Polymorphs, Salts, and Cocrystals: Whatâ€₅¶n a Name?

Crystal Growth and Design 12, 2147-2152 DOI: 10.1021/cg3002948

Citation Report

#	Article	IF	CITATIONS
2	Pharmaceutical co-crystals with isonicotinamide. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s220-s220.	0.3	0
3	Synthon Modularity in 4-Hydroxybenzamide–Dicarboxylic Acid Cocrystals. Crystal Growth and Design, 2012, 12, 6188-6198.	1.4	49
4	Potassium caffeate/caffeic acid co-crystal: the rat race between the catecholic and carboxylic moieties in an atypical co-crystal. Dalton Transactions, 2012, 41, 14337.	1.6	9
5	Co-Crystals and Co-Crystal Hydrates of the Antibiotic Nitrofurantoin: Structural Studies and Physicochemical Properties. Crystal Growth and Design, 2012, 12, 5925-5938.	1.4	72
6	Cocrystal Systems of Pharmaceutical Interest: 2011. Crystal Growth and Design, 2012, 12, 5823-5832.	1.4	78
7	Patents and the US FDA's definition of â€~cocrystal': an ordinary and customary meaning?. Pharmaceutical Patent Analyst, 2012, 1, 513-515.	0.4	2
8	Crystalline adducts of some substituted salicylic acids with 4-aminopyridine, including hydrates and solvates: contact and separated ionic complexes with diverse supramolecular synthons. CrystEngComm, 2012, 14, 7466.	1.3	24
9	Combining piracetam and lithium salts: ionic co-crystals and co-drugs?. Chemical Communications, 2012, 48, 8219.	2.2	65
10	Cocrystal Hydrate of an Antifungal Drug, Griseofulvin, with Promising Physicochemical Properties. Crystal Growth and Design, 2012, 12, 5858-5863.	1.4	61
11	Acid–base crystalline complexes and the pKa rule. CrystEngComm, 2012, 14, 6362.	1.3	464
12	Crystal Engineering of Isostructural Quaternary Multicomponent Crystal Forms of Olanzapine. Crystal Growth and Design, 2012, 12, 4194-4201.	1.4	60
13	Identifying the intermolecular hydrogen-bonding supramolecular synthons in an indomethacin–nicotinamide cocrystal by solid-state NMR. Chemical Communications, 2012, 48, 10844.	2.2	72
14	The A to Z of pharmaceutical cocrystals: a decade of fast-moving new science and patents. Pharmaceutical Patent Analyst, 2012, 1, 313-327.	0.4	84
15	Two closely related, and unexpected, quinolinone derivatives: a three-dimensional hydrogen-bonded framework structure and a hydrogen-bonded molecular ribbon of <i>R</i> ₂ ² (18) and <i>R</i> ₄ ⁴ (24) rings. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, o220-o225.	0.4	0
16	Ionic liquids in drug delivery. Expert Opinion on Drug Delivery, 2013, 10, 1367-1381.	2.4	186
17	Polymorphism, what it is and how to identify it: a systematic review. RSC Advances, 2013, 3, 16905.	1.7	166
18	Spontaneous cocrystal hydrate formation in the solid state: crystal structure aspects and kinetics. New Journal of Chemistry, 2013, 37, 2978.	1.4	22

#	Article	IF	CITATIONS
20	Solubility and dissolution rate of a carbamazepine–cinnamic acid cocrystal. Journal of Molecular Liquids, 2013, 187, 171-176.	2.3	48
21	Charge-Assisted Soft Supramolecular Porous Frameworks: Effect of External Stimuli on Structural Transformation and Adsorption Properties. Crystal Growth and Design, 2013, 13, 4824-4836.	1.4	18
22	Structural diversity in the complexes based on a hetero-trimetallic Cu2Cd node and dicyanamide spacer: a hexanuclear cluster, a 1D stair polymer and a 1D zigzag chain as supramolecular isomers, and a 3D network. CrystEngComm, 2013, 15, 9444.	1.3	46
23	Cocrystallization for successful drug delivery. Expert Opinion on Drug Delivery, 2013, 10, 201-213.	2.4	184
24	Crystal and Molecular Structure and Stability of Isoniazid Cocrystals with Selected Carboxylic Acids. Crystal Growth and Design, 2013, 13, 1082-1090.	1.4	67
25	Understanding the Effects of Ionicity in Salts, Solvates, Co-Crystals, Ionic Co-Crystals, and Ionic Liquids, Rather than Nomenclature, Is Critical to Understanding Their Behavior. Crystal Growth and Design, 2013, 13, 965-975.	1.4	115
26	Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. International Journal of Pharmaceutics, 2013, 453, 88-100.	2.6	277
27	The role of co-crystals in pharmaceutical design. Trends in Pharmacological Sciences, 2013, 34, 185-193.	4.0	276
28	Polymorphs or solvates? Coordination of 3,5-dihydroxybenzoate to copper and zinc metal centers. Inorganica Chimica Acta, 2013, 394, 729-740.	1.2	10
29	Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics, 2013, 453, 101-125.	2.6	501
30	Green Synthesis of Ibuprofen–Nicotinamide Cocrystals and In-Line Evaluation by Raman Spectroscopy. Crystal Growth and Design, 2013, 13, 1510-1517.	1.4	56
31	On the influence of using a zwitterionic coformer for cocrystallization: structural focus on naproxen–proline cocrystals. CrystEngComm, 2013, 15, 3341.	1.3	44
32	Probing Hydrogen Bonding in Cocrystals and Amorphous Dispersions Using ¹⁴ N– ¹ H HMQC Solid-State NMR. Molecular Pharmaceutics, 2013, 10, 999-1007.	2.3	119
33	4-Aminosalicylic Acid Adducts. Crystal Growth and Design, 2013, 13, 1551-1557.	1.4	35
34	Mechanochemical preparation of co-crystals. Chemical Society Reviews, 2013, 42, 7638.	18.7	392
35	Molecular Salts of Anesthetic Lidocaine with Dicarboxylic Acids: Solid-State Properties and a Combined Structural and Spectroscopic Study. Crystal Growth and Design, 2013, 13, 2564-2572.	1.4	38
36	Non-classical anticancer agents: on the way to water soluble zinc(ii) heteroleptic complexes. Dalton Transactions, 2013, 42, 6768.	1.6	38
37	Hydrogen Bonds in Cocrystals and Salts of 2-Amino-4,6-dimethylpyrimidine and Carboxylic Acids Studied by Nuclear Quadrupole Resonance. Journal of Physical Chemistry B, 2013, 117, 6946-6956.	1.2	9

#	Article	IF	Citations
38	Crystal Engineering: From Molecule to Crystal. Journal of the American Chemical Society, 2013, 135, 9952-9967.	6.6	1,239
39	Understanding the Formation of Indomethacin–Saccharin Cocrystals by Anti-Solvent Crystallization. Crystal Growth and Design, 2013, 13, 2067-2074.	1.4	32
40	Stabilization and spheroidization of ammonium nitrate: Co-crystallization with crown ethers and spherical crystallization by solvent screening. Chemical Engineering Journal, 2013, 225, 809-817.	6.6	38
41	Solvomorphism and catecholase activities of bis(μ-phenoxido)dicopper(II) complexes. Polyhedron, 2013, 61, 253-261.	1.0	26
42	New Solid Forms of the Anti-HIV Drug Etravirine: Salts, Cocrystals, and Solubility. Crystal Growth and Design, 2013, 13, 3681-3690.	1.4	67
43	Olanzapinium Salts, Isostructural Solvates, and Their Physicochemical Properties. Crystal Growth and Design, 2013, 13, 3672-3680.	1.4	66
44	Synthon Modularity in Cocrystals of 4-Bromobenzamide with <i>n</i> -Alkanedicarboxylic Acids: Type I and Type II Halogen···Halogen Interactions. Crystal Growth and Design, 2013, 13, 3242-3254.	1.4	116
45	Drug–Drug Coamorphous Systems: Characterization and Physicochemical Properties of Coamorphous Atorvastatin with Carvedilol and Glibenclamide. Journal of Pharmaceutical Innovation, 2013, 8, 218-228.	1.1	58
46	Why don't we find more polymorphs?. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 313-328.	0.5	179
47	Polymorphism: an evaluation of the potential risk to the quality of drug products from the Farmácia Popular Rede Própria. Brazilian Journal of Pharmaceutical Sciences, 2014, 50, 1-24.	1.2	42
48	Overcoming the problems of solid state drug formulations with ionic liquids. Therapeutic Delivery, 2014, 5, 489-491.	1.2	27
49	Lattice interactions and aggregation in solution—can the two be related?. Tetrahedron Letters, 2014, 55, 7076-7081.	0.7	1
50	Acetamidobenzoic acid isomers: Studying sublimation and fusion processes and their relation with crystal structures. Thermochimica Acta, 2014, 583, 72-77.	1.2	22
51	Pharmaceutical salts and cocrystals involving amino acids: A brief structural overview of the state-of-art. European Journal of Medicinal Chemistry, 2014, 74, 411-426.	2.6	95
52	Polymorphism in cocrystals: a review and assessment of its significance. CrystEngComm, 2014, 16, 3451.	1.3	242
53	Binary co-crystals of the active pharmaceutical ingredient 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene and camphoric acid. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 63-71.	0.5	6
54	Investigation of the phase transitions occurring during and after the dehydration of xylazine hydrochloride monohydrate. International Journal of Pharmaceutics, 2014, 469, 40-49.	2.6	3
55	Unusual cocrystals made of a Schiff base metal complex and an organic molecule – Close-packing vs. hydrogen bond interactions. Journal of Molecular Structure, 2014, 1072, 129-136.	1.8	6

#	Article	IF	CITATIONS
56	Formation of a Salt Enables Complete Deracemization of a Racemic Compound through Viedma Ripening. Crystal Growth and Design, 2014, 14, 1744-1748.	1.4	48
57	Physicochemical characterization of a new cocrystal of ketoconazole. Powder Technology, 2014, 262, 242-248.	2.1	36
58	Formulation of Liquid Propofol as a Cocrystalline Solid. Crystal Growth and Design, 2014, 14, 2422-2430.	1.4	35
59	Conformation of the umifenovir cation in the molecular and crystal structures of four carboxylic acid salts. Journal of Molecular Structure, 2014, 1056-1057, 63-69.	1.8	9
60	Eutectics as improved pharmaceutical materials: design, properties and characterization. Chemical Communications, 2014, 50, 906-923.	2.2	226
61	Hydrogen bond synthon competition in the stabilization of theophylline cocrystals. CrystEngComm, 2014, 16, 4753-4765.	1.3	56
62	Crystal engineering of homochiral molecular organization of naproxen in cocrystals and their thermal phase transformation studies. CrystEngComm, 2014, 16, 5811-5819.	1.3	17
63	Isolation of Two Different Ni ₂ Zn Complexes with an Unprecedented Cocrystal Formed by One of Them and a "Coordination Positional Isomer―of the Other. Inorganic Chemistry, 2014, 53, 434-445.	1.9	44
64	Nitazoxanide Cocrystals in Combination with Succinic, Glutaric, and 2,5-Dihydroxybenzoic Acid. Crystal Growth and Design, 2014, 14, 1086-1102.	1.4	36
65	Solubility of carbamazepine, nicotinamide and carbamazepine–nicotinamide cocrystal in ethanol–water mixtures. Fluid Phase Equilibria, 2014, 363, 97-105.	1.4	50
66	Cocrystallization with flufenamic acid: comparison of physicochemical properties of two pharmaceutical cocrystals. CrystEngComm, 2014, 16, 5793.	1.3	60
67	Co-crystal formation between 2-amino-4,6-dimethylpyrimidine and new p-xylylene-bis(thioacetic) acid. CrystEngComm, 2014, 16, 10262-10272.	1.3	16
68	Pharmaceutical co-crystals – are we there yet?. CrystEngComm, 2014, 16, 5753-5761.	1.3	85
69	Drug–drug salt forms of ciprofloxacin with diflunisal and indoprofen. CrystEngComm, 2014, 16, 7393-7396.	1.3	37
70	From discovery to scale-up: α-lipoic acid : nicotinamide co-crystals in a continuous oscillatory baffled crystalliser. CrystEngComm, 2014, 16, 5769-5780.	1.3	64
71	Solution cocrystallization, an effective tool to explore the variety of cocrystal systems: caffeine/dicarboxylic acid cocrystals. CrystEngComm, 2014, 16, 9603-9611.	1.3	32
72	Structural Determination of a Novel Polymorph of Sulfathiazole–Oxalic Acid Complex in Powder Form by Solid-State NMR Spectroscopy on the Basis of Crystallographic Structure of Another Polymorph. Crystal Growth and Design, 2014, 14, 4510-4518.	1.4	15
73	Introductory Lecture: Mechanochemistry, a versatile synthesis strategy for new materials. Faraday Discussions, 2014, 170, 9-34.	1.6	93

#	Article	IF	CITATIONS
74	Impact of pharmaceutical cocrystals: the effects on drug pharmacokinetics. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 1255-1271.	1.5	109
75	Structural insight into cocrystallization with zwitterionic co-formers: cocrystals of S-naproxen. CrystEngComm, 2014, 16, 8185.	1.3	31
76	Kinetic Entrapment of a Hidden Curcumin Cocrystal with Phloroglucinol. Crystal Growth and Design, 2014, 14, 5079-5089.	1.4	72
77	Antibacterial activity of Ionic Liquids based on ampicillin against resistant bacteria. RSC Advances, 2014, 4, 4301-4307.	1.7	93
78	Polymorphism in cocrystals of urea:4,4′-bipyridine and salicylic acid:4,4′-bipyridine. CrystEngComm, 2014, 16, 7587-7597.	1.3	32
79	Isothermal Suspension Conversion as a Route to Cocrystal Production: One-Pot Scalable Synthesis. Organic Process Research and Development, 2014, 18, 941-946.	1.3	12
80	Cocrystal Formation between Chiral Compounds: How Cocrystals Differ from Salts. Crystal Growth and Design, 2014, 14, 3996-4004.	1.4	57
81	An Investigation of the Causes of Cocrystal Dissociation at High Humidity. Journal of Pharmaceutical Sciences, 2014, 103, 2859-2864.	1.6	67
82	A Twist in Cocrystals of Salts: Changes in Packing and Chloride Coordination Lead to Opposite Trends in the Biopharmaceutical Performance of Fluoroquinolone Hydrochloride Cocrystals. Crystal Growth and Design, 2014, 14, 3078-3095.	1.4	28
83	Design of pharmaceutical cocrystals for drug solubility improvement. Russian Journal of General Chemistry, 2014, 84, 407-414.	0.3	22
84	lonic co-crystals of racetams: solid-state properties enhancement of neutral active pharmaceutical ingredients via addition of Mg2+ and Ca2+ chlorides. CrystEngComm, 2014, 16, 5887.	1.3	31
85	Ionic liquids for energy, materials, and medicine. Chemical Communications, 2014, 50, 9228-9250.	2.2	447
86	Does Chirality Influence the Tendency toward Cocrystal Formation?. Crystal Growth and Design, 2014, 14, 2880-2892.	1.4	14
87	Evaluation of the formation pathways of cocrystal polymorphs in liquid-assisted syntheses. CrystEngComm, 2014, 16, 8272-8278.	1.3	42
88	Polymorph Characterization of Active Pharmaceutical Ingredients (APIs) Using Low-Frequency Raman Spectroscopy. Applied Spectroscopy, 2014, 68, 758-776.	1.2	112
89	Batch Statistical Process Monitoring Approach to a Cocrystallization Process. Journal of Pharmaceutical Sciences, 2015, 104, 4099-4108.	1.6	21
90	Survival of the Fittest: Competitive Coâ€crystal Reactions in the Ball Mill. Chemistry - A European Journal, 2015, 21, 14969-14974.	1.7	37
91	What is a protein crystal? Can we apply the terminology of classical industrial crystallization to them?. Crystal Research and Technology, 2015, 50, 560-565.	0.6	13

# 92	ARTICLE Chemistry: Develop ionic liquid drugs. Nature, 2015, 528, 188-189.	IF 13.7	CITATIONS
93	Non-Covalent Derivatives: Cocrystals and Eutectics. Molecules, 2015, 20, 14833-14848.	1.7	73
94	Novel co-crystals of the nutraceutical sinapic acid. CrystEngComm, 2015, 17, 4832-4841.	1.3	39
95	A rare case of a dye co-crystal showing better dyeing performance. CrystEngComm, 2015, 17, 2083-2086.	1.3	12
96	Thermodynamic Solubility Profile of Carbamazepine–Cinnamic Acid Cocrystal at Different pH. Journal of Pharmaceutical Sciences, 2015, 104, 2559-2565.	1.6	36
97	New forms of old drugs: improving without changing. Journal of Pharmacy and Pharmacology, 2015, 67, 830-846.	1.2	76
98	Packing Problems: High <i>Z</i> ′ Crystal Structures and Their Relationship to Cocrystals, Inclusion Compounds, and Polymorphism. Chemical Reviews, 2015, 115, 2895-2933.	23.0	311
99	On the concomitant crystallization of amino acid crystals upon dissolution of some amino acid salt crystals. CrystEngComm, 2015, 17, 1483-1490.	1.3	2
100	Preparation and crystal structure of sildenafil salicylate. Mendeleev Communications, 2015, 25, 49-50.	0.6	11
101	Pharmaceutical Process Chemistry: Evolution of a Contemporary Data-Rich Laboratory Environment. Journal of Organic Chemistry, 2015, 80, 2943-2958.	1.7	39
102	The effect of excipients on the stability and phase transition rate of xylazine hydrochloride and zopiclone. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107, 168-174.	1.4	9
103	A new multicomponent salt of imidazole and tetrabromoterepthalic acid: Structural, optical, thermal, electrical transport properties and antibacterial activity along with Hirshfeld surface analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 144, 43-52.	2.0	13
104	Thermodynamic Modeling for Efficient Cocrystal Formation. Crystal Growth and Design, 2015, 15, 4406-4416.	1.4	36
105	<i>N</i> -(6-Methylpyridin-2-yl)mesitylenesulfonamide and acetic acid – a salt, a cocrystal or both?. Acta Crystallographica Section C, Structural Chemistry, 2015, 71, 653-657.	0.2	5
106	Cocrystal or Salt: Solid State-Controlled Iodine Shift in Crystalline Halogen-Bonded Systems. Crystal Growth and Design, 2015, 15, 3464-3473.	1.4	76
107	Supramolecular assemblies of 2-hydroxy-3-naphthoic acid and N-heterocycles via various strong hydrogen bonds and weak Xâ<ï€ (X = C–H, ï€) interactions. RSC Advances, 2015, 5, 40912-40923.	1.7	19
108	Cocrystals of itraconazole with amino acids: Screening, synthesis, solid state characterization, inÂvitro drug release and antifungal activity. Journal of Drug Delivery Science and Technology, 2015, 28, 46-55.	1.4	34
109	Solid–Liquid Phase Equilibrium and Ternary Phase Diagrams of Ibuprofen–Nicotinamide Cocrystals in Ethanol and Ethanol/Water Mixtures at (298.15 and 313.15) K. Journal of Chemical & Engineering Data, 2015, 60, 1166-1172.	1.0	20

#	Article	IF	CITATIONS
110	Co-crystals and molecular salts of carboxylic acid/pyridine complexes: can calculated p <i>K</i> _a 's predict proton transfer? A case study of nine complexes. CrystEngComm, 2015, 17, 3591-3595.	1.3	93
111	Molecular salts of propranolol with dicarboxylic acids: diversity of stoichiometry, supramolecular structures and physicochemical properties. CrystEngComm, 2015, 17, 9023-9028.	1.3	6
112	lonic, Neutral, and Hybrid Acid–Base Crystalline Adducts of Lamotrigine with Improved Pharmaceutical Performance. Crystal Growth and Design, 2015, 15, 5816-5826.	1.4	29
113	Furosemide Cocrystals with Pyridines: An Interesting Case of Color Cocrystal Polymorphism. Crystal Growth and Design, 2015, 15, 5858-5872.	1.4	35
114	A co-crystal of nonahydrated disodium(II) with mixed anions fromm-chlorobenzoic acid and furosemide. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1266-1269.	0.2	1
115	NMR crystallography of ezetimibe co-crystals. Solid State Nuclear Magnetic Resonance, 2015, 65, 29-40.	1.5	26
116	Cocrystallization of Nutraceuticals. Crystal Growth and Design, 2015, 15, 984-1009.	1.4	87
117	Synthesis, structure determination, and formation of a theobromine : oxalic acid 2 : 1 cocrystal. CrystEngComm, 2015, 17, 824-829.	1.3	36
118	Fundamentals of Industrial Crystallization. , 2015, , 1317-1349.		31
119	The solid-state continuum: a perspective on the interrelationships between different solid-state forms in drug substance and drug product. Journal of Pharmacy and Pharmacology, 2015, 67, 757-772.	1.2	23
120	Pharmaceutical Cocrystals: Regulatory and Strategic Aspects, Design and Development. Advanced Pharmaceutical Bulletin, 2016, 6, 479-494.	0.6	101
121	Properties of the Sodium Naproxen-Lactose-Tetrahydrate Co-Crystal upon Processing and Storage. Molecules, 2016, 21, 509.	1.7	13
122	In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid. Molecules, 2016, 21, 917.	1.7	33
123	Cocrystals of Ethenzamide: Study of Structural and Physicochemical Properties. Crystal Growth and Design, 2016, 16, 4473-4481.	1.4	21
124	Crystal engineering: co-crystals of cinnamic acid derivatives with a pyridyl derivative co-crystallizer. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 87-95.	0.5	5
125	Predicting the Aqueous Solubility of Pharmaceutical Cocrystals As a Function of pH and Temperature. Crystal Growth and Design, 2016, 16, 2726-2740.	1.4	40
126	Salt or cocrystal of salt? Probing the nature of multicomponent crystal forms with infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 167, 89-95.	2.0	25
127	Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies. Chemical Communications, 2016, 52, 8772-8786	2.2	111

#	Article	IF	CITATIONS
128	Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Advanced Drug Delivery Reviews, 2016, 101, 143-166.	6.6	160
129	Solvates, Salts, and Cocrystals: A Proposal for a Feasible Classification System. Crystal Growth and Design, 2016, 16, 3237-3243.	1.4	191
130	Transferability of cocrystallization propensities between aromatic and heteroaromatic amides. Structural Chemistry, 2016, 27, 1403-1412.	1.0	7
131	Pharmaceutical cocrystals: walking the talk. Chemical Communications, 2016, 52, 8342-8360.	2.2	428
132	Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic Materials by Cocrystallization. Angewandte Chemie, 2016, 128, 14229-14233.	1.6	29
133	Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic Materials by Cocrystallization. Angewandte Chemie - International Edition, 2016, 55, 14023-14027.	7.2	103
134	Co-crystallization and small molecule crystal form diversity: from pharmaceutical to materials applications. CrystEngComm, 2016, 18, 8528-8555.	1.3	131
135	Peculiar Case of Levetiracetam and Etiracetam α-Ketoglutaric Acid Cocrystals: Obtaining a Stable Conglomerate of Etiracetam. Crystal Growth and Design, 2016, 16, 5273-5282.	1.4	19
136	Organic cocrystals: the development of ferroelectric properties. Science China Materials, 2016, 59, 523-530.	3.5	35
137	Effect of Co-Crystal Formers on the Supramolecular Patterns and Luminescence Properties of Co-Crystals Comprising Fenbufen and Diverse N-Heterocycles. Australian Journal of Chemistry, 2016, 69, 836.	0.5	2
138	Supply and Demand in the Ball Mill: Competitive Cocrystal Reactions. Crystal Growth and Design, 2016, 16, 5843-5851.	1.4	44
139	Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. Topics in Current Chemistry, 2016, 374, 83.	3.0	52
140	Microanalysis of pharmaceutical cocrystals using a nano-spot method coupled with Raman spectroscopy. CrystEngComm, 2016, 18, 8004-8009.	1.3	3
141	Facts and Factors in the Formation and Stability of Binary Crystals. Crystal Growth and Design, 2016, 16, 6095-6104.	1.4	43
142	PAT-based design of agrochemical co-crystallization processes: A case-study for the selective crystallization of 1:1 and 3:2 co-crystals of p-toluenesulfonamide/triphenylphosphine oxide. Chemical Engineering Science, 2016, 152, 95-108.	1.9	28
143	Ionic Cocrystals of Racemic and Enantiopure Histidine: An Intriguing Case of Homochiral Preference. Crystal Growth and Design, 2016, 16, 7263-7270.	1.4	25
144	Improving Biopharmaceutical Properties of Vinpocetine Through Cocrystallization. Journal of Pharmaceutical Sciences, 2016, 105, 3626-3633.	1.6	27
145	Polymorphs, Hydrates, Cocrystals, and Cocrystal Hydrates: Thermodynamic Modeling of Theophylline Systems. Crystal Growth and Design, 2016, 16, 4439-4449.	1.4	30

	CITATION REI	PORT	
#	Article	IF	CITATIONS
146	Pressure-Stabilized Solvates of Xylazine Hydrochloride. Crystal Growth and Design, 2016, 16, 3756-3762.	1.4	10
147	Online Classification of Mixed Co-Crystal and Solute Suspensions using Raman Spectroscopy. Organic Process Research and Development, 2016, 20, 1068-1074.	1.3	12
148	Near infra red spectroscopy as a multivariate process analytical tool for predicting pharmaceutical co-crystal concentration. Journal of Pharmaceutical and Biomedical Analysis, 2016, 129, 172-181.	1.4	17
149	Predicting the Effect of pH on Stability and Solubility of Polymorphs, Hydrates, and Cocrystals. Crystal Growth and Design, 2016, 16, 4136-4147.	1.4	13
150	6-Chloroisocytosine and 5-bromo-6-methylisocytosine: again, one or two tautomers present in the same crystal?. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 84-93.	0.2	2
151	Validation of an enantioselective analysis for (l)-pidolic acid by chiral gas chromatography with derivatization. Journal of Pharmaceutical and Biomedical Analysis, 2016, 120, 79-83.	1.4	5
152	Pharmaceutical excipients — quality, regulatory and biopharmaceutical considerations. European Journal of Pharmaceutical Sciences, 2016, 87, 88-99.	1.9	88
153	Hydrogen-Bond Reorganization of a Solid-State Dehydration Process in a Salt of Tris(hydroxymethyl)aminomethane and Sulfosalicylic Acid, Investigated by Powder X-ray Diffraction. Journal of Chemical Crystallography, 2016, 46, 1-8.	0.5	4
154	Tuning the spontaneous formation kinetics of caffeine : malonic acid co-crystals. CrystEngComm, 2016, 18, 2617-2620.	1.3	14
155	Interactions of alkali- and alkaline earth-halides with carbohydrates in the crystalline state – the overlooked salt and sugar cocrystals. CrystEngComm, 2016, 18, 1676-1692.	1.3	28
156	Propensity of salicylamide and ethenzamide cocrystallization with aromatic carboxylic acids. European Journal of Pharmaceutical Sciences, 2016, 85, 132-140.	1.9	20
157	A zwitterionic 1D/2D polymer co-crystal and its polymorphic sub-components: a highly selective sensing platform for HIV ds-DNA sequences. Dalton Transactions, 2016, 45, 5092-5100.	1.6	39
158	Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discovery Today, 2016, 21, 481-490.	3.2	164
159	Glucose Isomerase Polymorphs Obtained Using an Ad Hoc Protein Crystallization Temperature Device and a Growth Cell Applying an Electric Field. Crystal Growth and Design, 2016, 16, 1679-1686.	1.4	18
160	Polymorphism of Mechanochemically Synthesized Cocrystals: A Case Study. Crystal Growth and Design, 2016, 16, 1701-1707.	1.4	84
161	Cocrystal production method reducing deposition risk of undesired single component crystals in anti-solvent cocrystallization. Journal of Industrial and Engineering Chemistry, 2016, 36, 40-43.	2.9	19
162	Solid–liquid phase equilibrium and ternary phase diagrams of ethenzamide-saccharin cocrystals in different solvents. Fluid Phase Equilibria, 2016, 419, 24-30.	1.4	19
163	Correlating the melting point alteration with the supramolecular structure in aripiprazole drug cocrystals. CrystEngComm, 2016, 18, 1024-1038.	1.3	22

#	Article	IF	CITATIONS
164	Improving Dissolution and Photostability of Vitamin K3 via Cocrystallization with Naphthoic Acids and Sulfamerazine. Crystal Growth and Design, 2016, 16, 483-492.	1.4	44
165	Investigation of an Amide-Pseudo Amide Hydrogen Bonding Motif within a Series of Theophylline:Amide Cocrystals. Crystal Growth and Design, 2016, 16, 51-58.	1.4	30
166	Pharmaceutical cocrystals: along the path to improved medicines. Chemical Communications, 2016, 52, 640-655.	2.2	753
167	Knowing When To Stop—Trapping Metastable Polymorphs in Mechanochemical Reactions. Crystal Growth and Design, 2017, 17, 1190-1196.	1.4	34
168	Manifestation of cocrystals and eutectics among structurally related molecules: towards understanding the factors that control their formation. CrystEngComm, 2017, 19, 1123-1132.	1.3	20
169	Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs?. Drug Discovery Today, 2017, 22, 1134-1138.	3.2	47
170	Preparation of Singleâ€Crystalline Heterojunctions for Organic Electronics. Advanced Materials, 2017, 29, 1606101.	11.1	82
171	Cocrystallization as a tool to solve deliquescence issues: The case of l-lactic acid. Journal of Crystal Growth, 2017, 472, 3-10.	0.7	10
172	Cocrystals of Baicalein with Higher Solubility and Enhanced Bioavailability. Crystal Growth and Design, 2017, 17, 1893-1901.	1.4	97
173	Co-crystal of Tramadol Hydrochloride–Celecoxib (ctc): A Novel API–API Co-crystal for the Treatment of Pain. Crystal Growth and Design, 2017, 17, 1884-1892.	1.4	109
174	Dapagliflozin-citric acid cocrystal showing better solid state properties than dapagliflozin. European Journal of Pharmaceutical Sciences, 2017, 104, 255-261.	1.9	54
175	Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress. AAPS PharmSciTech, 2017, 18, 2910-2918.	1.5	13
176	The effect of the ball to reactant ratio on mechanochemical reaction times studied by in situ PXRD. CrystEngComm, 2017, 19, 3902-3907.	1.3	34
177	Epalrestat–Cytosine Cocrystal and Salt Structures: Attempt To Control <i>E</i> , <i>Z</i> → <i>Z</i> , <i>Z</i> Isomerization. Crystal Growth and Design, 2017, 17, 3350-3360.	1.4	20
178	Thermodynamic Investigation of Carbamazepine-Saccharin Co-Crystal Polymorphs. Journal of Pharmaceutical Sciences, 2017, 106, 2009-2014.	1.6	31
179	Operation condition for continuous anti-solvent crystallization of CBZ-SAC cocrystal considering deposition risk of undesired crystals. Journal of Crystal Growth, 2017, 470, 89-93.	0.7	11
180	Challenges in Translational Development of Pharmaceutical Cocrystals. Journal of Pharmaceutical Sciences, 2017, 106, 457-470.	1.6	83
181	Study of molecular interactions and chemical reactivity of the nitrofurantoin–3-aminobenzoic acid cocrystal using quantum chemical and spectroscopic (IR, Raman, ¹³ C SS-NMR) approaches. CrystEngComm, 2017, 19, 3921-3930.	1.3	41

#	Article	IF	CITATIONS
182	Molecular Salts of the Antidepressant Venlafaxine: An Effective Route to Solubility Properties Modifications. Crystal Growth and Design, 2017, 17, 4270-4279.	1.4	16
183	Exploring the salt–cocrystal continuum with solid-state NMR using natural-abundance samples: implications for crystal engineering. IUCrJ, 2017, 4, 466-475.	1.0	60
184	Polymorphs and Cocrystals: A Comparative Analysis. Journal of the Indian Institute of Science, 2017, 97, 193-226.	0.9	7
185	Prediction and experimental validation of solid solutions and isopolymorphs of cytosine/5-flucytosine. CrystEngComm, 2017, 19, 3566-3572.	1.3	12
186	Salts and Cocrystals of the Antidiabetic Drugs Gliclazide, Tolbutamide, and Glipizide: Solubility Enhancements through Drug–Coformer Interactions. Crystal Growth and Design, 2017, 17, 2406-2417.	1.4	43
187	Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Advanced Drug Delivery Reviews, 2017, 117, 25-46.	6.6	239
188	Intermolecular interactions in molecular crystals: what's in a name?. Faraday Discussions, 2017, 203, 93-112.	1.6	121
189	Impact Is Important—Systematic Investigation of the Influence of Milling Balls in Mechanochemical Reactions. Organic Process Research and Development, 2017, 21, 655-659.	1.3	47
190	Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies. Journal of Molecular Structure, 2017, 1133, 405-410.	1.8	47
191	Recent progress of structural study of polymorphic pharmaceutical drugs. Advanced Drug Delivery Reviews, 2017, 117, 71-85.	6.6	69
192	Drug-drug cocrystals of antituberculous 4-aminosalicylic acid: Screening, crystal structures, thermochemical and solubility studies. European Journal of Pharmaceutical Sciences, 2017, 99, 228-239.	1.9	43
193	Solubility and <i>in vitro</i> drug permeation behavior of ethenzamide cocrystals regulated in physiological pH environments. CrystEngComm, 2017, 19, 6992-7000.	1.3	33
194	Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin. Journal of Crystal Growth, 2017, 480, 18-27.	0.7	19
195	Engineering Codrug Solid Forms: Mechanochemical Synthesis of an Indomethacin–Caffeine System. Crystal Growth and Design, 2017, 17, 5744-5752.	1.4	46
196	Biological evaluation of dinuclear copper complex/dichloroacetic acid cocrystal against human breast cancer: design, synthesis, characterization, DFT studies and cytotoxicity assays. RSC Advances, 2017, 7, 47920-47932.	1.7	38
197	Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement. European Journal of Pharmaceutical Sciences, 2017, 109, 581-586.	1.9	27
198	Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Advanced Drug Delivery Reviews, 2017, 117, 111-146.	6.6	108
199	Advanced methodologies for cocrystal synthesis. Advanced Drug Delivery Reviews, 2017, 117, 178-195.	6.6	166

#	Article	IF	CITATIONS
200	Recent Developments in the Crystallization Process: Toward the Pharmaceutical Industry. Engineering, 2017, 3, 343-353.	3.2	147
201	Co-Crystallization of Achiral Components into Chiral Network by Supramolecular Interactions: Coordination Complexes – Organic Radical. Crystal Growth and Design, 2017, 17, 4893-4899.	1.4	13
202	Experimental cocrystal screening and solution based scale-up cocrystallization methods. Advanced Drug Delivery Reviews, 2017, 117, 162-177.	6.6	87
203	A kinetic study of mechanochemical halogen bond formation by in situ ³¹ P solid-state NMR spectroscopy. Chemical Communications, 2017, 53, 9930-9933.	2.2	20
204	Adducts of N-Heterocyclic Drugs, Niacin, Allopurinol, and Amiloride, with 2,4-Pyridinedicarboxylic Acid Coformer. Crystal Growth and Design, 2017, 17, 4237-4245.	1.4	7
205	Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Advanced Drug Delivery Reviews, 2017, 117, 86-110.	6.6	218
206	X-Ray Crystallography and its Role in Understanding the Physicochemical Properties of Pharmaceutical Cocrystals. Journal of the Indian Institute of Science, 2017, 97, 227-243.	0.9	42
207	Halogen bonded cocrystal polymorphs of 1,4-di(4′-pyridyl)-1,3-diacetylene. CrystEngComm, 2017, 19, 4505-4509.	1.3	15
208	Kinetics and nucleation mechanism of carbamazepine–saccharin co-crystals in ethanol solution. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1663-1669.	2.0	6
209	Design of Cocrystals for Molecules with Limited Hydrogen Bonding Functionalities: Propyphenazone as a Model System. Crystal Growth and Design, 2017, 17, 163-174.	1.4	35
210	Interrelation of the dissolution behavior and solid-state features of acetazolamide cocrystals. European Journal of Pharmaceutical Sciences, 2017, 96, 299-308.	1.9	26
211	Acemetacin cocrystal structures by powder X-ray diffraction. IUCrJ, 2017, 4, 206-214.	1.0	17
212	9. Solution co-crystallisation and its applications. , 2017, , 205-236.		8
213	3. Qualitative and quantitative crystal engineering of multi-functional co-crystals. , 2017, , 60-102.		1
214	1. Pharmaceutical co-crystals: crystal engineering and applications. , 2017, , 1-31.		1
215	Progress in the Understanding of Traditional and Nontraditional Molecular Interactions. , 2017, , 67-100.		4
217	Design of Molecular Crystals: Supramolecular Synthons. , 2017, , 3-24.		2
218	A New Thermodynamically Favored Flubendazole/Maleic Acid Binary Crystal Form: Structure, Energetics, and <i>in Silico</i> PBPK Model-Based Investigation. Crystal Growth and Design, 2018, 18, 2377-2386.	1.4	19

#	Article	IF	CITATIONS
219	Salts of Amoxapine with Improved Solubility for Enhanced Pharmaceutical Applicability. ACS Omega, 2018, 3, 2406-2416.	1.6	20
220	Synthesis of cocrystals/salts of flucytosine: Structure and stability. New Journal of Chemistry, 2018, 42, 5433-5446.	1.4	20
221	Solid-State Characterization and Relative Formation Enthalpies To Evaluate Stability of Cocrystals of an Antidiabetic Drug. Molecular Pharmaceutics, 2018, 15, 1901-1908.	2.3	8
222	Intermolecular interaction as a direct measure of water solubility advantage of meloxicam cocrystalized with carboxylic acids. Journal of Molecular Modeling, 2018, 24, 112.	0.8	8
223	Triboluminescence from Pharmaceutical Formulations. Analytical Chemistry, 2018, 90, 6893-6898.	3.2	3
224	Crystallizing Ionic Cocrystals: Structural Characteristics, Thermal Behavior, and Crystallization Development of a Piracetam-CaCl2 Cocrystallization Process. Crystal Growth and Design, 2018, 18, 3215-3221.	1.4	12
225	Cocrystals of zonisamide: physicochemical characterization and sustained release solid forms. CrystEngComm, 2018, 20, 2923-2931.	1.3	24
226	Self-Assembly of Fluorinated Boronic Esters and 4,4′-Bipyridine into 2:1 N→B Adducts and Inclusion of Aromatic Guest Molecules in the Solid State: Application for the Separation of <i>o</i> , <i>m</i> , <i>p</i> -Xylene. Crystal Growth and Design, 2018, 18, 2726-2743.	1.4	40
227	Agomelatine co-crystals with resorcinol and hydroquinone: Preparation and characterization. Korean Journal of Chemical Engineering, 2018, 35, 984-993.	1.2	6
228	Protonation of inorganic 5-Fluorocytosine salts. Journal of Molecular Structure, 2018, 1161, 412-423.	1.8	1
229	Solubility Determination for Carbamazepine and Saccharin in Methanol/Water Mixed Solvent: Basic Data for Design of Cocrystal Production by Antisolvent Crystallization. Journal of Chemical & Engineering Data, 2018, 63, 451-458.	1.0	15
231	Continuous manufacturing of co-crystals: challenges and prospects. Drug Delivery and Translational Research, 2018, 8, 1726-1739.	3.0	39
232	Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals. Drug Development and Industrial Pharmacy, 2018, 44, 1034-1047.	0.9	17
233	Simultaneous Improvement of Epalrestat Photostability and Solubility via Cocrystallization: A Case Study. Crystal Growth and Design, 2018, 18, 373-379.	1.4	28
234	11-Azaartemisinin cocrystals with preserved lactam : acid heterosynthons. CrystEngComm, 2018, 20, 1205-1219.	1.3	12
235	Cocrystals of zileuton with enhanced physical stability. CrystEngComm, 2018, 20, 990-1000.	1.3	10
236	Mechanochemical syntheses and ³⁵ Cl solid-state NMR characterization of fluoxetine HCl cocrystals. CrystEngComm, 2018, 20, 2780-2792.	1.3	21
237	Organic–inorganic ionic co-crystals: a new class of multipurpose compounds. CrystEngComm, 2018, 20, 2212-2220.	1.3	65

#	Article	IF	CITATIONS
238	Elusive Nonsolvated Cocrystals of Aspirin: Two Polymorphs with Bipyridine Discovered with the Assistance of Mechanochemistry. Crystal Growth and Design, 2018, 18, 2495-2501.	1.4	11
239	Synthesis, structural characterization, and Hirshfeld surface analysis of three cocrystals based on flexible bis(benzimidazole) derivatives with aromatic carboxylic acids. Research on Chemical Intermediates, 2018, 44, 721-738.	1.3	8
240	Evaluating Suspension Formulations of Theophylline Cocrystals With Artificial Sweeteners. Journal of Pharmaceutical Sciences, 2018, 107, 604-611.	1.6	21
241	Molecular structure and hydrogen bond interactions of a paracetamol–4,4′-bipyridine cocrystal studied using a vibrational spectroscopic and quantum chemical approach. CrystEngComm, 2018, 20, 213-222.	1.3	18
242	Cocrystal structure design for CH5134731 based on isomorphism. CrystEngComm, 2018, 20, 362-369.	1.3	4
243	Synergistic effects of hydrogen and halogen bonding in co-crystals of dipyridylureas and diiodotetrafluorobenzenes. Supramolecular Chemistry, 2018, 30, 315-327.	1.5	10
245	Approaches to Design of Pharmaceutical Cocrystals: A Review. Molecular Crystals and Liquid Crystals, 2018, 667, 54-77.	0.4	42
246	A Review about Regulatory Status and Recent Patents of Pharmaceutical Co-Crystals. Advanced Pharmaceutical Bulletin, 2018, 8, 355-363.	0.6	49
247	Recent advances in improving oral drug bioavailability by cocrystals. BioImpacts, 2018, 8, 305-320.	0.7	77
248	21st century developments in the understanding and control of molecular solids. Chemical Communications, 2018, 54, 13175-13182.	2.2	38
250	How Many Parameters Can Affect the Solid Form of Cocrystallization Products in Mechanochemical Reactions? A Case Study. Crystal Growth and Design, 2018, 18, 7244-7247.	1.4	6
252	Packing Structures of CL-20-Based Cocrystals. Crystal Growth and Design, 2018, 18, 7065-7078.	1.4	53
253	SOLID-STATE PROPERTIES AND SOLUBILITY STUDIES OF NOVEL PHARMACEUTICAL COCRYSTAL OF ITRACONAZOLE. International Journal of Applied Pharmaceutics, 2018, 10, 97.	0.3	4
254	Multicomponent Supramolecular Assemblies of Melamine and α-Hydroxycarboxylic Acids: Understanding the Hydrogen Bonding Patterns and Their Physicochemical Consequences. Crystal Growth and Design, 2018, 18, 6786-6800.	1.4	21
255	Pharmaceutical Cocrystal Drug Products: An Outlook on Product Development. Trends in Pharmacological Sciences, 2018, 39, 1033-1048.	4.0	114
256	Cryosynthesis of Co-Crystals of Poorly Water-Soluble Pharmaceutical Compounds and Their Solid Dispersions with Polymers. The "Meloxicam–Succinic Acid―System as a Case Study. Crystal Growth and Design, 2018, 18, 7401-7409.	1.4	19
257	Drug–Polymer Co-Crystals of Dapsone and Polyethylene Glycol: An Emerging Subset in Pharmaceutical Co-Crystals. Crystal Growth and Design, 2018, 18, 7590-7598.	1.4	20
259	Multidrug salt forms of norfloxacin with non-steroidal anti-inflammatory drugs: solubility and membrane permeability studies. CrystEngComm, 2018, 20, 6420-6429.	1.3	23

#	Article	IF	CITATIONS
260	Chemometrics coupled to vibrational spectroscopy and spectroscopic imaging for the analysis of solid-phase pharmaceutical products: A brief review on non-destructive analytical methods. TrAC - Trends in Analytical Chemistry, 2018, 108, 74-87.	5.8	47
261	Cosublimation: A Rapid Route Toward Otherwise Inaccessible Halogen-Bonded Architectures. Crystal Growth and Design, 2018, 18, 6227-6238.	1.4	42
262	Entacapone: Improving Aqueous Solubility, Diffusion Permeability, and Cocrystal Stability with Theophylline. Crystal Growth and Design, 2018, 18, 6061-6069.	1.4	57
263	Overview of Multicomponent Solid Forms. Journal of Nanotoxicology and Nanomedicine, 2018, 3, 23-48.	0.7	2
264	Curcumin: pharmaceutical solids as a platform to improve solubility and bioavailability. CrystEngComm, 2018, 20, 3277-3296.	1.3	94
265	Coordination aspects in Schiff bases cocrystals. Polyhedron, 2018, 155, 1-12.	1.0	31
266	Hydrophobic dipeptides: the final piece in the puzzle. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 311-318.	0.5	13
267	Development and Characterization of Dapsone Cocrystal Prepared by Scalable Production Methods. AAPS PharmSciTech, 2018, 19, 2687-2699.	1.5	27
268	The urea-barbituric acid polymorphic co-crystal system: Characterization, thermodynamics and crystallization. Journal of Crystal Growth, 2018, 502, 45-53.	0.7	11
269	Hygroscopicity of lithium coordination polymers and their solid solutions. CrystEngComm, 2018, 20, 5940-5944.	1.3	6
270	Engineering Cocrystals of Poorly Water-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics, 2018, 10, 108.	2.0	138
271	Organic Semiconductor Single Crystals for Electronics and Photonics. Advanced Materials, 2018, 30, e1801048.	11.1	319
272	Preparation, Characterization, and Formulation Development of Drug–Drug Protic Ionic Liquids of Diphenhydramine with Ibuprofen and Naproxen. Molecular Pharmaceutics, 2018, 15, 4190-4201.	2.3	40
273	Curcumin, a Biological Wonder Molecule: A Crystal Engineering Point of View. Crystal Growth and Design, 2018, 18, 5690-5711.	1.4	54
274	Physicochemical, Pharmaceutical, and Biological Considerations in GIT Absorption of Drugs. , 2018, , 149-178.		12
275	Monoclinic Paracetamol vs. Paracetamol-4,4′-Bipyridine Co-Crystal; What Is the Difference? A Charge Density Study. Crystals, 2018, 8, 46.	1.0	6
276	Survey and analysis of crystal polymorphism in organic structures. IUCrJ, 2018, 5, 124-129.	1.0	51
277	Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics, 2018, 10, 18.	2.0	141

#	Article	IF	CITATIONS
278	Cocrystal of Ibuprofen–Nicotinamide: Solid-State Characterization and In Vivo Analgesic Activity Evaluation. Scientia Pharmaceutica, 2018, 86, 23.	0.7	28
279	Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals – A comprehensive review. Advanced Drug Delivery Reviews, 2018, 131, 22-78.	6.6	173
280	Cocrystallization as a novel approach to enhance the transdermal administration of meloxicam. European Journal of Pharmaceutical Sciences, 2018, 123, 184-190.	1.9	25
281	Cocrystal Ternary Phase Diagrams from Density Functional Theory and Solvation Thermodynamics. Crystal Growth and Design, 2018, 18, 5600-5608.	1.4	21
282	Patenting of polymorphs. Pharmaceutical Patent Analyst, 2018, 7, 59-63.	0.4	11
283	Theoretical insights of proton transfer and hydrogen bonded charge transfer complex of 1,2-dimethylimidazolium-3,5-dinitrobenzoate crystal. AIP Conference Proceedings, 2018, , .	0.3	2
284	Cocrystallization of Curcumin with Benzenediols and Benzenetriols via Rapid Solvent Removal. Crystal Growth and Design, 2018, 18, 5534-5546.	1.4	40
285	Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Physical Chemistry Chemical Physics, 2018, 20, 6009-6023.	1.3	143
286	Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Crystal Growth and Design, 2018, 18, 6370-6387.	1.4	401
287	A Possible Infinite Number of Components in a Single Crystalline Phase: On the Isomorphism of Brivaracetam–Guest Molecules. Crystal Growth and Design, 2018, 18, 4807-4810.	1.4	3
288	Pharmaceutical cocrystallization techniques. Advances and challenges. International Journal of Pharmaceutics, 2018, 547, 404-420.	2.6	100
289	Developments and challenges in the manufacturing, characterization and scale-up of energetic nanomaterials – A review. Chemical Engineering Journal, 2018, 350, 939-948.	6.6	44
290	Cocrystal formation by ionic liquid-assisted grinding: case study with cocrystals of caffeine. CrystEngComm, 2018, 20, 3817-3821.	1.3	37
291	5-Fluorocytosine/5-Fluorouracil Drug-Drug Cocrystal: a New Development Route Based on Mechanochemical Synthesis. Journal of Pharmaceutical Innovation, 2019, 14, 50-56.	1.1	22
292	Robust bulk preparation and characterization of sulfamethazine and saccharine salt and cocrystal polymorphs. CrystEngComm, 2019, 21, 2089-2096.	1.3	22
293	Theobromine cocrystals with monohydroxybenzoic acids – synthesis, X-ray structural analysis, solubility and thermal properties. CrystEngComm, 2019, 21, 5721-5732.	1.3	7
294	Cocrystal Engineering: A Collaborative Strategy toward Functional Materials. Advanced Materials, 2019, 31, e1902328.	11.1	245
295	A Comparative Study of the Ionic Cocrystals NaX (α- <scp>d</scp> -Glucose) ₂ (X = Cl, Br, I). Crystal Growth and Design, 2019, 19, 4293-4299.	1.4	9

#	Article	IF	CITATIONS
296	Continuous, simultaneous cocrystallization and formulation of Theophylline and 4-Aminobenzoic acid pharmaceutical cocrystals using twin screw melt granulation. European Journal of Pharmaceutical Sciences, 2019, 137, 104981.	1.9	21
297	Low-Frequency Raman Spectroscopic Study on Compression-Induced Destabilization in Melt-Quenched Amorphous Celecoxib. Molecular Pharmaceutics, 2019, 16, 3678-3686.	2.3	25
298	Isoniazid-Resveratrol Cocrystal: A Novel Alternative for Topical Treatment of Cutaneous Tuberculosis. Crystal Growth and Design, 2019, 19, 5029-5036.	1.4	27
299	Kinetics Study of Cocrystal Formation Between Indomethacin and Saccharin Using High-Shear Granulation With In Situ Raman Spectroscopy. Journal of Pharmaceutical Sciences, 2019, 108, 3201-3208.	1.6	15
300	Comparing the host behaviour of N,N′-bis(9-phenyl-9-thioxanthenyl)ethylenediamine and N,N′-bis(9-phenyl-9-xanthenyl)ethylenediamine in the presence of various alkylated aromatic and aniline guests: crystal engineering considerations. CrystEngComm, 2019, 21, 4387-4400.	1.3	4
301	Exploring Novel Cocrystalline Forms of Oxyresveratrol to Enhance Aqueous Solubility and Permeability across a Cell Monolayer. Biological and Pharmaceutical Bulletin, 2019, 42, 1004-1012.	0.6	22
302	Cocrystallization through the use of a salt: The case of thiourea with a new propanediammonium oxalate salt. Journal of Crystal Growth, 2019, 528, 125267.	0.7	1
303	Growth of Singleâ€Walled Carbon Nanotubes with Different Chirality on Same Solid Cobalt Catalysts at Low Temperature. Small, 2019, 15, e1903896.	5.2	13
304	Halogen and Hydrogen Bonds in Co-crystalline Ferrocenium Organotellurium Halide Salts. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 788-794.	0.3	8
305	Pharmaceutical Cocrystals: Molecules, Crystals, Formulations, Medicines. Crystal Growth and Design, 2019, 19, 7420-7438.	1.4	99
307	Extracellular Nanomatrixâ€Induced Selfâ€Organization of Neural Stem Cells into Miniature Substantia Nigraâ€Like Structures with Therapeutic Effects on Parkinsonian Rats. Advanced Science, 2019, 6, 1901822.	5.6	9
308	Mechanochemical Preparations of Anion Coordinated Architectures Based on 3â€lodoethynylpyridine and 3â€lodoethynylbenzoic Acid. ChemistryOpen, 2019, 8, 1328-1336.	0.9	8
309	Effect of Two Kinds of Supersaturation on Crystal Qualities during Cocrystallization. Journal of Chemical Engineering of Japan, 2019, 52, 579-585.	0.3	4
310	Synthesis and characterization of a (+)-catechin and L-(+)-ascorbic acid cocrystal as a new functional ingredient for tea drinks. Heliyon, 2019, 5, e02291.	1.4	23
311	<p>Co-crystals as a new approach to multimodal analgesia and the treatment of pain</p> . Journal of Pain Research, 2019, Volume 12, 2679-2689.	0.8	20
312	Structural investigation of cocrystal, salt and monohydrated salt of chloranilic acid with different donors: A theoretical study. AIP Conference Proceedings, 2019, , .	0.3	1
313	Hydrated Moxonidine SaccharinateSalt: Synthesis, Characterization, Crystal structure determination and dissolution enhancement. Materials Today: Proceedings, 2019, 14, 618-629.	0.9	3
314	Solid-State Quantification of Cocrystals in Pharmaceutical Tablets Using Transmission Low-Frequency Raman Spectroscopy. Analytical Chemistry, 2019, 91, 13427-13432.	3.2	15

#	Article	IF	CITATIONS
315	Mechanochemical synthesis of brexpiprazole cocrystals to improve its pharmaceutical attributes. CrystEngComm, 2019, 21, 800-806.	1.3	18
316	Multicomponent crystals of nitrofurazone – when more is less. CrystEngComm, 2019, 21, 1091-1096.	1.3	2
317	Jumping into Metastable 1:1 Urea–Succinic Acid Cocrystal Zone by Freeze-Drying. Crystal Growth and Design, 2019, 19, 1505-1508.	1.4	7
318	Improving Compliance and Decreasing Drug Accumulation of Diethylstilbestrol through Cocrystallization. Crystal Growth and Design, 2019, 19, 1942-1953.	1.4	9
319	Redefining the Term of "Cocrystal―and Broadening Its Intention. Crystal Growth and Design, 2019, 19, 1471-1478.	1.4	60
320	Hydrogen Bonding Guests Direct the Packing of a Small Organic Cage Molecule. Crystal Growth and Design, 2019, 19, 4121-4126.	1.4	6
321	Stability, solubility and thermodynamic properties of dimorphs of furosemide-4,4′-bipyridine cocrystals in organic solvents. Journal of Molecular Liquids, 2019, 289, 111017.	2.3	5
322	Piroxicam–clonixin drug–drug cocrystal solvates with enhanced hydration stability. CrystEngComm, 2019, 21, 4145-4149.	1.3	28
323	Impact of polymeric excipient on cocrystal formation via hot-melt extrusion and subsequent downstream processing. International Journal of Pharmaceutics, 2019, 566, 745-755.	2.6	23
324	Exploring the structural landscape of 2-(thiophen-2-yl)-1,3-benzothiazole: high- <i>Z</i> ′ packing polymorphism and cocrystallization with calix[4]tube. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 667-677.	0.2	3
325	Unique supramolecular complex of diclofenac: structural robustness, crystal-to-crystal solvent exchange, and mechanochemical synthesis. Chemical Communications, 2019, 55, 7639-7642.	2.2	7
326	Nitrofurantoin-melamine monohydrate (cocrystal hydrate): Probing the role of H-bonding on the structure and properties using quantum chemical calculations and vibrational spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 221, 117170.	2.0	11
327	Role of Lattice Disorder in Water-Mediated Dissociation of Pharmaceutical Cocrystal Systems. Molecular Pharmaceutics, 2019, 16, 3167-3177.	2.3	22
328	Determining the kinetics of desolvation of a TNT/aniline solvate. CrystEngComm, 2019, 21, 4104-4112.	1.3	3
329	Cocrystals of Leflunomide: Design, Structural, and Physicochemical Evaluation. Crystal Growth and Design, 2019, 19, 3923-3933.	1.4	19
330	Crystal Solvates of Energetic 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane Molecule with [bmim]-Based Ionic Liquids. Crystal Growth and Design, 2019, 19, 3660-3669.	1.4	15
331	Orientation-dependent conformational polymorphs in two similar pyridine/pyrazine phenolic esters. CrystEngComm, 2019, 21, 3721-3730.	1.3	8
332	Thermodynamic Approach for Co-crystal Screening. Crystal Growth and Design, 2019, 19, 3253-3264.	1.4	20

#	Article	IF	CITATIONS
333	Photosalient Behavior of Photoreactive Zn(II) Complexes. Crystal Growth and Design, 2019, 19, 2542-2547.	1.4	36
334	Co-crystal polymorphic control by nanodroplet and electrical confinement. CrystEngComm, 2019, 21, 2845-2848.	1.3	13
335	Structure and spectroscopic characterization of pharmaceutical co-crystal formation between acetazolamide and 4-hydroxybenzoic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 419-426.	2.0	10
336	Characterization of Amorphous Solid Dispersion of Pharmaceutical Compound with pH-Dependent Solubility Prepared by Continuous-Spray Granulator. Pharmaceutics, 2019, 11, 159.	2.0	9
337	Investigation Of Crystallisation Conditions to Produce CLâ€20/HMX Cocrystal for Polymerâ€bonded Explosives. Propellants, Explosives, Pyrotechnics, 2019, 44, 668-678.	1.0	18
338	The diiodomethyl-sulfonyl moiety: an unexplored halogen bond-donor motif. Chemical Communications, 2019, 55, 4234-4237.	2.2	9
339	Spectroscopic (FT-IR, FT-Raman, and ¹³ C SS-NMR) and quantum chemical investigations to provide structural insights into nitrofurantoin–4-hydroxybenzoic acid cocrystals. New Journal of Chemistry, 2019, 43, 7136-7149.	1.4	6
340	Solid-State Characterization of Spironolactone 1/3 Hydrate. Journal of Pharmaceutical Sciences, 2019, 108, 2458-2464.	1.6	4
341	Computational study on intermolecular charge transfer complex of 2,2′-bipyridine with picric acid: TD-DFT, NBO and QTAIM analysis. Materials Research Express, 2019, 6, 075104.	0.8	5
342	The effect of surfactant and polymer on solution stability and solubility of tadalafil-methylparaben cocrystal. Journal of Molecular Liquids, 2019, 281, 86-92.	2.3	16
343	A REVIEW ON SOLIDS STATE OF CHARACTERIZATION METHOD IN PHARMACEUTICALS. International Research Journal of Pharmacy, 2019, 10, 6-10.	0.0	0
344	Agomelatine–hydroquinone (1:1) cocrystal: novel polymorphs and their thermodynamic relationship. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 969-977.	0.5	3
345	Isonicotinamide-Based Compounds: From Cocrystal to Polymer. Molecules, 2019, 24, 4169.	1.7	11
346	Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid. Molecules, 2019, 24, 4144.	1.7	10
347	Thermodynamics and molecular mechanism of the formation of the cocrystals of <i>p</i> -hydroxybenzoic acid and glutaric acid. CrystEngComm, 2019, 21, 6374-6381.	1.3	7
348	Brexpiprazole–catechol cocrystal: structure elucidation, excipient compatibility and stability. CrystEngComm, 2019, 21, 6703-6708.	1.3	14
349	Investigation of possible solubility and dissolution advantages of cocrystals, I: Aqueous solubility and dissolution rates of ketoconazole and its cocrystals as functions of pH. ADMET and DMPK, 2019, 7, 106-130.	1.1	15
350	Preparation of a 1:1.5 cocrystal of kaempferol with 4,4′-bipyridine based on analyzing intermolecular interaction of building units. Journal of Molecular Structure, 2019, 1177, 107-116.	1.8	19

	CITATION REPORT	
Article	IF	CITATIONS
Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. Topics in Current Chemistry Collections, 2019, , 229-262.	0.2	0
Multiple conformations and supramolecular synthons in almost fifty crystal structures of th anti-HIV/HBV drug lamivudine. Journal of Molecular Structure, 2019, 1181, 157-170.	ie 1.8	7
Kristallâ€Engineering: ein Blick in die Zukunft. Angewandte Chemie, 2019, 131, 4142-4150	. 1.6	16
Crystal Engineering: An Outlook for the Future. Angewandte Chemie - International Edition, 4100-4107.	, 2019, 58, 7.2	171
Succinic, fumaric, adipic and oxalic acid cocrystals of promethazine hydrochloride. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 107-119.	0.2	6
Doxazosin Free-Base Structure Determination and Its Equilibrium Solubility Compared to Po Doxazosin Mesylate Forms A and H. Crystal Growth and Design, 2019, 19, 737-746.	olymorphic 1.4	4
Screening a trace amount of pharmaceutical cocrystals by using an enhanced nano-spot me European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 131-137.	ethod. 2.0	16
A Practical Guide to the Design of Molecular Crystals. Crystal Growth and Design, 2019, 19	, 1426-1453. 1.4	222
Pharmaceutical cocrystals: from serendipity to design to application. Drug Discovery Today 796-804.	, 2019, 24, 3.2	219
Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties. Pharmaceutical Development and Technology, 2019, 24, 199-210.	ו.1	17
Das Aufkommen der organischen Einkristallelektronik. Angewandte Chemie, 2020, 132, 14	24-1445. 1.6	14
The Emergence of Organic Singleâ€Crystal Electronics. Angewandte Chemie - International 59, 1408-1428.	Edition, 2020, 7.2	153
Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine. Journal of Molecular Stru 2020, 1199, 127028.		43
Improving the Solubility and Dissolution of Ibrutinib by Preparing Solvates. Journal of Pharm Innovation, 2020, 15, 569-580.	naceutical 1.1	11
5-Fluorouracil Cocrystals with Lipophilic Hydroxy-2-Naphthoic Acids: Crystal Structures, The Computations, and Permeation Studies. Crystal Growth and Design, 2020, 20, 923-933.	poretical 1.4	14
Crystal structures of organic salts of chloranilic acid and 2,2′-bi(3-hydroxy-1,4-naphthoquacting as proton donors to 4,4′-Bipyridine and 1,4-Diazabicyclo[2.2.2]octane: 3D netwo bifurcated N+-H···Ôô^²/O or N+-H···Ô/Cl synthons. Journal of Molecular Structure, 20	rks with 1.8	5

367	Crystal Structure Analysis and Pharmaceutical Properties of Amide Salts Consisting of Paracetamol/Sulfonic Acids as Solid Forms Prepared by Grinding. Crystal Growth and Design, 2020, 20, 590-599.	1.4	9
368	Cocrystals: Solution, Mechanochemistry, and Sublimation. Crystal Growth and Design, 2020, 20, 1139-1149.	1.4	34

#

#	Article	IF	CITATIONS
369	Selective Synthesis of a Salt and a Cocrystal of the Ethionamide–Salicylic Acid System. Crystal Growth and Design, 2020, 20, 906-915.	1.4	49
370	Improving the Dissolution Rate of the Anticancer Drug Dabrafenib. Crystal Growth and Design, 2020, 20, 1035-1046.	1.4	39
371	Boron–Nitrogen Double Tweezers Comprising Arylboronic Esters and Diamines: Selfâ€Assembly in Solution and Adaptability as Hosts for Aromatic Guests in the Solid State. ChemPlusChem, 2020, 85, 548-560.	1.3	10
372	Efficient Screening for Ternary Molecular Ionic Cocrystals Using a Complementary Mechanosynthesis and Computational Structure Prediction Approach. Chemistry - A European Journal, 2020, 26, 4752-4765.	1.7	27
373	Stability of Ceftazidime Pentahydrate Investigated by Thermal Analysis Techniques. Journal of Pharmaceutical Sciences, 2020, 109, 1324-1329.	1.6	4
374	Formation of Indomethacin–Saccharin Cocrystals during Wet Granulation: Role of Polymeric Excipients. Molecular Pharmaceutics, 2020, 17, 274-283.	2.3	8
375	A 5-fluorouracil–kaempferol drug–drug cocrystal: a ternary phase diagram, characterization and property evaluation. CrystEngComm, 2020, 22, 8127-8135.	1.3	20
376	A user-friendly application for predicting the outcome of co-crystallizations. CrystEngComm, 2020, 22, 6776-6779.	1.3	4
377	Novel cocrystals of brexpiprazole with improved solubility. Journal of Crystal Growth, 2020, 551, 125910.	0.7	5
378	Exploiting the Surface Properties of Graphene for Polymorph Selectivity. ACS Nano, 2020, 14, 10394-10401.	7.3	18
379	Drug-drug cocrystals: Opportunities and challenges. Asian Journal of Pharmaceutical Sciences, 2020, 16, 307-317.	4.3	58
380	Improving Nefiracetam Dissolution and Solubility Behavior Using a Cocrystallization Approach. Pharmaceutics, 2020, 12, 653.	2.0	16
382	Discovery, Characterization, and Pharmaceutical Applications of Two Loratadine–Oxalic Acid Cocrystals. Crystals, 2020, 10, 996.	1.0	3
383	The formation mechanism of hollow spherulites and molecular conformation of curcumin and solvate. CrystEngComm, 2020, 22, 8405-8411.	1.3	4
384	Nitramine-Based Energetic Cocrystals with Improved Stability and Controlled Reactivity. Crystal Growth and Design, 2020, 20, 8124-8147.	1.4	36
385	Salt Cocrystal of Diclofenac Sodium-L-Proline: Structural, Pseudopolymorphism, and Pharmaceutics Performance Study. Pharmaceutics, 2020, 12, 690.	2.0	25
386	Testing the flow-through capillary for the study of re-solvation processes in pharmaceutical compounds. Powder Diffraction, 2020, 35, 160-165.	0.4	2
387	Coâ€crystal Prediction by Artificial Neural Networks**. Angewandte Chemie - International Edition, 2020, 59, 21711-21718.	7.2	53

	Citation Ref	PORT	
Article		IF	CITATIONS
Novel Quasi-Emulsion Solvent Diffusion-Based Spherical Cocrystallization Strategy for Simultaneously Improving the Manufacturability and Dissolution of Indomethacin. Cry and Design, 2020, 20, 6752-6762.	stal Growth	1.4	23
Combining Surface Templating and Confinement for Controlling Pharmaceutical Cryst Pharmaceutics, 2020, 12, 995.	allization.	2.0	15
Solid-State Phase Transition of Agomelatine–Phosphoric Acid Molecular Complexes Salt–Cocrystal Continuum: Ab Initio Powder X-ray Diffraction Structure Determination Analysis. Crystal Growth and Design, 2020, 20, 7647-7657.	along the on and DFT-D2	1.4	10
Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracene with two Dipyridines Coformers. Crystals, 2020, 10, 889.	carboxylic Acid	1.0	5
Structure-defining interactions in the salt cocrystals of [(Me5C5)2Fe]+I3â`'–XC6H4 noncovalent vs. strong ionic bonding. Mendeleev Communications, 2020, 30, 580-582		0.6	7
Manipulating Lightâ€Induced Dynamic Macroâ€Movement and Static Photonic Proper Isostructural Hydrogenâ€Bonded Molecular Cocrystals. Angewandte Chemie, 2020, 11	ties within 1D 32, 22812-22819.	1.6	10
Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base. Crystal Grow 2020, 20, 6610-6621.	rth and Design,	1.4	38
Molecular- and Structural-Level Organic Heterostructures for Multicolor Photon Transp Journal of Physical Chemistry Letters, 2020, 11, 7517-7524.	portation.	2.1	18
Manipulating Lightâ€Induced Dynamic Macroâ€Movement and Static Photonic Proper Isostructural Hydrogenâ€Bonded Molecular Cocrystals. Angewandte Chemie - Internat 2020, 59, 22623-22630.		7.2	101
Virtual Coformer Screening by Crystal Structure Predictions: Crucial Role of Crystallini Pharmaceutical Cocrystallization. Journal of Physical Chemistry Letters, 2020, 11, 883	cy in 2-8838.	2.1	40

398	Coâ€crystal Prediction by Artificial Neural Networks**. Angewandte Chemie, 2020, 132, 21895-21902.	1.6	7
399	Cocrystallization of Atomically Precise Nanoclusters. , 2020, 2, 1303-1314.		29
400	Quantitative analysis of intermolecular interactions in cocrystals and a pair of polymorphous cocrystal hydrates from 1,4-dihydroquinoxaline-2,3-dione and 1 <i>H</i> -benzo[<i>d</i>]imidazol-2(3 <i>H</i>)-one with 2,5-dihydroxy-1,4-benzoquinones: a combined X-ray structural and theoretical analysis. CrystEngComm, 2020, 22, 6645-6660.	1.3	4
401	Macrocycle Coâ€Crystals Showing Vapochromism to Haloalkanes. Angewandte Chemie, 2020, 132, 22196-22200.	1.6	11
402	Macrocycle Coâ€Crystals Showing Vapochromism to Haloalkanes. Angewandte Chemie - International Edition, 2020, 59, 22012-22016.	7.2	54
403	Are Myths and Preconceptions Preventing Us from Applying Ionic Liquid Forms of Antiviral Medicines to the Current Health Crisis?. International Journal of Molecular Sciences, 2020, 21, 6002.	1.8	15
404	Accelerated ageing reactions: towards simpler, solvent-free, low energy chemistry. Green Chemistry, 2020, 22, 5881-5901.	4.6	43
405	Minimizing Polymorphic Risk through Cooperative Computational and Experimental Exploration. Journal of the American Chemical Society, 2020, 142, 16668-16680.	6.6	34

#

388

390

391

392

394

396

#	Article	IF	CITATIONS
406	Pharmaceutical cocrystal: a game changing approach for the administration of old drugs in new crystalline form. Drug Development and Industrial Pharmacy, 2020, 46, 1559-1568.	0.9	20
407	Cocrystal Solubility Advantage and Dose/Solubility Ratio Diagrams: A Mechanistic Approach To Selecting Additives and Controlling Dissolution–Supersaturation–Precipitation Behavior. Molecular Pharmaceutics, 2020, 17, 4286-4301.	2.3	19
408	Drug-Nutraceutical Co-Crystal and Salts for Making New and Improved Bi-Functional Analgesics. Pharmaceutics, 2020, 12, 1144.	2.0	7
409	Recognition-Control and Host–Guest Interactions in High-Symmetry Cocrystals of Fullerenes with Cubane and Mesitylene. Crystal Growth and Design, 2020, 20, 4169-4175.	1.4	1
410	Growth, experimental and theoretical investigations on 4-hydroxy-3-methoxybenzaldehyde 5-chloro-2-hydroxybenzoic acid: A new high second order nonlinear optical material. Journal of Molecular Structure, 2020, 1217, 128406.	1.8	10
411	The role of ionic liquid in medicinal chemistry. , 2020, , 143-180.		1
412	Field-Induced Single Molecular Magnetism and Photoluminescence in Rare Cocrystals of Isomorphic Lanthanide(III) Coordination Compounds with Fully Substituted Pyridine-4-carboxamide Ligand. Inorganic Chemistry, 2020, 59, 9227-9238.	1.9	8
413	Mitigating Punch Sticking Propensity of Celecoxib by Cocrystallization: An Integrated Computational and Experimental Approach. Crystal Growth and Design, 2020, 20, 4217-4223.	1.4	25
414	Study on the self-assembly behaviors based on aromatic carboxylic acids and dibenzo-diaza-crown ether salts. Journal of Molecular Structure, 2020, 1219, 128587.	1.8	0
415	Quaternary phase diagrams as a tool for ionic cocrystallization: the case of a solid solution between a racemic and enantiopure ionic cocrystal. CrystEngComm, 2020, 22, 2537-2542.	1.3	2
416	Benzodiazepines co-crystals screening using FTIR and Raman spectroscopy supported by differential scanning calorimetry. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 234, 118242.	2.0	9
417	Surface characterization of nanoscale co-crystals enabled through tip enhanced Raman spectroscopy. Nanoscale, 2020, 12, 10306-10319.	2.8	12
418	syn and anti polymorphs of 2,6-dimethoxy benzoic acid and its molecular and ionic cocrystals: Structural analysis and energetic perspective. Journal of Molecular Structure, 2020, 1221, 128721.	1.8	7
419	Polymorphs and pharmacokinetics of an antipsychotic drug candidate. International Journal of Pharmaceutics, 2020, 586, 119600.	2.6	4
420	Solubility and Thermodynamic Properties of Sulfamethazine–Saccharin Cocrystal in Pure and Binary (Acetonitrile + 2-Propanol) Solvents. Transactions of Tianjin University, 2020, 27, 460.	3.3	3
421	Concurrent Antisolvent Electrospraying: A Novel Continuous Crystallization Technique. Journal of Pharmaceutical Sciences, 2020, 109, 3027-3034.	1.6	5
422	Cocrystal formulations: A case study of topical formulations consisting of ferulic acid cocrystals. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 95-104.	2.0	23
423	Donepezil Multicomponent Systems: Donepezil–Water–Maleic Acid Crystals and More. Crystal Growth and Design, 2020, 20, 2283-2293.	1.4	3

#	Article	IF	CITATIONS
424	Controlling the Interface between Salts, Solvates, Co-crystals, and Ionic Liquids with Non-stoichiometric Protic Azolium Azolates. Crystal Growth and Design, 2020, 20, 2608-2616.	1.4	5
425	Synthesis and characterization of a hydrogen bonded metal-organic cocrystal: Exploration of its DNA binding study. Polyhedron, 2020, 180, 114454.	1.0	9
426	Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chemical Reviews, 2020, 120, 2879-2949.	23.0	213
427	Analysis of the structures and interactions between CL-20 and its formers. Journal of Molecular Structure, 2020, 1207, 127731.	1.8	4
428	Fascinating Structures of a Mixed Valence [Mn ^{III}]·[Mn ^{II} Mn ^{III}] Cocrystal and a Mn ^{III} Na ^I Complex: Slow Magnetic Relaxation and Theoretical Investigations. Crystal Growth and Design, 2020, 20, 1849-1858.	1.4	4
429	Reducing the Sublimation Tendency of Ligustrazine through Salt Formation. Crystal Growth and Design, 2020, 20, 2057-2063.	1.4	13
430	Extended Release of Highly Water Soluble Isoniazid Attained through Cocrystallization with Curcumin. Crystal Growth and Design, 2020, 20, 1951-1960.	1.4	35
431	Intercalated 2D+2D hydrogen-bonded sheets in co-crystals of cobalt salt with 1 <i>H</i> ,1′ <i>H</i> -[3,3′]bipyridinyl-6,6′-dione. Canadian Journal of Chemistry, 2020, 98, 347-351.	0.6	2
432	Exploring the solid-state phases and thermodynamics of calcium l-lactate. Food Chemistry, 2020, 325, 126884.	4.2	3
433	Mechanochemical and solution syntheses of two novel cocrystals of orcinol with two N,N′-Dipyridines: Structural diversity with varying ligand flexibility. Journal of Molecular Structure, 2020, 1217, 128303.	1.8	1
434	Discovery of New Proxyphylline-Based Chiral Cocrystals: Solid State Landscape and Dehydration Mechanism. Crystal Growth and Design, 2020, 20, 3842-3850.	1.4	16
435	Drug–Drug Cocrystals Provide Significant Improvements of Drug Properties in Treatment with Progesterone. Crystal Growth and Design, 2020, 20, 3053-3063.	1.4	28
436	Systematic coformer contribution to cocrystal stabilization: energy and packing trends. CrystEngComm, 2020, 22, 7341-7349.	1.3	17
437	A three-in-one crystal of mixed sized cucurbit[<i>n</i>]uril homologues. CrystEngComm, 2020, 22, 2900-2903.	1.3	1
438	Co-crystals, Salts or Mixtures of Both? The Case of Tenofovir Alafenamide Fumarates. Pharmaceutics, 2020, 12, 342.	2.0	8
439	Unprecedented morphology control of gas phase cocrystal growth using multi zone heating and tailor made additives. Chemical Communications, 2020, 56, 5657-5660.	2.2	12
440	Synthesis, Characterization and Biological Activity of (Phenylthio)Acetic Acid:Theophylline Cocrystal. Journal of Chemical Crystallography, 2021, 51, 225-234.	0.5	6
441	Insights into the structure-property relationship of pharmaceutical co-crystals: Charge density and quantum chemical approaches. Journal of Molecular Structure, 2021, 1224, 129270.	1.8	1

#	Article	IF	CITATIONS
442	Molecular cocrystal odyssey to unconventional electronics and photonics. Science Bulletin, 2021, 66, 512-520.	4.3	25
443	Can We Identify the Salt–Cocrystal Continuum State Using XPS?. Crystal Growth and Design, 2021, 21, 735-747.	1.4	37
444	Polymorph and anisotropic Raman spectroscopy of Phz-H2ca cocrystals. Science China Materials, 2021, 64, 169-178.	3.5	4
445	The role of sulfur interactions in crystal architecture: experimental and quantum theoretical studies on hydrogen, halogen, and chalcogen bonds in trithiocyanuric acid–pyridine <i>N</i> -oxide co-crystals. CrystEngComm, 2021, 23, 324-334.	1.3	13
446	Reactive crystallization: a review. Reaction Chemistry and Engineering, 2021, 6, 364-400.	1.9	43
447	Recent developments in pharmaceutical salts: FDA approvals from 2015 to 2019. Drug Discovery Today, 2021, 26, 384-398.	3.2	55
448	Recent Progress in Polycyclic Aromatic Hydrocarbonâ€Based Organic Coâ€Crystals. Chemical Record, 2021, 21, 116-132.	2.9	9
449	Pharmaceutical Co-crystals, Salts, and Co-amorphous Systems: A novel opportunity of hot-melt extrusion. Journal of Drug Delivery Science and Technology, 2021, 61, 102209.	1.4	22
450	Generation and physicochemical characterization of posaconazole cocrystals using Gas Antisolvent (GAS) and Supercritical Solvent (CSS) methods. Journal of Supercritical Fluids, 2021, 170, 105134.	1.6	15
451	Cocrystal Formulations: Evaluation of the Impact of Excipients on Dissolution by Molecular Simulation and Experimental Approaches. Crystal Growth and Design, 2021, 21, 1006-1018.	1.4	10
452	Recent advances in low-frequency Raman spectroscopy for pharmaceutical applications. International Journal of Pharmaceutics, 2021, 592, 120034.	2.6	48
453	Cocrystallization of Trimethoprim and Solubility Enhancement via Salt Formation. Crystal Growth and Design, 2021, 21, 1507-1517.	1.4	19
454	Salt Engineering of Aripiprazole with Polycarboxylic Acids to Improve Physicochemical Properties. AAPS PharmSciTech, 2021, 22, 31.	1.5	5
455	Mechanochemical reactivity inhibited, prohibited and reversed by liquid additives: examples from crystal-form screens. Chemical Science, 2021, 12, 3264-3269.	3.7	25
456	Crystal engineering and pharmaceutical crystallization. , 2021, , 157-229.		7
457	Monitoring the Isothermal Dehydration of Crystalline Hydrates Using Low-Frequency Raman Spectroscopy. Molecular Pharmaceutics, 2021, 18, 1264-1276.	2.3	12
458	Virtual coformer screening by a combined machine learning and physics-based approach. CrystEngComm, 2021, 23, 6039-6044.	1.3	15
459	Surface self-assembly of hydrogen-bonded frameworks. , 2021, , 1-16.		0

#	Article	IF	CITATIONS
460	In acid-aminopyrimidine continuum: experimental and computational studies of furan tetracarboxylate-2-aminopyrimidinium salt. RSC Advances, 2021, 11, 21463-21474.	1.7	15
461	Competitive cocrystallization and its application in the separation of flavonoids. IUCrJ, 2021, 8, 195-207.	1.0	10
462	Salt or/and cocrystal? The case of the antidepressant drug venlafaxine. CrystEngComm, 2021, 23, 2665-2672.	1.3	5
463	An industrial perspective on co-crystals: Screening, identification and development of the less utilised solid form in drug discovery and development. Progress in Medicinal Chemistry, 2021, 60, 345-442.	4.1	4
464	Solid-solution (alloying) strategies in crystalline molecular conductors. Journal of Materials Chemistry C, 2021, 9, 10557-10572.	2.7	12
465	ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF ACETYLSALICYLIC ACID VIA CO-CRYSTALLIZATION TECHNIQUE: A NOVEL ASA-VALINE COCRYSTAL. International Journal of Applied Pharmaceutics, 0, , 199-205.	0.3	6
466	A selective cocrystallization separation method based on non-covalent interactions and its application. CrystEngComm, 2021, 23, 1550-1554.	1.3	4
467	Attractive Organic Cocrystal Materials in Optics. Heterocycles, 2021, 102, 825.	0.4	2
468	Variable stoichiometry cocrystals: occurrence and significance. CrystEngComm, 2021, 23, 4583-4606.	1.3	26
469	Revamping the pharmacokinetics of poorly soluble drugs using different formulations. , 2021, , 387-413.		2
470	One class classification as a practical approach for accelerating π–π co-crystal discovery. Chemical Science, 2021, 12, 1702-1719.	3.7	12
471	Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges. CrystEngComm, 2021, 23, 7005-7038.	1.3	58
472	Cocrystal Prediction Using Machine Learning Models and Descriptors. Applied Sciences (Switzerland), 2021, 11, 1323.	1.3	22
473	Investigation of Poor Solubility of a Salt-Cocrystal Hydrate: A Case Study of the Common-Ion Effect in Betrixaban, an Anticoagulant Drug. Molecular Pharmaceutics, 2021, 18, 1138-1149.	2.3	20
474	Continuous Manufacture and Scale-Up of Theophylline-Nicotinamide Cocrystals. Pharmaceutics, 2021, 13, 419.	2.0	9
475	Recent Advances of Cocrystals with Room Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2002197.	3.6	115
476	Solubility behaviour of CL-20 and HMX in organic solvents and solvates of CL-20. Energetic Materials Frontiers, 2021, 2, 51-61.	1.3	11
477	Stability of Pharmaceutical Co-Crystals at Humid Conditions Can Be Predicted. Pharmaceutics, 2021, 13, 433.	2.0	11

#	ARTICLE	IF	CITATIONS
478 479	Polymorphism and Supramolecular Isomerism: The Impasse of Coordination Polymers. , 0, , . A Review of Pharmaceutical Nano-Cocrystals: A Novel Strategy to Improve the Chemical and Physical Properties for Poorly Soluble Drugs. Crystals, 2021, 11, 463.	1.0	2
480	New Cocrystals of Antipsychotic Drug Aripiprazole: Decreasing the Dissolution through Cocrystallization. Molecules, 2021, 26, 2414.	1.7	8
481	Elusive Seed Formation via Electrical Confinement: Control of a Novel Cocrystal in Cooling Crystallization. Crystal Growth and Design, 2021, 21, 3310-3315.	1.4	3
482	Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics, 2021, 13, 790.	2.0	46
483	Understanding solid-state processing of pharmaceutical cocrystals via milling: Role of tablet excipients. International Journal of Pharmaceutics, 2021, 601, 120514.	2.6	19
484	Cocrystals of Praziquantel: Discovery by Network-Based Link Prediction. Crystal Growth and Design, 2021, 21, 3428-3437.	1.4	24
485	Review on Pharmaceutical Co-Crystals and Design Strategies. Asian Journal of Pharmacy and Technology, 2021, , 175-180.	0.2	3
486	Solid state characterization, solubility, intrinsic dissolution and stability behavior of allopurinol hydrochloride salt. Drug Development and Industrial Pharmacy, 2021, 47, 799-808.	0.9	1
487	Production of curcumin-resveratrol cocrystal using cocrystallization with supercritical solvent. Journal of Supercritical Fluids, 2021, 171, 105190.	1.6	18
488	Urea as a Cocrystal Former—Study of 3 Urea Based Pharmaceutical Cocrystals. Pharmaceutics, 2021, 13, 671.	2.0	9
489	Cocrystals of Oxymatrine: Reducing Hygroscopicity and Affecting the Dissolution Rate. Crystal Growth and Design, 2021, 21, 3874-3888.	1.4	12
490	In-line Raman spectroscopy and chemometrics for monitoring cocrystallisation using hot melt extrusion. International Journal of Pharmaceutics, 2021, 601, 120555.	2.6	12
491	Thin Film Growth of a Charge Transfer Cocrystal (DCS/TFPA) for Ambipolar Thin Film Transistors. ACS Applied Electronic Materials, 2021, 3, 2783-2789.	2.0	5
492	Novel Formulations of the Antiviral Drug Favipiravir: Improving Permeability and Tabletability. Crystal Growth and Design, 2021, 21, 3807-3817.	1.4	18
493	Effect of mechanochemical grinding conditions on the formation of pharmaceutical cocrystals and co-amorphous solid forms of ketoconazole – Dicarboxylic acid. Journal of Drug Delivery Science and Technology, 2021, 63, 102508.	1.4	12
494	Formulation of ionic liquid APIs via spray drying processes to enable conversion into single and two-phase solid forms. International Journal of Pharmaceutics, 2021, 603, 120669.	2.6	10
495	Screening and Preparation of Cocrystals: A Comparative Study of Mechanochemistry vs Slurry Methods. Crystal Growth and Design, 2021, 21, 4141-4150.	1.4	26

#	Article	IF	CITATIONS
497	Cocrystallization of gliclazide with improved physicochemical properties. Future Journal of Pharmaceutical Sciences, 2021, 7, .	1.1	4
498	Co-Crystal Screening by Vapor Sorption of Organic Solvents. Crystal Growth and Design, 2021, 21, 4445-4455.	1.4	4
499	Two-Component Molecular Crystals: What Is the Difference between Drug–Drug, Drug–GRAS, and CF–CF Databases? Evaluation of Melting Points and Ideal Solubility of Unknown Co-crystals. Crystal Growth and Design, 2021, 21, 5058-5071.	1.4	10
500	Mechanosynthesis of Higherâ€Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design**. Angewandte Chemie, 2021, 133, 17622-17631.	1.6	2
501	Challenges and Progress in Nonsteroidal Anti-Inflammatory Drugs Co-Crystal Development. Molecules, 2021, 26, 4185.	1.7	17
502	Solid-State Interaction of Pharmaceutical Cocrystals with Water Vapor. Crystal Growth and Design, 2021, 21, 4805-4820.	1.4	6
503	A rare case of a 2:2:1 ternary cocrystal of pyridine sulfides and trithiocyanuric acid. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 479-484.	0.2	2
504	Multicomponent Crystal of Metformin and Barbital: Design, Crystal Structure Analysis and Characterization. Molecules, 2021, 26, 4377.	1.7	2
505	Mechanosynthesis of Higherâ€Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design**. Angewandte Chemie - International Edition, 2021, 60, 17481-17490.	7.2	22
506	Synthesis, structural-spectral characterization and theoretical studies of Pyridinium-4-carbohydrazide (2R,3R)-2,3-dihydroxybutanedioate. Journal of Molecular Structure, 2021, 1237, 130365.	1.8	1
507	Crystalline Sponge Method: Xâ€ray Structure Analysis of Small Molecules by Postâ€Orientation within Porous Crystals—Principle and Proofâ€ofâ€Concept Studies. Angewandte Chemie, 2021, 133, 25408.	1.6	2
508	Salts and Polymorph Screens for Bedaquiline. AAPS PharmSciTech, 2021, 22, 228.	1.5	8
509	A Review on Significance of Identifying an Appropriate Solid Form Duringdrug Discovery and Product Development. Material Science Research India, 2021, 18, 154-170.	0.9	2
510	The Solid State Landscape of the Sildenafil Drug. Journal of Pharmaceutical Sciences, 2022, 111, 1104-1109.	1.6	6
511	Crystalline Sponge Method: Xâ€ray Structure Analysis of Small Molecules by Postâ€Orientation within Porous Crystals—Principle and Proofâ€ofâ€Concept Studies. Angewandte Chemie - International Edition, 2021, 60, 25204-25222.	7.2	42
512	A crystalline organic electrolyte for safe, room-temperature operable all-solid-state sodium batteries. Energy Storage Materials, 2021, 39, 259-264.	9.5	9
514	Shortcut Method for the Prediction of the Cocrystal Solubility Line. Crystal Growth and Design, 2021, 21, 5534-5543.	1.4	6
515	Resolution of Halogenated Mandelic Acids through Enantiospecific Co-Crystallization with Levetiracetam. Molecules, 2021, 26, 5536.	1.7	4

#	ARTICLE	IF	CITATIONS
516	Cocrystallization as a tool to stabilize liquid active ingredients. Crystallography Reviews, 2021, 27, 102-123.	0.4	11
517	Optical Waveguide and Photoluminescent Polarization in Organic Cocrystal Polymorphs. Journal of Physical Chemistry Letters, 2021, 12, 9233-9238.	2.1	20
518	Using Desmotropes, Cocrystals, and Salts to Manipulate Reactivity in Mechanochemical Organic Reactions. Journal of Organic Chemistry, 2021, 86, 14160-14168.	1.7	14
519	An Elusive Drug–Drug Cocrystal Prepared Using a Heteroseeding Strategy. Crystal Growth and Design, 2021, 21, 5659-5668.	1.4	9
520	Thermal Expansion Properties and Mechanochemical Synthesis of Stoichiometric Cocrystals Containing Tetrabromobenzene as a Hydrogen―and Halogenâ€Bond Donor. Chemistry - A European Journal, 2021, 27, 16329-16333.	1.7	9
523	Stoichiomorphic halogen-bonded cocrystals: a case study of 1,4-diiodotetrafluorobenzene and 3-nitropyridine. Canadian Journal of Chemistry, 2022, 100, 245-251.	0.6	4
524	Determination of protonation state in molecular salt of minoxidil and 2,4-dihydroxybenzoic acid through a combined experimental and theoretical study: influence of proton transfer on biological activities. Journal of Molecular Structure, 2022, 1249, 131560.	1.8	12
525	Four Novel Pharmaceutical Cocrystals of Oxyresveratrol, Including a 2 : 3 Cocrystal with Betaine. Chemical and Pharmaceutical Bulletin, 2021, 69, 995-1004.	0.6	4
526	Co-crystals formation specified from binary phase diagram studies; Their thermochemical, spectroscopic and optical properties. Journal of Chemical Thermodynamics, 2021, 161, 106513.	1.0	2
527	Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): Insight toward formation, methods, and drug enhancement. Particuology, 2021, 58, 227-241.	2.0	10
528	Structural insights, spectral and H-bond analyses, of nitrofurantoin-phenazine cocrystal and comparison of its chemical reactivity with other nitrofurantoin cocrystals. Journal of Molecular Structure, 2022, 1247, 131387.	1.8	1
529	A Contribution to the Solid State Forms of Bis(demethoxy)curcumin: Co-Crystal Screening and Characterization. Molecules, 2021, 26, 720.	1.7	11
530	Mechanochemistry: A Power Tool for Green Synthesis. Advances in Science, Technology and Innovation, 2021, , 23-39.	0.2	7
531	Temozolomide–Hesperetin Drug–Drug Cocrystal with Optimized Performance in Stability, Dissolution, and Tabletability. Crystal Growth and Design, 2021, 21, 838-846.	1.4	53
532	Modification of hygroscopicity and tabletability of <scp>l</scp> -carnitine by a cocrystallization technique. CrystEngComm, 2021, 23, 2138-2149.	1.3	14
533	Sublimation – a green route to new solid-state forms. CrystEngComm, 2021, 23, 5965-5975.	1.3	8
534	Advanced Methodologies for Pharmaceutical Salt Synthesis. Crystal Growth and Design, 2021, 21, 1358-1374.	1.4	25
535	Metal Complexes in Mechanochemistry. , 2021, , 620-679.		17

#	Article	IF	CITATIONS
536	Complete Cocrystal Formation during Resonant Acoustic Wet Granulation: Effect of Granulation Liquids. Pharmaceutics, 2021, 13, 56.	2.0	7
537	Eutectics: formation, properties, and applications. Chemical Society Reviews, 2021, 50, 8596-8638.	18.7	184
538	Challenges and opportunities of pharmaceutical cocrystals: a focused review on non-steroidal anti-inflammatory drugs. RSC Medicinal Chemistry, 2021, 12, 705-721.	1.7	21
539	Features of the crystallization of multicomponent solutions: a dipeptide, its salt and potassium carbonate. CrystEngComm, 2021, 23, 6427-6441.	1.3	1
540	Pharmaceutical Multicomponent Crystals: Structure, Design, and Properties. , 2020, , 153-184.		9
541	1D helical cadmium coordination polymers containing hydrazide ligand: The role of solvent and molar ratio. Journal of Molecular Structure, 2018, 1156, 534-543.	1.8	12
542	Novel Purine Alkaloid Cocrystals with Trimesic and Hemimellitic Acids as Coformers: Synthetic Approach and Supramolecular Analysis. Crystal Growth and Design, 2021, 21, 396-413.	1.4	12
543	Scaling Up Principles for Solution-Processed Organic Single-Crystalline Heterojunctions. Chemistry of Materials, 2021, 33, 19-38.	3.2	17
544	Solid–Liquid Phase Equilibrium and Ternary Phase Diagrams of Telmisartan-Saccharin Cocrystal in Methanol, Ethanol, and Methanol/Chloroform Mixtures at 298.15 and 313.15 K. Journal of Chemical & Engineering Data, 2021, 66, 515-523.	1.0	7
545	Order–disorder phase transition induced by proton transfer in a co-crystal of 2,4-dichlorobenzoic acid and trimethylamine N-oxide. CrystEngComm, 2017, 19, 3753-3759.	1.3	3
546	A proposal for coherent nomenclature of multicomponent crystals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 53-58.	0.5	10
547	Melting points of one- and two-component molecular crystals as effective characteristics for rational design of pharmaceutical systems. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 696-706.	0.5	24
548	Intermolecular interactions and disorder in six isostructural celecoxib solvates. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 632-638.	0.2	6
549	Assessment of analytical techniques for characterization of crystalline clopidogrel forms in patent applications. Brazilian Journal of Pharmaceutical Sciences, 2014, 50, 229-242.	1.2	1
550	Top-Down Synthesis of a Lamivudine-Zidovudine Nano Co-Crystal. Crystals, 2021, 11, 33.	1.0	10
551	Pharmaceutical Co-Crystallization: Regulatory Aspects, Design, Characterization, and Applications. Advanced Pharmaceutical Bulletin, 2020, 10, 203-212.	0.6	39
552	Novel solid forms of insomnia drug suvorexant with improved solubility and dissolution: accessing salts from a salt solvate route. CrystEngComm, 2021, 23, 7739-7749.	1.3	3
553	Relationship between crystal shape and unit cell shape: crystal shape modification <i>via</i> co-crystallization toward SXRD-suitable crystals. CrystEngComm, 2021, 23, 7760-7770.	1.3	2

ARTICLE IF CITATIONS UNGAP best practice for improving solubility data quality of orally administered drugs. European 554 1.9 9 Journal of Pharmaceutical Sciences, 2022, 168, 106043. Mechanochemical Synthesis and Physicochemical Characterization of Previously Unreported Praziquantel Solvate's with 2-Pyrrolidone and Acetic Acid. Pharmaceutics, 2021, 13, 1606. 556 Cocrystals versus Salts of Fluorescein. Crystals, 2021, 11, 1217. 1.0 1 Coupling complementary strategy to flexible graph neural network for quick discovery of coformer 5.8 in diverse co-crystal materials. Nature Communications, 2021, 12, 5950. Novel Co-crystal of Pentoxifylline and Protocatechuic Acid Relieves Allodynia in Rat Models of Peripheral Neuropathic Pain and CRPS by Alleviating Local Tissue Hypoxia. ACS Chemical Neuroscience, 558 1.7 3 2021, 12, 3855-3863. Use of Atomic Force Microscopy (AFM) to monitor surface crystallization in caffeine-oxalic acid (CAFOXA) cocrystal compacts. International Journal of Pharmaceutics, 2021, 609, 121196. 2.6 Multicomponent Solid Forms. Advances in Medical Technologies and Clinical Practice Book Series, 561 0.3 1 2018, , 273-300. Formulation and evaluation of buccal films of piroxicam co-crystals. Future Journal of 1.1 14 Pharmaceutical Sciences, 2020, 6, . A Brief Discussion of Multi-Component Organic Solids: Key Emphasis on Co-Crystallization. Turkish 563 0.6 3 Journal of Pharmaceutical Sciences, 2022, 19, 220-231. 564 Preparation and Solid-State Characterization of Eltrombopag Crystal Phases. Molecules, 2021, 26, 65. 1.7 Overview of Multicomponent Solid Forms., 2020, , 65-102. 566 0 Automatic Cocrystal Detection by Raman Spectral Deconvolution-Based Novelty Analysis. Analytical 3.2 Chemistry, 2021, 93, 14375-14382. Artemisinin Cocrystals for Bioavailability Enhancement. Part 2: <i>In Vivo</i>Bioavailability and 568 2.35 Physiologically Based Pharmacokinetic Modeling. Molecular Pharmaceutics, 2021, 18, 4272-4289. Raman and Terahertz Spectroscopic Characterization of Solid-state Cocrystal Formation within Specific Active Pharmaceutical Ingredients. Current Pharmaceutical Design, 2020, 26, 4829-4846. Cocrystallization and Coamorphization for Druggability Enhancement of Chinese Medicines., 2021,, 570 1 239-276. Powder diffraction. Nature Reviews Methods Primers, 2021, 1, . 11.8 Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Frontiers in Pharmacology, 572 1.6 29 2021, 12, 780582. Chasing the Co-crystal Disappearing Polymorph with <i>Ab Initio</i> Methods. Crystal Growth and 573 1.4 Design, 2021, 21, 6902-6912

#	Article	IF	CITATIONS
574	Interaction Study of Co-Crystallization or Salt Formation Between 5-Hydroxyisophthalic Acid and 4,4′-Bipyridine using NMR and Powder X-Ray Diffraction. Asian Journal of Chemistry, 2021, 33, 3103-3107.	0.1	0
575	Terahertz Spectroscopic Investigation into Cocrystal Formation Process within Lamivudine and Theophylline. , 2020, , .		0
576	Polymorphism and distinct physicochemical properties of the phloretin–nicotinamide cocrystal. CrystEngComm, 2022, 24, 560-570.	1.3	12
577	Creation of Hydrochlorothiazide Pharmaceutical Cocrystals Via Hot-Melt Extrusion for Enhanced Solubility and Permeability. AAPS PharmSciTech, 2022, 23, 56.	1.5	15
578	The First Cocrystallization of Milrinone with Nutraceuticals: The Adjusting Effects of Hydrophilicity/Hydrophobicity in Cavities on the In Vitro/In Vivo Properties of the Cocrystals. Crystal Growth and Design, 2022, 22, 1623-1637.	1.4	17
579	Novel Pharmaceutical Cocrystal of Apalutamide, a Nonsteroidal Antiandrogen Drug: Synthesis, Crystal Structure, Dissolution, Stress, and Excipient Compatibility. Crystal Growth and Design, 2022, 22, 1130-1142.	1.4	13
580	Improving the dissolution behaviors and bioavailability of abiraterone acetate via multicomponent crystal forms. International Journal of Pharmaceutics, 2022, 614, 121460.	2.6	14
581	Structural and Energetic Aspects of Entacapone-Theophylline-Water Cocrystal. Solids, 2022, 3, 66-92.	1.1	3
582	Co-crystallisation as a modular approach to the discovery of spin-crossover materials. Chemical Science, 2022, 13, 3176-3186.	3.7	7
583	Control of supramolecular chirality in co-crystals of achiral molecules <i>via</i> stacking interactions and hydrogen bonding. CrystEngComm, 2022, 24, 2591-2601.	1.3	4
584	Multicomponent crystal compromising dasatinib and selected co-crystals formers: a patent evaluation of EP2861589B1. Pharmaceutical Patent Analyst, 2022, 11, 15-21.	0.4	2
585	Structural Characterization of Multicomponent Crystals Formed from Diclofenac and Acridines. Materials, 2022, 15, 1518.	1.3	4
586	Emerging Landscape of Computational Modeling in Pharmaceutical Development. Journal of Chemical Information and Modeling, 2022, 62, 1160-1171.	2.5	18
587	Stable Fatty Acid Solvates of Dasatinib, a Tyrosine Kinase Inhibitor: Prediction, Process, and Physicochemical Properties. ACS Omega, 2022, 7, 7032-7044.	1.6	0
588	Improved pharmaceutical properties of ritonavir through co-crystallization approach with liquid-assisted grinding method. Drug Development and Industrial Pharmacy, 2021, 47, 1633-1642.	0.9	9
589	Structural and Solubility Studies of Novel Salts and Cocrystals of the Antihistamine Drug Bilastine with Carboxylic Acid Derivatives. Crystal Growth and Design, 2022, 22, 2470-2489.	1.4	1
590	Cold photo-carving of halogen-bonded co-crystals of a dye and a volatile co-former using visible light. Nature Chemistry, 2022, 14, 574-581.	6.6	17
591	Elucidating the Dehydration Mechanism of Nitrofurantoin Monohydrate II Using Low-Frequency Raman Spectroscopy. Crystal Growth and Design, 2022, 22, 2733-2741.	1.4	5

#	Article	IF	CITATIONS
592	Experimental and Quantum Chemical Studies of Nicotinamide-Oxalic Acid Salt: Hydrogen Bonding, AIM and NBO Analysis. Frontiers in Chemistry, 2022, 10, 855132.	1.8	7
593	Crystal Engineering and its Chemistry: An Architectural Approach for Cocrystallization. Current Materials Science, 2022, 15, .	0.2	0
594	Co-crystal Phase Diagram Determination by the Solution Addition Method. Crystal Growth and Design, 2022, 22, 3376-3384.	1.4	2
595	Reducing the melting point and curing temperature of aromatic cyano-based resins simultaneously through a BrÄ,nsted acid-base synergistic strategy. Polymer, 2022, 246, 124745.	1.8	11
596	Nondestructive Spatial Dehydration Analysis of Crystalline Hydrates in Pharmaceutical Solid Dosage Forms Using Spatially Offset Low-Frequency Raman Spectroscopy. Crystal Growth and Design, 0, , .	1.4	2
597	New Co-Crystals/Salts of Gallic Acid and Substituted Pyridines: An Effect of Ortho-Substituents on the Formation of an Acid–Pyridine Heterosynthon. Crystals, 2022, 12, 497.	1.0	4
599	Structure analysis and insight into hydrogen bond and van der waals interactions of etoricoxib cocrystals and cocrystal solvate. Journal of Molecular Structure, 2022, 1258, 132665.	1.8	8
600	Three-primary-color molecular cocrystals showing white-light luminescence, tunable optical waveguide and ultrahigh polarized emission. Science China Chemistry, 2022, 65, 408-417.	4.2	17
601	Superior Dissolution Behavior and Bioavailability of Pharmaceutical Cocrystals and Recent Regulatory Issues. ACS Medicinal Chemistry Letters, 2022, 13, 29-37.	1.3	4
602	Enchant O Hâ‹â‹O interactions in hydrated 6-amino-2-methoxypyrimidin-4(3H)one resembles as water flow in the channel: Crystallographic and theoretical investigations. Journal of Molecular Structure, 2022, 1263, 133098.	v 1.8	2
603	Structural, Hirshfeld Surface and HOMO-LUMO gap analysis of five co-crystals of 2-amino-5-chloropyridine or 2-amino-bromopyridine with isomeric methylbenzoic acids. Zeitschrift Fur Kristallographie - Crystalline Materials, 2022, 237, 249-258.	0.4	0
604	Supramolecular Synthon Promiscuity in Phosphoric Acid–Dihydrogen Phosphate Ionic Cocrystals. Crystal Growth and Design, 2022, 22, 3333-3342.	1.4	8
605	Preparation, structure and optical properties of mixed stacked cocrystals of 2,2':6′,2″-Terpyridine and 1,2,4,5-tetracyanobenzene. Journal of Luminescence, 2022, 247, 118903.	1.5	1
606	Novel supramolecular co-crystal of 3-aminobenzoic acid with 4-acetyl-pyridine: Synthesis, X-ray structure, DFT and Hirshfeld surface analysis. Journal of Molecular Structure, 2022, 1262, 133061.	1.8	8
607	A sulfone-based crystalline organic electrolyte for 5ÂV solid-state potassium batteries. Chemical Engineering Journal, 2022, 443, 136403.	6.6	6
608	A study to discover novel pharmaceutical cocrystals of pelubiprofen with a machine learning approach compared. CrystEngComm, 2022, 24, 3938-3952.	1.3	6
609	Experimental and Hirshfeld Surface Investigations for Unexpected Aminophenazone Cocrystal Formation under Thiourea Reaction Conditions via Possible Enamine Assisted Rearrangement. Crystals, 2022, 12, 608.	1.0	3
610	Water and 2,2,6,6-tetramethylpiperidine: an odd couple make a solid match. IUCrJ, 2022, 9, 331-332.	1.0	0

#	Article	IF	CITATIONS
611	Liquid Co-crystals of Dual-Active Phenothiazine–NSAID Drugs: Synthesis, Spectroscopic, and Thermal Characterization. ACS Omega, 2022, 7, 16990-17001.	1.6	1
612	Polymorphism in Ionic Cocrystals Comprising Lithium Salts and <scp>l</scp> -Proline. Crystal Growth and Design, 2022, 22, 3786-3794.	1.4	6
613	Solid-state and particle size control of pharmaceutical cocrystals using atomization-based techniques. International Journal of Pharmaceutics, 2022, 621, 121798.	2.6	12
614	Crystal engineering and structural diversity of 2-aminopyridinium hypodiphosphates obtained by crystallization and dehydration. CrystEngComm, 2022, 24, 4417-4429.	1.3	4
615	Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chemical Reviews, 2022, 122, 11514-11603.	23.0	164
616	Crystal Engineering of Ionic Cocrystals Sustained by the Phenol–Phenolate Supramolecular Heterosynthon. Crystal Growth and Design, 2022, 22, 4582-4591.	1.4	8
617	A review on multivariate curve resolution applied to spectroscopic and chromatographic data acquired during the real-time monitoring of evolving multi-component processes: From process analytical chemistry (PAC) to process analytical technology (PAT). TrAC - Trends in Analytical Chemistry, 2022, 157, 116698.	5.8	14
618	Efficient Screening of Coformers for Active Pharmaceutical Ingredient Cocrystallization. Crystal Growth and Design, 2022, 22, 4513-4527.	1.4	14
619	Dual Functionality of Bile Acid: Physical Stabilization of Drugs in the Amorphous Form and Solubility Enhancement in Solution. Molecular Pharmaceutics, 2022, 19, 2595-2606.	2.3	6
620	Influence of Multiple Binding Sites on the Supramolecular Assembly of N-[(3-pyridinylamino) Thioxomethyl] Carbamates. Molecules, 2022, 27, 3685.	1.7	0
621	Lidocaine Pharmaceutical Multicomponent Forms: A Story about the Role of Chloride Ions on Their Stability. Crystals, 2022, 12, 798.	1.0	4
622	Unlocking the potential of drug-drug cocrystals – A comprehensive review. Journal of Controlled Release, 2022, 348, 456-469.	4.8	16
623	Topological and DFT studies of 8-hydroxyquinoline derivative and its copper complex having supramolecular interactions network. Computational and Theoretical Chemistry, 2022, 1214, 113791.	1.1	0
624	Azilsartan-nicotinamide cocrystal: Preparation, characterization and in vitro / vivo evaluation. European Journal of Pharmaceutical Sciences, 2022, 176, 106241.	1.9	4
625	Nano- and Crystal Engineering Approaches in the Development of Therapeutic Agents for Neoplastic Diseases. Crystals, 2022, 12, 926.	1.0	5
626	Insights into Cocrystallization and Coamorphization Engineering Techniques in the Delivery of Traditional Chinese Medicine: Formation Mechanism, Solid-State Characterization, and Improved Pharmaceutical Properties. Crystal Growth and Design, 2022, 22, 5110-5134.	1.4	3
627	Development of sulfamethoxazole-succinimide cocrystal by mechanochemical cocrystallization – An insight into spectroscopic, electronic, chemical conformation and physicochemical properties. Chemical Engineering Research and Design, 2022, 185, 446-457.	2.7	4
628	Sustainable solid form screening: mechanochemical control over nucleobase hydrogen-bonded organic framework polymorphism. CrystEngComm, 2022, 24, 6505-6511.	1.3	2

	CITATION REF	ORT	
#	Article	IF	CITATIONS
629	Pharmaceutical Cocrystals of Ethenzamide: Molecular Structure Analysis Based on Vibrational Spectra and DFT Calculations. International Journal of Molecular Sciences, 2022, 23, 8550.	1.8	6
630	Comparing and Quantifying the Efficiency of Cocrystal Screening Methods for Praziquantel. Crystal Growth and Design, 2022, 22, 5511-5525.	1.4	9
631	Overcoming the Drawbacks of Sulpiride by Means of New Crystal Forms. Pharmaceutics, 2022, 14, 1754.	2.0	2
632	Bioavailability-Enhancing Cocrystals: Screening, <i>In Vivo</i> Predictive Dissolution, and Supersaturation Maintenance. Crystal Growth and Design, 2022, 22, 5154-5167.	1.4	4
633	A systematic study of the third-order nonlinear optical co-crystal of bis-((diisopropyl)ammonium) dichromate: X-ray, Hirshfeld surface, Optical, and Mechanical analysis. Journal of Molecular Structure, 2022, 1270, 133869.	1.8	6
634	Synthesis, crystal structure and thermal investigation of molecular salts of (R)-1-phenylethanamine combined with quantum chemical studies. Journal of Molecular Structure, 2023, 1272, 134097.	1.8	1
635	Structural systematics in isomorphous binary co-crystal solvates comprising 2,2′-dithiodibenzoic acid, 4-halobenzoic acid and dimethylformamide (1 : 1 : 1), for halide = chloride, bromide and iodide. CrystEngComm, 2022, 24, 5907-5921.	1.3	1
636	Pharmaceutical Cocrystal of Ethenzamide with Gallic Acid: Structural Investigation Based on Terahertz Spectroscopy and DFT Calculation. , 2022, , .		0
637	Crystal engineering in the development of improved pesticide products. , 2022, 1, 39-60.		9
638	Recent Patents of Pharmaceutical Co-Crystals: Product Development on Anti-Cancer Drugs and Beyond. Recent Patents on Anti-Cancer Drug Discovery, 2022, 17, .	0.8	2
639	Solution Stability of Pharmaceutical Cocrystals. Crystal Growth and Design, 2022, 22, 6323-6337.	1.4	14
640	Quantitative Monitoring of Cocrystal Polymorphisms in Model Tablets Using Transmission Low-Frequency Raman Spectroscopy. Journal of Pharmaceutical Sciences, 2023, 112, 225-229.	1.6	1
641	Conformational Trimorphism in an Ionic Cocrystal of Hesperetin. Crystal Growth and Design, 2022, 22, 6390-6397.	1.4	3
642	Energy framework and solubility: a new predictive model in the evaluation of the structure–property relationship of pharmaceutical solid forms. CrystEngComm, 0, , .	1.3	0
643	Synthesis and structural characteristic of pyridine carboxylic acid adducts with squaric acid. CrystEngComm, 0, , .	1.3	0
644	Rational Screening of Cocrystals using Thermal Analysis: Benchmarking on Energetic Materials. Crystal Growth and Design, 2022, 22, 7349-7362.	1.4	11
645	Cocrystal Prediction of Bexarotene by Graph Convolution Network and Bioavailability Improvement. Pharmaceutics, 2022, 14, 2198.	2.0	5
646	Crystal Engineering of Ionic Cocrystals Sustained by Azolium··ÀAzole Heterosynthons. Pharmaceutics, 2022, 14, 2321.	2.0	2

#	Article	IF	CITATIONS
647	Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine Learning Algorithms. Crystal Growth and Design, 2022, 22, 6608-6615.	1.4	8
648	2D Monte Carlo Simulation of Cocrystal Formation Using Patchy Particles. Crystals, 2022, 12, 1457.	1.0	0
649	Effects of Surfactant and Polymer on Thermodynamic Solubility and Solution Stability of Carbamazepine–Cinnamic Acid Cocrystal. Pharmaceutical Chemistry Journal, 2022, 56, 913-917.	0.3	2
650	Microfluidic Particle Engineering of Hydrophobic Drug with Eudragit E100─Bridging the Amorphous and Crystalline Gap. Molecular Pharmaceutics, 2022, 19, 4345-4356.	2.3	3
651	Improving the Stability, Dissolution, and Bioavailability of Isotretinoin by Cocrystallization. Crystal Growth and Design, 2022, 22, 7469-7477.	1.4	3
652	Hydrogen-Bonding Motifs in Adducts of Allylamine with the 10 Simplest <i>n</i> -Alcohols: Single-Crystal X-ray Diffraction Studies and Computational Analysis. Crystal Growth and Design, 2022, 22, 6405-6417.	1.4	0
653	Melt Crystallization of Celecoxib-Carbamazepine Cocrystals with the Synchronized Release of Drugs. Pharmaceutical Research, 2023, 40, 567-577.	1.7	7
654	The hydrogen bond continuum in solid isonicotinic acid. Journal of Magnetic Resonance, 2022, , 107334.	1.2	0
655	A Comprehensive Insight on Pharmaceutical Co-crystals for Improvement of Aqueous Solubility. Current Drug Targets, 2023, 24, 157-170.	1.0	2
656	Dehydroepiandrosterone Cocrystals with Improved Solubility and Bioavailability. Pharmaceutics, 2022, 14, 2478.	2.0	3
657	Recent Advances on the Biological Study of Pharmaceutical Cocrystals. AAPS PharmSciTech, 2022, 23, .	1.5	1
658	FORMULATION AND EVALUATION OF COCRYSTALS OF A BCS CLASS II DRUG USING GLYCINE AS COFORMER. International Journal of Applied Pharmaceutics, 0, , 68-76.	0.3	0
659	Co-crystals of zwitterionic GABA API's pregabalin and phenibut: properties and application. CrystEngComm, 2022, 24, 8390-8398.	1.3	3
660	Polymorphism in carboxamide compounds with high- <i>Z</i> $\hat{a}\in^2$ crystal structures. CrystEngComm, 0, , .	1.3	4
661	Rucaparib cocrystal: Improved solubility and bioavailability over camsylate. International Journal of Pharmaceutics, 2023, 631, 122461.	2.6	4
662	The formation and stability of fluoxetine HCl cocrystals investigated by multicomponent milling. CrystEngComm, 2023, 25, 213-224.	1.3	3
663	Physicochemical and thermodynamic evaluation of ibrutinib cocrystal formation with a long-chain fatty acid. CrystEngComm, 0, , .	1.3	0
664	The First Noncovalent-Bonded Supramolecular Frameworks of (Benzylthio)Acetic Acid with Proline Compounds, Isonicotinamide and Tryptamine. Molecules, 2022, 27, 8203.	1.7	3

#	Article	IF	Citations
665	Exploring the Cocrystal Landscape of Posaconazole by Combining High-Throughput Screening Experimentation with Computational Chemistry. Crystal Growth and Design, 2023, 23, 842-852.	1.4	6
666	Molecular Docking of Pharmaceutical Cocrystal As a Ligand: Do We Need to Rethink?. Crystal Growth and Design, 2023, 23, 1-5.	1.4	3
667	C–H···S Hydrogen Bonds Governed Colossal Thermal Expansion: Two Concomitant Crystalline Forms of Ethionamide and 2-Thiobarbituric Acid. Crystal Growth and Design, 2023, 23, 403-412.	1.4	3
668	A Review of Coformer Utilization in Multicomponent Crystal Formation. Molecules, 2022, 27, 8693.	1.7	3
669	Energy partitioning of pharmaceutical cocrystal structures. CrystEngComm, 0, , .	1.3	0
670	Recent Advances in Pharmaceutical Cocrystals: A Focused Review of Flavonoid Cocrystals. Molecules, 2023, 28, 613.	1.7	5
671	Exploration of various solid forms of novel (1H-Benzimidazole, 2-[4-(1,1-dimethylethyl) phenyl]). Results in Chemistry, 2023, 5, 100748.	0.9	0
672	Color-Tunable Upconversion-Emission Switch Based on Cocrystal-to-Cocrystal Transformation. Journal of the American Chemical Society, 2023, 145, 1855-1865.	6.6	23
673	Prediction and Construction of Energetic Materials Based on Machine Learning Methods. Molecules, 2023, 28, 322.	1.7	10
674	General Graph Neural Network-Based Model To Accurately Predict Cocrystal Density and Insight from Data Quality and Feature Representation. Journal of Chemical Information and Modeling, 2023, 63, 1143-1156.	2.5	4
675	Structural and quantitative analysis of intermolecular solid-state interactions in cocrystals obtained from nucleobases and methylxanthines with gallic acid. Journal of Molecular Structure, 2023, 1280, 135074.	1.8	1
676	Cocrystals for photochemical solid-state reactions: An account on crystal engineering perspective. Coordination Chemistry Reviews, 2023, 483, 215095.	9.5	10
677	Importance of tautomerism in drugs. Drug Discovery Today, 2023, 28, 103494.	3.2	8
678	Micronization of Adipic Acid via Supercritical Antisolvent Precipitation. Russian Journal of Physical Chemistry B, 2022, 16, 1242-1252.	0.2	2
679	Opportunities and Challenges in Mechanochemical Cocrystallization toward Scaled-Up Pharmaceutical Manufacturing. Organic Process Research and Development, 2023, 27, 409-422.	1.3	9
680	Stabilization of uric acid mixed crystals by melamine. Journal of Crystal Growth, 2023, 608, 127134.	0.7	4
682	Syntheses, Structures, and Magnetic Properties of Novel [3×1 + 2×1] Pentanuclear Zinc(II)-Lanthanide(III) Cocrystal Complexes: Slow Magnetic Relaxation Behavior of the Dy(III) Analogue. Crystal Growth and Design, 2023, 23, 2218-2230.	1.4	2
683	The Role of Weak C–H···X (X = O, π) Interactions in Three 1-Hydroxy-2-naphthoic Acid Cocrystals with N-Containing Heteroaromatics: Structural Characterization and Synthon Cooperation. Crystals, 2023, 13, 402.	1.0	0

#	Article	IF	CITATIONS
684	Stability and Mechanical Properties of Darunavir Isostructural Solvates: An Experimental and Computational Study. Crystal Growth and Design, 2023, 23, 2905-2915.	1.4	4
685	Research Progress on Organic Cocrystals Nonlinear Optics Materials and Applications. Acta Chimica Sinica, 2023, 81, 191.	0.5	0
686	Norfloxacin Cocrystals: Mechanochemical Synthesis and Scale-up Viability Through Solubility Studies. Journal of Pharmaceutical Sciences, 2023, 112, 2230-2239.	1.6	3
687	<scp>l</scp> -Glutamic acid crystals of pure α form and uniform size distribution from continuous non-seeded reaction crystallization in slug flow. CrystEngComm, 2023, 25, 2227-2236.	1.3	3
688	Diffusion and Flux Improvement of Drugs through Complexation. Molecular Pharmaceutics, 2023, 20, 2293-2316.	2.3	9
689	Modification of Physicochemical Properties of Active Pharmaceutical Ingredient by Pharmaceutical Co-Crystals. , 0, , .		0
690	Covalent organic framework atropisomers with multiple gas-triggered structural flexibilities. Nature Materials, 2023, 22, 636-643.	13.3	46
691	Amorphization of Ethenzamide and Ethenzamide Cocrystals—A Case Study of Single and Binary Systems Forming Low-Melting Eutectic Phases Loaded on/in Silica Gel. Pharmaceutics, 2023, 15, 1234.	2.0	1
692	Famciclovir–fumaric acid: an all-in-one multicomponent system with salt, cocrystal and salt–cocrystal continuum. CrystEngComm, 2023, 25, 2662-2678.	1.3	1
693	Crystal engineering of ionic cocrystals comprising Na/K salts of hesperetin with hesperetin molecules and solubility modulation. IUCrJ, 2023, 10, 329-340.	1.0	1
694	Synthesis and Characterization of Xylazine Hydrochloride Polymorphs, Hydrates, and Cocrystals: A ³⁵ Cl Solid-State NMR and DFT Study. Crystal Growth and Design, 2023, 23, 3412-3426.	1.4	3
709	Mechanochemical Synthesis of Cocrystal: From Mechanism to Application. Crystal Growth and Design, 2023, 23, 4680-4700.	1.4	6
712	Energetic Cocrystals. , 2023, , 235-290.		0
715	Pursuing Green and Efficient Agriculture from Molecular Assembly: A Review of Solid-State Forms on Agrochemicals. Journal of Agricultural and Food Chemistry, 2023, 71, 10500-10524.	2.4	4
732	Surfacing hybrid medicines of bioactive molecules: a solid states formulation approach. Studies in Natural Products Chemistry, 2023, , 323-364.	0.8	0
743	Halogen effect in photomechanical molecular crystals. Journal of Materials Chemistry C, 2023, 11, 16452-16472.	2.7	0
751	Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduction and Targeted Therapy, 2024, 9, .	7.1	2