Generation of a Synthetic Memory Trace

Science 335, 1513-1516 DOI: 10.1126/science.1214985

Citation Report

#	Article	IF	CITATIONS
1	Role of Orbitofrontal Cortex Neuronal Ensembles in the Expression of Incubation of Heroin Craving. Journal of Neuroscience, 2012, 32, 11600-11609.	3.6	116
2	Can Memory Be Created — and Then Retrieved? Yes, According to New Experiment. Neurology Today: an Official Publication of the American Academy of Neurology, 2012, 12, 10-12.	0.0	2
3	Time scales of memory, learning, and plasticity. Biological Cybernetics, 2012, 106, 715-726.	1.3	73
4	The Imaginary Mind of a Mouse. Science, 2012, 335, 1455-1456.	12.6	1
5	New approaches to neural circuits in behavior. Learning and Memory, 2012, 19, 385-390.	1.3	12
6	Catching the engram: strategies to examine the memory trace. Molecular Brain, 2012, 5, 32.	2.6	37
7	Serotonin and emotion, learning and memory. Reviews in the Neurosciences, 2012, 23, 543-53.	2.9	133
8	Deciphering the molecular rules governing synaptic targeting of the memory-related protein Arc. Communicative and Integrative Biology, 2012, 5, 496-498.	1.4	9
9	Artificial activation of a memory trace. Nature Reviews Neuroscience, 2012, 13, 287-287.	10.2	2
10	A technology for memory. Nature Methods, 2012, 9, 431-431.	19.0	0
11	Unparalleled Control of Neural Activity Using Orthogonal Pharmacogenetics. ACS Chemical Neuroscience, 2012, 3, 619-629.	3.5	17
12	Challenges of understanding brain function by selective modulation of neuronal subpopulations. Trends in Neurosciences, 2013, 36, 579-586.	8.6	41
13	Functional labeling of neurons and their projections using the synthetic activity–dependent promoter E-SARE. Nature Methods, 2013, 10, 889-895.	19.0	166
14	Novel designer receptors to probe GPCR signaling and physiology. Trends in Pharmacological Sciences, 2013, 34, 385-392.	8.7	128
15	Ominous odors: olfactory control of instinctive fear and aggression in mice. Current Opinion in Neurobiology, 2013, 23, 339-345.	4.2	44
16	A Gq-Ca2+ Axis Controls Circuit-Level Encoding of Circadian Time in the Suprachiasmatic Nucleus. Neuron, 2013, 78, 714-728.	8.1	164
17	New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nature Reviews Neuroscience, 2013, 14, 743-754.	10.2	215
18	Fear Extinction Causes Target-Specific Remodeling of Perisomatic Inhibitory Synapses. Neuron, 2013, 80, 1054-1065.	8.1	160

#	Article	IF	CITATIONS
19	Allosteric Modulation of a Chemogenetically Modified G Protein-Coupled Receptor. Molecular Pharmacology, 2013, 83, 521-530.	2.3	24
20	Splitting Hares and Tortoises: A classification of neuronal immediate early gene transcription based on poised RNA polymerase II. Neuroscience, 2013, 247, 175-181.	2.3	32
21	Creating a False Memory in the Hippocampus. Science, 2013, 341, 387-391.	12.6	778
22	Pharmacosynthetics: Reimagining the pharmacogenetic approach. Brain Research, 2013, 1511, 6-20.	2.2	92
23	Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition. Neuron, 2013, 77, 1151-1162.	8.1	318
24	mTORC2: actin on your memory. Nature Neuroscience, 2013, 16, 379-380.	14.8	11
25	A Gαs DREADD Mouse for Selective Modulation of cAMP Production in Striatopallidal Neurons. Neuropsychopharmacology, 2013, 38, 854-862.	5.4	116
26	Tuning synaptic activity with light-controlled GPCRs. Nature Neuroscience, 2013, 16, 377-379.	14.8	1
27	Imaging of Neural Ensemble for the Retrieval of a Learned Behavioral Program. Neuron, 2013, 78, 881-894.	8.1	86
28	Genetic Approaches to Neural Circuits in the Mouse. Annual Review of Neuroscience, 2013, 36, 183-215.	10.7	184
28 29	Genetic Approaches to Neural Circuits in the Mouse. Annual Review of Neuroscience, 2013, 36, 183-215. Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations. Neuron, 2013, 78, 773-784.	10.7 8.1	184 490
	Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active		
29	Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations. Neuron, 2013, 78, 773-784.	8.1	490
29 30	Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations. Neuron, 2013, 78, 773-784. Memorable Trends. Neuron, 2013, 80, 742-750. Modulation of the autonomic nervous system and behaviour by acute glial cell G _q	8.1 8.1	490 47
29 30 31	Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations. Neuron, 2013, 78, 773-784. Memorable Trends. Neuron, 2013, 80, 742-750. Modulation of the autonomic nervous system and behaviour by acute glial cell G _q proteinâ€coupled receptor activation <i>i>in vivo</i> . Journal of Physiology, 2013, 591, 5599-5609. Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation. PLoS	8.1 8.1 2.9	490 47 129
29 30 31 32	Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations. Neuron, 2013, 78, 773-784. Memorable Trends. Neuron, 2013, 80, 742-750. Modulation of the autonomic nervous system and behaviour by acute glial cell G _q proteinâ€coupled receptor activation <i>i>in vivo</i> . Journal of Physiology, 2013, 591, 5599-5609. Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation. PLoS Computational Biology, 2013, 9, e1003307. G-protein-coupled designer receptors – new chemical-genetic tools for signal transduction research.	8.1 8.1 2.9 3.2	490 47 129 43
29 30 31 32 33	Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations. Neuron, 2013, 78, 773-784. Memorable Trends. Neuron, 2013, 80, 742-750. Modulation of the autonomic nervous system and behaviour by acute glial cell G _q proteinâ€eoupled receptor activation <i>in vivo</i> . Journal of Physiology, 2013, 591, 5599-5609. Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation. PLoS Computational Biology, 2013, 9, e1003307. G-protein-coupled designer receptors – new chemical-genetic tools for signal transduction research. Biological Chemistry, 2013, 394, 1615-1622. The information content of physiological and epileptic brain activity. Journal of Physiology, 2013, 591,	 8.1 2.9 3.2 2.5 	 490 47 129 43 11

		Report	
#	Article	IF	Citations
37	Genetic Marker Mice and Their Use in Understanding Learning and Memory. , 0, , .		0
38	Recent molecular approaches to understanding astrocyte function in vivo. Frontiers in Cellular Neuroscience, 2013, 7, 272.	3.7	37
39	Optogenetics: illuminating the neural bases of rodent behavior. Open Access Animal Physiology, 2014, , 33.	0.3	0
40	Optogenetic inhibition of neurons by internal light production. Frontiers in Behavioral Neuroscience, 2014, 8, 108.	2.0	25
41	A new era for functional labeling of neurons: activity-dependent promoters have come of age. Frontiers in Neural Circuits, 2014, 8, 37.	2.8	128
43	Discovery of GPCR ligands for probing signal transduction pathways. Frontiers in Pharmacology, 2014, 5, 255.	3.5	31
44	Selected Key Areas for Future Research on the Claustrum. , 2014, , 365-376.		0
45	Towards a better understanding of cognitive behaviors regulated by gene expression downstream of activity-dependent transcription factors. Neurobiology of Learning and Memory, 2014, 115, 21-29.	1.9	24
46	Neural Circuit Reprogramming: A New Paradigm for Treating Neuropsychiatric Disease?. Neuron, 2014, 83, 1259-1261.	8.1	20
47	Space,Time and Memory in the Hippocampal Formation. , 2014, , .		20
48	Fear and Memory: A View of the Hippocampus Through the Lens of the Amygdala. , 2014, , 465-496.		5
49	The form and function of hippocampal context representations. Neuroscience and Biobehavioral Reviews, 2014, 40, 52-61.	6.1	90
50	Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiology of Learning and Memory, 2014, 113, 69-81.	1.9	65
51	The Molecular and Systems Biology of Memory. Cell, 2014, 157, 163-186.	28.9	833
52	The search for a hippocampal engram. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130161.	4.0	38
53	Inception of a false memory by optogenetic manipulation of a hippocampal memory engram. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130142.	4.0	83
54	Tools for Resolving Functional Activity and Connectivity within Intact Neural Circuits. Current Biology, 2014, 24, R41-R50.	3.9	51
55	Enhance, delete, incept: Manipulating hippocampus-dependent memories. Brain Research Bulletin, 2014, 105, 2-7.	3.0	54

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
56	Chemical–genetic attenuation of focal neocortical seizures. Nature Communications, 2014, 5, 3847.	12.8	118
57	The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130288.	4.0	499
58	In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2788-2793.	7.1	64
59	Synaptic tagging during memory allocation. Nature Reviews Neuroscience, 2014, 15, 157-169.	10.2	203
60	Network-Mediated Encoding of Circadian Time: The Suprachiasmatic Nucleus (SCN) from Genes to Neurons to Circuits, and Back. Journal of Neuroscience, 2014, 34, 15192-15199.	3.6	43
61	Beyond the bolus: transgenic tools for investigating the neurophysiology of learning and memory. Learning and Memory, 2014, 21, 506-518.	1.3	5
62	To Simulate or Not to Simulate: What Are the Questions?. Neuron, 2014, 84, 254-261.	8.1	62
63	Chemogenetic Tools to Interrogate Brain Functions. Annual Review of Neuroscience, 2014, 37, 387-407	. 10.7	412
64	Regulation and Function of Adult Neurogenesis: From Genes to Cognition. Physiological Reviews, 2014, 94, 991-1026.	28.8	516
66	The optogenetic revolution in memory research. Trends in Neurosciences, 2014, 37, 511-522.	8.6	42
67	Can changes in histone acetylation contribute to memory formation?. Trends in Genetics, 2014, 30, 529-539.	6.7	68
68	Direct Reactivation of a Coherent Neocortical Memory of Context. Neuron, 2014, 84, 432-441.	8.1	300
69	Engineering a memory with LTD and LTP. Nature, 2014, 511, 348-352.	27.8	822
70	Employing novel animal models in the design of clinically efficacious GPCR ligands. Current Opinion in Cell Biology, 2014, 27, 117-125.	5.4	7
71	Identification and optogenetic manipulation of memory engrams in the hippocampus. Frontiers in Behavioral Neuroscience, 2013, 7, 226.	2.0	62
72	Mean signal and response time influences on multivoxel signals of contextual retrieval in the medial temporal lobe. Brain and Behavior, 2015, 5, e00302.	2.2	1
73	DREADD-Induced Silencing of the Medial Olfactory Tubercle Disrupts the Preference of Female Mice for Opposite-Sex Chemosignals. ENeuro, 2015, 2, ENEURO.0078-15.2015.	1.9	41
74	How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake. Temperature, 2015, 2, 406-417.	3.0	10

#	Article	IF	CITATIONS
75	Pharmacogenetic Excitation of Dorsomedial Prefrontal Cortex Restores Fear Prediction Error. Journal of Neuroscience, 2015, 35, 74-83.	3.6	56
76	Remote Control of Neural Activity Using Chemical Genetics. Neuromethods, 2015, , 161-175.	0.3	1
77	Mapping Social Behavior-Induced Brain Activation at Cellular Resolution in the Mouse. Cell Reports, 2015, 10, 292-305.	6.4	270
78	Synaptic clustering within dendrites: An emerging theory of memory formation. Progress in Neurobiology, 2015, 126, 19-35.	5.7	149
79	DREADD: A Chemogenetic GPCR Signaling Platform. International Journal of Neuropsychopharmacology, 2015, 18, pyu007-pyu007.	2.1	78
80	The First Structure–Activity Relationship Studies for Designer Receptors Exclusively Activated by Designer Drugs. ACS Chemical Neuroscience, 2015, 6, 476-484.	3.5	128
81	Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nature Neuroscience, 2015, 18, 553-561.	14.8	210
82	Making and Using Transgenic Organisms. , 2015, , 253-271.		0
83	Manipulating Neural Activity. , 2015, , 185-201.		1
84	Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216.	4.0	12
84 85	Manipulating neural activity in physiologically classified neurons: triumphs and challenges.	4.0 7.1	12 40
	Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216. Insular neural system controls decision-making in healthy and methamphetamine-treated rats.		
85	 Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216. Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3930-9. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning. Learning and Memory, 2015, 	7.1	40
85 86	 Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216. Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3930-9. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning. Learning and Memory, 2015, 22, 370-384. Molecular Genetic Strategies in the Study of Corticohippocampal Circuits. Cold Spring Harbor 	7.1 1.3	40 16
85 86 87	 Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216. Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3930-9. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning. Learning and Memory, 2015, 22, 370-384. Molecular Genetic Strategies in the Study of Corticohippocampal Circuits. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021725. Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in 	7.1 1.3 5.5	40 16 4
85 86 87 88	 Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216. Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3930-9. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning. Learning and Memory, 2015, 22, 370-384. Molecular Genetic Strategies in the Study of Corticohippocampal Circuits. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021725. Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments. Molecular Psychiatry, 2015, 20, 850-859. Artificial Association of Pre-stored Information to Generate a Qualitatively New Memory. Cell 	7.1 1.3 5.5 7.9	40 16 4 95
85 86 87 88 89	 Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216. Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3930-9. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning. Learning and Memory, 2015, 22, 370-384. Molecular Genetic Strategies in the Study of Corticohippocampal Circuits. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021725. Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments. Molecular Psychiatry, 2015, 20, 850-859. Artificial Association of Pre-stored Information to Generate a Qualitatively New Memory. Cell Reports, 2015, 11, 261-269. 	7.1 1.3 5.5 7.9 6.4	40 16 4 95 91

		CITATION R	EPORT	
#	Article		IF	CITATIONS
93	Chemogeneticsâ \in "A Transformational and Translational Platform. JAMA Neurology, 201	.5, 72, 1361.	9.0	34
94	Regulation of hippocampal memory traces by neurogenesis. Neurogenesis (Austin, Tex e1025180.	, 2015, 2,	1.5	7
95	Projections from neocortex mediate top-down control of memory retrieval. Nature, 201	5, 526, 653-659.	27.8	376
96	The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold Spring Harbor Po Biology, 2015, 7, a021733.	erspectives in	5.5	140
97	Finding the engram. Nature Reviews Neuroscience, 2015, 16, 521-534.		10.2	493
98	Tens of thousands of atoms replaced by one. Nature, 2015, 525, 325-326.		27.8	124
99	Forgetfulness illuminated. Nature, 2015, 525, 324-325.		27.8	2
100	Memory Engram Cells Have Come of Age. Neuron, 2015, 87, 918-931.		8.1	446
101	From necessity to sufficiency in memory research: when sleep helps to understand wak Current Opinion in Neurobiology, 2015, 35, 156-162.	e experiences.	4.2	2
102	The Regulation of Transcription in Memory Consolidation. Cold Spring Harbor Perspecti Biology, 2015, 7, a021741.	ves in	5.5	269
103	Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain R 2015, 1628, 157-173.	esearch,	2.2	128
104	DREADDs (Designer Receptors Exclusively Activated by Designer Drugs): Chemogenetic Therapeutic Utility. Annual Review of Pharmacology and Toxicology, 2015, 55, 399-417	Tools with	9.4	539
105	Loss of Ensemble Segregation in Dentate Gyrus, but not in Somatosensory Cortex, duri Fear Memory Generalization. Frontiers in Behavioral Neuroscience, 2016, 10, 218.	ng Contextual	2.0	17
106	How Does the Sparse Memory "Engram―Neurons Encode the Memory of a Spatial Frontiers in Neural Circuits, 2016, 10, 61.	–Temporal Event?.	2.8	12
107	Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying Trace. Frontiers in Molecular Neuroscience, 2015, 8, 78.	g the Memory	2.9	347
108	DREADD in Parvalbumin Interneurons of the Dentate Gyrus Modulates Anxiety, Social Ir Memory Extinction. Current Molecular Medicine, 2016, 16, 91-102.	teraction and	1.3	94
109	Which Neurons Will Be the Engram - Activated Neurons and/or More Excitable Neurons Neurobiology, 2016, 25, 55-63.	?. Experimental	1.6	11
110	What is memory? The present state of the engram. BMC Biology, 2016, 14, 40.		3.8	277

#	Article	IF	CITATIONS
111	A shared neural ensemble links distinct contextual memories encoded close in time. Nature, 2016, 534, 115-118.	27.8	756
112	Dendritic Spikes Provide a Mechanism for Hippocampal Replay and Sharp-Wave/Ripple Generation. Journal of Neuroscience, 2016, 36, 4152-4154.	3.6	0
113	Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021824.	5.5	43
114	Self-Exposure to the Male Pheromone ESP1 Enhances Male Aggressiveness in Mice. Current Biology, 2016, 26, 1229-1234.	3.9	37
115	Resolving Behavioral Output via Chemogenetic Designer Receptors Exclusively Activated by Designer Drugs. Journal of Neuroscience, 2016, 36, 9268-9282.	3.6	39
116	Chemogenetic approach to model hypofrontality. Medical Hypotheses, 2016, 93, 113-116.	1.5	1
117	Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience. Annual Review of Genetics, 2016, 50, 571-594.	7.6	49
118	Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement of Cocaine Seeking. Journal of Neuroscience, 2016, 36, 10174-10180.	3.6	103
119	Functional and structural underpinnings of neuronal assembly formation in learning. Nature Neuroscience, 2016, 19, 1553-1562.	14.8	193
120	DREADDS: Use and application in behavioral neuroscience Behavioral Neuroscience, 2016, 130, 137-155.	1.2	199
120 121		1.2	199 4
	DREADDS: Use and application in behavioral neuroscience Behavioral Neuroscience, 2016, 130, 137-155.	1.2	
121	DREADDS: Use and application in behavioral neuroscience Behavioral Neuroscience, 2016, 130, 137-155. Chemogenetics: DREADDs. , 2016, , 2847-2856.		4
121 122	DREADDS: Use and application in behavioral neuroscience Behavioral Neuroscience, 2016, 130, 137-155. Chemogenetics: DREADDs. , 2016, , 2847-2856. A Putative Biochemical Engram of Long-Term Memory. Current Biology, 2016, 26, 3143-3156. Role of hippocampal activity-induced transcription in memory consolidation. Reviews in the	3.9	4 35
121 122 123	DREADDS: Use and application in behavioral neuroscience Behavioral Neuroscience, 2016, 130, 137-155. Chemogenetics: DREADDs., 2016, , 2847-2856. A Putative Biochemical Engram of Long-Term Memory. Current Biology, 2016, 26, 3143-3156. Role of hippocampal activity-induced transcription in memory consolidation. Reviews in the Neurosciences, 2016, 27, 559-573. Enhancing Prefrontal Neuron Activity Enables Associative Learning of Temporally Disparate Events.	3.9 2.9	4 35 23
121 122 123 124	DREADDS: Use and application in behavioral neuroscience Behavioral Neuroscience, 2016, 130, 137-155. Chemogenetics: DREADDs., 2016, , 2847-2856. A Putative Biochemical Engram of Long-Term Memory. Current Biology, 2016, 26, 3143-3156. Role of hippocampal activity-induced transcription in memory consolidation. Reviews in the Neurosciences, 2016, 27, 559-573. Enhancing Prefrontal Neuron Activity Enables Associative Learning of Temporally Disparate Events. Cell Reports, 2016, 15, 2400-2410. Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food	3.9 2.9 6.4	4 35 23 21
121 122 123 124 125	DREADDS: Use and application in behavioral neuroscience Behavioral Neuroscience, 2016, 130, 137-155. Chemogenetics: DREADDs., 2016, , 2847-2856. A Putative Biochemical Engram of Long-Term Memory. Current Biology, 2016, 26, 3143-3156. Role of hippocampal activity-induced transcription in memory consolidation. Reviews in the Neurosciences, 2016, 27, 559-573. Enhancing Prefrontal Neuron Activity Enables Associative Learning of Temporally Disparate Events. Cell Reports, 2016, 15, 2400-2410. Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories. Journal of Neuroscience, 2016, 36, 6691-6703. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory.	3.9 2.9 6.4 3.6	4 35 23 21 99

#	Article	IF	CITATIONS
129	DREADDs for Neuroscientists. Neuron, 2016, 89, 683-694.	8.1	1,210
130	Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiological Reviews, 2016, 96, 647-693.	28.8	96
131	Architectural Representation of Valence in the Limbic System. Neuropsychopharmacology, 2016, 41, 1697-1715.	5.4	110
132	Exploring Memory Representations with Activity-Based Genetics. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021832.	5.5	34
133	Design of Next-Generation G Protein–Coupled Receptor Drugs: Linking Novel Pharmacology and In Vivo Animal Models. Annual Review of Pharmacology and Toxicology, 2016, 56, 535-559.	9.4	26
134	An Emerging Technology Framework for the Neurobiology of Appetite. Cell Metabolism, 2016, 23, 234-253.	16.2	48
135	Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness. Neurobiology of Learning and Memory, 2016, 129, 60-68.	1.9	78
136	Activity-dependent signaling: influence on plasticity in circuits controlling fear-related behavior. Current Opinion in Neurobiology, 2016, 36, 59-65.	4.2	33
137	Arc expression identifies the lateral amygdala fear memory trace. Molecular Psychiatry, 2016, 21, 364-375.	7.9	72
138	Application of the DREADD technique in biomedical brain research. Pharmacological Reports, 2017, 69, 213-221.	3.3	17
139	Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science, 2017, 355, 398-403.	12.6	95
140	Histamine H3R receptor activation in the dorsal striatum triggers stereotypies in a mouse model of tic disorders. Translational Psychiatry, 2017, 7, e1013-e1013.	4.8	42
141	Hippocampal awake replay in fear memory retrieval. Nature Neuroscience, 2017, 20, 571-580.	14.8	166
142	The Hippocampus from Cells to Systems. , 2017, , .		18
143	Heroes of the Engram. Journal of Neuroscience, 2017, 37, 4647-4657.	3.6	79
144	Manipulating memory in space and time. Current Opinion in Behavioral Sciences, 2017, 17, 1-6.	3.9	3
145	Histamine modulation of the basal ganglia circuitry in the development of pathological grooming. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6599-6604.	7.1	34
146	Uncovering Key Neurons for Manipulation in Mammals. , 0, , 18-36.		0

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
147	Optogenetic Dissection of a Top-down Prefrontal to Hippocampus Memory Circuit. , O	,,393-404.		0
148	Genetic strategies to access activated neurons. Current Opinion in Neurobiology, 201	7, 45, 121-129.	4.2	121
149	Brain-wide maps of <i>Fos</i> expression during fear learning and recall. Learning and 24, 169-181.	Memory, 2017,	1.3	33
150	Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory Nature Neuroscience, 2017, 20, 690-699.	preservation.	14.8	91
151	Parvalbumin-expressing interneurons coordinate hippocampal network dynamics requimemory consolidation. Nature Communications, 2017, 8, 15039.	ired for	12.8	151
152	Chemogenetic stimulation of the hypoglossal neurons improves upper airway patency Reports, 2017, 7, 44392.	. Scientific	3.3	35
153	Integration of optogenetics with complementary methodologies in systems neurosciel Reviews Neuroscience, 2017, 18, 222-235.	nce. Nature	10.2	562
154	Neural ensemble dynamics underlying a long-term associative memory. Nature, 2017,	543, 670-675.	27.8	273
155	Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insu Molecular Metabolism, 2017, 6, 1350-1359.	lin sensitivity.	6.5	32
156	A calcium- and light-gated switch to induce gene expression in activated neurons. Natu Biotechnology, 2017, 35, 858-863.	ure	17.5	118
157	Ketamine-induced apoptosis in the mouse cerebral cortex follows similar characteristic physiological apoptosis and can be regulated by neuronal activity. Molecular Brain, 20		2.6	24
158	Functional perturbation of forebrain principal neurons reveals differential effects in no well-learned tasks. Brain Research, 2017, 1671, 1-13.	vel and	2.2	3
159	Persistent modifications of hippocampal synaptic function during remote spatial mem Neurobiology of Learning and Memory, 2017, 138, 182-197.	ory.	1.9	30
160	Pharmacogenetic reactivation of the original engram evokes an extinguished fear men Neuropharmacology, 2017, 113, 1-9.	iory.	4.1	14
161	Learning-Related Hippocampal Long-Term PotentiationÂand Long-Term Depression. , 2	2017, , 585-609.		9
162	Synaptic Ensemble Underlying the Selection and Consolidation of Neuronal Circuits du Frontiers in Neural Circuits, 2017, 11, 12.	uring Learning.	2.8	21
163	Mechanistic Resolution Required to Mediate Operant Learned Behaviors: Insights from Ensemble-Specific Inactivation. Frontiers in Neural Circuits, 2017, 11, 28.	ı Neuronal	2.8	13
164	Eye-Drops for Activation of DREADDs. Frontiers in Neural Circuits, 2017, 11, 93.		2.8	12

ARTICLE IF CITATIONS # An R-CaMP1.07 reporter mouse for cell-type-specific expression of a sensitive red fluorescent calcium 165 2.5 47 indicator. PLoS ONE, 2017, 12, e0179460. Allocating, Tagging, and Linking Memories., 2017, , 621-636. 167 In Search of Engram Cells., 2017, , 637-658. 3 Memory allocation mechanisms underlie memory linking across time. Neurobiology of Learning and Memory, 2018, 153, 21-25. The promise and perils of causal circuit manipulations. Current Opinion in Neurobiology, 2018, 49, 169 4.2 77 84-94. Homeostatic Plasticity in the Hippocampus Facilitates Memory Extinction. Cell Reports, 2018, 22, 6.4 1451-1461. The dynamic nature of fear engrams in the basolateral amygdala. Brain Research Bulletin, 2018, 141, 171 3.0 24 44-49. Memory Allocation: Mechanisms and Function. Annual Review of Neuroscience, 2018, 41, 389-413. 130 Behavioral, cellular, and synaptic tagging frameworks. Neurobiology of Learning and Memory, 2018, 173 1.9 15 153, 13-20. Chemicogenetic Restoration of the Prefrontal Cortex to Amygdala Pathway Ameliorates 174 Stress-Induced Deficits. Cerebral Cortex, 2018, 28, 1980-1990. Astrocytes in Memory Function: Pioneering Findings and Future Directions. Neuroscience, 2018, 370, 175 2.360 14-26. Optogenetics: A Roadmap. Neuromethods, 2018, , . Employing Optogenetics in Memory Research. Neuromethods, 2018, , 219-256. 177 0.3 0 Investigating the transition from recent to remote memory using advanced tools. Brain Research Bulletin, 2018, 141, 35-43. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. 179 5.7 111 Progress in Neurobiology, 2018, 162, 37-69. The use of chemogenetic approaches to study the physiological roles of muscarinic acetylcholine receptors in the central nervous system. Neuropharmacology, 2018, 136, 421-426. Immediate-Early Promoter-Driven Transgenic Reporter System for Neuroethological Research in a Hemimetabolous Insect. ENeuro, 2018, 5, ENEURO.0061-18.2018. 181 1.9 17 A Group of Descending Glutamatergic Neurons Activated by Stress in Corticolimbic Regions Project to the Nucleus Accumbens. Experimental Neurobiology, 2018, 27, 387-396.

#	Article	IF	CITATIONS
183	Item-Place Encoding Through Hippocampal Long-Term Depression. Handbook of Behavioral Neuroscience, 2018, 27, 273-289.	0.7	7
184	New Approaches in Cognitive Neurobiology: Methods of Molecular Marking and Ex Vivo Imaging of Cognitively Active Neurons. Neuroscience and Behavioral Physiology, 2018, 48, 804-812.	0.4	1
185	Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron, 2018, 100, 330-348.	8.1	408
186	State-Dependent Memory: Neurobiological Advances and Prospects for Translation to Dissociative Amnesia. Frontiers in Behavioral Neuroscience, 2018, 12, 259.	2.0	19
187	Enhancement of Declarative Memory: From Genetic Regulation to Non-invasive Stimulation. Biochemistry (Moscow), 2018, 83, 1124-1138.	1.5	2
188	Dorsal and ventral hippocampal adult-born neurons contribute to context fear memory. Neuropsychopharmacology, 2018, 43, 2487-2496.	5.4	73
189	Chemogenetic Tools for Causal Cellular and Neuronal Biology. Physiological Reviews, 2018, 98, 391-418.	28.8	97
190	Immediate Early Genes, Memory and Psychiatric Disorders: Focus on c-Fos, Egr1 and Arc. Frontiers in Behavioral Neuroscience, 2018, 12, 79.	2.0	251
191	Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Frontiers in Neural Circuits, 2018, 12, 4.	2.8	38
192	Behavioral Strategy Determines Frontal or Posterior Location of Short-Term Memory in Neocortex. Neuron, 2018, 99, 814-828.e7.	8.1	105
193	What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders. Neurobiology of Stress, 2018, 9, 271-285.	4.0	31
194	Separate vmPFC Ensembles Control Cocaine Self-Administration Versus Extinction in Rats. Journal of Neuroscience, 2019, 39, 7394-7407.	3.6	61
195	Circuit-based interventions in the dentate gyrus rescue epilepsy-associated cognitive dysfunction. Brain, 2019, 142, 2705-2721.	7.6	45
196	Parallel pathways of seizure generalization. Brain, 2019, 142, 2336-2351.	7.6	25
197	Involvement of Adult-born and Preexisting Olfactory Bulb and Dentate Gyrus Neurons in Single-trial Olfactory Memory Acquisition and Retrieval. Neuroscience, 2019, 422, 75-87.	2.3	3
198	Practical Considerations for the Use of DREADD and Other Chemogenetic Receptors to Regulate Neuronal Activity in the Mammalian Brain. Methods in Molecular Biology, 2019, 1937, 59-87.	0.9	12
199	Neurobiological Parallels, Overlaps, and Divergences of Sleep and Anesthesia. Handbook of Behavioral Neuroscience, 2019, , 223-236.	0.7	3
200	Hippocampal transcriptomic responses to enzymeâ€mediated cellular dissociation. Hippocampus, 2019, 29, 876-882.	1.9	9

ARTICLE IF CITATIONS # Modulating Dopamine Signaling and Behavior with Chemogenetics: Concepts, Progress, and 201 16.0 37 Challenges. Pharmacological Reviews, 2019, 71, 123-156. Posterior ventral tegmental area-nucleus accumbens shell circuitry modulates response to novelty. 2.5 PLoS ONE, 2019, 14, e0213088. Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems 203 consolidation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 7.1 105 116,8576-8581. The neurobiological foundation of memory retrieval. Nature Neuroscience, 2019, 22, 1576-1585. 204 14.8 Synaptic plasticity/dysplasticity, process memory and item memory in rodent models of mental 205 2.0 16 dysfunction. Schizophrenia Research, 2019, 207, 22-36. Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of 5.4 64 depression. Neuropsychopharmacology, 2019, 44, 1013-1026. Hippocampal network oscillations at the interplay between innate anxiety and learned fear. 207 3.1 52 Psychopharmacology, 2019, 236, 321-338. Mechanisms of fear learning and extinction: synaptic plasticity–fear memory connection. 208 3.1 49 Psychopharmacology, 2019, 236, 163-182. 209 Encoding of Odor Fear Memories in the Mouse Olfactory Cortex. Current Biology, 2019, 29, 367-380.e4. 3.9 52 Molecular tools for imaging and recording neuronal activity. Nature Chemical Biology, 2019, 15, 8.0 101-110. Artificial association of memory events by optogenetic stimulation of hippocampal CA3 cell ensembles. 211 2.6 30 Molecular Brain, 2019, 12, 2. Molecular Mechanisms of the Memory Trace. Trends in Neurosciences, 2019, 42, 14-22. 8.6 148 Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control 213 2.9 18 Functional Neural Circuits. Neuroscience Bulletin, 2019, 35, 369-377. Contemporary strategies for dissecting the neuronal basis of neurodevelopmental disorders. 214 1.9 Neurobiology of Learning and Memory, 2019, 165, 106835. 215 The content of hippocampal "replay― Hippocampus, 2020, 30, 6-18. 1.9 105 Synchronization and maintenance of circadian timing in the mammalian clockwork. European Journal of Neuroscience, 2020, 51, 229-240. Within-animal comparisons of novelty and cocaine neuronal ensemble overlap in the nucleus 217 2.25 accumbens and prefrontal cortex. Behavioural Brain Research, 2020, 379, 112275. Basolateral amygdala is required for reconsolidation updating of heroinâ€associated memory after 218 prolonged withdrawal. Addiction Biology, 2020, 25, e12793.

#	Article	IF	CITATIONS
219	Memory engrams: Recalling the past and imagining the future. Science, 2020, 367, .	12.6	530
220	Evidence that a defined population of neurons in lateral amygdala is directly involved in auditory fear learning and memory. Neurobiology of Learning and Memory, 2020, 168, 107139.	1.9	3
221	A neuroscientist's guide to transgenic mice and other genetic tools. Neuroscience and Biobehavioral Reviews, 2020, 108, 732-748.	6.1	64
222	Chemogenetic modulation of accumbens direct or indirect pathways bidirectionally alters reinstatement of heroin-seeking in high- but not low-risk rats. Neuropsychopharmacology, 2020, 45, 1251-1262.	5.4	50
223	Capturing activated neurons and synapses. Neuroscience Research, 2020, 152, 25-34.	1.9	8
225	Chronic neuronal activation increases dynamic microtubules to enhance functional axon regeneration after dorsal root crush injury. Nature Communications, 2020, 11, 6131.	12.8	30
226	The role of neuronal excitability, allocation to an engram and memory linking in the behavioral generation of a false memory in mice. Neurobiology of Learning and Memory, 2020, 174, 107284.	1.9	21
227	Social behavior in mice following chronic optogenetic stimulation of hippocampal engrams. Neurobiology of Learning and Memory, 2020, 176, 107321.	1.9	6
228	Neuronal Activity at Synapse Resolution: Reporters and Effectors for Synaptic Neuroscience. Frontiers in Molecular Neuroscience, 2020, 13, 572312.	2.9	10
229	The Projection From Ventral CA1, Not Prefrontal Cortex, to Nucleus Accumbens Core Mediates Recent Memory Retrieval of Cocaine-Conditioned Place Preference. Frontiers in Behavioral Neuroscience, 2020, 14, 558074.	2.0	12
230	Dissecting Neuronal Activation on a Brain-Wide Scale With Immediate Early Genes. Frontiers in Neuroscience, 2020, 14, 569517.	2.8	31
231	Chemogenetic activation of an infralimbic cortex to basolateral amygdala projection promotes resistance to acute social defeat stress. Scientific Reports, 2020, 10, 6884.	3.3	25
232	The role of intrinsic excitability in the evolution of memory: Significance in memory allocation, consolidation, and updating. Neurobiology of Learning and Memory, 2020, 173, 107266.	1.9	35
233	Memory trace interference impairs recall in a mouse model of Alzheimer's disease. Nature Neuroscience, 2020, 23, 952-958.	14.8	43
234	Odor modulates the temporal dynamics of fear memory consolidation. Learning and Memory, 2020, 27, 150-163.	1.3	12
235	Functionally Distinct Neuronal Ensembles within the Memory Engram. Cell, 2020, 181, 410-423.e17.	28.9	153
236	Non-invasive optical control of endogenous Ca2+ channels in awake mice. Nature Communications, 2020, 11, 210.	12.8	40
237	Early life experiences selectively mature learning and memory abilities. Nature Communications, 2020, 11, 628.	12.8	29

#	Article	IF	CITATIONS
238	Spatiotemporal refinement of signal flow through association cortex during learning. Nature Communications, 2020, 11, 1744.	12.8	42
239	The memory toolbox: how genetic manipulations and cellular imaging are transforming our understanding of learned information. Current Opinion in Behavioral Sciences, 2020, 32, 136-147.	3.9	4
240	Contextual Fear Memory Retrieval Is Vulnerable to Hippocampal Noise. Cerebral Cortex, 2021, 31, 785-794.	2.9	13
241	Tracing goes viral: Viruses that introduce expression of fluorescent proteins in chemically-specific neurons. Journal of Neuroscience Methods, 2021, 348, 109004.	2.5	2
243	Adult-born neurons immature during learning are necessary for remote memory reconsolidation in rats. Nature Communications, 2021, 12, 1778.	12.8	26
245	Dynamic and heterogeneous neural ensembles contribute to a memory engram. Current Opinion in Neurobiology, 2021, 67, 199-206.	4.2	25
246	Hippocampal subfieldâ€specific Homer1a expression is triggered by learningâ€facilitated longâ€ŧerm potentiation and longâ€ŧerm depression at medial perforant path synapses. Hippocampus, 2021, 31, 897-915.	1.9	12
247	Viral Vector Delivery of DREADDs for CNS Therapy. Current Gene Therapy, 2021, 21, 191-206.	2.0	4
248	Roles and Transcriptional Responses of Inhibitory Neurons in Learning and Memory. Frontiers in Molecular Neuroscience, 2021, 14, 689952.	2.9	11
250	Metaplastic regulation of neocortical long-term depression in vivo is sensitive to distinct phases of conditioned taste aversion. Neurobiology of Learning and Memory, 2021, 182, 107449.	1.9	3
251	Norepinephrine as a spatial memory reset signal. Behavioural Pharmacology, 2021, 32, 531-548.	1.7	10
252	Dentate spikes and external control of hippocampal function. Cell Reports, 2021, 36, 109497.	6.4	23
253	Spaced training enhances memory and prefrontal ensemble stability in mice. Current Biology, 2021, 31, 4052-4061.e6.	3.9	6
254	Chemogenetic approaches to unravel circuit wiring and related behavior after spinal cord injury. Experimental Neurology, 2021, 345, 113839.	4.1	4
255	Drug-activated cells: From immediate early genes to neuronal ensembles in addiction. Advances in Pharmacology, 2021, 90, 173-216.	2.0	25
256	Defining the Functional Equivalence of Wild-Type and Chemically Engineered G Protein-Coupled Receptors. Neuromethods, 2015, , 1-28.	0.3	2
257	Hippocampal Neurogenesis and Forgetting. , 2017, , 95-121.		2
258	Memory Issues of Intelligent Agents. Lecture Notes in Computer Science, 2012, , 219-231.	1.3	3

#	Article	IF	CITATIONS
260	Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. Journal of Clinical Investigation, 2018, 129, 310-323.	8.2	69
261	Molecular and Cellular Mechanisms for Trapping and Activating Emotional Memories. PLoS ONE, 2016, 11, e0161655.	2.5	29
262	Chemogenetic Activation of Excitatory Neurons Alters Hippocampal Neurotransmission in a Dose-Dependent Manner. ENeuro, 2019, 6, ENEURO.0124-19.2019.	1.9	17
263	Prefrontal Theta Oscillations Promote Selective Encoding of Behaviorally Relevant Events. ENeuro, 2018, 5, ENEURO.0407-18.2018.	1.9	16
264	Od c-Fos do MMP-9 w kontroli plastycznoÅ›ci synaptycznej zdrowego i chorego umysÅ,u, spojrzenie osobiste. Postepy Biochemii, 2018, 64, 101-109.	0.2	10
265	A robust activity marking system for exploring active neuronal ensembles. ELife, 2016, 5, .	6.0	115
266	NPAS4 recruits CCK basket cell synapses and enhances cannabinoid-sensitive inhibition in the mouse hippocampus. ELife, 2018, 7, .	6.0	35
267	HA Hemagglutinin Tag Antibody and FAQs. Materials and Methods, 0, 3, .	0.0	1
268	Cellular and Dendritic Memory Allocation. Springer Series in Computational Neuroscience, 2014, , 415-432.	0.3	0
269	Remapping to Discriminate Contexts with Hippocampal Population Codes. , 2014, , 227-251.		1
270	Chemogenetics: DREADDs. , 2015, , 1-10.		0
271	Dissecting Neuronal Circuits Involved in Olfactory-Mediated Behaviors. Neuromethods, 2015, , 83-94.	0.3	0
272	The Use of DREADDs (Designer Receptors Exclusively Activated by Designer Receptors) in Transgenic Mouse Behavioral Models. Neuromethods, 2015, , 95-108.	0.3	1
273	Manipulating Hippocampus-Dependent Memories: To Enhance, Delete or Incept?. , 2017, , 123-137.		2
276	Memory trace superimposition impairs recall in a mouse model of AD. SSRN Electronic Journal, 0, , .	0.4	0
282	Genetic approaches to the investigation of serotonergic neuron functions in animals. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 23, 448-455.	1.1	0
289	Disruption of PAK3 Signaling in Social Interaction Induced cFos Positive Cells Impairs Social Recognition Memory. Cells, 2021, 10, 3010.	4.1	2
292	Assessment of , a Novel Research and Neurotechnology Based Approach for the Modern Neuroscience Classroom. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2021, 19, A226-A259.	0.0	0

#	Article	IF	CITATIONS
293	Cognitive control persistently enhances hippocampal information processing. Nature, 2021, 600, 484-488.	27.8	24
294	DNA repair enzyme NEIL3 enables a stable neural representation of space by shaping transcription in hippocampal neurons. IScience, 2021, 24, 103470.	4.1	6
296	Differential mechanisms underlie trace and delay conditioning in Drosophila. Nature, 2022, 603, 302-308.	27.8	15
297	Neuronal Ensembles Organize Activity to Generate Contextual Memory. Frontiers in Behavioral Neuroscience, 2022, 16, 805132.	2.0	10
299	Understanding the physical basis of memory: Molecular mechanisms of the engram. Journal of Biological Chemistry, 2022, 298, 101866.	3.4	25
300	Manipulating Neural Activity. , 2022, , 191-208.		0
302	An in silico model for determining the influence of neuronal co-activity on rodent spatial behavior. Journal of Neuroscience Methods, 2022, 377, 109627.	2.5	1
304	What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Current Opinion in Neurobiology, 2022, 75, 102568.	4.2	7
305	Technologies for large-scale mapping of functional neural circuits active during a user-defined time window. Progress in Neurobiology, 2022, 216, 102290.	5.7	9
306	In Search for the Retrievable Memory Trace in an Insect Brain. Frontiers in Systems Neuroscience, 0, 16,	2.5	5
307	Functional correlates of immediate early gene expression in mouse visual cortex. , 0, 2, .		4
308	A missense mutation in <i>Kcnc3</i> causes hippocampal learning deficits in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	0
309	Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neuroscience Bulletin, 2023, 39, 368-378.	2.9	18
310	Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	2
311	Chemogenetic activation of VGLUT3-expressing neurons decreases movement. European Journal of Pharmacology, 2022, 935, 175298.	3.5	2
312	Chemogenetics: DREADDs. , 2022, , 3211-3220.		0
314	The present and future of neural interfaces. Frontiers in Neurorobotics, 0, 16, .	2.8	4
316	On-demand cell-autonomous gene therapy for brain circuit disorders. Science, 2022, 378, 523-532.	12.6	35

#	Article	IF	CITATIONS
317	Shared and Distinct Brain Regions Targeted for Immediate Early Gene Expression by Ketamine and Psilocybin. ACS Chemical Neuroscience, 2023, 14, 468-480.	3.5	33
318	L'amnésie dissociative dans le Trouble de Stress Post-Traumatique: Analyse de la validité scientifique d'un phénomène psychologique controversé. European Journal of Trauma and Dissociation, 2023, 7, 100314.	1.3	2
320	A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell, 2023, 186, 1352-1368.e18.	28.9	10
321	Advanced approaches for selective investigation of neuronal function and circuitry: The future of developing novel therapeutic strategies in neuropharmacology?. Arhiv Za Farmaciju, 2023, 73, 109-125.	0.5	0
322	Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Molecular Psychiatry, 2023, 28, 3207-3219.	7.9	5
323	Wholeâ€brain mapping of neuronal activity evoked by maternal separation in neonatal mice: An association with ultrasound vocalization. Neuropsychopharmacology Reports, 2023, 43, 239-248.	2.3	1
325	Chemogenetic regulation of the TARP-lipid interaction mimics LTP and reversibly modifies behavior. Cell Reports, 2023, 42, 112826.	6.4	1
326	Cell assembly analysis of neural circuits for innate behavior in <i>Drosophila melanogaster</i> using an immediate early gene <i>stripe</i> / <i>egr-1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
327	The computational power of the human brain. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	0
328	A common neuronal ensemble in nucleus accumbens regulates pain-like behaviour and sleep. Nature Communications, 2023, 14, .	12.8	1
329	History information emerges in the cortex during learning. ELife, 0, 12, .	6.0	1
330	Chemogenetics for cell-type-specific modulation of signalling and neuronal activity. Nature Reviews Methods Primers, 2023, 3, .	21.2	1
331	Approaches and considerations of studying neuronal ensembles: a brief review. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	0
332	Making Sense of Psychedelics in the CNS. International Journal of Neuropsychopharmacology, 2024, 27, .	2.1	0
334	Contextual memory engrams, and the neuromodulatory influence of the locus coeruleus. Frontiers in Molecular Neuroscience, 0, 17, .	2.9	1
335	Mystery of the memory engram: History, current knowledge, and unanswered questions. Neuroscience and Biobehavioral Reviews, 2024, 159, 105574.	6.1	0