Hydrogen Spillover. Facts and Fiction

Chemical Reviews 112, 2714-2738 DOI: 10.1021/cr200346z

Citation Report

#	Article	IF	CITATIONS
3	Selective Hydrogenolysis of Glycerol to 1,3-Propanediol Catalyzed by Pt Nanoparticles–AlO <i>x</i> /WO3. Chemistry Letters, 2012, 41, 1720-1722.	0.7	56
4	Room-temperature hydrogen gas sensor with ZnO nanorod arrays grown on a quartz substrate. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 46, 254-258.	1.3	16
5	Spillover enhancement for hydrogen storage by Pt doped hypercrosslinked polystyrene. International Journal of Hydrogen Energy, 2012, 37, 12402-12410.	3.8	17
6	One-step synthesis of a Pt–Co–SWCNT hybrid material from a Pt–Co–MCM-41 catalyst. Journal of Materials Chemistry, 2012, 22, 25083.	6.7	8
7	Energetic Driving Force of H Spillover between Rhodium and Titania Surfaces: A DFT View. Journal of Physical Chemistry C, 2012, 116, 25362-25367.	1.5	18
8	Hydrogenolysis of glycerol over Cu0.4/Zn5.6â^'xMgxAl2O8.6 catalysts: The role of basicity and hydrogen spillover. Journal of Catalysis, 2012, 296, 1-11.	3.1	175
9	Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts. Journal of Catalysis, 2012, 295, 169-178.	3.1	122
10	Hydrogen adsorption on and spillover from Au- and Cu-supported Pt3 and Pd3 clusters: a density functional study. Physical Chemistry Chemical Physics, 2012, 14, 16062.	1.3	28
11	Spectroscopic Identification of Hydrogen Spillover Species in Ruthenium-Modified High Surface Area Carbons by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 26744-26755.	1.5	32
12	New Challenges in Heterogeneous Catalysis for the 21st Century. Catalysis Letters, 2012, 142, 501-516.	1.4	114
14	A hydrogen sorption study on a Pd-doped CMK-3 type ordered mesoporous carbon. Adsorption, 2013, 19, 803-811.	1.4	9
15	Design and Synthesis of Metal Sulfide Catalysts Supported on Zeolite Nanofiber Bundles with Unprecedented Hydrodesulfurization Activities. Journal of the American Chemical Society, 2013, 135, 11437-11440.	6.6	104
16	Effect of surface modification of the support of hydrotreating catalysts with transition metal oxides (sulfides) on their catalytic properties. Petroleum Chemistry, 2013, 53, 245-254.	0.4	15
17	n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites. Journal of Catalysis, 2013, 307, 122-131.	3.1	183
19	Hydrogen spillover effect in the presence of CoS x /Al2O3 and bulk MoS2 in hydrodesulfurization, hydrodenitrogenation and hydrodeoxygenation. Russian Journal of Applied Chemistry, 2013, 86, 718-726.	0.1	12
20	Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide. Topics in Catalysis, 2013, 56, 1752-1763.	1.3	65
21	Unraveling the Role of Metal–Support Interactions in Heterogeneous Catalysis: Oxygenate Selectivity in Fischer–Tropsch Synthesis. ACS Catalysis, 2013, 3, 2881-2890.	5.5	54
22	Solid-state solvent-free catalyzed hydrogenation: Enhancing reaction efficiency by spillover agents. Journal of Molecular Catalysis A, 2013, 376, 48-52.	4.8	9

# 23	ARTICLE <scp>d</scp> -Glucose Hydrogenation over Ru Nanoparticles Embedded in Mesoporous Hypercrosslinked Polystyrene. Journal of Physical Chemistry A, 2013, 117, 4073-4083.	IF 1.1	Citations 51
24	Carbon-supported Ru catalyst with lithium promoter for ammonia synthesis. Catalysis Communications, 2013, 41, 110-114.	1.6	12
25	A catalytic and efficient route for reduction of graphene oxide by hydrogen spillover. Journal of Materials Chemistry A, 2013, 1, 1070-1077.	5.2	44
26	Changes in the electrical resistance of oriented graphitic carbon films induced by atomic hydrogen. Journal of Materials Chemistry A, 2013, 1, 402-407.	5.2	6
27	Complete degradation of perchlorate using Pd/N-doped activated carbon with adsorption/catalysis bifunctional roles. Carbon, 2013, 65, 315-323.	5.4	27
28	Probing Highly Selective H/D Exchange Processes with a Ruthenium Complex through Neutron Diffraction and Multinuclear NMR Studies Inorganic Chemistry, 2013, 52, 7329-7337.	1.9	28
29	High CO2 and CO conversion to hydrocarbons using bridged Fe nanoparticles on carbon nanotubes. Catalysis Science and Technology, 2013, 3, 1202.	2.1	42
30	Catalyzed Rehydrogenation of NaAlH ₄ : Ti and Friends Are Active on NaH Surfaces; Pt and Friends Are Not. Journal of Physical Chemistry C, 2013, 117, 8150-8155.	1.5	5
31	Controlling a spillover pathway with the molecular cork effect. Nature Materials, 2013, 12, 523-528.	13.3	119
32	Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons. Microporous and Mesoporous Materials, 2013, 177, 66-74.	2.2	27
33	Aerobic oxidation of primary aliphatic alcohols over bismuth oxide supported platinum catalysts in water. Green Chemistry, 2013, 15, 2215.	4.6	64
34	Highly Selective Hydrogenolysis of Clycerol to 1,3â€Propanediol over a Boehmiteâ€Supported Platinum/Tungsten Catalyst. ChemSusChem, 2013, 6, 1345-1347.	3.6	155
35	Zeolite-supported bimetallic catalyst: controlling selectivity of rhodium complexes by nearby iridium complexes. Catalysis Science and Technology, 2013, 3, 2199.	2.1	11
36	H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nature Materials, 2013, 12, 562-568.	13.3	278
37	Supercritical CO2Mediated Incorporation of Pd onto Templated Carbons: A Route to Optimizing the Pd Particle Size and Hydrogen Uptake Density. ACS Applied Materials & Interfaces, 2013, 5, 5639-5647.	4.0	24
38	A Voltammetry Study of Ethanol Oxidation on Carbon Supported, Non Alloyed Platinum-Tungsten Catalysts. Journal of the Electrochemical Society, 2013, 160, H185-H191.	1.3	3
39	Composite Carbon Nanotube and Titania Catalyst Supports for Enhanced Activity and Durability. ECS Transactions, 2013, 58, 1809-1821.	0.3	5
41	Harnessing the Selective Catalytic Action of Supported Gold in Hydrogenation Applications. RSC Catalysis Series, 2014, , 424-461.	0.1	1

ARTICLE IF CITATIONS # Water-Mediated Cooperative Migration of Chemisorbed Hydrogen on Graphene. Physical Review 2.9 16 42 Letters, 2014, 112, 076101. Carbon Allotropes Accelerate Hydrogenation via Spillover Mechanism. Journal of Physical Chemistry 1.5 C, 2014, 118, 27164-27169. Kinetics of D-glucose hydrogenation over a Ru-containing heterogeneous catalyst. Kinetics and 44 0.3 2 Catalysis, 2014, 55, 695-704. Noble Metals Can Have Different Effects on Photocatalysis Over Metal–Organic Frameworks (MOFs): A Case Study on M/NH₂â€MILâ€125(Ti) (M=Pt and Au). Chemistry - A European Journal, 2014, 20, 247 4780-4788. Kinetic investigation of the effect of H2S in the hydrodesulfurization of FCC gasoline. Fuel, 2014, 123, 3.4 46 18 43-51. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy and Environmental Science, 2014, 7, 1250-1280. 15.6 1,229 Probing hydrogen spillover in Pd@MIL-101(Cr) with a focus on hydrogen chemisorption. Physical 48 1.3 33 Chemistry Chemical Physics, 2014, 16, 5803. Hydrogenation of o-chloronitrobenzene to o-chloroaniline over a Pt \hat{l}^3 -Fe2O3 catalyst under ambient 40 1.7 conditions. RSC Advances, 2014, 4, 11788. The role of rhodium in the mechanism of the water–gas shift over zirconia supported iron oxide. 50 3.1 30 Journal of Catalysis, 2014, 313, 34-45. Direct evidence of hydrogen spillover from Ni to Cu on Ni–Cu bimetallic catalysts. Journal of 4.8 Molecular Catalysis Á, 2014, 383-384, 239-242. Oxidesâ€modified Raney copper as catalysts for selective hydrogenolysis of glycerol. Asia-Pacific 52 0.8 5 Journal of Chemical Engineering, 2014, 9, 581-590. Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H ₂. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7942-7947. 3.3 109 Efficient synthesis of ethylene glycol from cellulose over Ni–WO3/SBA-15 catalysts. Journal of Molecular Catalysis A, 2014, 381, 46-53. 54 4.8 84 Mechanism of Hydrogen Spillover on WO₃(001) and Formation of H_{<i>x</i>}WO₃ (<i>x</i> = 0.125, 0.25, 0.375, and 0.5). Journal of Physical 1.5 89 Chemistry C, 2014, 118, 494-501. Selective conversion of microcrystalline cellulose into hexitols over a Ru/[Bmim]3PW12O40 catalyst 2.2 33 56 under mild conditions. Catalysis Today, 2014, 233, 70-76. Selective Dissociation of Dihydrogen over Dioxygen on a Hindered Platinum Surface for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem, 2014, 6, 2836-2842. 1.8 23 Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates 58 5.8 181 with controlled nanostructures. Nature Communications, 2014, 5, 3370. Palladium Nanoparticles Encapsulated in Core–Shell Silica: A Structured Hydrogenation Catalyst 5.5 with Enhanced Activity for Reduction of Oxyanion Water Pollutants. ACS Catalysis, 2014, 4, 3551-3559.

#	Article	IF	CITATIONS
60	Detection of Low-Density Surface Sites on Silica: Experimental Evidence of Intrinsic Oxygen-Vacancy Defects. Chemistry of Materials, 2014, 26, 2166-2171.	3.2	11
61	Hydrogen Dissociation, Spillover, and Desorption from Cu-Supported Co Nanoparticles. Journal of Physical Chemistry Letters, 2014, 5, 3380-3385.	2.1	34
62	Understanding the role of TiO ₂ crystal structure on the enhanced activity and stability of Ru/TiO ₂ catalysts for the conversion of lignin-derived oxygenates. Green Chemistry, 2014, 16, 645-652.	4.6	98
63	H ₂ spillover enhanced hydrogenation capability of TiO ₂ used for photocatalytic splitting of water: a traditional phenomenon for new applications. Chemical Communications, 2014, 50, 6049-6051.	2.2	122
64	Targeted Manipulation of Metal–Organic Frameworks To Direct Sorption Properties. ChemPhysChem, 2014, 15, 823-839.	1.0	46
65	A Nanoscale Demonstration of Hydrogen Atom Spillover and Surface Diffusion Across Silica Using the Kinetics of CO ₂ Methanation Catalyzed on Spatially Separate Pt and Co Nanoparticles Nano Letters, 2014, 14, 4792-4796.	4.5	100
67	Experimental and Theoretical Studies of Hydrogen/Deuterium Spillover on Pt-Loaded Zeolite-Templated Carbon. Journal of Physical Chemistry C, 2014, 118, 9551-9559.	1.5	32
68	Dihydrogen Catalysis: A Remarkable Avenue in the Reactivity of Molecular Hydrogen. Catalysis Reviews - Science and Engineering, 2014, 56, 403-475.	5.7	20
69	p-Si/W ₂ C and p-Si/W ₂ C/Pt Photocathodes for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2014, 136, 1535-1544.	6.6	77
70			
70	Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719.	23.0	329
70	Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719. High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal of Energy Research, 2014, 38, 1562-1570.	23.0	329 25
	High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal		
71	High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal of Energy Research, 2014, 38, 1562-1570. Diffusion-controlled H2 sensors composed of Pd-coated highly porous WO3 nanocluster films.	2.2	25
71 72	 High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal of Energy Research, 2014, 38, 1562-1570. Diffusion-controlled H2 sensors composed of Pd-coated highly porous WO3 nanocluster films. Sensors and Actuators B: Chemical, 2014, 191, 711-718. Stability and hydrogen adsorption of metal–organic frameworks prepared via different catalyst 	2.2 4.0	25 36
71 72 73	High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal of Energy Research, 2014, 38, 1562-1570. Diffusion-controlled H2 sensors composed of Pd-coated highly porous WO3 nanocluster films. Sensors and Actuators B: Chemical, 2014, 191, 711-718. Stability and hydrogen adsorption of metal–organic frameworks prepared via different catalyst doping methods. Journal of Catalysis, 2014, 318, 128-142.	2.2 4.0 3.1	25 36 29
71 72 73 74	 High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal of Energy Research, 2014, 38, 1562-1570. Diffusion-controlled H2 sensors composed of Pd-coated highly porous WO3 nanocluster films. Sensors and Actuators B: Chemical, 2014, 191, 711-718. Stability and hydrogen adsorption of metal–organic frameworks prepared via different catalyst doping methods. Journal of Catalysis, 2014, 318, 128-142. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chemical Society Reviews, 2014, 43, 1543-1574. Template removal from AFI aluminophosphate molecular sieve by Pd/SiO2 catalytic hydrocracking at 	2.2 4.0 3.1 18.7	25 36 29 445
71 72 73 74 75	High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal of Energy Research, 2014, 38, 1562-1570. Diffusion-controlled H2 sensors composed of Pd-coated highly porous WO3 nanocluster films. Sensors and Actuators B: Chemical, 2014, 191, 711-718. Stability and hydrogen adsorption of metal–organic frameworks prepared via different catalyst doping methods. Journal of Catalysis, 2014, 318, 128-142. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chemical Society Reviews, 2014, 43, 1543-1574. Template removal from AFI aluminophosphate molecular sieve by Pd/SiO2 catalytic hydrocracking at mild temperature. Microporous and Mesoporous Materials, 2014, 193, 127-133. Hydrogen sorption properties of Pd-doped carbon molecular sieves. International Journal of	2.2 4.0 3.1 18.7 2.2	25 36 29 445 15

#	Article	IF	CITATIONS
79	Preparation of Ni–Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar. International Journal of Hydrogen Energy, 2014, 39, 10959-10970.	3.8	144
80	Synthesis and multi-technique characterization of nickel loaded MCM-41 as potential hydrogen-storage materials. Microporous and Mesoporous Materials, 2014, 191, 103-111.	2.2	29
81	In pursuit of light intermetallic hydrides. Journal of Alloys and Compounds, 2015, 645, S524-S528.	2.8	2
82	Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions. Angewandte Chemie - International Edition, 2015, 54, 9006-9010.	7.2	96
83	PtZn‣TSâ€⊋: A novel catalyst for ethane dehydrogenation. AICHE Journal, 2015, 61, 4367-4376.	1.8	26
84	Towards Carbonâ€Neutral CO ₂ Conversion to Hydrocarbons. ChemSusChem, 2015, 8, 4064-4072.	3.6	48
86	Ultrafine Nanoparticleâ€Supported Ru Nanoclusters with Ultrahigh Catalytic Activity. Small, 2015, 11, 4385-4393.	5.2	80
87	Hydrogen-Induced Rupture of Strained Si─O Bonds in Amorphous Silicon Dioxide. Physical Review Letters, 2015, 114, 115503.	2.9	82
88	The Cu–ZnO synergy in methanol synthesis from CO2, Part 2: Origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu–ZnO coprecipitate catalysts. Journal of Catalysis, 2015, 330, 533-544.	3.1	103
89	Hydrogen storage over metal-doped activated carbon. International Journal of Hydrogen Energy, 2015, 40, 7609-7616.	3.8	44
90	Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities. ACS Nano, 2015, 9, 7343-7351.	7.3	122
91	Hydrogen spillover effect between Ni2P and MoS2 catalysts in hydrodesulfurization of dibenzothiophene. Journal of Fuel Chemistry and Technology, 2015, 43, 708-713.	0.9	4
92	Hydrogen Spillover Enhanced Hydroxyl Formation and Catalytic Activity Toward CO Oxidation at the Metal/Oxide Interface. Chemistry - A European Journal, 2015, 21, 4252-4256.	1.7	17
93	Conversion of Dimethyl Ether to 2,2,3-Trimethylbutane over a Cu/BEA Catalyst: Role of Cu Sites in Hydrogen Incorporation. ACS Catalysis, 2015, 5, 1794-1803.	5.5	37
94	Decoupling the electronic, geometric and interfacial contributions to support effects in heterogeneous catalysis. Molecular Simulation, 2015, 41, 123-133.	0.9	16
95	Quantitative depth profiling of Ce ³⁺ in Pt/CeO ₂ by in situ high-energy XPS in a hydrogen atmosphere. Physical Chemistry Chemical Physics, 2015, 17, 5078-5083.	1.3	77
96	Promoting effect of WOx on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt–WOx/Al2O3 catalysts. Journal of Molecular Catalysis A, 2015, 398, 391-398.	4.8	125
97	Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH2 framework and their impact on hydrogen sorption properties. Journal of Solid State Chemistry, 2015, 225, 209-215.	1.4	19

#	Article	IF	CITATIONS
98	Selective Hydrogenation of Phenol Catalyzed by Palladium on High-Surface-Area Ceria at Room Temperature and Ambient Pressure. ACS Catalysis, 2015, 5, 2051-2061.	5.5	120
99	Revisiting hydrogen spillover in Pt/LTA: Effects of physical diluents having different acid site distributions. Journal of Catalysis, 2015, 325, 26-34.	3.1	48
100	From the Surface Reaction Control to Gas-Diffusion Control: The Synthesis of Hierarchical Porous SnO ₂ Microspheres and Their Gas-Sensing Mechanism. Journal of Physical Chemistry C, 2015, 119, 15963-15976.	1.5	66
101	NiMo catalysts supported on graphene-modified mesoporous TiO2 toward highly efficient hydrodesulfurization of dibenzothiophene. Applied Catalysis A: General, 2015, 502, 157-165.	2.2	34
102	Hydrogen Spillover in Encapsulated Metal Catalysts: New Opportunities for Designing Advanced Hydroprocessing Catalysts. ChemCatChem, 2015, 7, 1048-1057.	1.8	56
103	Hydrogen Adsorption, Dissociation, and Spillover on Ru ₁₀ Clusters Supported on Anatase TiO ₂ and Tetragonal ZrO ₂ (101) Surfaces. ACS Catalysis, 2015, 5, 5486-5495.	5.5	122
104	Hydrogen storage properties of Pd-doped thermally oxidized single wall carbon nanohorns. Journal of Alloys and Compounds, 2015, 645, S485-S489.	2.8	13
105	Carbon supported gold and silver: Application in the gas phase hydrogenation of m -dinitrobenzene. Journal of Molecular Catalysis A, 2015, 408, 138-146.	4.8	14
106	Hydrogen Spillover between Single Gold Nanorods and Metal Oxide Supports: A Surface Plasmon Spectroscopy Study. ACS Nano, 2015, 9, 7846-7856.	7.3	65
107	Hydrogen spillover on Rh/TiO ₂ : the FTIR study of donated electrons, co-adsorbed CO and H/D exchange. Physical Chemistry Chemical Physics, 2015, 17, 20563-20573.	1.3	37
108	Improve Electrochemical Hydrogen Insertion on the Carbon Materials Loaded with Pt nano-particles through H spillover. Electrochimica Acta, 2015, 174, 400-405.	2.6	13
109	Efficiency of isotope exchange between sodium 4-phenylbenzoate and activated tritium. Radiochemistry, 2015, 57, 312-320.	0.2	10
110	Effect of ruthenium nickel bimetallic composition on the catalytic performance for benzene hydrogenation to cyclohexane. Applied Catalysis A: General, 2015, 499, 124-132.	2.2	57
111	Methanation of carbon monoxide over promoted flame-synthesized cobalt clusters stabilized in zirconia matrix. Journal of Catalysis, 2015, 326, 182-193.	3.1	23
112	Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr- or [Ti,Zr]-pillared montmorillonites for destruction of chlorinated volatile organic compounds. Applied Catalysis B: Environmental, 2015, 174-175, 293-307.	10.8	49
113	Decoration of Co/Co ₃ O ₄ nanoparticles with Ru nanoclusters: a new strategy for design of highly active hydrogenation. Journal of Materials Chemistry A, 2015, 3, 11716-11719.	5.2	52
114	Hydrogen Storage Materials. Neutron Scattering Applications and Techniques, 2015, , 205-239.	0.2	5
115	"Job-Sharing―Storage of Hydrogen in Ru/Li ₂ O Nanocomposites. Nano Letters, 2015, 15, 4170-4175.	4.5	36

#	Article	IF	CITATIONS
116	Defects on TiO2—Key Pathways to Important Surface Processes. Springer Series in Surface Sciences, 2015, , 81-121.	0.3	5
117	Hydrogenating activity of Pt/zeolite catalysts focusing acid support and metal dispersion influence. Applied Catalysis A: General, 2015, 504, 17-28.	2.2	46
118	Catalytic Reaction Processes Revealed by Scanning Probe Microscopy. Accounts of Chemical Research, 2015, 48, 1524-1531.	7.6	29
119	Versatile preparation of graphene-based nanocomposites and their hydrogen adsorption. International Journal of Hydrogen Energy, 2015, 40, 6158-6164.	3.8	14
120	Experimental and Theoretical Insights into the Hydrogen-Efficient Direct Hydrodeoxygenation Mechanism of Phenol over Ru/TiO ₂ . ACS Catalysis, 2015, 5, 6509-6523.	5.5	219
121	Synergistic Interaction between Oxides of Copper and Iron for Production of Fatty Alcohols from Fatty Acids. ACS Catalysis, 2015, 5, 6719-6723.	5.5	51
122	Epoxidation of propylene to propylene oxide with molecular oxygen over Sb2O3–CuO–NaCl/SiO2 catalysts. Journal of Industrial and Engineering Chemistry, 2015, 32, 292-297.	2.9	14
123	Isotopic study of the rates of hydrogen provision vs. methanol synthesis from CO2 over Cu–Ga–Zr catalysts. Journal of Catalysis, 2015, 330, 302-310.	3.1	19
124	Bioinspired Complex-Nanoparticle Hybrid Catalyst System for Aqueous Perchlorate Reduction: Rhenium Speciation and Its Influence on Catalyst Activity. ACS Catalysis, 2015, 5, 511-522.	5.5	45
125	Simultaneous generation of mild acidic functionalities and small supported Ir NPs from alumina-supported well-defined iridium siloxide. Journal of Catalysis, 2015, 321, 81-89.	3.1	24
126	Graphene-based materials: Synthesis and gas sorption, storage and separation. Progress in Materials Science, 2015, 69, 1-60.	16.0	601
127	Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage. International Journal of Energy Research, 2015, 39, 607-620.	2.2	163
128	Methanol Electro-Oxidation on Bimetallic PtMo/C Catalysts and Pt/C - Mo/C Mechanical Mixtures. International Journal of Electrochemical Science, 2016, 11, 5364-5379.	0.5	12
129	Isolated Surface Hydrides: Formation, Structure, and Reactivity. Chemical Reviews, 2016, 116, 8463-8505.	23.0	152
130	Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions. Chemistry - A European Journal, 2016, 22, 8438-8443.	1.7	31
131	Hydrogen Adsorption Properties of Carbon Nanotubes and Platinum Nanoparticles from a New Ammoniumâ€Ethylimidazolium Chloroplatinate Salt. ChemSusChem, 2016, 9, 1153-1165.	3.6	2
132	The Origin of the Catalytic Activity of a Metal Hydride in CO ₂ Reduction. Angewandte Chemie, 2016, 128, 6132-6136.	1.6	15
133	The Origin of the Catalytic Activity of a Metal Hydride in CO ₂ Reduction. Angewandte Chemie - International Edition, 2016, 55, 6028-6032.	7.2	50

#	Article	IF	CITATIONS
134	Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances. Journal of the American Chemical Society, 2016, 138, 9316-9324.	6.6	201
135	Understanding the role of nickel on the hydrogen storage capacity of Ni/MCM-41 materials. Microporous and Mesoporous Materials, 2016, 231, 31-39.	2.2	33
136	The effect of copper on benzene hydrogenation to cyclohexane over Ni/Al2O3 catalyst. Applied Catalysis A: General, 2016, 523, 54-60.	2.2	13
137	Synergistic WO ₃ ·2H ₂ O Nanoplates/WS ₂ Hybrid Catalysts for High-Efficiency Hydrogen Evolution. ACS Applied Materials & Interfaces, 2016, 8, 13966-13972.	4.0	120
138	Using spilled over hydrogen in NH3 synthesis over supported Ru catalysts. Catalysis Today, 2016, 272, 49-57.	2.2	7
139	Evaluation of the Effective Photoexcitation Distances in the Photocatalytic Production of H ₂ from Water using Au@Void@TiO ₂ Yolk–Shell Nanostructures. ACS Energy Letters, 2016, 1, 52-56.	8.8	41
140	Active Site Dependent Reaction Mechanism over Ru/CeO ₂ Catalyst toward CO ₂ Methanation. Journal of the American Chemical Society, 2016, 138, 6298-6305.	6.6	489
141	Effect of Water Vapor on Pt/TiO ₂ /Ti Electromotive Force Cells. Journal of Physical Chemistry C, 2016, 120, 9061-9067.	1.5	4
142	Promotion or additive activity? The role of gold on zirconia supported iron oxide in high temperature water-gas shift. Journal of Molecular Catalysis A, 2016, 420, 115-123.	4.8	3
143	Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles. Nanoscale, 2016, 8, 11635-11641.	2.8	18
144	Effect of catalyst loading on hydrogen storage capacity of ZIF-8/graphene oxide doped with Pt or Pd via spillover. Microporous and Mesoporous Materials, 2016, 229, 68-75.	2.2	47
145	A new form of chemisorbed photo- and electro-active atomic H species on the TiO2(110) surface. Surface Science, 2016, 652, 195-199.	0.8	11
146	Crotonaldehyde hydrogenation on platinum–titanium oxide and platinum–cerium oxide catalysts: selective Cî€O bond hydrogen requires platinum sites beyond the oxide–metal interface. Catalysis Science and Technology, 2016, 6, 6824-6835.	2.1	27
147	The controlled synthesis of metal-acid bifunctional catalysts: The effect of metal:acid ratio and metal-acid proximity in Pt silica-alumina catalysts for n-heptane isomerization. Journal of Catalysis, 2016, 342, 203-212.	3.1	109
148	Effect of Pd Doping on the Cu ⁰ /Cu ⁺ Ratio of Cu-Pd/SiO ₂ Catalysts for Ethylene Glycol Synthesis from Dimethyl Oxalate. ChemistrySelect, 2016, 1, 2857-2863.	0.7	19
149	Double-Confined Nickel Nanocatalyst Derived from Layered Double Hydroxide Precursor: Atomic Scale Insight into Microstructure Evolution. Chemistry of Materials, 2016, 28, 6296-6304.	3.2	39
150	Physisorption, chemisorption and spill-over contributions to hydrogen storage. International Journal of Hydrogen Energy, 2016, 41, 17442-17452.	3.8	41
151	Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions. Journal of Physical Chemistry Letters, 2016, 7, 3519-3533.	2.1	212

#	Article	IF	CITATIONS
152	Tungsten-oxide thin films for a high-temperature semiconductor hydrogen detector based on a 6H-SiC crystal. Journal of Surface Investigation, 2016, 10, 652-657.	0.1	2
153	Glycerol Hydrogenolysis to 1,3â€Propanediol on Tungstate/Zirconiaâ€Supported Platinum: Hydrogen Spillover Facilitated by Pt(1 1 1) Formation. ChemCatChem, 2016, 8, 3663-3671.	1.8	44
154	Perfomances of different additives on NiO/γ-Al2O3 catalyst in CO methanation. Applied Petrochemical Research, 2016, 6, 235-241.	1.3	13
155	Theoretical Study of a Bridging-Spillover Mechanism in Covalent Organic Frameworks on Pt ₆ and Pt ₄ Cluster Models. Journal of Physical Chemistry C, 2016, 120, 17153-17164.	1.5	14
156	Effect of Mg addition on the structure and performance of sulfide Mo/Al2O3 in HDS and HDN reaction. Journal of Catalysis, 2016, 344, 420-433.	3.1	32
157	Platinum Supported Catalysts: Predictive CO and H ₂ Chemisorption by a Statistical Cuboctahedron Cluster Model. Journal of Physical Chemistry C, 2016, 120, 26374-26385.	1.5	27
158	Comment on "Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities― ACS Nano, 2016, 10, 9055-9056.	7.3	3
159	Probing the H ₂ -Induced Restructuring of Pt Nanoclusters by H ₂ -TPD. Langmuir, 2016, 32, 12013-12021.	1.6	19
160	Chemoselective hydrogenation of α,β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. Journal of Molecular Catalysis A, 2016, 425, 248-254.	4.8	45
161	Nanometals for Solarâ€toâ€Chemical Energy Conversion: From Semiconductorâ€Based Photocatalysis to Plasmonâ€Mediated Photocatalysis and Photoâ€Thermocatalysis. Advanced Materials, 2016, 28, 6781-6803.	11.1	471
162	Analyzing the Case for Bifunctional Catalysis. Angewandte Chemie, 2016, 128, 5296-5300.	1.6	17
163	Multifunctional Fe ₂ O ₃ –Au Nanoparticles with Different Shapes: Enhanced Catalysis, Photothermal Effects, and Magnetic Recyclability. Journal of Physical Chemistry C, 2016, 120, 15162-15172.	1.5	78
164	Copper-enriched palladium-copper alloy nanoparticles for effective electrochemical formic acid oxidation. Electrochemistry Communications, 2016, 69, 55-58.	2.3	15
165	Using decalin and tetralin as hydrogen source for transfer hydrogenation of renewable lignin-derived phenolics over activated carbon supported Pd and Pt catalysts. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 91-100.	2.7	44
166	Modeling and Simulation of the Elastic Properties of Kevlar Reinforced by Graphene. , 2016, , 37-44.		1
167	Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions. Surface Science Reports, 2016, 71, 77-271.	3.8	106
168	Analyzing the Case for Bifunctional Catalysis. Angewandte Chemie - International Edition, 2016, 55, 5210-5214.	7.2	64
169	Predictive morphology, stoichiometry and structure of surface species in supported Ru nanoparticles under H ₂ and CO atmospheres from combined experimental and DFT studies. Physical Chemistry Chemical Physics. 2016. 18. 1969-1979.	1.3	36

#	Article	IF	CITATIONS
170	Steric Effect and Evolution of Surface Species in the Hydrodeoxygenation of Bio-Oil Model Compounds over Pt/HBEA. ACS Catalysis, 2016, 6, 1292-1307.	5.5	101
171	Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods. Sensors and Actuators B: Chemical, 2016, 226, 76-89.	4.0	75
172	Palladium based nanomaterials for enhanced hydrogen spillover and storage. Materials Today, 2016, 19, 100-108.	8.3	155
173	Effect of Hydrogen Spillover to the Hydrogenation of Benzene Over Pt/NaA Catalysts. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 940-944.	0.6	6
174	Role of the Support and Reaction Conditions on the Vapor-Phase Deoxygenation of <i>m</i> -Cresol over Pt/C and Pt/TiO ₂ Catalysts. ACS Catalysis, 2016, 6, 2715-2727.	5.5	123
175	Hydrogen spillover through a gas phase. Mendeleev Communications, 2016, 26, 59-60.	0.6	8
176	Electrocatalytic System for the Simultaneous Hydrogen Production and Storage from Methanol. ACS Catalysis, 2016, 6, 1942-1951.	5.5	17
177	Effect of the thermal treatment temperature of RuNi bimetallic nanocatalysts on their catalytic performance for benzene hydrogenation. RSC Advances, 2016, 6, 13110-13119.	1.7	23
178	General principles for designing supported catalysts for hydrogen evolution reaction based on conceptual Kinetic Monte Carlo modeling. International Journal of Hydrogen Energy, 2016, 41, 2526-2538.	3.8	15
179	Selective Production of Benzylamine via Gas Phase Hydrogenation of Benzonitrile over Supported Pd Catalysts. Catalysis Letters, 2016, 146, 109-116.	1.4	27
180	The role of hydrogen during Pt–Ga nanocatalyst formation. Physical Chemistry Chemical Physics, 2016, 18, 3234-3243.	1.3	27
181	Efficient hollow double-shell photocatalysts for the degradation of organic pollutants under visible light and in darkness. Journal of Materials Chemistry A, 2016, 4, 4413-4419.	5.2	41
182	Effect of "Reducible―Titania Promotion on the Mechanism of H-Migration in Pd/SiO2 Clusters. Catalysis Letters, 2016, 146, 398-423.	1.4	4
183	Synergetic effect of Pd addition on catalytic behavior of monolithic platinum–manganese–alumina catalysts for diesel vehicle emission control. Applied Catalysis B: Environmental, 2016, 185, 322-336.	10.8	32
184	A mechanistic model for hydrogen activation, spillover, and its chemical reaction in a zeolite-encapsulated Pt catalyst. Physical Chemistry Chemical Physics, 2016, 18, 7035-7041.	1.3	38
185	Hydrogen storage and spillover kinetics in carbon nanotube-Mg composites. International Journal of Hydrogen Energy, 2016, 41, 2814-2819.	3.8	32
186	Comparing hydrogen sorption in different Pd-doped pristine and surface-modified nanoporous carbons. Carbon, 2016, 98, 1-14.	5.4	11
187	H2/D2 isotopic exchange: A tool to characterize complex hydrogen interaction with carbon-supported ruthenium catalysts. Catalysis Today, 2016, 259, 9-18.	2.2	13

ARTICLE IF CITATIONS Reductive dechlorination in water: Interplay of sorption and reactivity. Applied Catalysis B: 188 10.8 31 Environmental, 2016, 181, 747-753. Microwave-assisted hydrothermal synthesis of NiS and their promotional effect for the 189 1.6 hydrodeoxygenation of p-cresol on MoS2. Catalysis Communications, 2016, 74, 60-64. Application of metal and metal oxide nanoparticles@MOFs. Coordination Chemistry Reviews, 2016, 307, 190 9.5 479 237-254. Synergism of Extruded and Monolithic Co–Mo/γ-AL2O3–Sepiolite Catalytic Systems in the Hydrodesulphurization Reaction. Topics in Catalysis, 2016, 59, 252-258. Combining Ru, Ni and Ni(OH) 2 active sites for improving catalytic performance in benzene 192 2.0 27 hydrogenation. Materials Chemistry and Physics, 2017, 192, 8-16. Skeletal isomerization of n -pentane: A comparative study on catalytic properties of Pt/WO x \hat{a} CrO 2 and Pt/ZSM-22. Applied Catalysis A: General, 2017, 537, 59-65. 2.2 Enhanced hydrogen adsorption on graphene by manganese and manganese vanadium alloy decoration. 194 2.8 15 Nanoscale, 2017, 9, 4143-4153. CO 2 hydrogenation to methanol over CuOâ€"ZnOâ€"ZrO 2 â€"SiO 2 catalysts: Effects of SiO 2 contents. 6.6 160 Chemical Engineering Journal, 2017, 316, 692-703. Towards highly active Pd/CeO₂for alkene hydrogenation by tuning Pd dispersion and 196 2.8 35 surface properties of the catalysts. Nanoscale, 2017, 9, 3140-3149. Methanol Usage in Toluene Methylation over Pt Modified ZSM-5 Catalyst: Effects of Total Pressure 1.8 and Carrier Gas. Industrial & amp; Engineering Chemistry Research, 2017, 56, 4709-4717. Supported Pd nanoclusters with enhanced hydrogen spillover for NO_x removal via H₂-SCR: the elimination of "volcano-type†behaviour. Chemical Communications, 2017, 53, 198 2.2 28 5958-5961. Aqueous phase reforming of ethylene glycol over bimetallic platinum-cobalt on ceria–zirconia mixed 199 3.8 29 oxide. International Journal of Hýdrogen Energy, 2017, 42, 9892-9902. Promotional effects of Mn on SiO 2 -encapsulated iron-based spindles for catalytic production of 200 3.1 31 liquid hydrocarbons. Journal of Catalysis, 2017, 350, 41-47. Tuning the thermal conductivity of hydrogenated porous magnesium hydride composites with the aid 3.8 24 of carbonaceous additives. International Journal of Hydrogen Energy, 2017, 42, 22395-22405. Removal or storage of environmental pollutants and alternative fuel sources with inorganic 202 5.235 adsorbents via host–guest encapsulation. Journal of Materials Chemistry A, 2017, 5, 10746-10771. Graphene decorated with metal nanoparticles: Hydrogen sorption and related artefacts. Microporous and Mesoporous Materials, 2017, 250, 27-34. Improved catalysts for hydrogen evolution reaction in alkaline solutions through the 204 electrochemical formation of nickel-reduced graphene oxide interface. Physical Chemistry Chemical 1.345 Physics, 2017, 19, 13281-13293. Propene and CO oxidation on Pt/Ce-Zr-SO 4 2– diesel oxidation catalysts: Effect of sulfate on activity and stability. Chinese Journal of Catalysis, 2017, 38, 607-615.

#	Article	IF	CITATIONS
206	High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation. Applied Catalysis B: Environmental, 2017, 217, 560-569.	10.8	167
207	Simulation of electrochemical processes during oxygen evolution on Pb-MnO2 composite electrodes. Electrochimica Acta, 2017, 245, 512-525.	2.6	10
208	Influences of sodium and potassium cations on the hydrodesulfurization performances of Pd and Pt catalysts supported on siliceous MCM-41. Catalysis Today, 2017, 297, 124-130.	2.2	9
209	Gaseous Reactions in Adsorbed Water Present on Transition Metal Oxides. Journal of Physical Chemistry C, 2017, 121, 13151-13163.	1.5	14
210	Influence of metal-support interaction on nitrate hydrogenation over Rh and Rh-Cu nanoparticles dispersed on Al 2 O 3 and TiO 2 supports. Arabian Journal of Chemistry, 2017, 10, 975-984.	2.3	15
211	Reduction of carbon dioxide via catalytic hydrogenation over copper-based catalysts modified by oyster shell-derived calcium oxide. Journal of Environmental Chemical Engineering, 2017, 5, 3115-3121.	3.3	16
212	Palladium Promoted Production of Higher Amines from a Lower Amine Feedstock. Catalysis Letters, 2017, 147, 803-810.	1.4	2
213	Ruthenium–nickel–nickel hydroxide nanoparticles for room temperature catalytic hydrogenation. Journal of Materials Chemistry A, 2017, 5, 7869-7875.	5.2	100
214	Zinc-modified Pt/SAPO-11 for improving the isomerization selectivity to dibranched alkanes. Chinese Journal of Catalysis, 2017, 38, 509-517.	6.9	35
215	ZrO 2 -based unconventional catalysts for non-oxidative propane dehydrogenation: Factors determining catalytic activity. Journal of Catalysis, 2017, 348, 282-290.	3.1	80
216	Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. International Journal of Hydrogen Energy, 2017, 42, 289-311.	3.8	440
217	Effects of Co and Ru Intimacy in Fischer–Tropsch Catalysts Using Hollow Carbon Sphere Supports: Assessment of the Hydrogen Spillover Processes. ACS Catalysis, 2017, 7, 1568-1578.	5.5	53
218	Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews, 2017, 117, 1515-1563.	23.0	961
219	The long and winding road to catalysis. Nature, 2017, 541, 37-38.	13.7	30
220	Catalyst support effects on hydrogen spillover. Nature, 2017, 541, 68-71.	13.7	639
221	Introducing Time Resolution to Detect Ce ³⁺ Catalytically Active Sites at the Pt/CeO ₂ Interface through Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 102-108.	2.1	80
222	Promoting hydrolysis of ammonia borane over multiwalled carbon nanotube-supported Ru catalysts via hydrogen spillover. Catalysis Communications, 2017, 91, 10-15.	1.6	40
223	Bimetallic Ru–Ni Catalyzed Aqueous-Phase Guaiacol Hydrogenolysis at Low H ₂ Pressures. ACS Catalysis, 2017, 7, 8304-8313.	5.5	130

#	Article	IF	CITATIONS
224	Enhanced thermal stability of palladium oxidation catalysts using phosphate-modified alumina supports. Catalysis Science and Technology, 2017, 7, 5038-5048.	2.1	27
225	Capacitive electronic metal-support interactions: Outer surface charging of supported catalyst particles. Physical Review B, 2017, 96, .	1.1	44
226	Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods. Materials Research Express, 2017, 4, 095030.	0.8	54
227	Influence of Re–M interactions in Re–M/C bimetallic catalysts prepared by a microwave-assisted thermolytic method on aqueous-phase hydrogenation of succinic acid. Catalysis Science and Technology, 2017, 7, 5212-5223.	2.1	31
228	Platinum Supported on WO ₃ -Doped Aluminosilicate: A Highly Efficient Catalyst for Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. Industrial & Engineering Chemistry Research, 2017, 56, 11065-11074.	1.8	40
229	Hydrogen Adsorption on Nanosized Platinum and Dynamics of Spillover onto Alumina and Titania. Journal of Physical Chemistry C, 2017, 121, 17862-17872.	1.5	36
230	Bimetallic Platinumâ€Tin Nanoparticles on Hydrogenated Molybdenum Oxide for the Selective Hydrogenation of Functionalized Nitroarenes. ChemCatChem, 2017, 9, 4199-4205.	1.8	24
231	Three-dimensional graphene-based macrostructures for sustainable energy applications and climate change mitigation. Progress in Materials Science, 2017, 90, 224-275.	16.0	60
232	Tuning Mg hydriding kinetics with nanocarbons. Journal of Alloys and Compounds, 2017, 725, 616-622.	2.8	20
233	Insight into the structure evolution and the associated catalytic behavior of highly dispersed Pt and PtSn catalysts supported on La2O2CO3 nanorods. RSC Advances, 2017, 7, 48649-48661.	1.7	8
234	CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy. Applied Catalysis B: Environmental, 2017, 218, 488-497.	10.8	460
235	Tritium-labeled 5-oxo-Pro-Arg-Pro. Doklady Chemistry, 2017, 473, 80-83.	0.2	1
236	The Surface Chemistry of Metal-Based Hydrogenation Catalysis. ACS Catalysis, 2017, 7, 4947-4967.	5.5	145
237	Effect of oxidative pre-treatment on hydrogen spillover for a Ni/SiO2 catalyst. Journal of Molecular Catalysis A, 2017, 426, 190-197.	4.8	21
238	Metal nanoparticles supported on WO ₃ nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol. Green Chemistry, 2017, 19, 682-691.	4.6	107
239	Elucidation of the zeolite role on the hydrogenating activity of Pt-catalysts. Catalysis Communications, 2017, 89, 152-155.	1.6	16
240	Effect of support redox character on catalytic performance in the gas phase hydrogenation of benzaldehyde and nitrobenzene over supported gold. Catalysis Today, 2017, 279, 19-28.	2.2	24
241	Effect of hydrogen spillover in selective hydrodesulfurization of FCC gasoline over the CoMo catalyst. Catalysis Today, 2017, 282, 214-221.	2.2	22

#	Article	IF	CITATIONS
242	Synergetic Effect of Ni2P/SiO2 and \hat{I}^3 -Al2O3 Physical Mixture in Hydrodeoxygenation of Methyl Palmitate. Catalysts, 2017, 7, 329.	1.6	23
244	<i>>n</i> -Hexane Isomerisation: Exploit Hydrogen Spillover to Reduce Catalyst Costs. Progress in Reaction Kinetics and Mechanism, 2017, 42, 62-69.	1.1	3
245	Selective Reduction of Nitrate by a Local Cell Catalyst Composed of Metal-Doped Covalent Triazine Frameworks. ACS Catalysis, 2018, 8, 2693-2698.	5.5	41
246	Nickel Hydroxide–Cobalt Hydroxide Nanoparticle Supported Ruthenium–Nickel–Cobalt Islands as an Efficient Nanocatalyst for the Hydrogenation Reaction. ChemCatChem, 2018, 10, 1998-2002.	1.8	10
247	Facile hydrothermal synthesis of nanorod-structured Mo0.6W0.4O3 catalyst for olefin hydrogenation with high activity. Journal of Catalysis, 2018, 360, 213-220.	3.1	8
248	Study on sulfur-tolerant benzene hydrogenation catalyst based on Pt-encapsulated sodalite zeolite. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 891-903.	0.8	7
249	Molecular-Level Insight into How Hydroxyl Groups Boost Catalytic Activity in CO2 Hydrogenation into Methanol. CheM, 2018, 4, 613-625.	5.8	110
250	Heterogeneous Catalytic Synthesis of Organic Compounds Labeled with Hydrogen Isotopes without Using Solvents. Radiochemistry, 2018, 60, 105-139.	0.2	4
251	Pd-Ni doped sulfated zirconia: Study of hydrogen spillover and isomerization of N-hexane. Molecular Catalysis, 2018, 449, 114-121.	1.0	26
252	Zeolite-templated carbons – three-dimensional microporous graphene frameworks. Chemical Communications, 2018, 54, 5648-5673.	2.2	172
253	Enhanced hydrogen spillover to fullerene at ambient temperature. Chemical Communications, 2018, 54, 3327-3330.	2.2	24
254	Molybdenum nitrides: a study of synthesis variables and catalytic performance in acetylene hydrogenation. Journal of Materials Science, 2018, 53, 6707-6718.	1.7	24
255	Self-Assembly of Hierarchically Porous ZSM-5/SBA-16 with Different Morphologies and Its High Isomerization Performance for Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. ACS Catalysis, 2018, 8, 1891-1902.	5.5	61
256	Selective Hydrogenolysis of Dibenzofuran over Highly Efficient Pt/MgO Catalysts to <i>o</i> -Phenylphenol. Organic Process Research and Development, 2018, 22, 67-76.	1.3	9
257	Hydrogen storage kinetics: The graphene nanoplatelet size effect. Carbon, 2018, 130, 369-376.	5.4	32
258	Hydrogen Doping into MoO ₃ Supports toward Modulated Metal–Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts. Chemistry - an Asian Journal, 2018, 13, 641-647.	1.7	25
259	Hydrogen adsorption properties of Ag decorated TiO2 nanomaterials. International Journal of Hydrogen Energy, 2018, 43, 2861-2868.	3.8	35
260	Enhancement of hydrogen storage capacity of multi-walled carbon nanotubes with palladium doping prepared through supercritical CO 2 deposition method. International Journal of Hydrogen Energy, 2018, 43, 10755-10764.	3.8	19

#	Article	IF	CITATIONS
261	On the origin of high-temperature phenomena in Pt/Al ₂ O ₃ . Physical Chemistry Chemical Physics, 2018, 20, 2339-2350.	1.3	10
262	Low Temperature and Controllable Formation of Oxygen Vacancy SrTiO _{3â€x} by Loading Pt for Enhanced Photocatalytic Hydrogen Evolution. Energy Technology, 2018, 6, 2166-2171.	1.8	20
263	Dynamic behavior of metal nanoparticles for catalysis. Nano Today, 2018, 20, 101-120.	6.2	93
264	A Cu Ni bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE). Science of the Total Environment, 2018, 635, 1417-1425.	3.9	36
265	Combined catalytic action of supported Cu and Au in imine production from coupled benzyl alcohol and nitrobenzene reactions. Applied Catalysis A: General, 2018, 557, 145-153.	2.2	12
266	Structured noble metal-based catalysts for the WGS process intensification. International Journal of Hydrogen Energy, 2018, 43, 11745-11754.	3.8	20
267	Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA. Catalysis Today, 2018, 302, 151-160.	2.2	20
268	Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs. Chemical Engineering Journal, 2018, 334, 768-779.	6.6	175
269	Hydrogen transfer and quinone/hydroquinone transitions in graphene-based materials. Carbon, 2018, 126, 443-451.	5.4	14
270	Methoden der Câ€Hâ€Funktionalisierung für den Wasserstoffisotopenaustausch. Angewandte Chemie, 2018, 130, 3074-3101.	1.6	73
271	Câ^'H Functionalisation for Hydrogen Isotope Exchange. Angewandte Chemie - International Edition, 2018, 57, 3022-3047.	7.2	342
272	Decamethonium bromide-dispersed palladium nanoparticles on mesoporous HZSM-5 zeolites for deep hydrodesulfurization. Chemical Engineering Journal, 2018, 333, 206-215.	6.6	16
273	Effective hydrogen production from propane steam reforming using M/NiO/YSZ catalysts (M = Ru, Rh,) Tj ETQqO (0 0 rgBT /0 2.2	Dverlock 10
274	Simultaneous removal of sulfides and benzene in FCC gasoline by in situ hydrogenation over NiLaln/ZrO2-r-Al2O3. Journal of Hazardous Materials, 2018, 342, 758-769.	6.5	10
275	Metal-acid site synergistic catalysis in Ru–ZrO ₂ toward selective hydrogenation of benzene to cyclohexene. Catalysis Science and Technology, 2018, 8, 236-243.	2.1	17
276	TiO ₂ and ZrO ₂ in biomass conversion: why catalyst reduction helps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170056.	1.6	16
277	Synergistic effects of Nb 2 O 5 promoter on Ru/Al 2 O 3 for an aqueous-phase hydrodeoxygenation of glycerol to hydrocarbons. Applied Catalysis A: General, 2018, 551, 49-62.	2.2	20

#	Article	IF	CITATIONS
279	Mechanistic Study of Hydrogen-Driven Deoxydehydration over Ceria-Supported Rhenium Catalyst Promoted by Au Nanoparticles. ACS Catalysis, 2018, 8, 584-595.	5.5	70
280	Gravimetric tank method to evaluate material-enhanced hydrogen storage by physisorbing materials. Physical Chemistry Chemical Physics, 2018, 20, 27983-27991.	1.3	7
281	Reduction of double manganese–cobalt oxides: <i>in situ</i> XRD and TPR study. Dalton Transactions, 2018, 47, 17153-17159.	1.6	41
282	Remote Fluorination by Spillover of Atomic Fluorine. Journal of Physical Chemistry C, 2018, 122, 26372-26377.	1.5	5
283	Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics. International Journal of Hydrogen Energy, 2018, 43, 23336-23345.	3.8	31
284	Activating the Growth of High Surface Area Alumina Using a Liquid Galinstan Alloy. ACS Omega, 2018, 3, 16409-16415.	1.6	4
285	Ru/Al2O3 catalyzed CO2 hydrogenation: Oxygen-exchange on metal-support interfaces. Journal of Catalysis, 2018, 367, 194-205.	3.1	74
286	One-Pot Synthesis of Secondary Amines from Nitroarenes and Aldehydes on Supported Copper Catalysts in a Flow Reactor: The Effect of the Support. Kinetics and Catalysis, 2018, 59, 593-600.	0.3	10
287	In situ EPR study of chemoselective hydrogenation of nitroarenes on Au/Al2O3 catalyst. Mendeleev Communications, 2018, 28, 536-537.	0.6	6
288	Synthesis Gas Conversion over Rh-Mn-W _{<i>x</i>} C/SiO ₂ Catalysts Prepared by Atomic Layer Deposition. ACS Catalysis, 2018, 8, 10707-10720.	5.5	17
289	Pt on SAS-CeO2 nanopowder as catalyst for the CO-WGS reaction. International Journal of Hydrogen Energy, 2018, 43, 19965-19975.	3.8	14
290	Synergy between a sulfur-tolerant Pt/Al2O3@sodalite core–shell catalyst and a CoMo/Al2O3 catalyst. Journal of Catalysis, 2018, 368, 89-97.	3.1	20
291	Hydrogen spillover through Matryoshka-type (ZIFs@)nâ^'1ZIFs nanocubes. Nature Communications, 2018, 9, 3778.	5.8	120
292	H ₂ Oxidation over Supported Au Nanoparticle Catalysts: Evidence for Heterolytic H ₂ Activation at the Metal–Support Interface. Journal of the American Chemical Society, 2018, 140, 16469-16487.	6.6	113
293	Surface titration of supported Ni catalysts by O2-pulse thermal analysis. Applied Catalysis A: General, 2018, 566, 155-163.	2.2	8
294	Pd doped LaSrCuO4 perovskite nano-catalysts synthesized by a novel solid state method for CO oxidation and Methane combustion. Ceramics International, 2018, 44, 21499-21506.	2.3	28
295	Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5878-5883.	3.3	108
296	Reaction and Diffusion Paths of Water and Hydrogen on Rh Covered Black Titania. Topics in Catalysis, 2018, 61, 1362-1374.	1.3	1

#	Article	IF	CITATIONS
297	Low-Temperature CO ₂ Methanation over CeO ₂ -Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect. ACS Catalysis, 2018, 8, 6203-6215.	5.5	582
298	Highly efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst. Energy and Environmental Science, 2018, 11, 2114-2123.	15.6	224
299	Enhanced hydrogen chemisorption and spillover on non-metallic nickel subnanoclusters. Journal of Materials Chemistry A, 2018, 6, 12523-12531.	5.2	17
300	Comparative Study of Lewis Acid Transformation on Non-reducible and Reducible Oxides Under Hydrogen Atmosphere by In Situ DRIFTS of Adsorbed NH3. Topics in Catalysis, 2018, 61, 1641-1652.	1.3	10
301	Ruthenium stabilized on transition metal-on-transition metal oxide nanoparticles for naphthalene hydrogenation. International Journal of Hydrogen Energy, 2018, 43, 15055-15063.	3.8	12
302	Replication of SMSI via ALD: TiO2 Overcoats Increase Pt-Catalyzed Acrolein Hydrogenation Selectivity. Catalysis Letters, 2018, 148, 2223-2232.	1.4	17
303	On the nature of spillover hydrogen species on platinum/nitrogen-doped mesoporous carbon composites: A temperature-programmed nitrobenzene desorption study. Journal of Catalysis, 2018, 365, 55-62.	3.1	35
304	<i>In Situ</i> Formation of FeRh Nanoalloys for Oxygenate Synthesis. ACS Catalysis, 2018, 8, 7279-7286.	5.5	23
305	Quantifying Enhancement of Metal-Supported Zeolites Due to Hydrogen Spillover. Progress in Reaction Kinetics and Mechanism, 2018, 43, 157-165.	1.1	1
306	Effects of the cooperative interaction on the diffusion of hydrogen on MgO(100). Journal of Chemical Physics, 2018, 149, 034704.	1.2	10
307	Palladium, Iridium, and Rhodium Supported Catalysts: Predictive H2 Chemisorption by Statistical Cuboctahedron Clusters Model. Materials, 2018, 11, 819.	1.3	14
308	Overcoming the limitations of gold catalysts in hydrogenation: enhanced activity with full hydrogen utilization. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 25-36.	0.8	12
309	H 2 Oxidation Electrocatalysis Enabled by Metalâ€ŧoâ€Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. Angewandte Chemie, 2018, 130, 13711-13715.	1.6	0
310	Effect of Pretreatment Method on the Nanostructure and Performance of Supported Co Catalysts in Fischer–Tropsch Synthesis. ACS Catalysis, 2018, 8, 8816-8829.	5.5	35
311	Interaction of Hydrogen with Graphitic Surfaces, Clean and Doped with Metal Clusters. , 2018, , 1-22.		0
312	H ₂ Oxidation Electrocatalysis Enabled by Metalâ€toâ€Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. Angewandte Chemie - International Edition, 2018, 57, 13523-13527.	7.2	13
313	Synergistic effect of oxygen vacancies and highly dispersed Pd nanoparticles over Pd-loaded TiO2 prepared by a single-step sol–gel process for deoxygenation of triglycerides. Applied Catalysis A: General, 2018, 566, 74-86.	2.2	46
314	Monolithic Ni5Ga3/SiO2/Al2O3/Al-fiber catalyst for CO2 hydrogenation to methanol at ambient pressure. Applied Catalysis A: General, 2018, 562, 234-240.	2.2	22

#	Article	IF	CITATIONS
315	Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals. Green Chemistry, 2018, 20, 3253-3270.	4.6	60
316	Pd@H _{<i>y</i>} WO _{3–<i>x</i>} Nanowires Efficiently Catalyze the CO ₂ Heterogeneous Reduction Reaction with a Pronounced Light Effect. ACS Applied Materials & Interfaces, 2019, 11, 5610-5615.	4.0	52
317	Nanostructured carbons modified with nickel as potential novel reversible hydrogen storage materials: Effects of nickel particle size. Microporous and Mesoporous Materials, 2019, 273, 50-59.	2.2	15
318	Modifying hydrogen binding strength of graphene. Surface Science, 2019, 679, 24-30.	0.8	12
319	Highly Selective Pt/TiO _{<i>x</i>} Catalysts for the Hydrogen Oxidation Reaction. ACS Applied Energy Materials, 2019, 2, 5534-5539.	2.5	36
320	Tuning the interfaces in the ruthenium-nickel/carbon nanocatalysts for enhancing catalytic hydrogenation performance. Journal of Catalysis, 2019, 377, 299-308.	3.1	40
321	Hydrogenation of Bisphenol A-Type Epoxy Resin (BE186) over Vulcan XC72-Supported Rh and Rh–Pt Catalysts in Ethyl Acetate-Containing Water. Industrial & Engineering Chemistry Research, 2019, 58, 16326-16337.	1.8	10
322	Differences in bifunctionality of ZnO and ZrO2 in Cu/ZnO/ZrO2/Al2O3 catalysts in hydrogenation of carbon oxides for methanol synthesis. Applied Catalysis B: Environmental, 2019, 258, 117971.	10.8	45
323	Cu ¹ –Cu ⁰ bicomponent CuNPs@ZIF-8 for highly selective hydrogenation of biomass derived 5-hydroxymethylfurfural. Green Chemistry, 2019, 21, 4319-4323.	4.6	52
324	Comparisons of WO ₃ reduction to H _x WO ₃ under thermochemical and electrochemical control. Journal of Materials Chemistry A, 2019, 7, 23756-23761.	5.2	11
325	Mechanism of Catalytic CNTs Growth in 400–650 °C Range: Explaining Volcano Shape Arrhenius Plot and Catalytic Synergism Using both Pt (or Pd) and Ni, Co or Fe. Journal of Carbon Research, 2019, 5, 42.	1.4	5
326	Versatile Roles of Metal Species in Carbon Nanotube Templates for the Synthesis of Metal–Zeolite Nanocomposite Catalysts. ACS Applied Nano Materials, 2019, 2, 4507-4517.	2.4	9
327	Water splitting of hydrogen chemisorbed in graphene oxide dynamically evolves into a graphane lattice. Carbon, 2019, 153, 234-241.	5.4	12
328	Tuning the catalytic performance for the semi-hydrogenation of alkynols by selectively poisoning the active sites of Pd catalysts. Green Chemistry, 2019, 21, 4143-4151.	4.6	52
329	DFT Insights into Comparative Hydrogen Adsorption and Hydrogen Spillover Mechanisms of Pt ₄ /Graphene and Pt ₄ /Anatase (101) Surfaces. Journal of Physical Chemistry C, 2019, 123, 25618-25627.	1.5	39
330	Wire-like Pt on mesoporous Ti0.7W0.3O2 Nanomaterial with Compelling Electro-Activity for Effective Alcohol Electro-Oxidation. Scientific Reports, 2019, 9, 14791.	1.6	13
331	Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nature Catalysis, 2019, 2, 955-970.	16.1	1,192
332	Direct Probing of Oxygen Loss from the Surface Lattice of Correlated Oxides during Hydrogen Spillover. Journal of Physical Chemistry Letters, 2019, 10, 7285-7292.	2.1	11

#	Article	IF	CITATIONS
333	Understanding Structure–Property Relationships of MoO ₃ -Promoted Rh Catalysts for Syngas Conversion to Alcohols. Journal of the American Chemical Society, 2019, 141, 19655-19668.	6.6	41
334	Confined NiRu Bimetallic Catalysts for the Hydrogenation of Dimethyl Terephthalate to Dimethyl Cyclohexane-1,4-dicarboxylate. Industrial & Engineering Chemistry Research, 2019, 58, 22702-22708.	1.8	8
335	Solvent-Free Hydrogenation of α-Pinene to cis-Pinane by Using Ru/TiO2 Nanocomposite with Strong Acid Sites. Russian Journal of Physical Chemistry A, 2019, 93, 1754-1761.	0.1	3
336	MgO-Supported Iridium Metal Pair-Site Catalysts Are More Active and Resistant to CO Poisoning than Analogous Single-Site Catalysts for Ethylene Hydrogenation and Hydrogen–Deuterium Exchange. ACS Catalysis, 2019, 9, 9545-9553.	5.5	25
337	Effect of perimeter interface length between 2D WO ₃ monolayer domain and γ-Al ₂ O ₃ on selective hydrogenolysis of glycerol to 1,3-propanediol. Catalysis Science and Technology, 2019, 9, 5359-5367.	2.1	18
338	Breakdown of Native Oxide Enables Multifunctional, Free-Form Carbon Nanotube–Metal Hierarchical Architectures. ACS Applied Materials & Interfaces, 2019, 11, 35212-35220.	4.0	54
339	Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 2019, 10, 4166.	5.8	132
340	Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 5090-5110.	5.2	128
341	One-Pot Catalytic Conversion of Cellobiose to Sorbitol over Nickel Phosphides Supported on MCM-41 and Al-MCM-41. Catalysts, 2019, 9, 92.	1.6	13
342	Lowâ€Dimensional Metalâ€Organic Frameworks and their Diverse Functional Roles in Catalysis. ChemCatChem, 2019, 11, 3138-3165.	1.8	22
343	Combined Density Functional Theory and Kinetic Monte Carlo Study of Hydrogen Spillover on Fluorine-Decorating Covalent Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 15935-15943.	1.5	11
344	Pt/TiH ₂ Catalyst for Ionic Hydrogenation via Stored Hydrides in the Presence of Gaseous H ₂ . ACS Catalysis, 2019, 9, 6425-6434.	5.5	39
345	Effective Hydrogenolysis of Glycerol to 1,3â€Propanediol over Metalâ€Acid Concerted Pt/WO _x /Al ₂ O ₃ Catalysts. ChemCatChem, 2019, 11, 3903-3912.	1.8	66
346	Enhanced CO Oxidation and Cyclic Activities in Three-Dimensional Platinum/Indium Tin Oxide/Carbon Black Electrocatalysts Processed by Cathodic Arc Deposition. ACS Applied Materials & Interfaces, 2019, 11, 25179-25185.	4.0	11
347	Plasmonic control of solar-driven CO2 conversion at the metal/ZnO interfaces. Applied Catalysis B: Environmental, 2019, 256, 117823.	10.8	95
348	Effects of Using Carbon-Coated Alumina as Support for Ba-Promoted Ru Catalyst in Ammonia Synthesis. Industrial & Engineering Chemistry Research, 2019, 58, 10285-10295.	1.8	21
349	Mixed Electron–Proton Conductors Enable Spatial Separation of Bond Activation and Charge Transfer in Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 11115-11122.	6.6	19
350	Dual-Site Cascade Oxygen Reduction Mechanism on SnO _{<i>x</i>} /Pt–Cu–Ni for Promoting Reaction Kinetics. Journal of the American Chemical Society, 2019, 141, 9463-9467.	6.6	70

#	Article	IF	CITATIONS
351	Effect of Processes Occurring in the Presence of Metal Catalysts on the Main Characteristics of the Hydrogen Isotope Labeled Organic Compounds Obtained. Radiochemistry, 2019, 61, 257-292.	0.2	1
352	Preparation of isolated Co ₃ O ₄ and fcc-Co crystallites in the nanometre range employing exfoliated graphite as novel support material. Nanoscale Advances, 2019, 1, 2910-2923.	2.2	8
353	Fast hydrogen diffusion induced by hydrogen pre-split for gasochromic based optical hydrogen sensors. International Journal of Hydrogen Energy, 2019, 44, 15665-15676.	3.8	16
354	Benzene Reduction in Reformate Gasoline by Competitive Hydrogenation: Effect of the Preparation Method. ChemistrySelect, 2019, 4, 4861-4866.	0.7	1
355	Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO ₂ Hydrogenation. Journal of the American Chemical Society, 2019, 141, 8482-8488.	6.6	242
356	Hydrogen storage using metal oxide loaded in polymer-derived carbon. AIP Conference Proceedings, 2019, , .	0.3	1
357	Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy and Environmental Science, 2019, 12, 2298-2304.	15.6	227
358	Water-Induced Formation of Cobalt-Support Compounds under Simulated High Conversion Fischer–Tropsch Environment. ACS Catalysis, 2019, 9, 4902-4918.	5.5	35
359	Tuning electron density of metal nickel by support defects in Ni/ZrO2 for selective hydrogenation of fatty acids to alkanes and alcohols. Applied Catalysis B: Environmental, 2019, 253, 170-178.	10.8	133
360	Activation and Spillover of Hydrogen on Subâ€l nm Palladium Nanoclusters Confined within Sodalite Zeolite for the Semiâ€Hydrogenation of Alkynes. Angewandte Chemie, 2019, 131, 7750-7754.	1.6	16
361	Isomerization of linear C5–C7 over Pt loaded on protonated fibrous silica@Y zeolite (Pt/HSi@Y). Journal of Energy Chemistry, 2019, 37, 163-171.	7.1	22
362	Pd and Pt supported on mesoporous silica, silica–alumina and alumina as catalysts for benzene elimination in reformate gasoline. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 345-356.	0.8	2
363	Evaluation of regenerative function and activity of reforming toluene by composite catalyst containing spinel oxide. International Journal of Hydrogen Energy, 2019, 44, 9338-9347.	3.8	11
364	Activation and Spillover of Hydrogen on Subâ€lâ€nm Palladium Nanoclusters Confined within Sodalite Zeolite for the Semiâ€Hydrogenation of Alkynes. Angewandte Chemie - International Edition, 2019, 58, 7668-7672.	7.2	123
365	Fischer–Tropsch: Product Selectivity–The Fingerprint of Synthetic Fuels. Catalysts, 2019, 9, 259.	1.6	80
366	Turning the product selectivity of nitrile hydrogenation from primary to secondary amines by precise modification of Pd/SiC catalysts using NiO nanodots. Catalysis Science and Technology, 2019, 9, 2266-2272.	2.1	27
367	Temporally-Resolved Ultrafast Hydrogen Adsorption and Evolution on Single Platinum Nanoparticles. Analytical Chemistry, 2019, 91, 4023-4030.	3.2	30
368	Metalâ€Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. ChemPhysChem, 2019, 20, 1177-1215.	1.0	56

#	Article	IF	CITATIONS
369	Promotional effects of magnesia on catalytic performance of Pt/SiO2 in hydrogenolysis of dibenzofuran. Journal of Catalysis, 2019, 371, 346-356.	3.1	17
370	In Situ Generation of BrÃ,nsted Acidity in the Pd-I Bifunctional Catalysts for Selective Reductive Etherification of Carbonyl Compounds under Mild Conditions. ACS Catalysis, 2019, 9, 2940-2948.	5.5	53
371	Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO ₃ electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 6285-6293.	5.2	139
372	Renewable Methanol Synthesis. ChemBioEng Reviews, 2019, 6, 209-236.	2.6	80
373	Spirobifluoreneâ€based Porous Organic Polymers as Efficient Porous Supports for Pd and Pt for Selective Hydrogenation. ChemCatChem, 2019, 11, 538-549.	1.8	22
374	State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. Journal of Alloys and Compounds, 2019, 782, 796-823.	2.8	122
375	Hydride Formation Diminishes CO ₂ Reduction Rate on Palladium. ChemPhysChem, 2019, 20, 1398-1403.	1.0	10
376	Silver initiated hydrogen spillover on anatase TiO2 creates active sites for selective hydrodeoxygenation of guaiacol. Journal of Catalysis, 2019, 369, 396-404.	3.1	63
377	Nickel–zeolite composite catalysts with metal nanoparticles selectively encapsulated in the zeolite micropores. Journal of Materials Science, 2019, 54, 5399-5411.	1.7	27
378	Fundamentals of hydrogen storage processes over Ru/SiO2 and Ru/Vulcan. International Journal of Hydrogen Energy, 2019, 44, 18903-18914.	3.8	7
379	Pt–Co Alloy Nanoparticles on a γâ€Al ₂ O ₃ Support: Synergistic Effect between Isolated Electronâ€Rich Pt and Co for Automotive Exhaust Purification. ChemPlusChem, 2019, 84, 447-456.	1.3	12
380	Supported Co–Re Bimetallic Catalysts with Different Structures as Efficient Catalysts for Hydrogenation of Citral. ChemSusChem, 2019, 12, 807-823.	3.6	16
381	Synergism of Pt nanoparticles and iron oxide support for chemoselective hydrogenation of nitroarenes under mild conditions. Chinese Journal of Catalysis, 2019, 40, 214-222.	6.9	38
382	Principles of photothermal gas-phase heterogeneous CO ₂ catalysis. Energy and Environmental Science, 2019, 12, 1122-1142.	15.6	300
383	High conductivity and surface area of Ti0.7W0.3O2 mesoporous nanostructures support for Pt toward enhanced methanol oxidation in DMFCs. International Journal of Hydrogen Energy, 2019, 44, 20933-20943.	3.8	13
384	Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds. Journal of Catalysis, 2019, 369, 312-323.	3.1	43
385	Development of High Performance Heterogeneous Catalysts for Selective Cleavage of Câ^'O and Câ^'C Bonds of Biomassâ€Đerived Oxygenates. Chemical Record, 2019, 19, 1179-1198.	2.9	22
386	The effect of Al3+ coordination structure on the propane dehydrogenation activity of Pt/Ga/Al2O3 catalysts. Journal of Energy Chemistry, 2020, 41, 93-99.	7.1	48

#	Article	IF	CITATIONS
387	Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356, 330-338.	2.2	9
388	Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chemical Reviews, 2020, 120, 683-733.	23.0	871
389	A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews, 2020, 120, 1250-1349.	23.0	436
390	A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Molecular Catalysis, 2020, 480, 110639.	1.0	17
391	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2020, 132, 1311-1317.	1.6	59
392	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	7.2	344
393	Highlights of aliphatic C(sp ³)â€H hydrogen isotope exchange reactions. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 266-280.	0.5	46
394	Lewis acid transformation to Bronsted acid sites over supported tungsten oxide catalysts containing different surface WOx structures. Catalysis Today, 2020, 358, 354-369.	2.2	20
395	Ïf-H–H, Ïf-C–H, and Ïf-Si–H Bond Activation Catalyzed by Metal Nanoparticles. Chemical Reviews, 2020, 1 1042-1084.	20. 23.0	68
396	Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nature Communications, 2020, 11, 48.	5.8	223
397	Influence of Acidity of Mesoporous ZSM-5-Supported Pt on Naphthalene Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 1056-1064.	1.8	37
398	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
399	Genesis of micropores by thermal activation of Mg-Al layered double hydroxides possessing interlayer organic sulfonates under oxygen-free environments. Catalysis Today, 2020, 356, 11-17.	2.2	1
400	Investigating the dynamic structural changes on Cu/CeO2 catalysts observed during CO2 hydrogenation. Journal of Catalysis, 2020, 381, 415-426.	3.1	43
401	Epitaxially Directed Iridium Nanostructures on Titanium Dioxide for the Selective Hydrodechlorination of Dichloromethane. ACS Catalysis, 2020, 10, 528-542.	5.5	24
402	Production of benzylamine by tandem dehydrogenation/amination/reduction over Cu and Au catalysts. Applied Catalysis A: General, 2020, 590, 117368.	2.2	7
403	Gold-graphene oxide nanohybrids: A review on their chemical catalysis. Journal of Industrial and Engineering Chemistry, 2020, 83, 1-13.	2.9	25
404	Precursor salts influence in Ruthenium catalysts for CO2 hydrogenation to methane. Applied Energy, 2020, 279, 115767.	5.1	27

405Dual-Active-Sites Design of Co@C Catalysts for Ultrahigh Selective Hydrogenation of N-Heteroarenes. CheM, 2020, 6, 2994-3006.5.8406Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production. Communications Materials, 2020, 1, 66.2.9407Mechanism of hydrogen formation during the corrosion of Mg17Al12. Electrochemistry Communications, 2020, 119, 106813.2.3408Bi-Metal-Supported Activated Carbon Monolith Catalysts for Selective Hydrogenation of Furfural. Industrial & amp; Engineering Chemistry Research, 2020, 59, 17748-17761.1.8409Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.23.0410Hydrodeoxygenation of lignin-derived phenolics âC" a review on the active sites of supported metal catalysts. Green Chemistry, 2020, 22, 8140-8168.4.6411AMechanistic Study of Polyol Hydrodeoxygenation over a Bifunctional Pt-WO (sub><(i>sub><(i>sub><(i>sub><(i>sub><(i>sub><(i))) (sub>>2(sub><(i)) (sub>>2(sub><(i))) (sub>>2(sub><(i)) (sub><(i)) (sub><(i)) (sub>>2(sub><(i)) (sub>>2(sub><(i)) (sub><(i)) (sub>>2(sub><(i)) (s	47 28 7 9 690 131
400 hydrogen production. Communications Materials, 2020, 1, 66. 2.9 407 Mechanism of hydrogen formation during the corrosion of Mg17Al12. Electrochemistry 2.3 407 Mechanism of hydrogen formation during the corrosion of Mg17Al12. Electrochemistry 2.3 408 Bi-Metal-Supported Activated Carbon Monolith Catalysts for Selective Hydrogenation of Furfural. 1.8 409 Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809. 23.0 410 Hydrodeoxygenation of lignin-derived phenolics – a review on the active sites of supported metal 4.6 411 A Mechanistic Study of Polyol Hydrodeoxygenation over a Bifunctional Pt-WO _{<ti>></ti> 5.5 412 Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22, 22852-22863. 1.3 412 Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported 4.6}	7 9 690
407 Communications, 2020, 119, 106813. 2.3 408 Bi-Metal-Supported Activated Carbon Monolith Catalysts for Selective Hydrogenation of Furfural. Industrial & amp; Engineering Chemistry Research, 2020, 59, 17748-17761. 1.8 409 Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809. 23.0 410 Hydrodeoxygenation of lignin-derived phenolics âC" a review on the active sites of supported metal catalysts. Green Chemistry, 2020, 22, 8140-8168. 4.6 411 A Mechanistic Study of Polyol Hydrodeoxygenation over a Bifunctional Pt-WO _{<i>>x</i>> 5.5 412 Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22, 22852-22863. 1.3}	9 690
408 Industrial & amp; Engineering Chemistry Research, 20'20, 59, 17748-17761. 1.8 409 Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809. 23.0 410 Hydrodeoxygenation of lignin-derived phenolics – a review on the active sites of supported metal catalysts. Green Chemistry, 2020, 22, 8140-8168. 4.6 411 A Mechanistic Study of Polyol Hydrodeoxygenation over a Bifunctional Pt-WO _{<i sub=""> 5.5 412 Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22, 22852-22863. 1.3 412 Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported 1.6</i>}	690
410 Hydrodeoxygenation of lignin-derived phenolics – a review on the active sites of supported metal 4.6 410 A Mechanistic Study of Polyol Hydrodeoxygenation over a Bifunctional Pt-WO _{<i>x</i>> 5.5 411 Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22, 22852-22863. 1.3 412 Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported 1.0}	
410 catalysts. Green Chemistry, 2020, 22, 8140-8168. 4.6 411 A Mechanistic Study of Polyol Hydrodeoxygenation over a Bifunctional Pt-WO _{<i>x</i> 5.5 412 Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical Chemistry Chemical Physics, 2020, 22, 22852-22863. 1.3 412 Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported 1.3}	131
411 Pt-WO _{<i>x</i>} /TiO ₂ Catalyst. ACS Catalysis, 2020, 10, 12996-13007. 5.5 412 Recent progress in use and observation of surface hydrogen migration over metal oxides. Physical 1.3 412 Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported 1.3	
 Chemistry Chemical Physics, 2020, 22, 22852-22863. Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported 	23
⁴¹³ Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported 4.3 Ni-MoOx catalyst and elucidation of the active phase. Renewable Energy, 2020, 162, 2113-2125.	21
	39
 Selective hydrogenation of acetylene over Pd-Sn catalyst: Identification of Pd2Sn intermetallic alloy and crystal plane-dependent performance. Applied Catalysis B: Environmental, 2020, 279, 119348. 	42
Anchoring Ba II to Pd/H y WO 3â'' x Nanowires Promotes a Photocatalytic Reverse Water–Gas Shift Reaction. Chemistry - A European Journal, 2020, 26, 12355-12358. 1.7	2
 Boosting the Performance of Nano-Ni Catalysts by Palladium Doping in Flow Hydrogenation of 1.6 	4
 H2 Transformations on Graphene Supported Palladium Cluster: DFT-MD Simulations and NEB Calculations. Catalysts, 2020, 10, 1306. 	10
418 Study on the performance of NiO/Zn _x 2r _{1â^x} catalysts for CO ₂ hydrogenation. RSC Advances, 2020, 10, 42790-42798.	6
Hydrogenation of CO ₂ to Methanol on a Au ^{l´+} –ln ₂ O _{3–<i>x</i>} Catalyst. ACS Catalysis, 2020, 10, 11307-11317. ^{5.5}	142
420 Hydrogen and methane storage in nanoporous materials. , 2020, , 327-350.	4
421Synthesis of Bimetallic Au-Ag/CMK-3 Catalysts and Their Catalytic Activity for the Oxidation of Amino Alcohol. Industrial & amp; Engineering Chemistry Research, 2020, 59, 14658-14667.1.8	5
Nanoscale Spatial Distribution of Supported Nanoparticles Controls Activity and Stability in Powder Catalysts for CO Oxidation and Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2020, 142, 14481-14494.	

	CHATON	CLPORT	
#	Article	IF	CITATIONS
423	Golden touch of the nanoparticles. Nature Nanotechnology, 2020, 15, 1-2.	15.6	9
424	Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nature Nanotechnology, 2020, 15, 848-853.	15.6	210
425	The pathways of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:msub><mml:mtext>CO</mml:mtext><mml:mn>2</mml:mn>hydrogenation by NiCu/ZnO from DFT molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 2020, 100, 107677.</mml:msub></mml:mrow></mml:math>	ɔ> 1.3	row ₃
426	Nanomaterials in the advancement of hydrogen energy storage. Heliyon, 2020, 6, e04487.	1.4	68
427	Electronic Tuning of Ni by Mo Species for Highly Efficient Hydroisomerization of <i>n</i> -Alkanes Comparable to Pt-Based Catalysts. ACS Catalysis, 2020, 10, 10449-10458.	5.5	63
428	Continuous hydroxyketone production from furfural using Pd–TiO2 supported on activated carbon. Catalysis Science and Technology, 2020, 10, 7002-7015.	2.1	8
429	Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. Catalysts, 2020, 10, 992.	1.6	10
430	Revival of Zeoliteâ€Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. Advanced Science, 2020, 7, 2001335.	5.6	42
431	Facilitating hydrogen atom migration via a dense phase on palladium islands to a surrounding silver surface. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22657-22664.	3.3	26
432	Understanding electrochemical switchability of perovskite-type exsolution catalysts. Nature Communications, 2020, 11, 4801.	5.8	46
433	In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nature Communications, 2020, 11, 4773.	5.8	81
434	Hydrogen Spillover to Oxygen Vacancy of TiO _{2–<i>x</i>} H _{<i>y</i>} /Fe: Breaking the Scaling Relationship of Ammonia Synthesis. Journal of the American Chemical Society, 2020, 142, 17403-17412.	6.6	91
435	The effect of physical morphology and the chemical state of Ru on the catalytic properties of Ru–carbon for cellulose hydrolytic hydrogenation. New Journal of Chemistry, 2020, 44, 15169-15176.	1.4	7
436	The midas touch on copper into palladium. Science China Chemistry, 2020, 63, 1740-1741.	4.2	0
437	Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. Catalysis Reviews - Science and Engineering, 2021, 63, 639-703.	5.7	24
438	Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS ₂) for enhanced hydrogen sensing. Nanoscale, 2020, 12, 11830-11841.	2.8	42
439	Complete dechlorination of lindane over N-doped porous carbon supported Pd catalyst at room temperature and atmospheric pressure. Science of the Total Environment, 2020, 719, 137534.	3.9	15
440	Deoxygenation of esters over sulfur-free Ni–W/Al2O3 catalysts for production of biofuel components. Chemical Engineering Journal, 2020, 396, 125202.	6.6	26

#	Article	IF	CITATIONS
441	The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane. Molecular Catalysis, 2020, 492, 110971.	1.0	24
442	Multifunctional porous aromatic frameworks: State of the art and opportunities. EnergyChem, 2020, 2, 100037.	10.1	35
443	Effect of Graphene Oxide and Carbon Nanotubes on the Reaction of Tritium Atoms with Dalargin. Radiochemistry, 2020, 62, 264-269.	0.2	1
444	Investigation on Deactivation of Kâ€promoted Ru Catalyst for Ammonia Synthesis by CO Formation. ChemistrySelect, 2020, 5, 6639-6645.	0.7	6
445	Secondary Phosphine Oxides: Bifunctional Ligands in Catalysis. ChemCatChem, 2020, 12, 3982-3994.	1.8	42
446	Pt/Re/CeO2 Based Catalysts for CO-Water–Gas Shift Reaction: from Powders to Structured Catalyst. Catalysts, 2020, 10, 564.	1.6	13
447	Highly active Ir/SiC catalyst for aqueous hydrogenation of levulinic acid to γ-valerolactone. Catalysis Communications, 2020, 139, 105971.	1.6	18
448	B2H6 splitting on catalytic surfaces and role of BH3 towards hydrogen spillover. Journal of Power Sources, 2020, 455, 227973.	4.0	2
449	In Situ Raman Monitoring and Manipulating of Interfacial Hydrogen Spillover by Precise Fabrication of Au/TiO ₂ /Pt Sandwich Structures. Angewandte Chemie - International Edition, 2020, 59, 10343-10347.	7.2	70
450	Enhanced Fischer–Tropsch Synthesis Rates by the Combined Presence of Aqueous and Organic Media in Biphasic Systems. ACS Catalysis, 2020, 10, 4433-4443.	5.5	18
451	In Situ Raman Monitoring and Manipulating of Interfacial Hydrogen Spillover by Precise Fabrication of Au/TiO 2 /Pt Sandwich Structures. Angewandte Chemie, 2020, 132, 10429-10433.	1.6	44
452	The hydrogen spillover effect. A misunderstanding story. Catalysis Reviews - Science and Engineering, 2022, 64, 87-125.	5.7	23
453	A highly active Pt/In ₂ O ₃ catalyst for CO ₂ hydrogenation to methanol with enhanced stability. Green Chemistry, 2020, 22, 5059-5066.	4.6	107
454	Acidic nanomaterials (TiO ₂ , ZrO ₂ , and Al ₂ O ₃) are coke storage components that reduce the deactivation of the Pt–Sn/l³-Al ₂ O ₃ catalyst in propane dehydrogenation. Catalysis Science and Technology, 2020, 10, 5100-5112.	2.1	13
455	Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nature Catalysis, 2020, 3, 170-178.	16.1	93
456	Promotional effect of Co and Ni on MoO3 catalysts for hydrogenolysis of dibenzofuran to biphenyl under atmospheric hydrogen pressure. Journal of Catalysis, 2020, 383, 311-321.	3.1	24
457	Water Poisons H ₂ Activation at the Au–TiO ₂ Interface by Slowing Proton and Electron Transfer between Au and Titania. Journal of the American Chemical Society, 2020, 142, 5760-5772.	6.6	36
458	<i>In situ</i> processed tungsten carbide/carbon black-supported platinum electrocatalysts for enhanced electrochemical stability and activity. Green Chemistry, 2020, 22, 2028-2035.	4.6	9

#	Article	IF	Citations
459	Ru–Ni/Al ₂ O ₃ bimetallic catalysts with high catalytic activity for <i>N</i> -propylcarbazole hydrogenation. Catalysis Science and Technology, 2020, 10, 2268-2276.	2.1	33
460	The mechanism of spillover of hydrogen on sp ² -carbon surface. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 313-315.	1.0	2
461	Electronic structure modulating for supported Rh catalysts toward CO2 methanation. Catalysis Today, 2020, 356, 570-578.	2.2	26
462	Effect of In2O3 on the structural properties and catalytic performance of the CuO/ZnO/Al2O3 catalyst in CO2 and CO hydrogenation to methanol. Molecular Catalysis, 2020, 484, 110776.	1.0	11
463	Interaction of zero-valent iron and carbonaceous materials for reduction of DDT. Chemosphere, 2020, 253, 126712.	4.2	14
464	Promotional effect of palladium in Co-SiO2 core@shell nanocatalysts for selective liquid phase hydrogenation of chloronitroarenes. Journal of Catalysis, 2020, 385, 224-237.	3.1	29
465	The role of oxophilic Mo species in Pt/MgO catalysts as extremely active sites for enhanced hydrodeoxygenation of dibenzofuran. Catalysis Science and Technology, 2020, 10, 2948-2960.	2.1	15
466	Promoting Role of Oxygen Deficiency on a WO ₃ -Supported Pt Catalyst for Glycerol Hydrogenolysis to 1,3-Propanediol. Industrial & Engineering Chemistry Research, 2020, 59, 7389-7397.	1.8	26
467	Catalyst Surface Dispersion: Insights into Hydrogenation Kinetics and Mechanism. Journal of Physical Chemistry C, 2020, 124, 8813-8821.	1.5	5
468	Hydrogen migration at restructuring palladium–silver oxide boundaries dramatically enhances reduction rate of silver oxide. Nature Communications, 2020, 11, 1844.	5.8	28
469	Synthesis of a binary alloy nanoparticle catalyst with an immiscible combination of Rh and Cu assisted by hydrogen spillover on a TiO ₂ support. Chemical Science, 2020, 11, 4194-4203.	3.7	32
470	Electrocatalytic behaviour of CeZrO _x -supported Ni catalysts in plasma assisted CO ₂ methanation. Catalysis Science and Technology, 2020, 10, 4532-4543.	2.1	18
471	CO activation and methanation mechanism on hexagonal close-packed Co catalysts: effect of functionals, carbon deposition and surface structure. Catalysis Science and Technology, 2020, 10, 3387-3398.	2.1	5
472	Synthesis and characterization the multifunctional nanostructures TixW1-xO2 (x = 0.5; 0.6; 0.7; 0.8) supports as robust non-carbon support for Pt nanoparticles for direct ethanol fuel cells. International Journal of Hydrogen Energy, 2021, 46, 24877-24890.	3.8	16
473	The key to catalytic stability on sol–gel derived SnOx/SiO2 catalyst and the comparative study of side reaction with K-PtSn/Al2O3 toward propane dehydrogenation. Catalysis Today, 2021, 375, 343-351.	2.2	18
474	Boosting alcohol electro-oxidation reaction with bimetallic PtRu nanoalloys supported on robust Ti0.7W0.3O2 nanomaterial in direct liquid fuel cells. International Journal of Hydrogen Energy, 2021, 46, 16776-16786.	3.8	15
475	Theoretical insight into the role of nitrogen in the formic acid decomposition over Pt13/N-GNS. Applied Surface Science, 2021, 539, 148192.	3.1	15
476	Hydrogen evolution/spillover effect of single cobalt atom on anatase TiO2 from first-principles calculations. Applied Surface Science, 2021, 536, 147831.	3.1	13

ARTICLE IF CITATIONS Advanced nanomaterials for catalysis: Current progress in fine chemical synthesis, hydrocarbon 2.9 33 477 processing, and renewable energy. Journal of Industrial and Engineering Chemistry, 2021, 93, 78-100. Insights into the effect of solvent on dibenzothiophene hydrodesulfurization. Fuel, 2021, 287, 119459. 3.4 n-Hexane hydroisomerization over Zr-modified bicontinuous lamellar silica mordenite supported Pt as highly selective catalyst: Molecular hydrogen generated protonic acid sites and optimization. 479 3.8 12 International Journal of Hydrogen Energy, 2021, 46, 4019-4035. Effect of hydrogen spillover on the surface of tungsten oxide on hydrogenation of cyclohexene and N-propylcarbazole. International Journal of Hydrogen Energy, 2021, 46, 3945-3953. Reactivity Screening of Single Atoms on Modified Graphene Surface: From Formation and Scaling 481 1.9 8 Relations to Catalytic Activity. Advanced Materials Interfaces, 2021, 8, 2001814. Identification of hydrogen species on Pt/Al₂O₃ by <i>in situ</i> inelastic neutron scattering and their reactivity with ethylene. Catalysis Science and Technology, 2021, 11, 2.1 116-123. Bimetallic PtIr nanoalloy on TiO₂-based solid solution oxide with enhanced oxygen 483 reduction and ethanol electro-oxidation performance in direct ethanol fuel cells. Catalysis Science 2.1 21 and Technology, 2021, 11, 1571-1579. Catalytic pathways and mechanistic consequences of water during vapor phase hydrogenation of 484 3.1 butanal on Ru/SiÓ2. Journal of Catalysis, 2021, 394, 429-443. Modulation of the Effective Metalâ€Support Interactions for the Selectivity of Ceria Supported Noble 485 1.8 11 Metal Nanoclusters in Atmospheric CO'sub>2</sub> Hydrogenation. ChemCatChem, 2021, 13, 874-881. Consecutive methane activation mediated by single metal boride cluster anions 1.3 NbB₄^{â⁻¹}. Physical Chemistry Chemical Physics, 2021, 23, 12592-12599. Benefits of active site proximity in Cu@UiO-66 catalysts for efficient upgrading of ethanol to 487 2 2.5 <i>n</i>-butanol. Sustainable Énergy and Fuels, 2021, 5, 4628-4636. Low-Pressure Hydrocracking of Wax over Pt/SiO₂â€"Al₂O₃to 488 0.5 Produce Kerosene for Synthetic Jet Fuel. ACS Symposium Series, 2021, , 311-352. Direct Synthesis of Pure Aqueous H₂O₂ Solution within Aluminosilicate 489 5.5 28 Zeolite Ćrystals. ACS Catalysis, 2021, 11, 1946-1951. Catalytic Hydrogen Isotope Exchange Reactions in Late-Stage Functionalization. Synlett, 2022, 33, 329-338. 1.0 Heterolytic cleavage of dihydrogen (HCD) in metal nanoparticle catalysis. Catalysis Science and 491 2.1 18 Technology, 2021, 11, 1157-1185. Nanotechnology for hydrogen storage., 2021, , 301-331. Combined DFT and kinetic Monte Carlo study of a bridging-spillover mechanism on fluorine-decorated 493 1.39 graphene. Physical Chemistry Chemical Physics, 2021, 23, 2384-2391. Effects of the morphology and heteroatom doping of CeO₂ support on the hydrogenation 494 2.1 activity of Pt single-atoms. Catalysis Science and Technology, 2021, 11, 2844-2851.

#	Article	IF	CITATIONS
495	Cu ₂ O hydrides promote the selective semihydrogenation of alkynes on Pd–Cu ₂ O/TiO ₂ under mild conditions. Catalysis Science and Technology, 2021, 11, 4539-4548.	2.1	3
496	Metal-support interfaces in ceria-based catalysts. , 2021, , .		0
497	Effects of A-site composition of perovskite (Sr1â^'xBaxZrO3) oxides on H atom adsorption, migration, and reaction. RSC Advances, 2021, 11, 7621-7626.	1.7	2
498	Development of Pd-supported Catalysts for the Conversion of Palm Oil to Biohydrogenated Diesel in a Microscale-based Reactor. Chemical and Biochemical Engineering Quarterly, 2021, 35, 1-15.	0.5	1
499	Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures. Nanoscale, 2021, 13, 13962-13975.	2.8	23
500	On the support dependency of the CO ₂ methanation – decoupling size and support effects. Catalysis Science and Technology, 2021, 11, 4098-4114.	2.1	18
501	Origin of MnO induced Cu ⁰ /Cu ⁺ surface active centers for CO ₂ containing syngas conversion to DME <i>via</i> tandem catalysis. Sustainable Energy and Fuels, 2021, 5, 2781-2801.	2.5	9
502	Plasmon-induced catalytic CO ₂ hydrogenation by a nano-sheet Pt/H _x MoO _{3â^'y} hybrid with abundant surface oxygen vacancies. Journal of Materials Chemistry A, 2021, 9, 13898-13907.	5.2	31
503	Dehydrogenative Coupling of Alkanes and Benzene Enhanced by Slurry-Phase Interparticle Hydrogen Transfer. Jacs Au, 2021, 1, 124-129.	3.6	15
504	Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction. Journal of Materials Science, 2021, 56, 6745-6763.	1.7	6
505	Kinetics of H ₂ Adsorption at the Metal–Support Interface of Au/TiO ₂ Catalysts Probed by Broad Background IR Absorbance. Angewandte Chemie - International Edition, 2021, 60, 7735-7743.	7.2	16
506	Kinetics of H ₂ Adsorption at the Metal–Support Interface of Au/TiO ₂ Catalysts Probed by Broad Background IR Absorbance. Angewandte Chemie, 2021, 133, 7814-7822.	1.6	5
507	Spillover in Heterogeneous Catalysis: New Insights and Opportunities. ACS Catalysis, 2021, 11, 3159-3172.	5.5	175
508	Advanced Development Strategy of Nano Catalyst and DFT Calculations for Direct Synthesis of Hydrogen Peroxide. Advanced Energy Materials, 2021, 11, 2003121.	10.2	34
509	Role of H and OH surface species in the reduction of the C O double bond. Molecular Catalysis, 2021, 502, 111338.	1.0	2
510	Chlorine-Modified Ru/TiO ₂ Catalyst for Selective Guaiacol Hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 3083-3094.	3.2	40
511	Metal-doped carbon nanocones as highly efficient catalysts for hydrogen storage: Nuclear quantum effect on hydrogen spillover mechanism. Molecular Catalysis, 2021, 504, 111486.	1.0	15
512	Spinel ZnFe ₂ O ₄ Regulates Copper Sites for CO ₂ Hydrogenation to Methanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 4033-4041.	3.2	30

#	Article	IF	CITATIONS
513	Highly Active Ir/In ₂ O ₃ Catalysts for Selective Hydrogenation of CO ₂ to Methanol: Experimental and Theoretical Studies. ACS Catalysis, 2021, 11, 4036-4046.	5.5	108
514	Interaction of O ₂ with LSM–YSZ Composite Materials and Oxygen Spillover Effect. ACS Catalysis, 2021, 11, 4247-4262.	5.5	17
515	Hydrogen Spillover Facilitating Reduction of Surface Oxygen Species on Porous Carbon. ChemistrySelect, 2021, 6, 2178-2183.	0.7	2
516	Insights into the Interfacial Effects in Heterogeneous Metal Nanocatalysts toward Selective Hydrogenation. Journal of the American Chemical Society, 2021, 143, 4483-4499.	6.6	106
517	A refined design concept for sulfur-tolerant Pd catalyst supported on zeolite by shape-selective exclusion and hydrogen spillover for hydrogenation of aromatics. Journal of Catalysis, 2021, 403, 203-214.	3.1	14
518	Chemoselective NADH Regeneration: the Synergy Effect of TiO _{<i>x</i>} and Pt in NAD ⁺ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 6499-6506.	3.2	20
519	CO ₂ Hydrogenation to Higher Alcohols over K-Promoted Bimetallic Fe–In Catalysts on a Ce–ZrO ₂ Support. ACS Sustainable Chemistry and Engineering, 2021, 9, 6235-6249.	3.2	32
520	Fluorene hydrocracking over bifunctional platinum catalysts in a high-pressure simultaneous thermal analyzer. Applied Catalysis A: General, 2021, 616, 118097.	2.2	4
521	Influence of metal ratio on alumina-supported CuPd catalysts for the production of tetrahydrofuran from succinic acid. Applied Catalysis A: General, 2021, 616, 118063.	2.2	7
522	How Nitrogen Doping Affects Hydrogen Spillover on Carbon-Supported Pd Nanoparticles: New Insights from DFT. Journal of Physical Chemistry C, 2021, 125, 9020-9031.	1.5	16
523	Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over Au-Pd/ultrathin SnNb2O6 nanosheets under visible light. Journal of Catalysis, 2021, 396, 374-386.	3.1	26
524	Observation of Adsorbed Hydrogen Species on Supported Metal Catalysts by Inelastic Neutron Scattering. Topics in Catalysis, 2021, 64, 660-671.	1.3	2
525	Isolated Pd atoms in a silver matrix: Spectroscopic and chemical properties. Journal of Chemical Physics, 2021, 154, 184703.	1.2	10
526	Rapid Interchangeable Hydrogen, Hydride, and Proton Species at the Interface of Transition Metal Atom on Oxide Surface. Journal of the American Chemical Society, 2021, 143, 9105-9112.	6.6	37
527	Theoretical studies on the catalytic hydrogenation of carbon dioxide by 3d transition metals single-atom catalyst supported on covalent triazine frameworks. Molecular Catalysis, 2021, 508, 111581.	1.0	10
528	Catalytic conversion of ethene to butadiene or hydrogenation to ethane on HY zeolite-supported rhodium complexes: Cooperative support/Rh-center route. Journal of Chemical Physics, 2021, 154, 184706.	1.2	4
529	Inelastic Neutron Scattering Observation of Plasma-Promoted Nitrogen Reduction Intermediates on Ni/Ĵ³-Al ₂ O ₃ . ACS Energy Letters, 2021, 6, 2048-2053.	8.8	20
530	Catalytic conversion of glucose into sorbitol over niobium oxide supported Ru catalysts. Molecular Catalysis, 2021, 507, 111567.	1.0	4

#	Article	IF	CITATIONS
531	Disordered-Layer-Mediated Reverse Metal–Oxide Interactions for Enhanced Photocatalytic Water Splitting. Nano Letters, 2021, 21, 5247-5253.	4.5	18
532	A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nature Communications, 2021, 12, 3502.	5.8	183
533	A kinetic model of multi-step furfural hydrogenation over a Pd-TiO2 supported activated carbon catalyst. Chemical Engineering Journal, 2021, 414, 128693.	6.6	33
534	Atomic Layer Deposition with TiO ₂ for Enhanced Reactivity and Stability of Aromatic Hydrogenation Catalysts. ACS Catalysis, 2021, 11, 8538-8549.	5.5	24
535	Pt nanoparticles Confined in TiO2 Nanotubes With Enhanced Catalytic Performance for Phenol Hydrogenation by Atomic Layer Deposition. Catalysis Letters, 2022, 152, 1020-1028.	1.4	6
536	A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H 2 Cleavage into Protons and Electrons. Angewandte Chemie, 2021, 133, 17131-17135.	1.6	6
537	Rational Design of Ptâ^'Pdâ^'Ni Trimetallic Nanocatalysts for Roomâ€Temperature Benzaldehyde and Styrene Hydrogenation. Chemistry - an Asian Journal, 2021, 16, 2298-2306.	1.7	7
538	Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nature Communications, 2021, 12, 3884.	5.8	109
539	Deep Hydrogenation Saturation of Naphthalene Facilitated by Enhanced Adsorption of the Reactants on Microâ€Mesoporous Pd/HY. ChemistrySelect, 2021, 6, 5524-5533.	0.7	7
540	Origin of the synergistic effect between TiO2 crystalline phases in the Ni/TiO2-catalyzed CO2 methanation reaction. Journal of Catalysis, 2021, 398, 14-28.	3.1	43
541	Pt, Ir, Ru, and Rh Nanoparticles Supported on ZIF-67 Nanocubes for Evaluation of Hydrogen Spillover Ability of Noble Metals. ACS Applied Nano Materials, 2021, 4, 6030-6044.	2.4	17
542	A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H ₂ Cleavage into Protons and Electrons. Angewandte Chemie - International Edition, 2021, 60, 16994-16998.	7.2	38
543	Heterogeneous Catalysis and Parahydrogenâ€Induced Polarization. ChemPhysChem, 2021, 22, 1421-1440.	1.0	30
544	Bifunctional catalytic effect of Mo2C/oxide interface on multi-layer graphene growth. Scientific Reports, 2021, 11, 15377.	1.6	1
545	Enhanced photocatalytic CO2 hydrogenation with wide-spectrum utilization over black TiO2 supported catalyst. Chinese Chemical Letters, 2022, 33, 812-816.	4.8	18
546	Efficient Synthesis of Sugar Alcohols over a Synergistic and Sustainable Catalyst. Chinese Journal of Chemistry, 2021, 39, 2467-2476.	2.6	8
547	Hydrogen Storage in Untreated/Ammonia-Treated and Transition Metal-Decorated (Pt, Pd, Ni, Rh, Ir and) Tj ETQq	0 0 0 rgBT 1.3	Overlock 10

548	Site-Independent Hydrogenation Reactions on Oxide-Supported Au Nanoparticles Facilitated by Intraparticle Hydrogen Atom Diffusion. ACS Catalysis, 2021, 11, 9875-9884.	5.5	12	
-----	--	-----	----	--

#	Article	IF	CITATIONS
549	Template Guiding for the Encapsulation of Uniformly Subnanometric Platinum Clusters in Betaâ€Zeolites Enabling High Catalytic Activity and Stability. Angewandte Chemie - International Edition, 2021, 60, 21713-21717.	7.2	32
550	A Facile Approach to Tune WO _{<i>x</i>} Species Combining Pt Catalyst for Enhanced Catalytic Performance in Glycerol Hydrogenolysis. Industrial & Engineering Chemistry Research, 2021, 60, 12534-12544.	1.8	12
551	Design and Characterization of Metal Nanoparticle Infiltrated Mesoporous Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 13000-13010.	1.9	5
552	Dynamics of Initial Hydrogen Spillover from a Single Atom Platinum Active Site to the Cu(111) Host Surface: The Impact of Substrate Electron–Hole Pairs. Journal of Physical Chemistry Letters, 2021, 12, 8423-8429.	2.1	19
553	Enhanced H2 evolution reaction due to H spillover during electrolytic reduction of water on a Au/TiO2 electrode. Electrochemistry Communications, 2021, 129, 107085.	2.3	6
554	Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nature Communications, 2021, 12, 4968.	5.8	43
555	Regulation of Strong Metalâ€Support Interaction by Alkaline Earth Metal Salts. Chemistry - an Asian Journal, 2021, 16, 2633-2640.	1.7	4
556	Prediction Descriptor for Catalytic Activity of Platinum Nanoparticles/Metal–Organic Framework Composites. ACS Applied Materials & Interfaces, 2021, 13, 38325-38332.	4.0	14
557	Template Guiding for the Encapsulation of Uniformly Subnanometric Platinum Clusters in Betaâ€Zeolites Enabling High Catalytic Activity and Stability. Angewandte Chemie, 2021, 133, 21881-21885.	1.6	2
558	Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia. Jacs Au, 2021, 1, 1422-1434.	3.6	95
559	Highly Effective Rh/NaNbO3 Catalyst for the Selective Hydrogenation of Benzoic Acid to Cyclohexane Carboxylic Acid Under Mild Conditions. Catalysis Letters, 2022, 152, 2164-2177.	1.4	5
560	Mechanism-guided elaboration of ternary Au–Ti–Si sites to boost propylene oxide formation. Chem Catalysis, 2021, 1, 885-895.	2.9	21
561	Absence of spillover of hydrogen adsorbed on small palladium clusters anchored to graphene vacancies. Applied Surface Science, 2021, 559, 149835.	3.1	17
562	Temperature-Dependent Communication between Pt/Al ₂ O ₃ Catalysts and Anatase TiO ₂ Dilutant: the Effects of Metal Migration and Carbon Transfer on the Reverse Water–Gas Shift Reaction. ACS Catalysis, 2021, 11, 12058-12067.	5.5	16
563	Study on the performance of platinum and tungsten bifunctional catalyst supported on Al2O3 in the hydrogenolysis of glycerol to 1,3-propanediol. Journal of Fuel Chemistry and Technology, 2021, 49, 1270-1280.	0.9	3
564	Ru surface density effect on ammonia synthesis activity and hydrogen poisoning of ceria-supported Ru catalysts. Chinese Journal of Catalysis, 2021, 42, 1712-1723.	6.9	29
565	Pd modified defective HNb3O8 with dual active sites for photocatalytic coproduction of hydrogen fuel and value-added chemicals. Applied Catalysis B: Environmental, 2021, 296, 120381.	10.8	34
566	Targeted engineering of metal@hollow carbon spheres as nanoreactors for biomass hydrodeoxygenation. Renewable and Sustainable Energy Reviews, 2021, 151, 111582.	8.2	36

#	Article	IF	CITATIONS
567	Photo-thermal CO2 reduction with methane on group VIII metals: In situ reduced WO3 support for enhanced catalytic activity. Chinese Journal of Catalysis, 2021, 42, 1976-1982.	6.9	20
568	Protonic conduction induced selective room temperature hydrogen response in ZnO/NiO heterojunction surfaces. Sensors and Actuators B: Chemical, 2021, 348, 130605.	4.0	12
569	Improving methanol selectivity in CO2 hydrogenation by tuning the distance of Cu on catalyst. Applied Catalysis B: Environmental, 2021, 298, 120590.	10.8	26
570	Laser-assisted synthesis of bentonite/Pd nanocomposite and its electrochemical hydrogen storage capacity. Microporous and Mesoporous Materials, 2021, 328, 111439.	2.2	9
571	CuPd alloy decorated SnNb2O6 nanosheets as a multifunctional photocatalyst for semihydrogenation of phenylacetylene under visible light. Chemical Engineering Journal, 2022, 429, 132018.	6.6	12
572	CuS -mediated two reaction systems enable biomimetic photocatalysis in CO2 reduction with visible light. Journal of Energy Chemistry, 2022, 65, 497-504.	7.1	16
573	Peculiarities of high-pressure hydrogen adsorption on Pt catalyzed Cu-BTC metal–organic framework. Physical Chemistry Chemical Physics, 2021, 23, 4277-4286.	1.3	5
574	Correlation between the TiO ₂ encapsulation layer on Pt and its electrochemical behavior. Nanoscale Advances, 2021, 3, 5075-5082.	2.2	4
575	Properties of titanium dioxide. , 2021, , 13-66.		12
576	The effects of MoO ₃ impregnation order on the catalytic activity for propane combustion over Pt/ZrO ₂ catalysts: the crucial roles of Pt–MoO ₃ interfacial sites density. New Journal of Chemistry, 2021, 45, 14695-14702.	1.4	11
577	Tuning product selectivity in CO ₂ hydrogenation over metal-based catalysts. Chemical Science, 2021, 12, 14660-14673.	3.7	38
578	Co inside hollow carbon spheres as a Fischer-Tropsch catalyst: Spillover effects from Ru placed inside and outside the HCS. Applied Catalysis A: General, 2020, 599, 117617.	2.2	12
579	Plasmonic fiber optic hydrogen sensor using oxygen defects in nanostructured molybdenum trioxide film. Optics Letters, 2019, 44, 4773.	1.7	13
580	Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chemical Science, 2021, 12, 14599-14605.	3.7	20
581	Visible light–driven photodegradation of Noxious methyl orange dye by Pd @ WO ₃ nanocomposite catalysts in aqueous solution. International Journal of Environmental Analytical Chemistry, 2023, 103, 8158-8175.	1.8	2
582	Defect Engineering of Pt/TiO _{2–<i>x</i>} Photocatalysts via Reduction Treatment Assisted by Hydrogen Spillover. ACS Applied Materials & Interfaces, 2021, 13, 48669-48678.	4.0	21
583	Electrochemical hydrogen-storage capacity of graphene can achieve a carbon-hydrogen atomic ratio of 1:1. Science China Chemistry, 2022, 65, 318-321.	4.2	5
584	Controlling the Production of Acid Catalyzed Products of Furfural Hydrogenation by Pd/TiO ₂ . ChemCatChem, 2021, 13, 5121-5133.	1.8	11

#	Article	IF	CITATIONS
585	Hydrodeoxygenation of Isoeugenol over Carbon-Supported Pt and Pt–Re Catalysts for Production of Renewable Jet Fuel. Energy & Fuels, 2021, 35, 17755-17768.	2.5	13
586	Determining the role of oxygen vacancies in palmitone selectivity and coke formation over acid metal oxide catalysts for the ketonization of methyl palmitate. Applied Catalysis A: General, 2021, 628, 118405.	2.2	7
587	CO2 Decomposition Using Activated Rh- and Ru-SrFeO3-Î′ for Cyclic Production of CO. Journal of CO2 Utilization, 2021, 53, 101724.	3.3	1
588	Electrochemical Storage of Atomic Hydrogen on Single Layer Graphene. Journal of the American Chemical Society, 2021, 143, 18419-18425.	6.6	23
589	Interaction of Hydrogen with Graphitic Surfaces, Clean and Doped with Metal Clusters. , 2020, , 545-566.		0
590	Structural and Catalytic Properties of Isolated Pt ²⁺ Sites in Platinum Phosphide (PtP ₂). ACS Catalysis, 2021, 11, 13496-13509.	5.5	15
591	Sulfur-Tolerant Pt/CeO ₂ Catalyst with Enhanced Oxygen Storage Capacity by Controlling the Pt Content for the Waste-to-Hydrogen Processes. ACS Sustainable Chemistry and Engineering, 2021, 9, 15287-15293.	3.2	21
592	Catalytic hydrogen evolution reaction on surfaces of metal-nanoparticle-coated zinc-based oxides by first-principles calculations. International Journal of Hydrogen Energy, 2022, 47, 40768-40776.	3.8	3
593	Effect of Noble Metals on Hydrogen Sensing Properties of Metal Oxide-based Gas Sensors. Journal of Sensor Science and Technology, 2020, 29, 365-368.	0.1	8
594	On the contribution of the cobalt sulfide phase to the global activity of industrial-type CoMo/Al2O3 catalysts in the HDS of DBT. Catalysis Today, 2022, 394-396, 41-49.	2.2	4
595	Long-range catalytic hydrodechlorination of preadsorbed DDT at ambient temperature. Applied Catalysis B: Environmental, 2022, 304, 120966.	10.8	1
596	PdCu supported on dendritic mesoporous CexZr1-xO2 as superior catalysts to boost CO2 hydrogenation to methanol. Journal of Colloid and Interface Science, 2022, 611, 739-751.	5.0	18
597	Reduction of iron oxide by hydrogen spillover over Pt/TiO2 and Pt/Al2O3 surfaces. Chemical Engineering Science, 2022, 249, 117281.	1.9	9
598	Framework Zr Stabilized <scp>PtSn</scp> / <scp>Zrâ€MCM</scp> â€41 as a Promising Catalyst for Nonâ€oxidative Ethane Dehydrogenation. Chinese Journal of Chemistry, 2022, 40, 918-924.	2.6	15
599	Palladium clusters, free and supported on surfaces, and their applications in hydrogen storage. Physical Chemistry Chemical Physics, 2022, 24, 2729-2751.	1.3	9
600	Improvement in the activity of Ni/In2O3 with the addition of ZrO2 for CO2 hydrogenation to methanol. Catalysis Communications, 2022, 162, 106386.	1.6	22
601	Op Timizing Active Metals on Dendritic Mesoporous Ce _{0.3} Zr _{0.7} O ₂ for Efficient CO ₂ Hydrogenation to Methanol. SSRN Electronic Journal, 0, ,	0.4	0
602	The reaction of HV(CO) ₄ dppe with MoO ₃ : a well-defined model of hydrogen spillover. Catalysis Science and Technology, 2021, 11, 7540-7544.	2.1	3

#	Article	IF	CITATIONS
603	Effect of Phosphorus Precursor, Reduction Temperature, and Support on the Catalytic Properties of Nickel Phosphide Catalysts in Continuous-Flow Reductive Amination of Ethyl Levulinate. International Journal of Molecular Sciences, 2022, 23, 1106.	1.8	14
604	Hierarchical metal-organic framework (MOF) pore engineering. Microporous and Mesoporous Materials, 2022, 330, 111633.	2.2	28
605	Lightâ€Assisted CO ₂ Hydrogenation over Pd ₃ Cu@UiOâ€66 Promoted by Active Sites in Close Proximity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	89
606	Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts. Nature Communications, 2022, 13, 118.	5.8	44
607	Lightâ€Assisted CO 2 Hydrogenation over Pd 3 Cu@UiOâ€66 Promoted by Active Sites in Close Proximity. Angewandte Chemie, 0, , .	1.6	11
608	Gas-Phase Hydrogen-Atom Measurement above Catalytic and Noncatalytic Materials during Ethane Dehydrogenation. Journal of Physical Chemistry C, 0, , .	1.5	2
609	Magic of hydrogen spillover: Understanding and application. Green Energy and Environment, 2022, 7, 1161-1198.	4.7	70
610	Ruthenium-based catalysts supported on carbon xerogels for hydrogen production via ammonia decomposition. Applied Catalysis A: General, 2022, 632, 118484.	2.2	12
611	Water denitration over titania-supported Pt and Cu by combined photocatalytic and catalytic processes: Implications for hydrogen generation properties in a photocatalytic system. Journal of Environmental Chemical Engineering, 2022, 10, 107129.	3.3	3
612	Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review. Processes, 2022, 10, 304.	1.3	58
613	Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, 2022, 317, 123471.	3.4	12
614	Atomic-Scale Platinum Deposition on Photocathodes by Multiple Redox Cycles Under Illumination for Enhanced Solar-to-Hydrogen Energy Conversion. SSRN Electronic Journal, O, , .	0.4	Ο
615	Geometrical Determination of Surface Atom Diffusion Paths. Materials Transactions, 2022, , .	0.4	0
616	Direct synthesis of H ₂ O ₂ over Pd-M@HCS (M = Sn, Fe, Co, or Ni): Effects of nonnoble metal M on the electronic state and particle size of Pd. New Journal of Chemistry, 0, , .	1.4	0
617	H2 Production by Steam Reforming of Saccharina Japonica-Derived Liquefied Oils on Nixcuy Hydrotalcite-Derived Catalysts. SSRN Electronic Journal, 0, , .	0.4	0
618	Facile Synthesis of Highly Dispersed and Wellâ€Alloyed Bimetallic Nanoparticles on Oxide Support. Small, 2022, 18, e2106143.	5.2	9
620	Oxygen-Atom Defect Formation in Polyoxovanadate Clusters via Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2022, 144, 5029-5041.	6.6	15
621	Hydrogen Spillover-Bridged Volmer/Tafel Processes Enabling Ampere-Level Current Density Alkaline Hydrogen Evolution Reaction under Low Overpotential. Journal of the American Chemical Society, 2022, 144, 6028-6039.	6.6	179

#	Article	IF	CITATIONS
622	Boosting Mass Exchange between Pd/NC and MoC/NC Dual Junctions via Electron Exchange for Cascade CO ₂ Fixation. Journal of the American Chemical Society, 2022, 144, 5418-5423.	6.6	21
623	Insight into metal-support interactions from the hydrodesulfurization of dibenzothiophene over Pd catalysts supported on UiO-66 and its amino-functionalized analogues. Journal of Catalysis, 2022, 407, 333-341.	3.1	6
624	Hydrogen spillover assisted by oxygenate molecules over nonreducible oxides. Nature Communications, 2022, 13, 1457.	5.8	37
625	Modification of the Electrochemical Surface Oxide Formation and the Hydrogen Oxidation Activity of Ruthenium by Strong Metal Support Interactions. Journal of the Electrochemical Society, 2022, 169, 034519.	1.3	7
626	Hydrogen Spilloverâ€Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading. ChemSusChem, 2022, 15, .	3.6	25
627	Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chemical Reviews, 2022, 122, 8758-8808.	23.0	50
628	Functionalization of the MoS2 basal plane for activation of molecular hydrogen by Pd deposition. Applied Surface Science, 2022, 593, 153313.	3.1	5
629	Heterolytic Dissociation of H ₂ in Heterogeneous Catalysis. ACS Catalysis, 2022, 12, 4707-4723.	5.5	80
630	Chasing PtO species in ceria supported platinum during CO oxidation extinction with correlative operando spectroscopic techniques. Journal of Catalysis, 2022, 409, 1-11.	3.1	13
631	Enhanced catalytic performance of the carbon-supported Ru ammonia synthesis catalyst by an introduction of oxygen functional groups via gas-phase oxidation. Journal of Catalysis, 2022, 409, 78-86.	3.1	8
632	Atomic-scale platinum deposition on photocathodes by multiple redox cycles under illumination for enhanced solar-to-hydrogen energy conversion. Journal of Power Sources, 2022, 533, 231410.	4.0	5
633	Long-Chain Alkane Dehydrogenation over Hierarchically Porous Ti-Doped Pt–Sn–K/TiO2–Al2O3 Catalysts. Kinetics and Catalysis, 2021, 62, S30-S37.	0.3	0
634	Deactivation by Potassium Accumulation on a Pt/TiO ₂ Bifunctional Catalyst for Biomass Catalytic Fast Pyrolysis. ACS Catalysis, 2022, 12, 465-480.	5.5	15
635	Crystal Facet Engineering and Hydrogen Spillover-Assisted Synthesis of Defective Pt/TiO _{2–<i>x</i>} Nanorods with Enhanced Visible Light-Driven Photocatalytic Activity. ACS Applied Materials & Interfaces, 2022, 14, 2291-2300.	4.0	16
636	Atomic and Electronic Structure of Pt/TiO ₂ Catalysts and Their Relationship to Catalytic Activity. Nano Letters, 2022, 22, 145-150.	4.5	16
637	Enhanced visible-NIR absorption and oxygen vacancy generation of Pt/H _{<i>x</i>} MoWO _{<i>y</i>} by H-spillover to facilitate photothermal catalytic CO ₂ hydrogenation. Journal of Materials Chemistry A, 2022, 10, 10854-10864.	5.2	16
638	Enhancement in the metal efficiency of Ru/TiO2 catalyst for guaiacol hydrogenation via hydrogen spillover in the liquid phase. Journal of Catalysis, 2022, 410, 93-102.	3.1	13
639	The promotion effects of MoOx species in the highly effective NiMo/MgAl2O4 catalysts for the hydrodeoxygenation of methyl palmitate. Journal of Environmental Chemical Engineering, 2022, 10, 107761.	3.3	4

#	Article	IF	CITATIONS
640	H2 production by steam reforming of Saccharina japonica-derived liquefied oils on NixCuy hydrotalcite-derived catalysts. Renewable Energy, 2022, 191, 418-427.	4.3	1
641	Studies of hydrogen isotope scrambling during the dehalogenation of aromatic chloroâ€compounds with deuterium gas over palladium catalysts. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 531-552.	0.5	2
642	Tuning the mesopore-acid-metal balance in Pd/HY for efficient deep hydrogenation saturation of naphthalene. International Journal of Hydrogen Energy, 2022, 47, 20881-20893.	3.8	5
643	Catalytic activity of Co–Ag nanoalloys to dissociate molecular hydrogen. New insights on the chemical environment. International Journal of Hydrogen Energy, 2022, 47, 19038-19050.	3.8	3
644	Operando Spectroscopic Study of the Dynamics of Ru Catalyst during Preferential Oxidation of CO and the Prevention of Ammonia Poisoning by Pt. Jacs Au, 0, , .	3.6	5
645	Efficient hydrodesulfurization of dibenzothiophene over core–shell Ni/Al ₂ O ₃ @SOD and Mo/Al ₂ O ₃ composite catalysts. Inorganic Chemistry Frontiers, 2022, 9, 3384-3391.	3.0	1
646	The future of green energy and chemicals: Rational design of catalysis routes. Joule, 2022, 6, 1148-1159.	11.7	38
647	Calcination temperature induced structural change of red mud and its enhanced catalytic performance for hydrocarbon-based biofuels production. Fuel Processing Technology, 2022, 233, 107316.	3.7	15
648	Pd-Decorated Pdo Nanoparticle Nanonetworks: A Low-Cost Eye-Readable H2ÂIndicatorÂWith Reactivation Ability. SSRN Electronic Journal, 0, , .	0.4	0
649	Activation of Carbonyl Groups via Weak Interactions in Pt/COF/SiO ₂ Catalyzed Selective Hydrogenation. ACS Catalysis, 2022, 12, 6618-6627.	5.5	19
650	Bifunctional Pt–Re Catalysts in Hydrodeoxygenation of Isoeugenol as a Model Compound for Renewable Jet Fuel Production. ACS Engineering Au, 2022, 2, 436-449.	2.3	7
651	Effect of different reduction methods on Pd/Al2O3 for o-xylene oxidation at low temperature. Journal of Environmental Sciences, 2023, 125, 95-100.	3.2	4
652	Insights on hydrogen spillover on carbonaceous supports. Nanoscale, 2022, 14, 9068-9077.	2.8	4
653	Revealing hydrogen spillover pathways in reducible metal oxides. Chemical Science, 2022, 13, 8137-8147.	3.7	39
654	Hydrogen Spillover and Storage on Graphene with Single-Site Ti Catalysts. ACS Energy Letters, 2022, 7, 2297-2303.	8.8	14
655	Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization. Nano Research, 2022, 15, 10357-10365.	5.8	14
656	Î ³ -Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis. Nanomaterials, 2022, 12, 2017.	1.9	2
657	Effective Ensemble of Pt Single Atoms and Clusters over the (Ni,Co)(OH) ₂ Substrate Catalyzes Highly Selective, Efficient, and Stable Hydrogenation Reactions. ACS Catalysis, 2022, 12, 8104-8115.	5.5	20

#	Article	IF	CITATIONS
658	Highly Selective Synergistic N-Alkylation of Amines with ROH Catalyzed by Nickel–Ruthenium. ACS Sustainable Chemistry and Engineering, 2022, 10, 8342-8349.	3.2	8
659	Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells – Part I – Fundamentals and Pd Based Catalysts. Chemical Record, 2022, 22, .	2.9	10
660	Pd-decorated PdO nanoparticle nanonetworks: A low-cost eye-readable H2 indicator with reactivation ability. Sensors and Actuators B: Chemical, 2022, 368, 132242.	4.0	8
661	Synthesis of Dual-Active-Sites Ni-Ni2In catalysts for selective hydrogenation of furfural to furfuryl alcohol. Fuel, 2022, 325, 124898.	3.4	16
662	Correlating O-Vacancy and Hydrogen Spillover in Ru/TiO2-SiO2 Catalysts with Their Activity and Selectivity Towards Furfural Hydrogenation. SSRN Electronic Journal, 0, , .	0.4	0
663	Hydrogen Spillover and Its Relation to Hydrogenation: Observations on Structurally Defined Singleâ€Atom Sites**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
664	Hydrogen Spillover and Its Relation to Hydrogenation: Observations on Structurally Defined Singleâ€Atom Sites**. Angewandte Chemie, 2022, 134, .	1.6	4
665	Highly dispersed platinum clusters anchored on hollow ZSM-5 zeolite for deep hydrogenation of polycyclic aromatic hydrocarbons. Fuel, 2022, 326, 125021.	3.4	10
666	Pd-modified LaNi5 nanoparticles for efficient hydrogen storage in a carbazole type liquid organic hydrogen carrier. Applied Catalysis B: Environmental, 2022, 317, 121720.	10.8	19
667	Improving the efficiency of Ru metal supported on SiO2 in liquid-phase hydrogenation of gluconic acid by adding activated carbon. Chemical Engineering Journal, 2022, 450, 138149.	6.6	9
668	Simulation Study Reveals the Role of Hydrogen Spillover in pH- and Potential-Dependent Hydrogen Evolution over the NiCu Bimetal Catalyst. Journal of Physical Chemistry C, 2022, 126, 13182-13190.	1.5	4
669	Understanding the effects of feedstock blending and catalyst support on hydrotreatment of algae HTL biocrude with non-edible vegetable oil. Energy Conversion and Management, 2022, 268, 115998.	4.4	6
670	Engineering the crystal facets of Pt/In2O3 catalysts for high-efficiency methanol synthesis from CO2 hydrogenation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129782.	2.3	10
671	Selective dissolution to synthesize densely populated Pt single atom catalyst. Nano Research, 2023, 16, 219-227.	5.8	3
672	Selective hydrogenation of α,β-unsaturated aldehydes over Pt supported on cerium–zirconium mixed oxide of different composition. Mendeleev Communications, 2022, 32, 488-491.	0.6	1
673	Insights into the active sites of <scp>dualâ€zone</scp> synergistic catalysts for <scp>semiâ€hydrogenation</scp> under hydrogen spillover. AICHE Journal, 2023, 69, .	1.8	2
674	Ultrafast metal oxide reduction at Pd/PdO2 interface enables one-second hydrogen gas detection under ambient conditions. Nano Research, 2023, 16, 1149-1157.	5.8	3
675	Controlling nanostructures of PtNiCo/C trimetallic nanocatalysts and relationship of structure-catalytic performance for selective hydrogenation of nitroarenes. Journal of Catalysis, 2022, 413, 978-991.	3.1	6

#	Article	IF	CITATIONS
676	High-speed hydrogen sensor fabricated using a platinum/titanium oxide nanocontact. Sensors and Actuators B: Chemical, 2022, 371, 132531.	4.0	5
677	Nanosheets-stacked Al2O3-flower anchoring Pt catalyst for intensified ethylene production from ethane dehydrogenation. Fuel, 2022, 329, 125381.	3.4	8
678	Remarkably improved photocatalytic hydrogen evolution performance of crystalline TiO ₂ nanobelts hydrogenated at atmospheric pressure with the assistance of hydrogen spillover. Catalysis Science and Technology, 2022, 12, 5575-5585.	2.1	2
679	Demonstration of 10+ hour energy storage with ϕ1′′ laboratory size solid oxide iron–air batteries. Energy and Environmental Science, 2022, 15, 4659-4671.	15.6	2
680	Emerging single atom catalysts in gas sensors. Chemical Society Reviews, 2022, 51, 7260-7280.	18.7	48
681	Atomic order transition of TiNiPt nanoparticles supported on carbon nanotubes for the stable hydrogen evolution reaction. Journal of Materials Chemistry C, 2022, 10, 15177-15185.	2.7	4
682	Hydrogen spillover on cerium-based catalysts. Russian Chemical Bulletin, 2022, 71, 1579-1592.	0.4	4
683	Revealing the Catalytic Role of Sn Dopant in CO ₂ â€Oxidative Dehydrogenation of Propane over Pt/Sn eO ₂ Catalyst. ChemCatChem, 2022, 14, .	1.8	1
684	Study on the Role of Hydrogen in n-Hexane Isomerization Over Pt Promoted Sulfated Zirconia Catalyst. Catalysis Letters, 2023, 153, 2406-2415.	1.4	2
685	Short- and Long-Time Dynamics of Hydrogen Spillover from a Single Atom Platinum Active Site to the Cu(111) Host Surface. Journal of Physical Chemistry C, 2022, 126, 17093-17101.	1.5	9
686	Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting. Nature Communications, 2022, 13, .	5.8	148
687	Connecting Thermodynamics and Kinetics of Proton Coupled Electron Transfer at Polyoxovanadate Surfaces Using the Marcus Cross Relation. Inorganic Chemistry, 2023, 62, 1958-1967.	1.9	8
688	Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts. Nature Communications, 2022, 13, .	5.8	26
689	CO ₂ Hydrogenation to Methanol on Indium Oxide-Supported Rhenium Catalysts: The Effects of Size. ACS Catalysis, 2022, 12, 12658-12669.	5.5	36
690	Highly efficient catalysts of AuPd alloy nanoparticles supported on 3D ordered macroporous Al2O3 for soot combustion. ChemCatChem, 0, , .	1.8	2
691	Combinatorial neutron imaging methods for hydrogenation catalysts. Physical Chemistry Chemical Physics, 2022, 24, 27394-27405.	1.3	3
692	Coordination-induced bond weakening of water at the surface of an oxygen-deficient polyoxovanadate cluster. Chemical Science, 2022, 13, 12726-12737.	3.7	8
693	Reduced alkaline earth metal (Ca, Sr) substituted LaCoO ₃ catalysts for succinic acid conversion. New Journal of Chemistry, 2022, 46, 21181-21189.	1.4	2

#	Article	IF	CITATIONS
694	Incorporation of Hydrogen Isotopes into Biologically Active Compounds. Radiochemistry, 2022, 64, 433-481.	0.2	0
695	Pd Nanoparticles Supported on N-Doped TiO ₂ Nanosheets: Crystal Facets, Defective Sites, and Metal–Support Interactions Boost Reforming of Formaldehyde Solution for Hydrogen Production. Langmuir, 2022, 38, 13532-13542.	1.6	4
696	Hydrogen Interaction with Oxide Supports in the Presence and Absence of Platinum. Journal of Physical Chemistry C, 2022, 126, 17589-17597.	1.5	10
697	Interaction of Hydrogen with Cu-Modified Cerium Oxide Surfaces. Journal of Physical Chemistry C, 2022, 126, 18652-18660.	1.5	2
698	Encapsulating Pd/g-C3N4 with acrylic acid to enhance the catalytic partial hydrogenation performance of isoprene. Carbon, 2023, 201, 1174-1183.	5.4	2
699	A critical review on the role of carbon supports of metal catalysts for selective catalytic hydrogenation of chloronitrobenzenes. Applied Catalysis A: General, 2023, 649, 118955.	2.2	13
700	Synthesis of a Hexagonal-Phase Platinum–Lanthanide Alloy as a Durable Fuel-Cell-Cathode Catalyst. Chemistry of Materials, 2022, 34, 10789-10797.	3.2	8
701	The nature of "hydrogen spillover†Site proximity effects and gaseous intermediates in hydrogenation reactions mediated by inhibitor-scavenging mechanisms. Journal of Catalysis, 2023, 420, 68-88.	3.1	5
702	Role of lattice strain in bifunctional catalysts for tandem furfural hydrogenation–esterification. Catalysis Science and Technology, 2023, 13, 774-787.	2.1	3
703	In the search for the bottlenecks of ammonia synthesis over Ru/Vulcan under ambient conditions. Faraday Discussions, 0, , .	1.6	0
704	Two-dimensional siloxene as an advanced support of platinum for superior hydrogen evolution and methanol oxidation electrocatalysis. Materials Today Physics, 2023, 30, 100931.	2.9	4
705	The Extent of Platinum-Induced Hydrogen Spillover on Cerium Dioxide. ACS Nano, 2023, 17, 1091-1099.	7.3	10
706	Improved Stabilization of Sulfated Zirconia by Molybdenum: Synergy of Metal Sites and Acid Sites in the n-Hexane Hydro-Isomerization. Arabian Journal for Science and Engineering, 2023, 48, 9439-9447.	1.7	1
707	Evolution of multiple spillover hydrogen species on anatase titanium dioxide. Cell Reports Physical Science, 2022, 3, 101190.	2.8	3
708	Increased Hydrogenation Rates in Pd/La-Al ₂ O ₃ Catalysts by Hydrogen Transfer O(-La) Sites Adjacent to Pd Nanoparticles. ACS Catalysis, 2022, 12, 15696-15706.	5.5	7
709	Gold nanoparticles-assisted sodium borohydride supported on titania as a catalyst for the oxidative steam reforming of methanol and CO oxidation. Materials Today Communications, 2022, 33, 105019.	0.9	1
710	Ultralong Distance Hydrogen Spillover Enabled by Valence Changes in a Metal Oxide Surface. Journal of the American Chemical Society, 2023, 145, 1631-1637.	6.6	10
712	Redrawing HER Volcano with Interfacial Processes—The Role of Hydrogen Spillover in Boosting H2 Evolution in Alkaline Media. Catalysts, 2023, 13, 89.	1.6	3

#	Article	IF	CITATIONS
713	Cost-effective selective hydrogen sensor based on the combination of catalytic spillover effect and impedance measurement. International Journal of Hydrogen Energy, 2023, 48, 37550-37562.	3.8	1
714	Hydrodeoxygenation of oleic acid over NiMo bimetallic catalysts supported on niobium phosphate. New Journal of Chemistry, 2023, 47, 3000-3009.	1.4	3
715	Selective anode catalyst for the mitigation of start-up/shut-down induced cathode degradation in proton exchange membrane fuel cells. Journal of Power Sources, 2023, 558, 232572.	4.0	2
716	A fundamental level understanding of the oxidative steam reforming of ethanol (OSRE) reaction: A review. International Journal of Hydrogen Energy, 2023, 48, 10859-10881.	3.8	2
717	Revisiting the Semi-Hydrogenation of Phenylacetylene to Styrene over Palladium-Lead Alloyed Catalysts on Precipitated Calcium Carbonate Supports. Catalysts, 2023, 13, 50.	1.6	2
718	The Nature of Interfacial Catalysis over Pt/NiAl ₂ O ₄ for Hydrogen Production from Methanol Reforming Reaction. Journal of the American Chemical Society, 2023, 145, 905-918.	6.6	12
719	Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 2023, 123, 5948-6002.	23.0	50
720	Heterogeneous Hydrogenation with Hydrogen Spillover Enabled by Nitrogen Vacancies on Boron Nitride‣upported Pd Nanoparticles. Angewandte Chemie, 0, , .	1.6	0
721	Boosting Chemoselective Hydrogenation of Nitroaromatic via Synergy of Hydrogen Spillover and Preferential Adsorption on Magnetically Recoverable Pt@Fe ₂ O ₃ . Small, 2023, 19, .	5.2	7
722	An hydrogen adsorption study on graphene-based surfaces with core–shell type catalysts. Carbon Letters, 0, , .	3.3	1
724	Oxygen Vacancy-Reinforced Water-Assisted Proton Hopping for Enhanced Catalytic Hydrogenation. ACS Catalysis, 2023, 13, 2326-2334.	5.5	17
725	Paper-Based Hydrogen Sensors Using Ultrathin Palladium Nanowires. ACS Applied Materials & Interfaces, 2023, 15, 5439-5448.	4.0	9
726	Exceptional Hydrogen Diffusion Rate over Ru Nanoparticleâ€Đoped Polar MgO(111) Surface. Small Methods, 0, , 2201200.	4.6	0
727	Isomerization pathway of N-ethylcarbazole hydrogenation products affected by metal-support interactions. Applied Surface Science, 2023, 618, 156558.	3.1	0
728	Catalytic conversion to ammonia through solid-state nitrate as a proposal for the emerging usage of nitrogen oxides. Catalysis Science and Technology, 2023, 13, 2927-2936.	2.1	0
729	NiFe Alloy Integrated with Amorphous/Crystalline NiFe Oxide as an Electrocatalyst for Alkaline Hydrogen and Oxygen Evolution Reactions. ACS Omega, 2023, 8, 13068-13077.	1.6	9
730	Enhanced Durability of Automotive Fuel Cells via Selectivity Implementation by Hydrogen Spillover on the Electrocatalyst Surface. ACS Energy Letters, 2023, 8, 2201-2213.	8.8	7
731	Design and preparation of Pt@SSZ-13@β core-shell catalyst for hydrocracking of naphthalene. Journal of Catalysis, 2023, 421, 365-375.	3.1	6

#	Article	IF	CITATIONS
732	Recent advances in thermocatalytic hydrogenation of unsaturated organic compounds with Metal-Organic Frameworks-based materials: Construction strategies and related mechanisms. Coordination Chemistry Reviews, 2023, 487, 215159.	9.5	11
733	Crucial role of H and O spillover in VOx/CeO2 catalysts reduction and re-oxidation during the ODH reaction. Applied Surface Science, 2023, 626, 157250.	3.1	0
734	Heterogeneous Hydrogenation with Hydrogen Spillover Enabled by Nitrogen Vacancies on Boron Nitride‧upported Pd Nanoparticles. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
735	Supported Ni2P catalysts derived from nickel phyllosilicate with enhanced hydrodesulfurization performance. Journal of Catalysis, 2023, 419, 37-48.	3.1	13
736	Fabrication and Computational Study of a Chemiresistive NO ₂ Gas Sensor Based on the Carbon Dots-WO ₃ Heterostructure for Operating below Room Temperature. ACS Sensors, 2023, 8, 748-756.	4.0	11
737	Catalytic Oxidation of Propane and Carbon Monoxide by Pd Nanoparticles on Mn/TiO2 Catalysts. Catalysis Letters, 0, , .	1.4	3
738	Methane Reforming Processes: Advances on Mono- and Bimetallic Ni-Based Catalysts Supported on Mg-Al Mixed Oxides. Catalysts, 2023, 13, 379.	1.6	8
739	Proton Migration on Top of Charged Membranes. Biomolecules, 2023, 13, 352.	1.8	4
740	Diffusion Coupling Kinetics in Multisite Catalysis: A Microkinetic Framework. ACS Catalysis, 2023, 13, 2937-2947.	5.5	0
741	Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrOx. Nature Communications, 2023, 14, .	5.8	19
742	Oxoâ€Bridged Zr Dimers as Wellâ€defined Models of Oxygen Vacancies on ZrO ₂ . European Journal of Inorganic Chemistry, 2023, 26, .	1.0	1
743	Role of Hydrogen Spillover in Electrocatalytic Hydrogen Evolution from Water Splitting. ACS Symposium Series, 0, , 147-168.	0.5	0
744	Approaching Molecular Definition on Oxide-Supported Single-Atom Catalysts. Accounts of Chemical Research, 2023, 56, 561-572.	7.6	8
745	Preparation and Synergy of Supported Ru ⁰ and Pd ⁰ for Rapid Chlorate Reduction at pH 7. Environmental Science & Technology, 2023, 57, 3962-3970.	4.6	1
746	Optimizing the Interfacial Environment of Triphasic ZnO-Cu-ZrO ₂ Confined inside Mesoporous Silica Spheres for Enhancing CO ₂ Hydrogenation to Methanol. ACS ES&T Engineering, 0, , .	3.7	1
747	Hydrogen spillover effects in the Fischer–Tropsch reaction over carbon nanotube supported cobalt catalysts. Catalysis Science and Technology, 2023, 13, 1888-1904.	2.1	3
748	Interfacial Defect Engineering Triggered by Single Atom Doping for Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia. , 2023, 5, 1018-1026.		17
749	Improving the Efficiency of Hydrogen Spillover by an Organic Molecular Decoration Strategy for Enhanced Catalytic Hydrogenation Performance. ACS Catalysis, 2023, 13, 4003-4011.	5.5	19

	CITATION R	ION REPORT		
# 750	ARTICLE Boronation of Biomass-Derived Materials for Hydrogen Storage. Compounds, 2023, 3, 244-279.	IF 1.0	CITATIONS	
751	Hydrogen Spillover-Accelerated Selective Hydrogenation on WO ₃ with ppm-Level Pd. ACS Applied Materials & Interfaces, 2023, 15, 20474-20482.	4.0	1	
752	Plasmonic Solar Energy Harvesting by ZnO Nanostructures and Their Composite Interfaces: A Review on Fundamentals, Recent Advances, and Applications. Energy Technology, 2023, 11, .	1.8	2	
763	Understanding the complexity in bridging thermal and electrocatalytic methanation of CO ₂ . Chemical Society Reviews, 2023, 52, 3627-3662.	18.7	15	
765	Advanced nanomaterials for hydrogen storage. , 2023, , 483-505.		0	
843	Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chemical Society Reviews, 2024, 53, 972-1003.	18.7	3	