Electron tomography at 2.4- ${\rm \tilde{A}}$ $gstr{\rm \tilde{A}}\$ m resolution

Nature 483, 444-447 DOI: 10.1038/nature10934

Citation Report

#	Article	IF	CITATIONS
2	Direct structure analysis of advanced nanomaterials by high-resolution electron microscopy. Nanotechnology Reviews, 2012, 1, 389-425.	2.6	23
3	Heterogeneous Catalysis by Gold. Advances in Catalysis, 2012, 55, 1-126.	0.1	139
4	Electron Tomography of Vesicles. Microcirculation, 2012, 19, 473-476.	1.0	2
5	High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18290-18294.	3.3	185
6	Advanced Electron Microscopy for Advanced Materials. Advanced Materials, 2012, 24, 5655-5675.	11.1	115
7	Recent developments in transmission electron microscopy and their application for nanoparticle characterisation. SPR Nanoscience, 2012, , 89-101.	0.3	1
8	Seeing atoms in three dimensions. Nature Materials, 2012, 11, 911-912.	13.3	11
9	Nanoparticles and Clusters. Pergamon Materials Series, 2012, , 407-439.	0.2	0
10	Extracting Structural Information from the PDF. Pergamon Materials Series, 2012, 16, 259-295.	0.2	3
11	Atomic-scale determination of surface facets in gold nanorods. Nature Materials, 2012, 11, 930-935.	13.3	299
12	Breaking up in a curved plane. Nature Materials, 2012, 11, 912-913.	13.3	0
13	Recent developments and applications of electron microscopy to heterogeneous catalysis. Chemical Society Reviews, 2012, 41, 8179.	18.7	107
14	Electron Tomography in the (S)TEM: From Nanoscale Morphological Analysis to 3D Atomic Imaging. Annual Review of Materials Research, 2012, 42, 59-79.	4.3	72
15	Studies of Materials at the Nanometer Scale Using Coherent X-Ray Diffraction Imaging. Jom, 2013, 65, 1208-1220.	0.9	9
16	Nanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: A short surveyNanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: A short surveyretain>. Progress in Natural Science: Materials International, 2013, 23, 222-234.	1.8	25
17	Electron Tomography: Threeâ€Dimensional Imaging of Real Crystal Structures at Atomic Resolution. Angewandte Chemie - International Edition, 2013, 52, 8504-8506.	7.2	12
18	Three-Dimensional Elemental Mapping at the Atomic Scale in Bimetallic Nanocrystals. Nano Letters, 2013, 13, 4236-4241.	4.5	101
19	Measure-by-Wire (MBW). Advances in Imaging and Electron Physics, 2013, 179, 291-346.	0.1	3

#	Article	IF	CITATIONS
20	Towards three-dimensional structural determination of amorphous materials at atomic resolution. Physical Review B, 2013, 88, .	1.1	17
21	Three dimensional quantitative characterization of magnetite nanoparticles embedded in mesoporous silicon: local curvature, demagnetizing factors and magnetic Monte Carlo simulations. Nanoscale, 2013, 5, 11944.	2.8	9
22	Electron crystallography as an informative method for studying the structure of nanoparticles. Crystallography Reports, 2013, 58, 788-804.	0.1	1
23	Imaging host– <i><scp>L</scp>eishmani</i> a interactions: significance in visceral leishmaniasis. Parasite Immunology, 2013, 35, 256-266.	0.7	12
24	Computational methods for materials characterization by electron tomography. Current Opinion in Solid State and Materials Science, 2013, 17, 93-106.	5.6	27
25	Compressed sensing electron tomography. Ultramicroscopy, 2013, 131, 70-91.	0.8	247
26	High resolution electron tomography. Current Opinion in Solid State and Materials Science, 2013, 17, 107-114.	5.6	31
27	Three-dimensional imaging of dislocations. Nature, 2013, 503, E1-E1.	13.7	12
28	Miao et al. reply. Nature, 2013, 503, E1-E2.	13.7	6
29	Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy, 2013, 124, 61-70.	0.8	24
29 30	Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy, 2013, 124, 61-70. Imaging Catalysts at Work: A Hierarchical Approach from the Macro―to the Meso―and Nanoâ€scale. ChemCatChem, 2013, 5, 62-80.	0.8	24 143
29 30 31	Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy, 2013, 124, 61-70. Imaging Catalysts at Work: A Hierarchical Approach from the Macro―to the Meso―and Nanoâ€scale. ChemCatChem, 2013, 5, 62-80. Cryoâ€electron microscopy – a primer for the nonâ€microscopist. FEBS Journal, 2013, 280, 28-45.	0.8 1.8 2.2	24 143 194
29 30 31 32	Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy, 2013, 124, 61-70. Imaging Catalysts at Work: A Hierarchical Approach from the Macro―to the Meso―and Nanoâ€scale. ChemCatChem, 2013, 5, 62-80. Cryoâ€electron microscopy – a primer for the nonâ€microscopist. FEBS Journal, 2013, 280, 28-45. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. Journal of Applied Crystallography, 2013, 46, 312-318.	0.8 1.8 2.2 1.9	24 143 194 146
29 30 31 32 33	Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy, 2013, 124, 61-70. Imaging Catalysts at Work: A Hierarchical Approach from the Macro―to the Meso―and Nanoâ€scale. ChemCatChem, 2013, 5, 62-80. Cryoâ€electron microscopy – a primer for the nonâ€microscopist. FEBS Journal, 2013, 280, 28-45. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. Journal of Applied Crystallography, 2013, 46, 312-318. Synthesis of MoS ₂ and MoSe ₂ Films with Vertically Aligned Layers. Nano Letters, 2013, 13, 1341-1347.	0.8 1.8 2.2 1.9 4.5	24 143 194 146 2,036
29 30 31 32 33 33	Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy, 2013, 124, 61-70. Imaging Catalysts at Work: A Hierarchical Approach from the Macro―to the Meso―and Nanoâ€scale. ChemCatChem, 2013, 5, 62-80. Cryoâ€electron microscopy – a primer for the nonâ€microscopist. FEBS Journal, 2013, 280, 28-45. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. Journal of Applied Crystallography, 2013, 46, 312-318. Synthesis of MoS ₂ and MoSe ₂ Films with Vertically Aligned Layers. Nano Letters, 2013, 13, 1341-1347. 3D imaging of crystal defects. Nature, 2013, 496, 37-38.	0.8 1.8 2.2 1.9 4.5 13.7	24 143 194 146 2,036 4
29 30 31 32 33 33	Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy, 2013, 124, 61-70. Imaging Catalysts at Work: A Hierarchical Approach from the Macro―to the Meso―and Nanoâ€scale. ChemCatChem, 2013, 5, 62-80. Cryoâ€electron microscopy – a primer for the nonâ€microscopist. FEBS Journal, 2013, 280, 28-45. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. Journal of Applied Crystallography, 2013, 46, 312-318. Synthesis of MoS ₂ and MoSe ₂ Films with Vertically Aligned Layers. Nano Letters, 2013, 13, 1341-1347. 3D imaging of crystal defects. Nature, 2013, 496, 37-38. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature, 2013, 496, 74-77.	0.8 1.8 2.2 1.9 4.5 13.7 13.7	24 143 194 146 2,036 4 334
29 30 31 32 33 33 34 35	Rapid Measurement of Nanoparticle Thickness Profiles. Ultramicroscopy, 2013, 124, 61-70. Imaging Catalysts at Work: A Hierarchical Approach from the Macroâ€+to the Mesoâ€+and Nanoâ€scale. ChemCatChem, 2013, 5, 62-80. Cryoâ€electron microscopy – a primer for the nonâ€microscopist. FEBS Journal, 2013, 280, 28-45. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. Journal of Applied Crystallography, 2013, 46, 312-318. Synthesis of MoS ₂ and MoSe ₂ Films with Vertically Aligned Layers. Nano Letters, 2013, 13, 1341-1347. 3D imaging of crystal defects. Nature, 2013, 496, 37-38. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature, 2013, 496, 74-77. Selenium Segregation in Femtosecond-Laser Hyperdoped Silicon Revealed by Electron Tomography. Microscopy and Microanalysis, 2013, 19, 716-725.	0.8 1.8 2.2 1.9 4.5 13.7 13.7 0.2	24 143 194 146 2,036 4 334 10

ARTICLE IF CITATIONS # Three-Dimensional Coherent X-Ray Diffraction Imaging of Molten Iron in Mantle Olivine at Nanoscale 38 2.9 45 Resolution. Physical Review Letters, 2013, 110, 205501. Progress in electron tomography to assess the 3D nanostructure of catalysts. Current Opinion in Solid State and Materials Science, 2013, 17, 115-125. 5.6 Observation of atomic scale compositional and displacive modulations in incommensurate melilite 40 1.4 3 electrolytes. Journal of Solid State Chemistry, 2013, 203, 291-296. Atomic-Scale Tomography: A 2020 Vision. Microscopy and Microanalysis, 2013, 19, 652-664. 0.2 54 Ptycholographic iterative engine with self-positioned scanning illumination. Optics Express, 2013, 21, 42 1.7 15 6162. Phase retrieval using nonlinear diversity. Applied Optics, 2013, 52, D92. Effects of missing low-frequency information on ptychographic and plane-wave coherent diffraction 44 0.9 22 imaging. Applied Optics, 2013, 52, 2416. Mesoscale morphology of airborne coreâ€"shell nanoparticle clusters: x-ray laser coherent diffraction imaging. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 164033. General framework for quantitative three-dimensional reconstruction from arbitrary detection 46 39 1.1 geometries in TEM. Physical Review B, 2013, 87, . Research Updates: The three M's (materials, metrology, and modeling) together pave the path to future 2.2 nanoelectronic technologies. APL Materials, 2013, 1, Specifications for Hard Condensed Matter Specimens for Three-Dimensional High-Resolution 48 0.2 21 Tomographies. Microscopy and Microanalysis, 2013, 19, 726-739. Radiation dose reduction in medical xâ€ray CT via Fourierâ€based iterative reconstruction. Medical 1.6 Physics, 2013, 40, 031914. An Experimental Protocol Development of Three-Dimensional Transmission Electron Microscopy 51 Methods for Ferrous Alloys: Towards Quantitative Microstructural Characterization in Three 0.1 0 Dimensions. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 889-896. Three-Dimensional Imaging of Dislocations and Defects in Materials at Atomic Resolution Using 0.2 Electron Tomography. Microscopy and Microanalysis, 2014, 20, 1062-1063. The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films 53 0.8 45 and sections. Ultramicroscopy, 2014, 147, 137-148. Development of advanced electron tomography in materials science based on TEM and STEM. Transactions of Nonferrous Metals Society of China, 2014, 24, 3031-3050. Issue Information. Scanning, 2014, 36, 377-83. 56 0.7 6 Nanocrystalline materials: recent advances in crystallographic characterization techniques. IUCrJ, 2014, 1, 530-539.

		CITATION REI	PORT	
#	Article		IF	CITATIONS
58	Towards Quantitative EDX Results in 3 Dimensions. Microscopy and Microanalysis, 2014,	20, 766-767.	0.2	5
59	Structural Differences Observed in Arboviruses of the Alphavirus and Flavivirus Genera. Ac Virology, 2014, 2014, 1-24.	vances in	0.5	18
60	TEM Characterization of Metallic Nanocatalysts. , 2014, , 577-618.			1
61	Using electron beams to investigate catalytic materials. Comptes Rendus Physique, 2014	15, 258-268.	0.3	11
62	Microscopy techniques in flavivirus research. Micron, 2014, 59, 33-43.		1.1	7
63	Seeing and measuring in 3D with electrons. Comptes Rendus Physique, 2014, 15, 140-15	0.	0.3	17
64	Electron tomography of dislocation structures. Materials Characterization, 2014, 87, 1-11		1.9	36
65	Transmission Electron Microscopy Characterization of Nanomaterials. , 2014, , .			52
66	Dictionaryâ€learningâ€based reconstruction method for electron tomography. Scanning,	2014, 36, 377-383.	0.7	8
67	Nanoscale voxel spectroscopy by simultaneous EELS and EDS tomography. Nanoscale, 20 14563-14569.	14, 6,	2.8	71
68	Full Determination of Individual Reconstructed Atomic Columns in Intermixed Heterojunc Letters, 2014, 14, 6584-6589.	tions. Nano	4.5	1
69	Threeâ€Dimensional Characterization of Nobleâ€Metal Nanoparticles and their Assemblie Tomography. Angewandte Chemie - International Edition, 2014, 53, 10600-10610.	s by Electron	7.2	59
70	Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Corr Atomic-Resolution Electron Microscopy and Field Evaporation Simulation. Journal of Physi Chemistry Letters, 2014, 5, 1361-1367.	elation with cal	2.1	46
71	Dynamic Depolarized Light Scattering of Small Round Plasmonic Nanoparticles: When Im Only Perfect. Journal of Physical Chemistry C, 2014, 118, 17968-17974.	perfection is	1.5	33
72	Three-Dimensional Valency Mapping in Ceria Nanocrystals. ACS Nano, 2014, 8, 10878-10	884.	7.3	91
73	Electron microscopy of gold nanoparticles at atomic resolution. Science, 2014, 345, 909-	912.	6.0	269
74	A chemical signature of first-generation very massive stars. Science, 2014, 345, 912-915.		6.0	106
75	Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single Nature Materials, 2014, 13, 1044-1049.	image.	13.3	84

#	Article	IF	CITATIONS
76	Three-Dimensional Location of a Single Dopant with Atomic Precision by Aberration-Corrected Scanning Transmission Electron Microscopy. Nano Letters, 2014, 14, 1903-1908.	4.5	89
77	3D spatial resolution improvement by dual-axis electron tomography: Application to tri-gate transistors. Ultramicroscopy, 2014, 136, 144-153.	0.8	8
78	Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions. Ultramicroscopy, 2014, 140, 26-31.	0.8	35
79	Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses. Nature Communications, 2014, 5, 4061.	5.8	91
80	A General Perspective of the Characterization and Quantification of Nanoparticles: Imaging, Spectroscopic, and Separation Techniques. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 423-458.	6.8	72
81	Atomic Resolution Tomography of Magnetically Anisotropic FePt Nanoparticles. Microscopy and Microanalysis, 2014, 20, 804-805.	0.2	1
83	Bone, implants, and their interfaces. Physics Today, 2015, 68, 40-45.	0.3	26
84	Three-dimensional visualization of carbon networks in nanocomposites. Nanotechnology, 2015, 26, 442501.	1.3	3
85	Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells. IUCrJ, 2015, 2, 575-583.	1.0	78
86	Three-Dimensional Observation of Lattice Defects Using Electron Tomography. Nihon Kessho Gakkaishi, 2015, 57, 276-284.	0.0	0
87	Implementation of Atomic Resolution Electron Tomography of a Needle Sample. Microscopy and Microanalysis, 2015, 21, 1523-1524.	0.2	8
88	Electron Tomography: A Threeâ€Dimensional Analytic Tool for Hard and Soft Materials Research. Advanced Materials, 2015, 27, 5638-5663.	11.1	152
89	An Experimental Protocol Development of Three-Dimensional Transmission Electron Microscopy Methods for Ferrous Alloys: Towards Quantitative Microstructural Characterization in Three Dimensions. ISIJ International, 2015, 55, 623-631.	0.6	6
90	Robust Physical Alignment Models for Electron Tomography. Microscopy and Microanalysis, 2015, 21, 2335-2336.	0.2	0
92	Rational synthesis and the structure-property relationships of nanoheterostructures: a combinative study of experiments and theory. NPG Asia Materials, 2015, 7, e164-e164.	3.8	20
93	Grain rotation and lattice deformation during photoinduced chemical reactions revealed by inÂsitu X-ray nanodiffraction. Nature Materials, 2015, 14, 691-695.	13.3	24
94	Analytical Transmission Electron Microscopy and Scanning Transmission Electron Microscopy Techniques for the Characterization of Nanomaterial Composition, Phase and Crystallinity. Frontiers of Nanoscience, 2015, , 123-152.	0.3	3
95	B21-O-09Determination of Three-Dimensional Coordinates of Individual Atoms in Nano-Materials by Electron Tomography. Microscopy (Oxford, England), 2015, 64, i43.2-i43.	0.7	0

#	Article	IF	CITATIONS
96	The rapid expansion of environmental mineralogy in unconventional ways: Beyond the accepted definition of a mineral, the latest technology, and using nature as our guide. American Mineralogist, 2015, 100, 14-25.	0.9	37
97	High-resolution 3D analyses of the shape and internal constituents of small volcanic ash particles: The contribution of SEM micro-computed tomography (SEM micro-CT). Journal of Volcanology and Geothermal Research, 2015, 293, 1-12.	0.8	31
98	Strong Resistance of Citrate Anions on Metal Nanoparticles to Desorption under Thiol Functionalization. ACS Nano, 2015, 9, 1665-1682.	7.3	154
99	Spontaneous decoration of Au nanoparticles on micro-patterned reduced graphene oxide shaped by focused laser beam. Journal of Applied Physics, 2015, 117, 054304.	1.1	5
100	Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering. Nanoscale, 2015, 7, 5991-5997.	2.8	75
101	Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347, 1135-1138.	6.0	283
102	Three-Dimensional Imaging of Dislocations in a Ti–35mass%Nb Alloy by Electron Tomography. Materials, 2015, 8, 1924-1933.	1.3	3
103	Electron-Based Imaging Techniques. Comprehensive Analytical Chemistry, 2015, 69, 269-313.	0.7	1
104	3D structure of individual nanocrystals in solution by electron microscopy. Science, 2015, 349, 290-295.	6.0	238
105	Tracking the merry dance of nanoparticles. Science, 2015, 349, 232-233.	6.0	11
106	Kinematic HAADF-STEM image simulation of small nanoparticles. Micron, 2015, 74, 47-53.	1.1	23
107	Exploring nanomaterials with 3D electron microscopy. Materials Today, 2015, 18, 395-408.	8.3	64
108	Removing the effects of the "dark matter―in tomography. Ultramicroscopy, 2015, 154, 64-72.	0.8	6
109	Depth-resolution imaging of crystalline nanoclusters attached on and embedded in amorphous films using aberration-corrected TEM. Ultramicroscopy, 2015, 151, 224-231.	0.8	13
110	Anisotropic atom displacement in Pd nanocubes resolved by molecular dynamics simulations supported by x-ray diffraction imaging. Physical Review B, 2015, 91, .	1.1	41
111	Physically motivated global alignment method for electron tomography. Advanced Structural and Chemical Imaging, 2015, 1, .	4.0	20
112	3D Imaging of Twin Domain Defects in Gold Nanoparticles. Nano Letters, 2015, 15, 4066-4070.	4.5	68
113	Electron Microscopy of Solid Catalysts—Transforming from a Challenge to a Toolbox. Chemical	23.0	200

#	Article	IF	CITATIONS
114	Nanoscale optical tomography with cathodoluminescence spectroscopy. Nature Nanotechnology, 2015, 10, 429-436.	15.6	90
115	Three-dimensional coordinates of individual atoms in materials revealed by electronÂtomography. Nature Materials, 2015, 14, 1099-1103.	13.3	172
116	Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography. Nature Communications, 2015, 6, 8779.	5.8	90
117	Gold Nanoparticle Internal Structure and Symmetry Probed by Unified Small-Angle X-ray Scattering and X-ray Diffraction Coupled with Molecular Dynamics Analysis. Nano Letters, 2015, 15, 6088-6094.	4.5	43
118	Hematite iron oxide nanorod patterning inside COK-12 mesochannels as an efficient visible light photocatalyst. Journal of Materials Chemistry A, 2015, 3, 19884-19891.	5.2	14
119	Measuring Lattice Strain in Three Dimensions through Electron Microscopy. Nano Letters, 2015, 15, 6996-7001.	4.5	110
120	Preparation of TiO ₂ -supported twinned gold nanoparticles by CO treatment and their CO oxidation activity. Chemical Communications, 2015, 51, 15823-15826.	2.2	27
121	Fourier-based reconstruction via alternating direction total variation minimization in linear scan CT. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 775, 84-92.	0.7	4
122	Atomic resolution tomography reconstruction of tilt series based on a GPU accelerated hybrid input–output algorithm using polar Fourier transform. Ultramicroscopy, 2015, 149, 64-73.	0.8	6
123	3D reconstruction of nanocrystalline particles from a single projection. Micron, 2015, 68, 59-65.	1.1	20
125	MS05 - Electron crystallography. , 2016, , 19-22.		0
126	Electron tomography image reconstruction using data-driven adaptive compressed sensing. Scanning, 2016, 38, 251-276.	0.7	8
127	Atomic resolution electron tomography. MRS Bulletin, 2016, 41, 525-530.	1.7	24
128	Quantitative two-dimensional strain mapping of small core–shell FePt@Fe ₃ O ₄ nanoparticles. New Journal of Physics, 2016, 18, 033016.	1.2	5
129	Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser. Scientific Reports, 2016, 6, 34008.	1.6	22
130	Nanomaterial datasets to advance tomography in scanning transmission electron microscopy. Scientific Data, 2016, 3, 160041.	2.4	42
131	Three-Dimensional Determination of the Coordinates of Individual Atoms in Materials. Microscopy and Microanalysis, 2016, 22, 916-917.	0.2	0
132	Spectral Electron Tomography as a Quantitative Technique to Investigate Functional Nanomaterials. Microscopy and Microanalysis, 2016, 22, 274-275.	0.2	1

#	Article	IF	CITATIONS
133	Direct Inversion of the Three-Dimensional Pseudo-polar Fourier Transform. SIAM Journal of Scientific Computing, 2016, 38, A1100-A1120.	1.3	6
134	Integrated Computational and Experimental Structure Refinement for Nanoparticles. ACS Nano, 2016, 10, 4031-4038.	7.3	25
135	The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11717-11725.	3.3	75
136	Practical electron tomography guide: Recent progress and future opportunities. Micron, 2016, 91, 49-74.	1.1	31
137	Atomic electron tomography: 3D structures without crystals. Science, 2016, 353, .	6.0	181
138	What Can Electron Microscopy Tell Us Beyond Crystal Structures?. European Journal of Inorganic Chemistry, 2016, 2016, 941-950.	1.0	53
139	Electron Tomography. , 2016, , 343-376.		5
141	Elastic and inelastic mean free paths of 200 keV electrons in metallic glasses. Ultramicroscopy, 2016, 171, 89-95.	0.8	8
142	Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography. Nature Communications, 2016, 7, 11083.	5.8	36
143	Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature Communications, 2016, 7, 11495.	5.8	605
144	Nonclassical nucleation and growth of inorganic nanoparticles. Nature Reviews Materials, 2016, 1, .	23.3	343
145	Plasmonic twinned silver nanoparticles with molecular precision. Nature Communications, 2016, 7, 12809.	5.8	235
146	Determination of three-dimensional atomic positions from tomographic reconstruction using ensemble empirical mode decomposition. New Journal of Physics, 2016, 18, 083025.	1.2	2
147	Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes. Applied Physics Letters, 2016, 109, .	1.5	4
148	Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability. Applied Physics Letters, 2016, 108, .	1.5	8
149	Undersampled linogram trajectory for fast imaging (ULTI): experiments at 3 T and 7 T. NMR in Biomedicine, 2016, 29, 340-348.	1.6	2
150	Recent advances in human viruses imaging studies. Journal of Basic Microbiology, 2016, 56, 591-607.	1.8	5
151	To get the most out of high resolution X-ray tomography: A review of the post-reconstruction analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 117, 29-41.	1.5	37

#	ARTICLE	IF	CITATIONS
152	Deciphering the physics and chemistry of perovskites with transmission electron microscopy. Nanoscale, 2016, 8, 6237-6248.	2.8	6
153	The core contribution of transmission electron microscopy to functional nanomaterials engineering. Nanoscale, 2016, 8, 1260-1279.	2.8	24
154	In-line three-dimensional holography of nanocrystalline objects at atomic resolution. Nature Communications, 2016, 7, 10603.	5.8	40
155	Simulations of inorganic–bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chemical Society Reviews, 2016, 45, 412-448.	18.7	176
156	HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels. Carbon, 2016, 96, 459-473.	5.4	139
157	Quantitative 3D analysis of huge nanoparticle assemblies. Nanoscale, 2016, 8, 292-299.	2.8	38
158	Review on advances in nanoscale microscopy in cement research. Micron, 2016, 80, 45-58.	1.1	10
159	Deciphering chemical order/disorder and material properties at the single-atom level. Nature, 2017, 542, 75-79.	13.7	243
160	Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy and Environment, 2017, 2, 70-83.	4.7	97
161	Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surface Science Reports, 2017, 72, 1-58.	3.8	419
162	Electron tomography simulator with realistic 3D phantom for evaluation of acquisition, alignment and reconstruction methods. Journal of Structural Biology, 2017, 198, 103-115.	1.3	1
163	Electron crystallography for determining the handedness of a chiral zeolite nanocrystal. Nature Materials, 2017, 16, 755-759.	13.3	39
164	Informatics and data science in materials microscopy. Current Opinion in Solid State and Materials Science, 2017, 21, 141-158.	5.6	33
165	Aberration corrected STEM by means of diffraction gratings. Ultramicroscopy, 2017, 182, 36-43.	0.8	15
166	Reliable computational design of biological-inorganic materials to the large nanometer scale using Interface-FF. Molecular Simulation, 2017, 43, 1394-1405.	0.9	34
167	Three-dimensional analysis of Eu dopant atoms in Ca-α-SiAlON via through-focus HAADF-STEM imaging. Ultramicroscopy, 2017, 175, 97-104.	0.8	13
168	Three-dimensional and quantitative reconstruction of non-accessible internal porosity in hematite nanoreactors using 360Ű electron tomography. Microporous and Mesoporous Materials, 2017, 246, 207-214.	2.2	8
169	Ligand-Induced Shape Transformation of PbSe Nanocrystals. Chemistry of Materials, 2017, 29, 4122-4128.	3.2	45

		CITATION REPORT		
#	Article		IF	CITATIONS
170	The impact of STEM aberration correction on materials science. Ultramicroscopy, 2017	⁷ , 180, 22-33.	0.8	60
171	Ultra-high resolution electron microscopy. Reports on Progress in Physics, 2017, 80, 02	26101.	8.1	21
172	The benefit of thresholding carbon layers in electron tomographic tilt series by intensit downshifting. Journal of Microscopy, 2017, 265, 298-306.	у	0.8	1
173	Characterization Using Passive or Interactive Techniques. , 2017, , 35-256.			0
174	Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbi 2017, 41, 828-853.	ology Reviews,	3.9	10
175	Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging. Scie 2017, 7, 9920.	entific Reports,	1.6	25
176	CENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3 Scientific Reports, 2017, 7, 10409.	D imaging.	1.6	71
177	Electron Ptychographic Diffractive Imaging of Boron Atoms in LaB6 Crystals. Scientific 7, 2857.	Reports, 2017,	1.6	37
178	Three-dimensional atomic-scale investigation of ZnO-MgxZn1â^'xO m-plane heterostru Physics Letters, 2017, 111, .	ctures. Applied	1.5	24
179	3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports. AC Materials & Interfaces, 2017, 9, 29839-29848.	S Applied	4.0	76
180	GENFIRE: A Generalized Fourier Iterative Reconstruction Algorithm for High-Resolution and X-ray Imaging. Microscopy and Microanalysis, 2017, 23, 128-129.	3D Electron	0.2	0
181	Real-Space Investigation of Energy Transfer through Electron Tomography. Journal of P Chemistry C, 2017, 121, 28395-28402.	hysical	1.5	7
182	Cationâ~Ï€ Interaction Triggered-Fluorescence of Clay Fillers in Polymer Composites fo of Three-Dimensional Macrodispersion. Analytical Chemistry, 2017, 89, 12472-12479.	r Quantification	3.2	18
183	Improved Three-Dimensional (3D) Resolution of Electron Tomograms Using Robust Ma Data-Processing Techniques. Microscopy and Microanalysis, 2017, 23, 1121-1129.	thematical	0.2	4
184	3D Imaging of Nanoalloy Catalysts at Atomic Resolution. Microscopy and Microanalysi 2032-2033.	s, 2017, 23,	0.2	0
185	Visualization of a Mammalian Mitochondrion by Coherent X-ray Diffractive Imaging. Sc Reports, 2017, 7, 1850.	ientific	1.6	12
186	Carrier Localization in GaN/AlN Quantum Dots As Revealed by Three-Dimensional Mult Nano Letters, 2017, 17, 4261-4269.	microscopy.	4.5	14
187	Prospects for atomic resolution in-line holography for a 3D determination of atomic st single projections. Advanced Structural and Chemical Imaging, 2017, 3, 8.	ructures from	4.0	13

#	Article	IF	CITATIONS
188	Depth sectioning combined with atom-counting in HAADF STEM to retrieve the 3D atomic structure. Ultramicroscopy, 2017, 177, 36-42.	0.8	13
189	Reverse Monte Carlo reconstruction algorithm for discrete electron tomography based on HAADF‧TEM atom counting. Journal of Microscopy, 2017, 265, 73-80.	0.8	2
190	Multi-excitonic emission from Stranski-Krastanov GaN/AlN quantum dots inside a nanoscale tip. Applied Physics Letters, 2017, 111, .	1.5	11
191	Atomic Electron Tomography: Probing 3D Structure and Material Properties at the Single-Atom Level. Microscopy and Microanalysis, 2017, 23, 1886-1887.	0.2	0

Formation and Aggregation of Gold (Electrum) Nanoparticles in Epithermal Ores. Minerals (Basel,) Tj ETQq0 0 0 rg $B_{0.8}^{+}$ /Overlock 10 Tf 50

193	A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy. Advanced Structural and Chemical Imaging, 2017, 3, 15.	4.0	77
194	Self-assembly of silicon nanowires studied by advanced transmission electron microscopy. Beilstein Journal of Nanotechnology, 2017, 8, 440-445.	1.5	3
195	Crystallographic orientation of facets and planar defects in functional nanostructures elucidated by nano-focused coherent diffractive X-ray imaging. Nanoscale, 2018, 10, 4833-4840.	2.8	14
196	Selective control of fcc and hcp crystal structures in Au–Ru solid-solution alloy nanoparticles. Nature Communications, 2018, 9, 510.	5.8	90
197	Resolution in Electron Tomography. Biological and Medical Physics Series, 2018, , 261-282.	0.3	5
198	Fast â€~ <i>Operando</i> ' electron nanotomography. Journal of Microscopy, 2018, 269, 117-126.	0.8	29
199	Atom probe tomography for advanced nanoelectronic devices: Current status and perspectives. Scripta Materialia, 2018, 148, 91-97.	2.6	21
200	Transfer of Individual Micro―and Nanoparticles for Highâ€Precision 3D Analysis Using 360° Electron Tomography. Small Methods, 2018, 2, 1700276.	4.6	14
201	A laser-induced fluorescent detector for pesticide residue detection based on the spectral recognition method. Analytical Methods, 2018, 10, 5507-5515.	1.3	14
202	Electrochemiluminescence of gold nanoparticles and gold nanoparticle-labelled antibodies as co-reactants. RSC Advances, 2018, 8, 36219-36222.	1.7	10
203	Atomic-Scale Structure and Stress Release Mechanism in Core–Shell Nanoparticles. ACS Nano, 2018, 12, 12296-12304.	7.3	41
204	Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. Science Advances, 2018, 4, eaau4548.	4.7	79
205	Transmission electron microscopy as an important tool for characterization of zeolite structures. Inorganic Chemistry Frontiers, 2018, 5, 2836-2855.	3.0	29

#	Article	IF	CITATIONS
206	GENFIRE: from Precisely Localizing Single Atoms in Materials to High Resolution 3D Imaging of Cellular Structures. Microscopy and Microanalysis, 2018, 24, 1446-1447.	0.2	0
207	Atomic Electron Tomography: Adding a New Dimension to See Single Atoms in Materials. Microscopy and Microanalysis, 2018, 24, 558-559.	0.2	0
208	Precision at the nanoscale: on the structure and property evolution of gold nanoclusters. Pure and Applied Chemistry, 2018, 90, 1409-1427.	0.9	24
209	Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy. Advanced Materials, 2018, 30, e1802397.	11.1	75
210	Single-shot 3D coherent diffractive imaging of core-shell nanoparticles with elemental specificity. Scientific Reports, 2018, 8, 8284.	1.6	10
211	Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy. Scientific Reports, 2018, 8, 10239.	1.6	6
212	On Double-Resolution Imaging and Discrete Tomography. SIAM Journal on Discrete Mathematics, 2018, 32, 1369-1399.	0.4	7
213	Shape and size of non-spherical silver nanoparticles: implications for calculating nanoparticle number concentrations. Nanoscale, 2018, 10, 15943-15947.	2.8	13
214	Significant dose reduction using synchrotron radiation computed tomography: first clinical case and application to high resolution CT exams. Scientific Reports, 2018, 8, 12491.	1.6	17
215	Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. IUCrJ, 2018, 5, 141-149.	1.0	24
216	Electron Holographic Tomography. Advances in Imaging and Electron Physics, 2018, 206, 231-299.	0.1	1
217	3D Structure Determination of Pt-based Nanocatalysts at Atomic Resolution. Microscopy and Microanalysis, 2019, 25, 398-399.	0.2	0
218	Determining the 3D Atomic Coordinates and Crystal Defects in 2D Materials with Picometer Precision. Microscopy and Microanalysis, 2019, 25, 404-405.	0.2	1
219	Three-Dimensional Maps of Helium Nanobubbles To Probe the Mechanisms of Bubble Nucleation and Growth. Journal of Physical Chemistry C, 2019, 123, 19142-19152.	1.5	10
220	Effect of Synthesis Methods on the Structure and Defects of Two-Dimensional MXenes. , 2019, , 111-123.		1
221	Characterization of Surface Contaminants and Features. , 2019, , 107-158.		0
222	4D Atomic Electron Tomography. Microscopy and Microanalysis, 2019, 25, 1814-1815.	0.2	0
223	Fast approximate STEM image simulations from a machine learning model. Advanced Structural and Chemical Imaging, 2019, 5, .	4.0	5

#	Article	IF	CITATIONS
224	Multimodal x-ray and electron microscopy of the Allende meteorite. Science Advances, 2019, 5, eaax3009.	4.7	17
225	Data Acquisition in 4D Atomic Electron Tomography. Microscopy and Microanalysis, 2019, 25, 1816-1817.	0.2	0
226	Imaging Three-Dimensional Elemental Inhomogeneity in Pt–Ni Nanoparticles Using Spectroscopic Single Particle Reconstruction. Nano Letters, 2019, 19, 732-738.	4.5	18
227	Unraveling the Morphology–Function Relationships of Polyamide Membranes Using Quantitative Electron Tomography. ACS Applied Materials & Interfaces, 2019, 11, 8517-8526.	4.0	53
228	Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction. Communications Biology, 2019, 2, 26.	2.0	47
229	Feasible atomic-resolution electron tomography for general crystal surfaces by quantitative reconstruction from a high-resolution image. Ultramicroscopy, 2019, 205, 27-38.	0.8	1
230	Observing crystal nucleation in four dimensions using atomic electron tomography. Nature, 2019, 570, 500-503.	13.7	219
231	Cross-Platform Ubiquitous Volume Rendering Using Programmable Shaders in VTK for Scientific and Medical Visualization. IEEE Computer Graphics and Applications, 2019, 39, 26-43.	1.0	9
232	Fast electron tomography: Applications to beam sensitive samples and in situ TEM or operando environmental TEM studies. Materials Characterization, 2019, 151, 480-495.	1.9	36
233	A Multichannel Cross-Modal Fusion Framework for Electron Tomography. IEEE Transactions on Image Processing, 2019, 28, 4206-4218.	6.0	4
234	Surface Plasmon Coupling in Dimers of Gold Nanoparticles: Experiment and Theory for Ideal (Spherical) and Nonideal (Faceted) Building Blocks. ACS Photonics, 2019, 6, 642-648.	3.2	43
236	Electron Microscopy Observations of the Au Nanorods and Au Nanorod/SiO ₂ Nanocapsules. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2019, 66, 210-214.	0.1	0
237	Characterising porosity in platinum nanoparticles. Nanoscale, 2019, 11, 17791-17799.	2.8	17
238	Silver Nanoparticle Detection in Real-World Environments via Particle Impact Electrochemistry. ACS Sensors, 2019, 4, 464-470.	4.0	18
239	Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment. Nano Letters, 2019, 19, 477-481.	4.5	93
240	Scanning-electron-microscope imaging of gold (electrum) nanoparticles in middle Miocene bonanza epithermal ores from northern Nevada, USA. Mineralium Deposita, 2020, 55, 389-398.	1.7	14
241	The structure of gold nanoparticles: molecular dynamics modeling and its verification by X-ray diffraction. Journal of Applied Crystallography, 2020, 53, 1-8.	1.9	13
242	Three-Dimensional Atomic Structure of Grain Boundaries Resolved by Atomic-Resolution Electron Tomography. Matter, 2020, 3, 1999-2011.	5.0	34

#	Article	IF	CITATIONS
243	A compact design of four-degree-of-freedom transmission electron microscope holder for quasi-four-dimensional characterization. Science China Technological Sciences, 2020, 63, 1272-1279.	2.0	8
244	Capturing the Atomic Coordinates of Surface and Subsurface Structure in 4D with Atomic Electron Tomography. Microscopy and Microanalysis, 2020, 26, 1794-1796.	0.2	0
245	Using Methods of Reconstruction of Pins, Magnetic Resonance Imaging and Computer Tomography to Analyze Integrated Circuits in Microprocessor Systems. , 2020, , .		0
246	Ptychographic atomic electron tomography: Towards three-dimensional imaging of individual light atoms in materials. Physical Review B, 2020, 102, .	1.1	14
247	Undercoordinated Active Sites on 4H Gold Nanostructures for CO ₂ Reduction. Nano Letters, 2020, 20, 8074-8080.	4.5	46
248	Characterization of metals in four dimensions. Materials Research Letters, 2020, 8, 462-476.	4.1	32
249	0.7 à Resolution Electron Tomography Enabled by Deep‣earningâ€Aided Information Recovery. Advanceo Intelligent Systems, 2020, 2, 2000152.	3.3	22
250	Atomic Electron Tomography: Past, Present and Future. Microscopy and Microanalysis, 2020, 26, 652-654.	0.2	1
251	Recent progress in synchrotron radiation 3D–4D nano-imaging based on X-ray full-field microscopy. Microscopy (Oxford, England), 2020, 69, 259-279.	0.7	19
252	Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nature Materials, 2020, 19, 867-873.	13.3	96
253	Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science, 2020, 368, 1472-1477.	6.0	205
254	Imaging Beamâ€Sensitive Materials by Electron Microscopy. Advanced Materials, 2020, 32, e1907619.	11.1	104
255	Electron tomography imaging methods with diffraction contrast for materials research. Microscopy (Oxford, England), 2020, 69, 141-155.	0.7	19
256	Ultrastructural visualization of 3D chromatin folding using volume electron microscopy and DNA in situ hybridization. Nature Communications, 2020, 11, 2120.	5.8	26
257	Electron tomography for functional nanomaterials. MRS Bulletin, 2020, 45, 298-304.	1.7	9
258	Atomic column heights detection in metallic nanoparticles using deep convolutional learning. Computational Materials Science, 2020, 180, 109722.	1.4	20
259	Nanoscale x-ray and electron tomography. MRS Bulletin, 2020, 45, 264-271.	1.7	12
260	Atomic electron tomography in three and four dimensions. MRS Bulletin, 2020, 45, 290-297.	1.7	28

#	Article	IF	CITATIONS
261	Electron tomography of unirradiated and irradiated nuclear graphite. Journal of Nuclear Materials, 2021, 545, 152649.	1.3	9
262	Atomically resolved tomographic reconstruction of nanoparticles from single projection: Influence of amorphous carbon support. Ultramicroscopy, 2021, 221, 113177.	0.8	4
263	Correlative Laboratory Nano T and 360° Electron Tomography of Macropore Structures in Hierarchical Zeolites. Advanced Materials Interfaces, 2021, 8, 2001154.	1.9	11
264	Determination of the 3D Atomic Structures of Nanoparticles. Small Science, 2021, 1, 2000045.	5.8	12
265	Efficient fitting algorithm. Advances in Imaging and Electron Physics, 2021, 217, 73-90.	0.1	0
266	X-ray linear dichroic ptychography. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
267	Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 066801.	0.2	0
268	Data-driven electron microscopy: electron diffraction imaging of materials structural properties. Microscopy (Oxford, England), 2022, 71, i116-i131.	0.7	11
269	Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices. ACS Nano, 2021, 15, 4916-4926.	7.3	10
270	Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope. Accounts of Chemical Research, 2021, 54, 1189-1199.	7.6	13
272	Determining the three-dimensional atomic structure of an amorphous solid. Nature, 2021, 592, 60-64.	13.7	193
273	Atomic structure of a glass imaged at last. Nature, 2021, 592, 31-32.	13.7	4
274	Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
275	Entropic Control of HD Exchange Rates over Dilute Pd-in-Au Alloy Nanoparticle Catalysts. ACS Catalysis, 2021, 11, 6971-6981.	5.5	25
276	Electron Crystallographic Investigation of Crystals on the Mesostructural Scale. Microscopy and Microanalysis, 2021, 27, 996-1006.	0.2	1
277	Making the most of your electrons: Challenges and opportunities in characterizing hybrid interfaces with STEM. Materials Today, 2021, 50, 100-115.	8.3	13
278	Atomic resolution HOLZ-STEM imaging of atom position modulation in oxide heterostructures. Ultramicroscopy, 2021, 226, 113296.	0.8	4
279	A Review of Grain Boundary and Heterointerface Characterization in Polycrystalline Oxides by (Scanning) Transmission Electron Microscopy. Crystals, 2021, 11, 878.	1.0	12

#	Article	IF	CITATIONS
280	Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 943-995.	0.2	14
281	NUDIM: A non-uniform fast Fourier transform based dual-space constraint iterative reconstruction method in biological electron tomography. Journal of Structural Biology, 2021, 213, 107770.	1.3	2
282	Capturing 3D atomic defects and phonon localization at the 2D heterostructure interface. Science Advances, 2021, 7, eabi6699.	4.7	13
283	On the Origin of Sinterâ€Resistance and Catalyst Accessibility in Raspberryâ€Colloidâ€Templated Catalyst Design. Advanced Functional Materials, 2021, 31, 2106876.	7.8	10
284	Limits of Three-Dimensional Resolution and Dose for Aberration-Corrected Electron Tomography. Physical Review Applied, 2021, 15, .	1.5	2
285	Liquidâ€Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. Advanced Materials, 2018, 30, 1703316.	11.1	77
286	Electron Nanodiffraction. Springer Handbooks, 2019, , 905-969.	0.3	15
287	Electron Tomography in Materials Science. Springer Handbooks, 2019, , 1279-1329.	0.3	11
289	3D Nanometric Analyses via Electron Tomography: Application to Nanomaterials. , 2015, , 171-205.		3
290	Chapter 6. Electron Tomography. RSC Nanoscience and Nanotechnology, 2015, , 211-299.	0.2	1
291	Liquid-phase electron microscopy imaging of cellular and biomolecular systems. Journal of Materials Chemistry B, 2020, 8, 8490-8506.	2.9	19
292	Alignment methods for nanotomography with deep subpixel accuracy. Optics Express, 2019, 27, 36637.	1.7	36
293	Correlative Nanoscale 3D Imaging of Structure and Composition in Extended Objects. PLoS ONE, 2012, 7, e50124.	1.1	23
295	Electron Tomography for 3D Imaging of Nanoscale Materials. Praktische Metallographie/Practical Metallography, 2018, 55, 527-538.	0.1	1
296	The Effects of Ambient Ions on the Growth of Gold Nanoparticles by Laser Ablation in Liquid. Bulletin of the Korean Chemical Society, 2014, 35, 865-870.	1.0	9
297	Discrete two dimensional Fourier transform in polar coordinates part II: numerical computation and approximation of the continuous transform. PeerJ Computer Science, 2020, 6, e257.	2.7	1
298	Improvement of Alignment Accuracy in Electron Tomography. Applied Microscopy, 2013, 43, 1-8.	0.8	2
299	Electron Tomography and Synapse Study. Applied Microscopy, 2014, 44, 83-87.	0.8	4

#	Article	IF	CITATIONS
300	3D atomic imaging of low-coordinated active sites in solid-state dealloyed hierarchical nanoporous gold. Journal of Materials Chemistry A, 2021, 9, 25513-25521.	5.2	3
301	Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nature Materials, 2022, 21, 95-102.	13.3	44
303	Influence of central beamstop on ptychographic coherent diffractive imaging. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 150702.	0.2	0
304	Equally Sloped Tomography Applied to X-ray Free Electron Lasers Single-particle Coherent Diffraction Imaging. , 2017, , .		0
305	Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope. Physical Review Materials, 2017, 1, .	0.9	1
306	Aberration Corrected Transmission Electron Microscopy and Its Applications. Springer Tracts in Modern Physics, 2018, , 301-379.	0.1	0
307	Multi-model imaging of the interaction of nanomaterials with cells. IUCrJ, 2018, 5, 122-123.	1.0	0
308	Discrete 2D Fourier Transform In Polar Coordinates. , 2018, , .		0
309	Placticals and Trends of Electron Tomography for Materials Research. Materia Japan, 2018, 57, 589-594.	0.1	0
310	Parameter Selection for Regularized Electron Tomography Without a Reference Image. Lecture Notes in Computer Science, 2019, , 452-464.	1.0	0
311	The Future of Crystallography Led by Electron Beams. Nihon Kessho Gakkaishi, 2020, 62, 248-252.	0.0	0
312	Unravelling the atomically resolved 3D shape of {111}, {010}, and {001} faceted small anatase nanoparticles. Materials Today Nano, 2022, 17, 100153.	2.3	1
313	Simultaneous Successive Twinning Captured by Atomic Electron Tomography. ACS Nano, 2022, 16, 588-596.	7.3	12
314	Optimizing TiO ₂ through Water-Soluble Ti Complexes as Raw Material for Controlling Particle Size and Distribution of Synthesized BaTiO ₃ Nanocubes. ACS Omega, 2021, 6, 32517-32527.	1.6	5
315	Quantitative analysis of grain boundary diffusion, segregation and precipitation at a sub-nanometer scale. Acta Materialia, 2022, 225, 117522.	3.8	18
317	Characterization of nanomaterials dynamics with transmission electron microscope. , 2022, , .		0
318	Compressed sensing for electron cryotomography and high-resolution subtomogram averaging of biological specimens. Structure, 2022, 30, 408-417.e4.	1.6	6
319	Envisioning quantitative catalytic superiority of interfacial sites in three dimensions. CheM, 2022, , .	5.8	0

#	Article	IF	CITATIONS
320	Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature, 2022, 603, 631-636.	13.7	31
321	Has ASAT Been Achieved?. , 2022, , 55-76.		0
322	Data-driven analysis of neutron diffraction line profiles: application to plastically deformed Ta. Scientific Reports, 2022, 12, 5628.	1.6	0
323	Five-parameter grain boundary character distribution of gold nanoparticles based on three dimensional orientation mapping in the TEM. Scripta Materialia, 2022, 214, 114677.	2.6	6
324	Direct methods applied to phase retrieval in high resolution transmission electron microscopy. Journal of Physics Communications, 0, , .	0.5	0
326	Electron tomography. , 2022, , 305-332.		0
327	Determining the 3D Atomic Structure of Metallic Glass. Microscopy and Microanalysis, 2022, 28, 224-226.	0.2	0
328	Sintering Behaviors of Supported Nanoparticles Related to Spatial Location by a Quasi-Four-Dimensional TEM. Nano Letters, 2022, 22, 6523-6529.	4.5	4
329	Real-time 3D analysis during electron tomography using tomviz. Nature Communications, 2022, 13, .	5.8	14
330	Precisely Picking Nanoparticles by a "Nano-Scalpel―for 360° Electron Tomography. Microscopy and Microanalysis, 0, , 1-8.	0.2	1
331	Three-Dimensional Quantitative Coherent Diffraction Imaging of <i>Staphylococcus aureus</i> Treated with Peptide-Mineralized Au-Cluster Probes. Analytical Chemistry, 2022, 94, 13136-13144.	3.2	7
332	Highâ€Resolution Electron Tomography of Ultrathin Boerdijk–Coxeter–Bernal Nanowire Enabled by Superthin Metal Surface Coating. Small, 2022, 18, .	5.2	4
333	Extension of focal depth by electron quasi-Bessel beam in atomic-resolution scanning transmission electron microscopy. Applied Physics Express, 0, , .	1.1	0
334	Effects of Curvature and Torsion on Magnetic Nanowires. Topics in Applied Physics, 2022, , 37-81.	0.4	1
335	Engineering of plasmonic gold nanocrystals through pulsed laser irradiation. Applied Physics Letters, 2022, 121, 200502.	1.5	1
336	Towards quantitative determination of atomic structures of amorphous materials in three dimensions. , 2023, 2, 20220048.		3
337	Deep-Learning Electron Diffractive Imaging. Physical Review Letters, 2023, 130, .	2.9	9
338	Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145.	23.0	16

#	Article	IF	CITATIONS
339	Three-dimensional electron tomography and recent expansion of its applications in materials science. Microscopy (Oxford, England), 2023, 72, 111-134.	0.7	4
340	Three-dimensional topological magnetic monopoles and their interactions in a ferromagnetic meta-lattice. Nature Nanotechnology, 2023, 18, 227-232.	15.6	9
341	Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. Journal of Hazardous Materials, 2023, 448, 130977.	6.5	15
342	Real-time tilt undersampling optimization during electron tomography of beam sensitive samples using golden ratio scanning and RECAST3D. Nanoscale, 2023, 15, 5391-5402.	2.8	1
343	Direct Observation of Transient Structural Dynamics of Atomically Thin Halide Perovskite Nanowires. Journal of the American Chemical Society, 2023, 145, 4800-4807.	6.6	11
344	Accurate real space iterative reconstruction (RESIRE) algorithm for tomography. Scientific Reports, 2023, 13, .	1.6	6
345	Quantitative Scanning Transmission Electron Microscopy for Materials Science: Imaging, Diffraction, Spectroscopy, and Tomography. Annual Review of Materials Research, 2023, 53, 105-141.	4.3	4
347	<i>In Situ</i> and Emerging Transmission Electron Microscopy for Catalysis Research. Chemical Reviews, 2023, 123, 8347-8394.	23.0	11