risk Factor, Mechanism, and Management of Left Ventricular Assist Device–Associated Stroke. Seminars in Neurology, 2021, 41, 411-421.	0.5	2
257	Clinical outcomes and healthcare expenditures in the real world with left ventricular assist devices – The CLEAR-LVAD study. Journal of Heart and Lung Transplantation, 2021, 40, 323-333.	0.3	26
258	Continuous flow left ventricular assist devices do not worsen endothelial function in subjects with chronic heart failure: a pilot study. ESC Heart Failure, 2021, 8, 3587-3593.	1.4	8
259	Rates and types of infections in left ventricular assist device recipients: A scoping review. JTCVS Open, 2021, , .	0.2	3
260	Outflow cannula position for left ventricular assist device: A propensity scoreâ€matched study. Journal of Cardiac Surgery, 2021, 36, 4095-4101.	0.3	1
261	Frailty Assessment in Heart Failure and Ventricular Assist Device Populations: A Review from the United States. Heart and Lung: Journal of Acute and Critical Care, 2021, 50, 941-952.	0.8	2
262	Opportunities and Challenges for LVAD Therapy Now and in the Future. , 2014, , 1-22.		2
263	Innovation Update. , 2014, , 131-142.		1
264	Health-Related Quality of Life in Patients With a Left Ventricular Assist Device (QOLVAD) Questionnaire. Journal of Cardiovascular Nursing, 2021, 36, 172-184.	0.6	6
265	Clinically Silent Brain Injury and Perioperative Neurological Events in Patients With Left Ventricular Assist Device. ASAIO Journal, 2020, Publish Ahead of Print, 917-922.	0.9	5
266	The Effects of Left Ventricular Assist Device Support Level on the Biomechanical States of Aortic Valve. Medical Science Monitor, 2018, 24, 2003-2017.	0.5	5

	CITATION		
#	Article	IF	CITATIONS
267	Microparticle discrimination using laser feedback interferometry. Optics Express, 2018, 26, 25778.	1.7	8
268	Low Incidence of Pump-Related Infections in Jarvik 2000 Ventricular Assist Device Recipients with a Subcostal Driveline Exit Site. Texas Heart Institute Journal, 2019, 46, 179-182.	0.1	3
269	Renal Function and Outcomes With Use of Left Ventricular Assist Device Implantation and Inotropes in End-Stage Heart Failure: A Retrospective Single Center Study. Journal of Clinical Medicine Research, 2017, 9, 596-604.	0.6	9
270	Ventricular Assist Devices – Evolution of Surgical Heart Failure Treatment. European Cardiology Review, 2014, 9, 54.	0.7	10
271	Management of Patients with Heart Failure: Focus on New Pharmaceutical and Device Options. Current Medicinal Chemistry, 2020, 27, 4522-4535.	1.2	2
272	Understanding and Addressing Variation in Health Care–Associated Infections After Durable Ventricular Assist Device Therapy: Protocol for a Mixed Methods Study. JMIR Research Protocols, 2020, 9, e14701.	0.5	5
273	Pump thrombosis-A riddle wrapped in a mystery inside an enigma. Annals of Cardiothoracic Surgery, 2014, 3, 450-71.	0.6	61
274	Short and long term outcomes of 200 patients supported by continuous-flow left ventricular assist devices. World Journal of Cardiology, 2015, 7, 792.	0.5	46
275	Association between continuousâ€flow left ventricular assist device infections requiring longâ€term antibiotic use and postâ€heart transplant morbidity and mortality. Journal of Cardiac Surgery, 2022, 37, 96-104.	0.3	5
276	Left Ventricular Assist Devices: From Bridge to Transplant to Destination Therapy. , 2013, , 385-423.		0
277	Improving Clinical Outcomes: A Targeted Approach. , 2014, , 73-96.		0
279	Acute Kidney Injury in the Era of Ventricular Assist Devices. , 2015, , 111-124.		0
280	Acute Operative Intervention for Intracranial Hemorrhage in Adult Patients with Ventricular Assist Device Therapy Associated with Fatal Outcomes. International Journal of Surgery Research & Practice, 2014, 1, .	0.1	1
281	Bridge to Transplant and Destination Therapy Strategies in the United States. , 2017, , 121-129.		0
282	Cardiac Support Devices and Their Use in Infants and Children in the Overall Strategy of Cardiac Transplantation. , 2018, , 1-19.		0
283	Outcomes Using LVADs for Destination Therapy. , 2018, , 209-219.		0
284	Anesthesia Issues in Patients with VADs Presenting for Noncardiac Surgery. , 2018, , 155-171.		0
285	Cardiac Support Devices and Their Use in Infants and Children in the Overall Strategy of Cardiac Transplantation. , 2018, , 709-727.		0

#	Article	IF	CITATIONS
286	Treatment of Left Ventricular Assist Device Thrombosis: Single-Center Experience. Experimental and Clinical Transplantation, 2018, 16, 165-167.	0.2	0
290	Cardiorenal Syndrome in a Patient with Mechanical Circulatory Support. , 2020, , 227-247.		0
291	A Rising Hope of an Artificial Heart: Left Ventricular Assisted Device - Outcome, Convenience, and Quality of Life. Cureus, 2019, 11, e5617.	0.2	5
292	Recovery From Exhaustion of the Frank-Starling Mechanism by Mechanical Unloading With a Continuous-Flow Ventricular Assist Device. Circulation Journal, 2020, 84, 1124-1131.	0.7	3
293	Outcomes of Ambulatory Heart Failure Patients Managed With an Intra-aortic Balloon Pump Before Left Ventricular Assist Device Implantation. ASAIO Journal, 2021, 67, 430-435.	0.9	0
295	End-Organ Physiology Under Continuous-Flow Mechanical Circulatory Support. , 2020, , 279-300.		0
296	VentrikulÄ ¤ e Unterstützungssysteme. , 2020, , 243-259.		0
297	III. Treatment of Heart Failure; 5. Therapeutics for Patients with Severe Heart Failure. The Journal of the Japanese Society of Internal Medicine, 2020, 109, 232-239.	0.0	0
298	Non-patient factors associated with infections in LVAD recipients: A scoping review. Journal of Heart and Lung Transplantation, 2022, 41, 1-16.	0.3	8
299	Sarcopenia in Patients with End-Stage Cardiac Failure Requiring Ventricular Assist Device or Heart Transplantation. , 0, , .		0
300	Physical therapy management of two patients with stage d heart failure in the cardiac medical intensive care unit. Cardiopulmonary Physical Therapy Journal, 2012, 23, 37-45.	0.2	2
301	Left Ventricular Assist Devices for Destination Therapy: A Health Technology Assessment. Ontario Health Technology Assessment Series, 2016, 16, 1-60.	3.0	4
302	New developments in the surgical management of end-stage heart failure. Missouri Medicine, 2012, 109, 288-94.	0.3	0
303	Left ventricular assist devices as destination therapy in stage D heart failure. Journal of Geriatric Cardiology, 2019, 16, 592-600.	0.2	4
304	Special Considerations for Durable Left Ventricular Assist Device Use in Small Patients. ASAIO Journal, 2022, Publish Ahead of Print, .	0.9	1
305	The History of Durable Left Ventricular Assist Devices and Comparison of Outcomes: HeartWare, HeartMate II, HeartMate 3, and the Future of Mechanical Circulatory Support. Journal of Clinical Medicine, 2022, 11, 2022.	1.0	5
306	Continuous-flow left ventricular assist device: Current knowledge, complications, and future directions. Cardiology Journal, 2022, 29, 293-304.	0.5	6
307	Outcomes in Patients With Chronic Kidney Disease and End-stage Renal Disease and Durable Left Ventricular Assist Device: Insights From the United States Renal Data System Database. Journal of Cardiac Failure, 2022, 28, 1604-1614.	0.7	6

#	Article	IF	CITATIONS
309	Outcomes and hospital admissions during long-term support with a HeartMate II. Scandinavian Cardiovascular Journal, 2015, 49, 367-75.	0.4	6
310	Retrograde washout of prepump LVAD thrombosis in a patient on HeartWareâ,,¢ support. Journal of Cardiac Surgery, 0, , .	0.3	1
311	Left ventricular assist devices: A historical perspective at the intersection of medicine and engineering. Artificial Organs, 2022, 46, 2343-2360.	1.0	11
312	Recurrent Heart Failure after Left Ventricular Assist Device Placement. , 0, , .		0
313	Quality of Life Following the Use of Mechanical Circulatory Support Devices. , 2022, , 9-16.		0
314	Left Ventricular Assist Devices: A Primer For the General Cardiologist. Journal of the American Heart Association, 2022, 11, .	1.6	7
315	Outcomes of concomitant aortic valve procedures and left ventricular assist device implantation: A systematic review and metaâ€analysis. Artificial Organs, 2023, 47, 470-480.	1.0	0
316	How does age affect outcomes after left ventricular assist device implantation: results from the PCHFâ€VAD registry. ESC Heart Failure, 2023, 10, 884-894.	1.4	7
317	Controversies and challenges of coil embolization for intracranial aneurysm in a continuous-flow LVAD implanted patient: A case report. , 0, 14, 34.		0