Supported Iron Nanoparticles as Catalysts for Sustainal

Science 335, 835-838 DOI: 10.1126/science.1215614

Citation Report

#	Article	IF	CITATIONS
2	Single crystal iron nanocube synthesis via the surface energy driven growth method. Nanotechnology, 2012, 23, 435604.	1.3	7
3	Nanocatalysts for conversion of natural gas to liquid fuels and petrochemical feedstocks. Applied Catalysis A: General, 2012, 443-444, 8-26.	2.2	44
4	A Simple Chemical Route toward Monodisperse Iron Carbide Nanoparticles Displaying Tunable Magnetic and Unprecedented Hyperthermia Properties. Nano Letters, 2012, 12, 4722-4728.	4.5	185
5	A General Chelate-Assisted Co-Assembly to Metallic Nanoparticles-Incorporated Ordered Mesoporous Carbon Catalysts for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2012, 134, 17653-17660.	6.6	227
6	Preparation and Catalysis of Carbon‣upported Iron Catalysts for Fischer–Tropsch Synthesis. ChemCatChem, 2012, 4, 1498-1511.	1.8	100
8	Iron Particle Size Effects for Direct Production of Lower Olefins from Synthesis Gas. Journal of the American Chemical Society, 2012, 134, 16207-16215.	6.6	390
10	Suppression of Carbon Deposition in the Iron atalyzed Production of Lower Olefins from Synthesis Gas. Angewandte Chemie - International Edition, 2012, 51, 7190-7193.	7.2	80
11	Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. ChemCatChem, 2012, 4, 751-752.	1.8	33
13	Catalysts for Production of Lower Olefins from Synthesis Gas: A Review. ACS Catalysis, 2013, 3, 2130-2149.	5.5	804
14	Melt Infiltration: an Emerging Technique for the Preparation of Novel Functional Nanostructured Materials. Advanced Materials, 2013, 25, 6672-6690.	11.1	120
15	Cobalt-imbedded zeolite catalyst for direct syntheses of gasoline via Fischer–Tropsch synthesis. Catalysis Science and Technology, 2013, 3, 2559.	2.1	39
16	Light olefins synthesis from C1-C2 paraffins via oxychlorination processes. Frontiers of Chemical Science and Engineering, 2013, 7, 279-288.	2.3	19
17	Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance. RSC Advances, 2013, 3, 25865.	1.7	72
18	Fischer–Tropsch Synthesis Catalyzed by Solid Nanoparticles at the Water/Oil Interface in an Emulsion System. Energy & Fuels, 2013, 27, 6118-6124.	2.5	24
19	Cobalt Precursors for High-Throughput Discovery of Base Metal Asymmetric Alkene Hydrogenation Catalysts. Science, 2013, 342, 1076-1080.	6.0	346
20	Chemical synthesis of magnetic nanocrystals: Recent progress. Chinese Physics B, 2013, 22, 107503.	0.7	13
21	Nanoscale Fe ₂ O ₃ -Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science, 2013, 342, 1073-1076.	6.0	868
22	Shale Gas Revolution: An Opportunity for the Production of Biobased Chemicals?. Angewandte Chemie - International Edition, 2013, 52, 11980-11987.	7.2	278

#	Article	IF	CITATIONS
23	Die Schiefergasrevolution: eine Chance zur Herstellung von Chemikalien auf Biobasis?. Angewandte Chemie, 2013, 125, 12198-12206.	1.6	40
25	Room Temperature Dehydrogenation of Ethane, Propane, Linear Alkanes C4–C8, and Some Cyclic Alkanes by Titanium–Carbon Multiple Bonds. Journal of the American Chemical Society, 2013, 135, 14754-14767.	6.6	65
26	Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 2013, 15, 17038.	1.3	233
27	Investigation of TiO <inf>2</inf> -SiO <inf>2</inf> -Fe <inf>3</inf> O <inf>4</inf> core-shell nanoparticle properties with different functional layer thickness. , 2013, , .		0
28	Direct conversion of calcium carbonate to C1–C3 hydrocarbons. RSC Advances, 2013, 3, 7224.	1.7	22
29	Kinetically controlled synthesis of nickel tetrahedron nanocrystals for high performance catalytic hydrogenation. RSC Advances, 2013, 3, 5314.	1.7	8
30	Carbon Nanomaterials in Catalysis: Proton Affinity, Chemical and Electronic Properties, and their Catalytic Consequences. ChemCatChem, 2013, 5, 378-401.	1.8	228
31	Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve manganese oxide supported iron catalysts. Applied Catalysis B: Environmental, 2013, 132-133, 54-61.	10.8	70
32	Synthesis of light olefins from syngas over Fe–Mn–V–K catalysts in the slurry phase. Journal of Industrial and Engineering Chemistry, 2013, 19, 961-965.	2.9	17
33	Oneâ€Pot Approach to a Highly Robust Iron Oxide/Reduced Graphene Oxide Nanocatalyst for Fischer–Tropsch Synthesis. ChemCatChem, 2013, 5, 714-719.	1.8	32
34	Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates. Green Chemistry, 2013, 15, 1232.	4.6	43
35	High CO2 and CO conversion to hydrocarbons using bridged Fe nanoparticles on carbon nanotubes. Catalysis Science and Technology, 2013, 3, 1202.	2.1	42
36	Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nature Materials, 2013, 12, 34-39.	13.3	606
37	Titania-Decorated Silicon Carbide-Containing Cobalt Catalyst for Fischer–Tropsch Synthesis. ACS Catalysis, 2013, 3, 393-404.	5.5	92
38	Controlling the Distribution of Supported Nanoparticles by Aqueous Synthesis. Chemistry of Materials, 2013, 25, 890-896.	3.2	44
39	Iron oxide nanoparticles supported on pyrolytic graphene oxide as model catalysts for Fischer Tropsch synthesis. Applied Catalysis A: General, 2013, 456, 233-239.	2.2	63
40	Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer–Tropsch synthesis of lower olefins. Journal of Catalysis, 2013, 303, 22-30.	3.1	217
41	Interplay between pore size and nanoparticle spatial distribution: Consequences for the stability of CuZn/SiO2 methanol synthesis catalysts. Journal of Catalysis, 2013, 303, 31-40.	3.1	56

#	Article	IF	CITATIONS
42	Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis. Journal of Energy Chemistry, 2013, 22, 27-38.	7.1	130
43	Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chemistry, 2013, 15, 1631.	4.6	171
44	Cr ³⁺ –Co _{0.054} Ni _{0.018} Mg _{0.93} O Solid-Solution Catalysts for High-Pressure Syngas Production: Effect of Chromium on the Reduction and Catalysis. ACS Catalysis, 2013, 3, 1564-1572.	5.5	8
45	Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. Journal of Catalysis, 2013, 305, 179-190.	3.1	192
47	Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts. Catalysis Today, 2013, 215, 186-193.	2.2	175
48	Nanoparticles. Annual Reports on the Progress of Chemistry Section A, 2013, 109, 453.	0.8	5
49	Carbon nanotube-supported Fe–Mn nanoparticles: A model catalyst for direct conversion of syngas to lower olefins. Catalysis Today, 2013, 215, 86-94.	2.2	76
50	Monomer Formation Model versus Chain Growth Model of the Fischer–Tropsch Reaction. Journal of Physical Chemistry C, 2013, 117, 4488-4504.	1.5	55
51	Raw material demand and sourcing options for the development of a bioâ€based chemical industry in Europe Biofuels, Bioproducts and Biorefining, 2013, 7, 246-259.	1.9	33
52	Supported iron oxide nanoparticles: Recoverable and efficient catalyst for oxidative S-S coupling of thiols to disulfides. Catalysis Communications, 2013, 40, 13-17.	1.6	48
53	Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer–Tropsch synthesis of lower olefins. Catalysis Today, 2013, 215, 95-102.	2.2	76
55	High Photocatalytic Activity of Fe3O4-SiO2-TiO2Functional Particles with Core-Shell Structure. Journal of Nanomaterials, 2013, 2013, 1-8.	1.5	10
56	Economic Feasibility of the Sugar Beetâ€ŧoâ€Ethylene Value Chain. ChemSusChem, 2013, 6, 1625-1630.	3.6	15
57	Fischer-Tropsch synthesis nanostructured catalysts: understanding structural characteristics and catalytic reaction. Nanotechnology Reviews, 2013, 2, 547-576.	2.6	29
58	SiCN: SiCN Nanofibers with a Diameter Below 100 nm Synthesized via Concerted Block Copolymer Formation, Microphase Separation, and Crosslinking (Small 7/2013). Small, 2013, 9, 983-983.	5.2	7
59	Study of K/Mnâ€MgO Supported Fe Catalysts with Fe(CO) ₅ and Fe(NO ₃) ₃ as Precursors for CO Hydrogenation to Light Alkenes. Chinese Journal of Chemistry, 2013, 31, 1263-1268.	2.6	7
60	Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation. Review of Scientific Instruments, 2013, 84, 124101.	0.6	12
61	Fischer–Tropsch Synthesis Over Skeletal FeCe Catalysts Leached from Rapidly Quenched Ternary FeCeAl Alloys. ChemCatChem, 2013, 5, 3857-3865.	1.8	11

#	Article	IF	CITATIONS
62	SiCN Nanofibers with a Diameter Below 100 nm Synthesized via Concerted Block Copolymer Formation, Microphase Separation, and Crosslinking. Small, 2013, 9, 984-989.	5.2	16
63	Promoter Effects on Iron–Silica Fischer–Tropsch Nanocatalysts: Conversion of Carbon Dioxide to Lower Olefins and Hydrocarbons at Atmospheric Pressure. ChemPlusChem, 2013, 78, 1536-1544.	1.3	28
64	Vibrational Analysis of an Industrial Feâ€Based Fischer–Tropsch Catalyst Employing Inelastic Neutron Scattering. Angewandte Chemie - International Edition, 2013, 52, 5608-5611.	7.2	25
65	Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst. Beilstein Journal of Nanotechnology, 2014, 5, 760-769.	1.5	23
66	Nanocarbons: Opening New Possibilities for Nano-engineered Novel Catalysts and Catalytic Electrodes. Catalysis Surveys From Asia, 2014, 18, 149-163.	1.0	30
67	High Selectivity Higher Alcohols Synthesis from Syngas over Threeâ€Dimensionally Ordered Macroporous Cuâ€Fe Catalysts. ChemCatChem, 2014, 6, 473-478.	1.8	64
68	Photocatalytic Property of Fe ₃ O ₄ /SiO ₂ /TiO ₂ Core-Shell Nanoparticle with Different Functional Layer Thicknesses. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	9
69	Nanowire accumulated Fe2O3/SiO2 spherical catalyst for Fischer-Tropsch synthesis. Chinese Journal of Catalysis, 2014, 35, 1661-1668.	6.9	4
71	ε-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst. Nature Communications, 2014, 5, 5783.	5.8	214
73	<i>In-situ</i> X-ray diffraction activation study on an Fe/TiO ₂ pre-catalyst. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 498-509.	0.5	7
74	Sodium promoter on iron-based catalyst for direct catalytic synthesis of light alkenes from syngas. Fuel Processing Technology, 2014, 125, 119-124.	3.7	45
75	Production of Lower Olefins with Highly Dispersed Ru Catalysts Supported on Al-SBA-15 in Fischer–Tropsch Synthesis. Topics in Catalysis, 2014, 57, 437-444.	1.3	16
76	Highly Selective and Active Niobia-Supported Cobalt Catalysts for Fischer–Tropsch Synthesis. Topics in Catalysis, 2014, 57, 445-450.	1.3	18
77	Evolving scenarios for biorefineries and the impact on catalysis. Catalysis Today, 2014, 234, 2-12.	2.2	47
78	Applications of nanoparticles in biomass conversion to chemicals and fuels. Green Chemistry, 2014, 16, 573-584.	4.6	96
79	The application of inelastic neutron scattering to investigate CO hydrogenation over an iron Fischer–Tropsch synthesis catalyst. Journal of Catalysis, 2014, 312, 221-231.	3.1	33
80	Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review. Catalysis Science and Technology, 2014, 4, 893-907.	2.1	148
81	Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science, 2014, 344, 616-619.	6.0	1,113

#	Article	IF	CITATIONS
82	How to Modulate Catalytic Properties in Nanosystems: The Case of Iron–Ruthenium Nanoparticles. ChemCatChem, 2014, 6, 1714-1720.	1.8	16
83	Fischer–Tropsch Reaction on a Thermally Conductive and Reusable Silicon Carbide Support. ChemSusChem, 2014, 7, 1218-1239.	3.6	82
84	Control and Impact of the Nanoscale Distribution of Supported Cobalt Particles Used in Fischer–Tropsch Catalysis. Journal of the American Chemical Society, 2014, 136, 7333-7340.	6.6	144
85	Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor. Journal of Solid State Chemistry, 2014, 212, 13-22.	1.4	26
86	Graphene-Supported, Iron-Based Nanoparticles for Catalytic Production of Liquid Hydrocarbons from Synthesis Gas: The Role of the Graphene Support in Comparison with Carbon Nanotubes. ACS Catalysis, 2014, 4, 535-545.	5.5	128
87	Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catalysis Science and Technology, 2014, 4, 272-294.	2.1	93
88	Enhanced oxidation of nanoparticles through strain-mediated ionic transport. Nature Materials, 2014, 13, 26-30.	13.3	110
89	Environmental Applications of Magnetic Nanoparticles. Frontiers of Nanoscience, 2014, , 259-307.	0.3	20
90	Effects of preparation variables on an alumina-supported FeCuK Fischer–Tropsch catalyst. Catalysis Science and Technology, 2014, 4, 4289-4300.	2.1	15
91	Design and Synthesis of Copper–Cobalt Catalysts for the Selective Conversion of Synthesis Gas to Ethanol and Higher Alcohols. Angewandte Chemie - International Edition, 2014, 53, 6397-6401.	7.2	209
92	Fischer–Tropsch synthesis: Iron-based catalysts supported on nitrogen-doped carbon nanotubes synthesized by post-doping. Applied Catalysis A: General, 2014, 482, 377-386.	2.2	58
93	Correlating Fischer–Tropsch activity to Ru nanoparticle surface structure as probed by high-energy X-ray diffraction. Chemical Communications, 2014, 50, 6005-6008.	2.2	40
94	Polymer-supported catalysts for clean preparation of n-butanol. Catalysis Science and Technology, 2014, 4, 2499-2503.	2.1	10
95	Nickel-induced structural, optical, magnetic, and electrical behavior of α-Fe ₂ O ₃ . Physica Status Solidi (B): Basic Research, 2014, 251, 1552-1557.	0.7	10
96	A nanobursa mesh: a graded electrospun nanofiber mesh with metal nanoparticles on carbon nanotubes. Nanoscale, 2014, 6, 8527-8530.	2.8	6
97	Fe@CNT-monoliths for the conversion of carbon dioxide to hydrocarbons: structural characterisation and Fischer–Tropsch reactivity investigations. Catalysis Science and Technology, 2014, 4, 3351-3358.	2.1	37
98	Exploring the phase space of time of flight mass selected Pt _x Y nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 26506-26513.	1.3	20
99	Highly active and stable supported iron Fischer–Tropsch catalysts: Effects of support properties and SiO2 stabilizer on catalyst performance. Journal of Catalysis, 2014, 319, 220-231.	3.1	32

щ		IF	Citations
#	ARTICLE Effects of Drying Conditions on the Synthesis of Co/SiO ₂ and	IF	CHATIONS
100	Co/Al ₂ O ₃ Fischerâ€"Tropsch Catalysts. ACS Catalysis, 2014, 4, 3219-3226.	5.5	63
101	Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer–Tropsch synthesis. Journal of Catalysis, 2014, 318, 179-192.	3.1	37
102	Immobilized Iron Oxide Nanoparticles as Stable and Reusable Catalysts for Hydrazineâ€Mediated Nitro Reductions in Continuous Flow. ChemSusChem, 2014, 7, 3122-3131.	3.6	54
103	Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	6
104	Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renewable and Sustainable Energy Reviews, 2014, 40, 964-998.	8.2	132
105	Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Applied Catalysis A: General, 2014, 488, 66-77.	2.2	92
106	A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science and Technology, 2014, 4, 2210-2229.	2.1	422
107	Catalytic Co-pyrolysis of Biomass and Different Plastics (Polyethylene, Polypropylene, and) Tj ETQq1 1 0.784314 1940-1947.	rgBT /Ove 2.5	rlock 10 Tf 5 149
108	Formation of hydrocarbons via CO2 hydrogenation – A thermodynamic study. Journal of CO2 Utilization, 2014, 6, 34-39.	3.3	71
109	Heterogeneous Catalysis and the Challenges of Powering the Planet, Securing Chemicals for Civilised Life, and Clean Efficient Utilization of Renewable Feedstocks. ChemSusChem, 2014, 7, 1801-1832.	3.6	50
110	Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer–Tropsch synthesis. Journal of Materials Chemistry A, 2014, 2, 14371-14379.	5.2	65
111	Nanoparticle Growth in Supported Nickel Catalysts during Methanation Reaction—Larger is Better. Angewandte Chemie - International Edition, 2014, 53, 9493-9497.	7.2	84
112	Direct production of light olefins from syngas over potassium modified Fe–Mn catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 409-423.	0.8	12
113	Magnetite Particles Triggering a Faster and More Robust Syntrophic Pathway of Methanogenic Propionate Degradation. Environmental Science & Technology, 2014, 48, 7536-7543.	4.6	557
114	Engineering and Sizing Nanoreactors To Confine Metal Complexes for Enhanced Catalytic Performance. ACS Catalysis, 2014, 4, 3791-3796.	5.5	17
115	Toward stable nickel catalysts for aqueous phase reforming of biomass-derived feedstock under reducing and alkaline conditions. Journal of Catalysis, 2014, 319, 27-35.	3.1	53
116	Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nature Communications, 2014, 5, 4123.	5.8	205
117	Promotion Effects of Nitrogen Doping into Carbon Nanotubes on Supported Iron Fischer–Tropsch Catalysts for Lower Olefins. ACS Catalysis, 2014, 4, 613-621.	5.5	218

#	Article	IF	CITATIONS
118	Iron oxide catalyzed reduction of acid chlorides to aldehydes with hydrosilanes. Catalysis Communications, 2014, 50, 25-28.	1.6	8
119	Silicon carbide foam decorated with carbon nanofibers as catalytic stirrer in liquid-phase hydrogenation reactions. Applied Catalysis A: General, 2014, 469, 81-88.	2.2	32
120	Microkinetics of oxygenate formation in the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 2014, 16, 10041-10058.	1.3	21
121	Supported Iron Fischer–Tropsch Catalyst: Superior Activity and Stability Using a Thermally Stable Silica-Doped Alumina Support. ACS Catalysis, 2014, 4, 1071-1077.	5.5	72
122	Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation. Applied Catalysis A: General, 2014, 482, 163-170.	2.2	89
123	Scalable fractionation of iron oxide nanoparticles using a CO2 gas-expanded liquid system. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	4
124	Selective Formation of HÃǥg Iron Carbide with g ₃ N ₄ as a Sacrificial Support for Highly Active Fischer–Tropsch Synthesis. ChemCatChem, 2015, 7, 3488-3494.	1.8	46
125	Transition Metal (Fe, Co and Ni) Carbide and Nitride Nanomaterials: Structure, Chemical Synthesis and Applications. ChemNanoMat, 2015, 1, 376-398.	1.5	71
126	Towards Carbonâ€Neutral CO ₂ Conversion to Hydrocarbons. ChemSusChem, 2015, 8, 4064-4072.	3.6	48
127	<pre><scp>N</scp>iâ€<scp>A</scp>l₂<scp>O</scp>₃/<scp>N</scp>iâ€foam catalyst with enhanced heat transfer for hydrogenation of <scp>C</scp>O₂ to methane. AICHE Journal, 2015, 61, 4323-4331.</pre>	1.8	83
128	Fabrication of Fischer–Tropsch Catalysts by Deposition of Iron Nanocrystals on Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5309-5319.	7.8	57
129	Synthesis of Co-based bimetallic nanocrystals with one-dimensional structure for selective control on syngas conversion. Nanoscale, 2015, 7, 12365-12371.	2.8	21
130	One-pot synthesis of promoted porous iron-based microspheres and its Fischer–Tropsch performance. Applied Catalysis A: General, 2015, 499, 139-145.	2.2	24
131	Pore size effects in high-temperature Fischer–Tropsch synthesis over supported iron catalysts. Journal of Catalysis, 2015, 328, 139-150.	3.1	151
132	Manganese-Modified Fe ₃ O ₄ Microsphere Catalyst with Effective Active Phase of Forming Light Olefins from Syngas. ACS Catalysis, 2015, 5, 3905-3909.	5.5	181
133	Endogenous growth of 2D AlOOH nanosheets on a 3D Al-fiber network via steam-only oxidation in application for forming structured catalysts. Green Chemistry, 2015, 17, 3762-3765.	4.6	41
134	A first-principles study of CO dissociative adsorption on iron nanoparticles supported on doped graphene. Solid State Communications, 2015, 223, 50-53.	0.9	6
135	Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature, 2015, 528, 245-248.	13.7	450

#	Article	IF	CITATIONS
136	Deposition of Iron Oxide Nanoparticles onto an Oxidic Support Using a Novel Gas-Expanded Liquid Process to Produce Functional Fischer–Tropsch Synthesis Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 11814-11824.	1.8	13
137	Effects of pretreatment on iron-based catalysts for forming light olefins via Fischer–Tropsch synthesis. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 433-449.	0.8	8
138	Modified carbon nanotubes by KMnO ₄ supported iron Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. Journal of Materials Chemistry A, 2015, 3, 4560-4567.	5.2	57
139	A comparative study of PdZSM-5, Pdβ, and PdY in hybrid catalysts for syngas to hydrocarbon conversion. Catalysis Science and Technology, 2015, 5, 1847-1853.	2.1	13
140	Synthesis of Ag promoted porous Fe3O4 microspheres with tunable pore size as catalysts for Fischer–Tropsch production of lower olefins. Catalysis Communications, 2015, 64, 32-36.	1.6	11
141	Nitrogen-Doped Graphene-Activated Iron-Oxide-Based Nanocatalysts for Selective Transfer Hydrogenation of Nitroarenes. ACS Catalysis, 2015, 5, 1526-1529.	5.5	146
142	Influence of Chemical Composition on the Catalytic Activity of Small Bimetallic FeRu Nanoparticles for Fischer–Tropsch Syntheses. Catalysis Letters, 2015, 145, 373-379.	1.4	11
143	Advanced non-precious electrocatalyst of the mixed valence CoO x nanocrystals supported on N-doped carbon nanocages for oxygen reduction. Science China Chemistry, 2015, 58, 180-186.	4.2	17
144	Carbon‣upported Base Metal Nanoparticles: Cellulose at Work. ChemSusChem, 2015, 8, 985-989.	3.6	27
145	Heterogeneous Catalysis on Nanostructured Carbon Material Supported Catalysts. RSC Catalysis Series, 2015, , 312-411.	0.1	4
146	Recent Developments in the Synthesis of Supported Catalysts. Chemical Reviews, 2015, 115, 6687-6718.	23.0	986
147	Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer–Tropsch synthesis. Applied Catalysis A: General, 2015, 502, 204-214.	2.2	78
148	A cheap and efficient catalyst with ultra-high activity for reduction of 4-nitrophenol. CrystEngComm, 2015, 17, 5744-5750.	1.3	21
149	Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of <i>N</i> -Heterocycles. Journal of the American Chemical Society, 2015, 137, 10652-10658.	6.6	265
150	Analysis of Particle Transport and Deposition of Micron-Sized Particles in a 90° Bend Using a Two-Fluid Eulerian–Eulerian Approach. Aerosol Science and Technology, 2015, 49, 692-704.	1.5	5
151	Fe–Zn catalysts for the production of high-calorie synthetic natural gas. Fuel, 2015, 159, 259-268.	3.4	25
152	Exergetic evaluation of renewable light olefins production from biomass via synthetic methanol. Applied Energy, 2015, 157, 499-507.	5.1	39
153	Effects of Ag on morphology and catalytic performance of iron catalysts for Fischer–Tropsch synthesis. RSC Advances, 2015, 5, 58727-58733.	1.7	5

#	Article	IF	CITATIONS
154	Iron nanotube-silica composite (ZVI-S-PCAT modified silica composite) preparation, characterization and application as a recyclable catalytic system for 5-membered ring organic transformations. Dalton Transactions, 2015, 44, 14975-14990.	1.6	10
155	Direct synthesis of Co@Al-MCM-41 catalyst from conventional Co/SiO ₂ catalyst. RSC Advances, 2015, 5, 62931-62935.	1.7	9
156	Fischer–Tropsch synthesis over early transition metal carbides and nitrides: CO activation and chain growth. Journal of Catalysis, 2015, 329, 325-334.	3.1	50
157	Macroscopic nanodiamonds/l²-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 499, 217-226.	2.2	53
158	Structured Niâ€CeO ₂ â€Al ₂ O ₃ /Niâ€Foam Catalyst with Enhanced Heat Transfer for Substitute Natural Gas Production by Syngas Methanation. ChemCatChem, 2015, 7, 1427-1431.	1.8	50
159	Hierarchical structured α-Al ₂ O ₃ supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins. Chemical Communications, 2015, 51, 8853-8856.	2.2	69
160	One-step production of C1–C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2. Chinese Journal of Catalysis, 2015, 36, 355-361.	6.9	34
161	Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Letters, 2015, 15, 3241-3248.	4.5	116
162	Highly activated Ag-doped Fe-based catalysts designed for Fischer–Tropsch synthesis. RSC Advances, 2015, 5, 45426-45430.	1.7	6
163	Cs promoted Fe ₅ C ₂ /charcoal nanocatalysts for sustainable liquid fuel production. RSC Advances, 2015, 5, 44211-44217.	1.7	13
164	Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 2015, 6, 6451.	5.8	325
165	Shaped Carbons As Supports for the Catalytic Conversion of Syngas to Clean Fuels. ACS Catalysis, 2015, 5, 2640-2658.	5.5	142
166	The effect of pore size or iron particle size on the formation of light olefins in Fischer–Tropsch synthesis. RSC Advances, 2015, 5, 29002-29007.	1.7	58
167	Effect of Group I alkali metal promoters on Fe/CNT catalysts in Fischer–Tropsch synthesis. Fuel, 2015, 150, 687-696.	3.4	88
168	Deoxygenation of biobased molecules by decarboxylation and decarbonylation – a review on the role of heterogeneous, homogeneous and bio-catalysis. Green Chemistry, 2015, 17, 3231-3250.	4.6	167
169	A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation. Catalysis Science and Technology, 2015, 5, 3159-3165.	2.1	33
170	A new synthesis of carbon encapsulated Fe ₅ C ₂ nanoparticles for high-temperature Fischer–Tropsch synthesis. Nanoscale, 2015, 7, 16616-16620.	2.8	67
171	Application of Nanoparticles in Manufacturing. , 2015, , 1-53.		4

#	Article	IF	Citations
172	One-step Synthesis of Core-Gold/Shell-Ceria Nanomaterial and Its Catalysis for Highly Selective Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2015, 137, 13452-13455.	6.6	185
173	Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins. Chinese Journal of Catalysis, 2015, 36, 1631-1637.	6.9	31
174	Sputtered nano-cobalt on H-USY zeolite for selectively converting syngas to gasoline. Journal of Energy Chemistry, 2015, 24, 637-641.	7.1	17
175	Synthesis of carbon-encapsulated iron nanoparticles from wood derived sugars by hydrothermal carbonization (HTC) and their application to convert bio-syngas into liquid hydrocarbons. Biomass and Bioenergy, 2015, 83, 85-95.	2.9	46
176	Preparation of hierarchical porous-structured Fe ₃ O ₄ microspheres for Fischer–Tropsch synthesis. New Journal of Chemistry, 2015, 39, 8928-8932.	1.4	5
177	Restructuring and Hydrogen Evolution on Pt Nanoparticle. Chemical Science, 2015, 6, 1485-1490.	3.7	61
178	Silicon carbide coated with TiO ₂ with enhanced cobalt active phase dispersion for Fischer–Tropsch synthesis. Chemical Communications, 2015, 51, 145-148.	2.2	50
179	Adipic acid production from lignin. Energy and Environmental Science, 2015, 8, 617-628.	15.6	499
180	High-performance heterogeneous catalysis with surface-exposed stable metal nanoparticles. Scientific Reports, 2014, 4, 7228.	1.6	48
181	Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction. Applied Catalysis B: Environmental, 2015, 165, 651-660.	10.8	103
182	An effective Co/MnOx catalyst for forming light olefins via Fischer–Tropsch synthesis. Catalysis Communications, 2015, 60, 76-81.	1.6	35
183	Synthesis of Highly Stable Grapheneâ€Encapsulated Iron Nanoparticles for Catalytic Syngas Conversion. Particle and Particle Systems Characterization, 2015, 32, 29-34.	1.2	31
184	N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chemical Communications, 2015, 51, 217-220.	2.2	142
186	Iron-based Nanomaterials in the Catalysis. , 0, , .		9
187	Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling. Angewandte Chemie - International Edition, 2016, 55, 4725-4728.	7.2	468
188	Recyclable and Selective Nitroarene Hydrogenation Catalysts Based on Carbon oated Cobalt Oxide Nanoparticles. ChemCatChem, 2016, 8, 1132-1138.	1.8	39
189	Theoretical Study of the Structural, Energetic, and Electronic Properties of 55-Atom Metal Nanoclusters: A DFT Investigation within van der Waals Corrections, Spin–Orbit Coupling, and PBE+ <i>U</i>) of 42 Metal Systems. Journal of Physical Chemistry C, 2016, 120, 28844-28856.	1.5	75
190	Co2C nanoprisms with strong facet effect for Fischer-Tropsch to olefins reaction. Science China Materials, 2016, 59, 1000-1002.	3.5	2

#	Article	IF	Citations
191	Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. Journal of Materials Chemistry A, 2016, 4, 7476-7482.	5.2	208
192	MnO2 coated Fe2O3 spindles designed for production of C5+ hydrocarbons in Fischer–Tropsch synthesis. Fuel, 2016, 177, 197-205.	3.4	54
193	Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process. Chinese Journal of Catalysis, 2016, 37, 510-516.	6.9	47
194	Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer–Tropsch Catalysts. ACS Catalysis, 2016, 6, 4017-4024.	5.5	118
195	A quantum-chemical DFT study of CO dissociation on Fe-promoted stepped Rh surfaces. Catalysis Today, 2016, 275, 111-118.	2.2	12
196	Hydrothermal preparation of Fe–Zr catalysts for the direct conversion of syngas to light olefins. RSC Advances, 2016, 6, 34204-34211.	1.7	19
197	Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure. Journal of Catalysis, 2016, 337, 240-247.	3.1	36
198	Methods for the Detection and Characterization of Silica Colloids by Microsecond spICP-MS. Analytical Chemistry, 2016, 88, 4733-4741.	3.2	37
199	Size and Promoter Effects in Supported Iron Fischer–Tropsch Catalysts: Insights from Experiment and Theory. ACS Catalysis, 2016, 6, 3147-3157.	5.5	138
200	Pyrolysis of Metal–Organic Frameworks to Fe ₃ O ₄ @Fe ₅ C ₂ Core–Shell Nanoparticles for Fischer–Tropsch Synthesis. ACS Catalysis, 2016, 6, 3610-3618.	5.5	138
201	Structural Determination of Catalytically Active Subnanometer Iron Oxide Clusters. ACS Catalysis, 2016, 6, 3072-3082.	5.5	33
202	Nanocrystalline iron–boron catalysts for low-temperature CO hydrogenation: Selective liquid fuel production and structure–activity correlation. Journal of Catalysis, 2016, 339, 102-110.	3.1	20
203	From nano- to macro-engineering of oxide-encapsulated-nanoparticles for harsh reactions: one-step organization via cross-linking molecules. Chemical Communications, 2016, 52, 11927-11930.	2.2	20
204	Enhanced formation of \hat{l} ±-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging. Journal of Fuel Chemistry and Technology, 2016, 44, 822-829.	0.9	3
205	Super-dry reforming of methane intensifies CO ₂ utilization via Le Chatelier's principle. Science, 2016, 354, 449-452.	6.0	348
207	In situ DRIFTS study of CO coupling to dimethyl oxalate over structured Al-fiber@ns-AlOOH@Pd catalyst. Journal of Catalysis, 2016, 344, 173-183.	3.1	44
208	Embedded Iron Nanoparticles in Carbon Nanogranules for Direct Synthesis of Lower Olefins. ChemistrySelect, 2016, 1, 4736-4741.	0.7	3
209	Cobalt gets in shape. Nature, 2016, 538, 44-45.	13.7	31

#	Article	IF	Citations
" 210	Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature, 2016, 538, 84-87.	13.7	647
211	A highly active non-precious metal catalyst based on Fe–N–C@CNTs for nitroarene reduction. RSC Advances, 2016, 6, 96203-96209.	1.7	9
212	Aerobic oxidative coupling of alcohols and amines to imines over iron catalysts supported on mesoporous carbon. Chinese Journal of Catalysis, 2016, 37, 1451-1460.	6.9	19
213	Study on Fe–Co alloy role over RANEY® Fe–Co bimetallic catalysts in Fischer–Tropsch synthesis. RSC Advances, 2016, 6, 101683-101687.	1.7	6
214	Ordered Mesoporous Materials as Supports for Stable Iron Catalysts in the Fischer–Tropsch Synthesis of Lower Olefins. ChemCatChem, 2016, 8, 2846-2852.	1.8	35
215	Interfacial insights into 3D plasmonic multijunction nanoarchitecture toward efficient photocatalytic performance. Nano Energy, 2016, 27, 515-525.	8.2	36
216	Metal oxide–zeolite composites in transformation of methanol to hydrocarbons: do iron oxide and nickel oxide matter?. RSC Advances, 2016, 6, 75166-75177.	1.7	14
217	Morphology effect of one-dimensional iron oxide nanocatalysts on Fischer–Tropsch synthesis. Catalysis Science and Technology, 2016, 6, 7505-7511.	2.1	17
218	Carriers for nano zerovalent iron (nZVI): synthesis, application and efficiency. RSC Advances, 2016, 6, 91025-91044.	1.7	72
219	Reversible Selectivity Modulation of Gasoline and Diesel by a Facile Metalâ€Saltâ€Modified Fischer–Tropsch Synthesis Strategy. ChemCatChem, 2016, 8, 3701-3705.	1.8	4
220	Electrochemical Synthesis and Catalytic Properties of Encapsulated Metal Clusters within Zeolitic Imidazolate Frameworks. Chemistry - A European Journal, 2016, 22, 16613-16620.	1.7	19
221	Fischer–Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co. Catalysis Letters, 2016, 146, 1858-1866.	1.4	11
222	Mechanism of the Fischer-Tropsch Process. , 2016, , 183-222.		2
223	Highly Tunable Selectivity for Syngasâ€Derived Alkenes over Zinc and Sodiumâ€Modulated Fe ₅ C ₂ Catalyst. Angewandte Chemie, 2016, 128, 10056-10061.	1.6	34
224	Highly Tunable Selectivity for Syngasâ€Derived Alkenes over Zinc and Sodiumâ€Modulated Fe ₅ C ₂ Catalyst. Angewandte Chemie - International Edition, 2016, 55, 9902-9907.	7.2	296
225	Effect of support of Co-Na-Mo catalysts on the direct conversion of CO2 to hydrocarbons. Journal of CO2 Utilization, 2016, 16, 97-103.	3.3	65
226	Iron-based Fischer–Tropsch synthesis of lower olefins: The nature of χ-Fe5C2 catalyst and why and how to introduce promoters. Journal of Energy Chemistry, 2016, 25, 911-916.	7.1	57
227	Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer–Tropsch to olefins reaction. Journal of Energy Chemistry, 2016, 25, 985-993.	7.1	25

#	Article	IF	CITATIONS
228	Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas. Catalysis Science and Technology, 2016, 6, 8464-8473.	2.1	34
229	Production of high-calorie synthetic natural gas using copper-impregnated iron catalysts. Journal of Molecular Catalysis A, 2016, 425, 190-198.	4.8	12
230	Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5–C11 iso-paraffins from syngas. Journal of Catalysis, 2016, 344, 378-388.	3.1	32
231	Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nature Communications, 2016, 7, 13058.	5.8	132
232	Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling. Angewandte Chemie, 2016, 128, 4803-4806.	1.6	115
233	Syngas conversion beyond chemical equilibrium by in situ bimolecular reaction. Research on Chemical Intermediates, 2016, 42, 249-267.	1.3	2
234	Methylation of olefins with ketene in zeotypes and its implications for the direct conversion of syngas to light olefins: a periodic DFT study. Catalysis Science and Technology, 2016, 6, 6644-6649.	2.1	36
235	On the superior activity and selectivity of PtCo/Nb2O5 Fischer Tropsch catalysts. Journal of Catalysis, 2016, 340, 270-275.	3.1	23
236	Promotion effect of Co on Cu–Zn–Al/Hβ catalyst for light hydrocarbons (C3–C5) synthesis from syngas. Fuel Processing Technology, 2016, 148, 372-379.	3.7	3
237	<i>In Situ</i> Hydrocracking of Fischer–Tropsch Hydrocarbons: CO-Prompted Diverging Reaction Pathways for Paraffin and α-Olefin Primary Products. ACS Catalysis, 2016, 6, 4229-4238.	5.5	21
238	Magnetic iron nanoparticles prepared by solution combustion synthesis and hydrogen reduction. Chemical Physics Letters, 2016, 657, 33-38.	1.2	15
239	Microstructured Alâ€fiber@mesoâ€Al ₂ O ₃ @Feâ€Mnâ€K Fischer–Tropsch catalyst for lower olefins. AICHE Journal, 2016, 62, 742-752.	1.8	43
240	Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins. Journal of Energy Chemistry, 2016, 25, 311-317.	7.1	55
241	Synergistic Promotion of Co/SiO ₂ Fischer–Tropsch Catalysts by Niobia and Platinum. ACS Catalysis, 2016, 6, 1616-1623.	5.5	44
242	Ternary copper–cobalt–cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation. Applied Catalysis A: General, 2016, 514, 14-23.	2.2	49
243	Fischer–Tropsch Synthesis to Lower Olefins over Potassium-Promoted Reduced Graphene Oxide Supported Iron Catalysts. ACS Catalysis, 2016, 6, 389-399.	5.5	195
244	Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Industrial & Engineering Chemistry Research, 2016, 55, 3383-3419.	1.8	205
245	Microfibrous-structured Al-fiber@ns-Al ₂ O ₃ core–shell composite functionalized by Fe–Mn–K via surface impregnation combustion: as-burnt catalysts for synthesis of light olefins from syngas. RSC Advances, 2016, 6, 9743-9752.	1.7	8

		CITATION REPORT		
#	Article		IF	CITATIONS
246	Size-Dependent Activity and Selectivity of Fe/MCF-17 in the Catalytic Hydrogenation of Monoxide Using Fe(0) Nanoparticles as Precursors. ACS Catalysis, 2016, 6, 2496-2500.		5.5	38
247	A new horizontal in C1 chemistry: Highly selective conversion of syngas to light olefins OX-ZEO process. Journal of Energy Chemistry, 2016, 25, 169-170.	by a novel	7.1	20
248	Selective conversion of syngas to light olefins. Science, 2016, 351, 1065-1068.		6.0	1,063
249	Surprised by selectivity. Science, 2016, 351, 1030-1031.		6.0	40
250	Application of operando spectroscopy on catalytic reactions. Current Opinion in Chemi Engineering, 2016, 12, 1-7.	cal	3.8	26
251	New insights into the effect of sodium on Fe ₃ O ₄ - based nand CO ₂ hydrogenation to light olefins. Catalysis Science and Technology, 20		2.1	198
252	Effect of sulfur on α-Al2O3-supported iron catalyst for Fischer–Tropsch synthesis. Ap General, 2016, 514, 103-113.	plied Catalysis A:	2.2	39
253	A Pd–Cu ₂ O nanocomposite as an effective synergistic catalyst for selec semi-hydrogenation of the terminal alkynes only. Chemical Communications, 2016, 52,	tive 3627-3630.	2.2	37
254	Silicon carbide foam as a porous support platform for catalytic applications. New Journa Chemistry, 2016, 40, 4285-4299.	al of	1.4	92
255	Metal-foam-structured Ni–Al2O3 catalysts: Wet chemical etching preparation and sy performance. Applied Catalysis A: General, 2016, 510, 216-226.	ngas methanation	2.2	59
256	Potassium promotion effects in carbon nanotube supported molybdenum sulfide cataly monoxide hydrogenation. Catalysis Today, 2016, 261, 137-145.	rsts for carbon	2.2	16
257	Controlling the distribution of cobalt (oxide) nanoparticles in the dual pore system of S scaffolds. Microporous and Mesoporous Materials, 2016, 224, 176-189.	BA-15	2.2	11
258	On the role of the stability of functional groups in multi-walled carbon nanotubes applie in iron-based high-temperature Fischer–Tropsch synthesis. Catalysis Today, 2016, 270		2.2	39
259	Fe2O3 nanoparticles encapsulated in TiO2 nanotubes for Fischer–Tropsch synthesis: effect of nanotubes on the catalytic performance. Fuel, 2016, 164, 347-351.	The confinement	3.4	26
260	Impact of the synthesis route of supported copper catalysts on the performance in the synthesis reaction. Catalysis Today, 2016, 272, 87-93.	methanol	2.2	25
261	Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for p biofuel 2,5-dimethylfuran. Applied Catalysis B: Environmental, 2017, 200, 192-199.	roduction of	10.8	205
262	Chemical Insights into the Design and Development of Face-Centered Cubic Ruthenium Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2017, 139, 226		6.6	147
263	The surface evolution of La0.4Sr0.6TiO3+l̂´anode in solid oxide fuel cells: Understandin sulfur-promotion effect. Journal of Power Sources, 2017, 343, 127-134.	g the	4.0	14

#	Article	IF	CITATIONS
264	Lignin-Derived Thin-Walled Graphitic Carbon-Encapsulated Iron Nanoparticles: Growth, Characterization, and Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 1917-1923.	3.2	39
265	Selectively Converting Biomass to Jet Fuel in Largeâ€scale Apparatus. ChemCatChem, 2017, 9, 2668-2674.	1.8	12
266	High-temperature Fischer-Tropsch synthesis over FeTi mixed oxide model catalysts: Tailoring activity and stability by varying the Ti/Fe ratio. Applied Catalysis A: General, 2017, 533, 38-48.	2.2	16
267	Co2C nanoprisms for syngas conversion to lower olefins with high selectivity. Chinese Journal of Catalysis, 2017, 38, 1-4.	6.9	6
268	Preparation of tunable-sized iron nanoparticles based on magnetic manipulation in inert gas condensation (IGC). Journal of Applied Physics, 2017, 121, .	1.1	7
269	Stable and selective syngas production from dry CH4-CO2 streams over supported bimetallic transition metal catalysts. Applied Catalysis B: Environmental, 2017, 206, 675-682.	10.8	69
270	Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer–Tropsch synthesis: understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation. Catalysis Science and Technology, 2017, 7, 1245-1265.	2.1	98
271	Synergistic Enhancement of Electrocatalytic CO ₂ Reduction with Gold Nanoparticles Embedded in Functional Graphene Nanoribbon Composite Electrodes. Journal of the American Chemical Society, 2017, 139, 4052-4061.	6.6	234
272	Fischer–Tropsch synthesis over an iron–cobalt–manganese (ternary) nanocatalyst prepared by hydrothermal procedure: Effects of nanocatalyst composition and operational conditions. International Journal of Hydrogen Energy, 2017, 42, 9816-9830.	3.8	27
273	Robust iron-carbide nanoparticles supported on alumina for sustainable production of gasoline-range hydrocarbons. New Journal of Chemistry, 2017, 41, 2756-2763.	1.4	13
274	Ferrite catalysts derived from electroplating sludge for high-calorie synthetic natural gas production. Applied Catalysis A: General, 2017, 534, 94-100.	2.2	23
275	Fischer–Tropsch Synthesis Performance of Supported Nano-Iron Catalysts Synthesized By a Gas-Expanded Liquid Deposition Technique. Energy & Fuels, 2017, 31, 4343-4352.	2.5	3
276	Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer–Tropsch to Olefin Reactions. ACS Catalysis, 2017, 7, 3622-3631.	5.5	157
277	Fischer–Tropsch synthesis over iron catalysts with corncob-derived promoters. Journal of Energy Chemistry, 2017, 26, 632-638.	7.1	11
278	Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas. Journal of Energy Chemistry, 2017, 26, 608-615.	7.1	37
279	Co3O4-Al2O3 mesoporous hollow spheres as efficient catalyst for Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2017, 211, 176-187.	10.8	41
280	Building premium secondary reaction field with a miniaturized capsule catalyst to realize efficient synthesis of a liquid fuel directly from syngas. Catalysis Science and Technology, 2017, 7, 1996-2000.	2.1	19
281	Zinc cobalt bimetallic nanoparticles embedded in porous nitrogen-doped carbon frameworks for the reduction of nitro compounds. Journal of Materials Research, 2017, 32, 1777-1786.	1.2	25

#	ARTICLE	IF	CITATIONS
282	Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 2017, 61, 189-248.	15.8	483
283	Directly converting CO2 into a gasoline fuel. Nature Communications, 2017, 8, 15174.	5.8	652
284	Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO 4 modified activated carbon by a facile method. Applied Catalysis A: General, 2017, 541, 50-59.	2.2	80
285	Synthesis of higher alcohols from syngas over CuFeMg-LDHs/CFs composites. International Journal of Hydrogen Energy, 2017, 42, 17425-17434.	3.8	19
286	Constructing magnetic Si–C–Fe hybrid microspheres for room temperature nitroarenes reduction. Journal of Materials Chemistry A, 2017, 5, 10986-10997.	5.2	35
287	Influence of copper and potassium on the structure and carbidisation of supported iron catalysts for Fischer–Tropsch synthesis. Catalysis Science and Technology, 2017, 7, 2325-2334.	2.1	52
288	Potassium adsorption behavior on hcp cobalt as model systems for the Fischer–Tropsch synthesis: a density functional theory study. Physical Chemistry Chemical Physics, 2017, 19, 12246-12254.	1.3	13
289	Syngas to Chemicals: The Incorporation of Aldehydes into Fischer–Tropsch Synthesis. ChemCatChem, 2017, 9, 1040-1046.	1.8	9
290	SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel, 2017, 203, 811-816.	3.4	57
291	MnO _x promotional effects on olefins synthesis directly from syngas over bimetallic Feâ€MnO _x /SiO ₂ catalysts. AICHE Journal, 2017, 63, 4451-4464.	1.8	34
292	Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion. ACS Catalysis, 2017, 7, 5121-5128.	5.5	26
293	Elucidating the Copper–HÃǥg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols. ACS Catalysis, 2017, 7, 5500-5512.	5.5	82
294	An investigation of iron modified hydroxyapatites used in the activation of n-octane. Molecular Catalysis, 2017, 438, 256-266.	1.0	13
295	Autoâ€Reduction Behavior of Cobalt on Graphitic Carbon Nitride Coated Alumina Supports for Fischer–Tropsch Synthesis. ChemCatChem, 2017, 9, 4098-4104.	1.8	18
296	New Trends in Olefin Production. Engineering, 2017, 3, 171-178.	3.2	512
297	Modelling and optimization of Fischer–Tropsch products through iron catalyst in fixed-bed reactor. International Journal of Hydrogen Energy, 2017, 42, 15497-15506.	3.8	19
298	Monodisperse Nanoâ€Fe ₃ O ₄ on αâ€Al ₂ O ₃ Catalysts for Fischer–Tropsch Synthesis to Lower Olefins: Promoter and Size Effects. ChemCatChem, 2017, 9, 3144-3152.	1.8	41
299	Advances in direct production of value-added chemicals via syngas conversion. Science China Chemistry, 2017, 60, 887-903.	4.2	62

#	Article	IF	CITATIONS
300	Lignin based synthesis of graphitic carbon-encapsulated iron nanoparticles as effective catalyst for forming lower olefins via Fischer-Tropsch synthesis. Catalysis Communications, 2017, 96, 28-31.	1.6	21
301	Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catalysis, 2017, 7, 2800-2804.	5.5	188
302	High-performance Fe 5 C 2 @CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons. Journal of Catalysis, 2017, 349, 66-74.	3.1	20
303	Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 2017, 77, 70-79.	8.2	480
304	Operando chemistry of catalyst surfaces during catalysis. Chemical Society Reviews, 2017, 46, 2001-2027.	18.7	143
305	Towards stable Fe-based catalysts with suitable active phase for Fischer-Tropsch synthesis to lower olefins. Catalysis Communications, 2017, 91, 34-37.	1.6	17
306	Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Cobalt Foil Model Catalyst under CO, H ₂ , and Their Mixtures. ACS Catalysis, 2017, 7, 1150-1157.	5.5	50
307	Fischer–Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel, 2017, 193, 369-384.	3.4	101
308	Al ₂ O ₃ Surface Complexation for Photocatalytic Organic Transformations. Journal of the American Chemical Society, 2017, 139, 269-276.	6.6	64
309	Sodium ontaining Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels. ChemSusChem, 2017, 10, 4764-4770.	3.6	89
310	Hierarchical flowerlike metal/metal oxide nanostructures derived from layered double hydroxides for catalysis and gas sensing. Journal of Materials Chemistry A, 2017, 5, 23999-24010.	5.2	43
311	Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO ₂ hydrogenation. Materials Chemistry Frontiers, 2017, 1, 2405-2409.	3.2	54
312	Mechanism of the Mn Promoter via CoMn Spinel for Morphology Control: Formation of Co ₂ C Nanoprisms for Fischer–Tropsch to Olefins Reaction. ACS Catalysis, 2017, 7, 8023-8032.	5.5	79
313	One-pass selective conversion of syngas to <i>para</i> -xylene. Chemical Science, 2017, 8, 7941-7946.	3.7	154
314	Influence of precursor porosity on sodium and sulfur promoted iron/carbon Fischer–Tropsch catalysts derived from metal–organic frameworks. Chemical Communications, 2017, 53, 10204-10207.	2.2	36
315	Reaction coupling as a promising methodology for selective conversion of syngas into hydrocarbons beyond Fischer-Tropsch synthesis. Science China Chemistry, 2017, 60, 1382-1385.	4.2	15
316	Two-dimensional graphene-directed formation of cylindrical iron carbide nanocapsules for Fischer–Tropsch synthesis. Catalysis Science and Technology, 2017, 7, 4609-4621.	2.1	56
317	Synthesis of SAPO-34 using N-octyl-d-glucamine as additive for enhanced catalytic performance in CH3Br conversion to light olefins. Molecular Catalysis, 2017, 441, 109-113.	1.0	3

#	Article	IF	CITATIONS
318	Coupling Red-Mud Ketonization of a Model Bio-Oil Mixture with Aqueous Phase Hydrogenation Using Activated Carbon Monoliths. Energy & Fuels, 2017, 31, 9529-9541.	2.5	11
319	Direct conversion of syngas to aromatics. Chemical Communications, 2017, 53, 11146-11149.	2.2	156
320	Investigation of the highly tunable selectivity to linear α-olefins in Fischer–Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization–reduction pretreatment. Catalysis Science and Technology, 2017, 7, 4736-4755.	2.1	53
321	Structure–activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins. Applied Catalysis A: General, 2017, 547, 219-229.	2.2	119
322	Highly Stable and Recyclable Graphene Layers Protected Nickel–Cobalt Bimetallic Nanoparticles as Tunable Hydrotreating Catalysts for Phenylpropane Linkages in Lignin. Catalysis Letters, 2017, 147, 2877-2885.	1.4	14
323	Iron Carbides in Fischer–Tropsch Synthesis: Theoretical and Experimental Understanding in Epsilon-Iron Carbide Phase Assignment. Journal of Physical Chemistry C, 2017, 121, 21390-21396.	1.5	45
324	MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358, 326-332.	6.0	604
325	Conversion of Synthesis Gas to Light Olefins: Impact of Hydrogenation Activity of Methanol Synthesis Catalyst on the Hybrid Process Selectivity over Cr–Zn and Cu–Zn with SAPO-34. Industrial & Engineering Chemistry Research, 2017, 56, 13392-13401.	1.8	37
326	Catalyst Sintering Kinetics Data: Is There a Minimal Chemical Mechanism Underlying Kinetics Previously Fit by Empirical Power-Law Expressions—and if So, What Are Its Implications?. Industrial & Engineering Chemistry Research, 2017, 56, 10271-10286.	1.8	13
327	A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science and Technology, 2017, 7, 4580-4598.	2.1	385
328	Higher alcohols synthesis from syngas over P-promoted non-noble metal Cu-based catalyst. Fuel, 2017, 208, 423-429.	3.4	18
329	Highly dispersed copper (oxide) nanoparticles prepared on SBA-15 partially occluded with the P123 surfactant: toward the design of active hydrogenation catalysts. Catalysis Science and Technology, 2017, 7, 5376-5385.	2.1	30
330	Supported two- and three-dimensional vanadium oxide species on the surface of β-SiC. Catalysis Science and Technology, 2017, 7, 3707-3714.	2.1	7
331	Three dimensional porous Cu-Zn/Al foam monolithic catalyst for CO2 hydrogenation to methanol in microreactor. Journal of CO2 Utilization, 2017, 21, 191-199.	3.3	40
332	Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. CheM, 2017, 3, 334-347.	5.8	377
333	Direct Transformation of Syngas to Aromatics over Na-Zn-Fe5C2 and Hierarchical HZSM-5 Tandem Catalysts. CheM, 2017, 3, 323-333.	5.8	211
334	Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation. Engineering, 2017, 3, 385-392.	3.2	46
335	Soldering of Iron Catalysts for Direct Synthesis of Light Olefins from Syngas under Mild Reaction Conditions. ACS Catalysis, 2017, 7, 6445-6452.	5.5	42

#	Article	IF	Citations
	Effect of reduction and carburization pretreatment on iron catalyst for synthesis of light olefins		
336	from CO hydrogenation. Chemical Research in Chinese Universities, 2017, 33, 672-677.	1.3	2
337	Fischer-Tropsch Synthesis in supercritical Co2 – Inhibition of Co2 selectivity for enhanced hydrocarbon production. Fuel, 2017, 209, 383-393.	3.4	3
338	Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework. Nature Communications, 2017, 8, 1680.	5.8	128
339	Highly Selective Conversion of Carbon Dioxide to Lower Olefins. ACS Catalysis, 2017, 7, 8544-8548.	5.5	387
340	Metal-exchanged magnetic β-zeolites: valorization of lignocellulosic biomass-derived compounds to platform chemicals. Green Chemistry, 2017, 19, 3856-3868.	4.6	35
341	Effect of surface composition of Fe catalyst on the activity for the production of high-calorie synthetic natural gas (SNG). Korean Journal of Chemical Engineering, 2017, 34, 320-327.	1.2	13
342	Microstructured CeO2-NiO-Al2O3/Ni-foam catalyst for oxidative dehydrogenation of ethane to ethylene. Catalysis Communications, 2017, 88, 90-93.	1.6	19
343	Effects of the Functionalization of the Ordered Mesoporous Carbon Support Surface on Iron Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins. ChemCatChem, 2017, 9, 620-628.	1.8	50
344	Facile synthesis of sheet-like Fe/C nanocomposites by a combustion-based method. Journal of Alloys and Compounds, 2017, 695, 1870-1877.	2.8	14
345	CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Applied Catalysis B: Environmental, 2017, 200, 530-542.	10.8	229
346	Novel Fe/MnK NTs nanocomposites as catalysts for direct production of lower olefins from syngas. AICHE Journal, 2017, 63, 154-161.	1.8	16
347	Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels. Applied Catalysis B: Environmental, 2017, 202, 605-610.	10.8	230
348	Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity. Applied Catalysis B: Environmental, 2017, 204, 475-485.	10.8	104
349	Advances in Catalysis for Syngas Conversion to Hydrocarbons. Advances in Catalysis, 2017, , 125-208.	0.1	64
350	Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation. Journal of Fuel Chemistry and Technology, 2017, 45, 1489-1498.	0.9	8
352	Charge-Tuned CO Activation over a χ-Fe ₅ C ₂ Fischer–Tropsch Catalyst. ACS Catalysis, 2018, 8, 2709-2714.	5.5	70
353	Cobaltâ€Ironâ€Manganese Catalysts for the Conversion of Endâ€ofâ€Lifeâ€Tireâ€Derived Syngas into Light Terminal Olefins. Chemistry - A European Journal, 2018, 24, 4597-4606.	1.7	10
354	Modification of Saltâ€Templated Carbon Surface Chemistry for Efficient Oxidation of Glucose with Supported Gold Catalysts. ChemCatChem, 2018, 10, 2458-2465.	1.8	9

#	Article	IF	CITATIONS
355	Mn promoted Co catalysts for Fischer-Tropsch production of light olefins – An experimental and theoretical study. Journal of Catalysis, 2018, 361, 23-32.	3.1	62
356	Relationship between Iron Carbide Phases (ε-Fe ₂ C, Fe ₇ C ₃ , and) Tj ETQq1 Catalysts. ACS Catalysis, 2018, 8, 3304-3316.	1 0.78431 5.5	.4 rgBT /Ove 200
357	Chemical and structural effects of strontium on iron-based Fischer-Tropsch synthesis catalysts. Molecular Catalysis, 2018, 449, 1-7.	1.0	11
358	Mechanisms of Formaldehyde and C ₂ Formation from Methylene Reacting with CO ₂ Adsorbed on Ni(110). Journal of Physical Chemistry C, 2018, 122, 13827-13833.	1.5	6
359	Shapeâ€Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Angewandte Chemie - International Edition, 2018, 57, 4692-4696.	7.2	185
360	Supported Fe/MnO _x catalyst with Ag doping for remarkably enhanced catalytic activity in Fischer–Tropsch synthesis. Catalysis Science and Technology, 2018, 8, 1953-1970.	2.1	38
361	Effects of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts. Applied Catalysis B: Environmental, 2018, 234, 153-166.	10.8	68
362	Nanoceria-Supported Single-Atom Platinum Catalysts for Direct Methane Conversion. ACS Catalysis, 2018, 8, 4044-4048.	5.5	214
363	Influence of Molecular Weight on Structure and Catalytic Characteristics of Ordered Mesoporous Carbon Derived from Lignin. ACS Omega, 2018, 3, 1350-1356.	1.6	30
364	Support Effect of the Fe/BN Catalyst on Fischer–Tropsch Performances: Role of the Surface B–O Defect. Industrial & Engineering Chemistry Research, 2018, 57, 2805-2810.	1.8	24
365	Iron nanostructured catalysts: design and applications. Catalysis Science and Technology, 2018, 8, 1754-1776.	2.1	33
366	Noble Metal Promoted CoMn Catalysts for Fischer–Tropsch Synthesis. Catalysis Letters, 2018, 148, 1027-1034.	1.4	3
367	The challenge of catalyst prediction. Faraday Discussions, 2018, 208, 35-52.	1.6	8
368	Direct Conversion of Syngas into Light Olefins over Zirconiumâ€Doped Indium(III) Oxide and SAPOâ€34 Bifunctional Catalysts: Design of Oxide Component and Construction of Reaction Network. ChemCatChem, 2018, 10, 1536-1541.	1.8	93
369	AuPdâ^'Fe ₃ O ₄ Nanoparticle Catalysts for Highly Selective, Oneâ€Pot Cascade Nitroâ€Reduction and Reductive Amination. Advanced Synthesis and Catalysis, 2018, 360, 1253-1261.	2.1	47
370	Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Applied Catalysis A: General, 2018, 552, 168-183.	2.2	82
371	Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis. Carbon, 2018, 130, 304-314.	5.4	47
372	Effects of methylating agent and BrÃ,nsted acidity on methylation activity of olefins in CHA-structured zeolites: A periodic DFT study. Molecular Catalysis, 2018, 446, 106-114.	1.0	4

#	Article	IF	Citations
373	Enhanced Fischer–Tropsch performances of graphene oxide-supported iron catalysts <i>via</i> argon	2.1	38
	pretreatment. Catalysis Science and Technology, 2018, 8, 1113-1125.		
374	Shape-selective FeMnK/Al2O3@Silicalite-2 core-shell catalyst for Fischer-Tropsch synthesis to lower olefins. Catalysis Today, 2018, 314, 101-106.	2.2	25
375	Effect of graphitic carbon modification on the catalytic performance of Fe@SiO2-GC catalysts for forming lower olefins via Fischer-Tropsch synthesis. Journal of Colloid and Interface Science, 2018, 516, 16-22.	5.0	18
376	Highly efficient Fischer–Tropsch synthesis over an alumina-supported ruthenium catalyst. Catalysis Science and Technology, 2018, 8, 1528-1534.	2.1	8
377	Selectivity shift from paraffins to α-olefins in low temperature Fischer–Tropsch synthesis in the presence of carboxylic acids. Chemical Communications, 2018, 54, 2345-2348.	2.2	18
378	Computational exploration of Fe55@C240-catalyzed Fischer–Tropsch synthesis. Physical Chemistry Chemical Physics, 2018, 20, 2741-2753.	1.3	2
379	Enhanced synthesis of silver nanoparticles by combination of plants extract and starch for the removal of cationic dye from simulated waste water using response surface methodology. Journal of Molecular Liquids, 2018, 252, 368-382.	2.3	33
380	Carbon-encapsulated highly dispersed FeMn nanoparticles for Fischer–Tropsch synthesis to light olefins. New Journal of Chemistry, 2018, 42, 2413-2421.	1.4	24
381	Insight into the structure and morphology of Run clusters on Co(111) and Co(311) surfaces. Catalysis Science and Technology, 2018, 8, 2728-2739.	2.1	7
382	Light Olefin Synthesis from Syngas over Sulfide–Zeolite Composite Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 6815-6820.	1.8	23
383	Precursor controlled synthesis of graphene oxide supported iron catalysts for Fischer–Tropsch synthesis. Catalysis Science and Technology, 2018, 8, 2883-2893.	2.1	21
384	Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins <i>via</i> methanol/dimethyl ether intermediates. Chemical Science, 2018, 9, 4708-4718.	3.7	208
385	Attachment of Iron Oxide Nanoparticles to Carbon Nanotubes and the Consequences for Catalysis. ChemCatChem, 2018, 10, 3388-3391.	1.8	11
386	Effect of iron loading on acidity and performance of Fe/HZSM-5 catalyst for direct synthesis of aromatics from syngas. Fuel, 2018, 228, 1-9.	3.4	53
387	Directly converting carbon dioxide to linear $\hat{l}\pm$ -olefins on bio-promoted catalysts. Communications Chemistry, 2018, 1, .	2.0	123
388	Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 458, 346-354.	1.0	17
389	Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity. Applied Catalysis B: Environmental, 2018, 232, 420-428.	10.8	112
390	Shape‣elective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Angewandte Chemie, 2018, 130, 4782-4786.	1.6	27

#	Article	IF	CITATIONS
391	Bifunctional Catalysis for the Conversion of Synthesis Gas to Olefins and Aromatics. ChemCatChem, 2018, 10, 1107-1112.	1.8	54
392	Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface. Applied Energy, 2018, 209, 1-7.	5.1	35
393	Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. Chemical Engineering Journal, 2018, 334, 714-724.	6.6	48
394	Nanotechnology Applications in Petroleum Refining. Topics in Mining, Metallurgy and Materials Engineering, 2018, , 37-65.	1.4	11
395	Synthesis of Lower Olefins from Synthesis Gas over Active Carbon-Supported Iron Catalyst. Catalysis Today, 2018, 303, 117-122.	2.2	14
396	Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts. Catalysis Today, 2018, 311, 8-22.	2.2	77
397	Direct synthesis of liquefied petroleum gas from syngas over H-ZSM-5 enwrapped Pd-based zeolite capsule catalyst. Catalysis Today, 2018, 303, 77-85.	2.2	19
398	Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts. Applied Catalysis B: Environmental, 2018, 224, 518-532.	10.8	83
399	An efficient, recyclable and large-scalable fiber-supported Fe(III) catalytic system on a simple fixed-bed reactor verified in the Biginelli reactions. Journal of Industrial and Engineering Chemistry, 2018, 60, 333-340.	2.9	13
400	Stable and reusable nanoscale Fe ₂ O ₃ -catalyzed aerobic oxidation process for the selective synthesis of nitriles and primary amides. Green Chemistry, 2018, 20, 266-273.	4.6	47
401	Development and Elucidation of Superior Turnover Rates and Selectivity of Supported Molecular Catalysts. ChemCatChem, 2018, 10, 1666-1685.	1.8	3
402	Stabilizing Nanocrystalline Oxide Nanofibers at Elevated Temperatures by Coating Nanoscale Surface Amorphous Films. Nano Letters, 2018, 18, 130-136.	4.5	23
403	Direct Production of Lower Olefins from CO ₂ Conversion via Bifunctional Catalysis. ACS Catalysis, 2018, 8, 571-578.	5.5	382
404	Synthesis, Characterization and Applications of Magnetic Iron Oxide Nanostructures. Arabian Journal for Science and Engineering, 2018, 43, 43-61.	1.7	34
405	Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis. Catalysis Science and Technology, 2018, 8, 210-220.	2.1	28
406	Oxidative dehydrogenation of ethane to ethylene: A promising CeO2-ZrO2-modified NiO-Al2O3/Ni-foam catalyst. Applied Catalysis A: General, 2018, 550, 151-159.	2.2	30
407	Expedient Synthesis of <i>N</i> â€Methyl―and <i>N</i> â€Alkylamines by Reductive Amination using Reusable Cobalt Oxide Nanoparticles. ChemCatChem, 2018, 10, 1235-1240.	1.8	29
408	Effect of Topochemical Processes in the Synthesis of FeK/C Catalysts on Their Activity and Selectivity in the Fischer–Tropsch Synthesis. Kinetics and Catalysis, 2018, 59, 828-836.	0.3	2

ARTICLE IF CITATIONS Hierarchically porous MOF/polymer composites <i>via</i> interfacial nanoassembly and emulsion 409 5.2 85 polymerization. Journal of Materials Chemistry A, 2018, 6, 20473-20479. Syngas-derived olefins over iron-based catalysts: Effects of basic properties of MgO nanocrystals. Journal of Fuel Chemistry and Technology, 2018, 46, 1342-1351. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C₂₊ 411 5.2144 hydrocarbons. Journal of Materials Chemistry A, 2018, 6, 23244-23262. Recent advances in multifunctional capsule catalysts in heterogeneous catalysis. Chinese Journal of Chemical Physics, 2018, 31, 393-403. Sintered precipitated iron catalysts with enhanced fragmentation-resistance ability for 413 2.1 11 Fischer–Tropsch synthesis to lower olefins. Catalysis Science and Technology, 2018, 8, 5943-5954. In-situ Open Cell TEM/STEM Environmental Study of Iron Oxides Nanoparticles and Sample-Beam Interaction in O2 gas. Microscopy and Microanalysis, 2018, 24, 260-261. 0.2 Directly Converting Syngas to Linear α-Olefins over Core–Shell 415 Fe₃O₄@MnO₂ Catalysts. ACS Applied Materials & amp; Interfaces, 4.0 47 2018, 10, 43578-43587. Preparation of Cobalt Nanocrystals Supported on Metal Oxides To Study Particle Growth in 5.5 Fischer–Tropsch Catalysts. ACS Catalysis, 2018, 8, 10581-10589. Tandem promotion of iron catalysts by sodium-sulfur and nitrogen-doped carbon layers on carbon 417 nanotube supports for the Fischer-Tropsch to olefins synthesis. Applied Catalysis A: General, 2018, 568, 2.2 17 213-220. Sustainable scalable synthesis of sulfide nanocrystals at low cost with an ionic liquid sulfur 5.8 precursor. Nature Communications, 2018, 9, 4078. Iron-based catalysts encapsulated by nitrogen-doped graphitic carbon for selective synthesis of liquid 419 6.9 14 fuels through the Fischer-Tropsch process. Chinese Journal of Catalysis, 2018, 39, 1971-1979. Low-carbon roadmap of chemical production: A case study of ethylene in China. Renewable and 8.2 Sustainable Energy Reviews, 2018, 97, 580-591. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nature 421 5.8 179 Communications, 2018, 9, 4459. Interfacial CoO_{<i>x</i>} Layers on TiO₂ as an Efficient Catalyst for 422 3.6 Solventâ€Free Aerobic Oxidation of Hydrocarbons. ChemSusChem, 2018, 11, 3965-3974. Photo-Driven Syngas Conversion to Lower Olefins over Oxygen-Decorated Fe5C2 Catalyst. CheM, 2018, 423 5.8 62 4, 2917-2928. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nature Catalysis, 2018, 424 16.1 300 1, 787-793. Mesoporous Fe-based spindles designed as catalysts for the Fischerâ€"Tropsch synthesis of 425 1.4 9 C₅₊ hydrocarbons. New Journal of Chemistry, 2018, 42, 15968-15973. On the nature of active phases and sites in CO and CO₂ hydrogenation catalysts. Catalysis 2.1 Science and Technology, 2018, 8, 5681-5707.

#	Article	IF	CITATIONS
427	Morphology control of Co2C nanostructures via the reduction process for direct production of lower olefins from syngas. Journal of Catalysis, 2018, 366, 289-299.	3.1	52
428	Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru ₁ /mpg-C ₃ N ₄ Catalyst. Journal of the American Chemical Society, 2018, 140, 11161-11164.	6.6	199
429	Modified iron catalyst for direct synthesis of light olefin from syngas. Catalysis Today, 2018, 316, 142-148.	2.2	27
430	On the Chemistry of Iron Oxide Supported on Î ³ -Alumina and Silica Catalysts. ACS Omega, 2018, 3, 5362-5374.	1.6	44
431	Plasma-Assisted Preparation of Highly Dispersed Cobalt Catalysts for Enhanced Fischer–Tropsch Synthesis Performance. ACS Catalysis, 2018, 8, 6177-6185.	5.5	60
432	Nanostructured Catalyst for Fischer–Tropsch Synthesis. Chinese Journal of Chemistry, 2018, 36, 798-808.	2.6	17
433	Fe/ZSM-5 catalysts for ammonia decomposition to COx-free hydrogen: Effect of SiO2/Al2O3 ratio. Molecular Catalysis, 2018, 455, 14-22.	1.0	51
434	One-pot synthesis of carbon-coated Fe ₃ O ₄ nanoparticles with tunable size for production of gasoline fuels. New Journal of Chemistry, 2018, 42, 10861-10867.	1.4	13
435	Highly selective production of olefins from syngas with modified ASF distribution model. Applied Catalysis A: General, 2018, 563, 146-153.	2.2	23
436	Structure evolution of spinel Fe-MII (M=Mn, Fe, Co, Ni) ferrite in CO hydrogeneration. Molecular Catalysis, 2018, 456, 31-37.	1.0	18
437	Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins. Journal of Catalysis, 2018, 365, 71-85.	3.1	71
438	Synergetic catalysis of bimetallic copper–cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas. Catalysis Science and Technology, 2018, 8, 3936-3947.	2.1	49
439	Synthesis of Bare Iron Nanoparticles from Ferrocene Hexane Solution by Femtosecond Laser Pulses. ChemPhysChem, 2018, 19, 2480-2485.	1.0	13
440	Porous Graphene-Confined Fe–K as Highly Efficient Catalyst for CO ₂ Direct Hydrogenation to Light Olefins. ACS Applied Materials & Interfaces, 2018, 10, 23439-23443.	4.0	100
441	Nickel-induced magnetic behaviour of nano-structured α-Fe ₂ O ₃ , synthesised by facile wet chemical route. Philosophical Magazine, 2018, 98, 2425-2439.	0.7	6
442	Fabrication of Fe ₂ C Embedded in Hollow Carbon Spheres: a Highâ€Performance and Stable Catalyst for Fischerâ€Tropsch Synthesis. ChemCatChem, 2018, 10, 3883-3891.	1.8	27
443	Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether. Angewandte Chemie - International Edition, 2018, 57, 12012-12016.	7.2	142
444	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	11.1	100

#	Article	IF	CITATIONS
445	Enhanced Conversion of Syngas to Gasoline-Range Hydrocarbons over Carbon Encapsulated Bimetallic FeMn Nanoparticles. ACS Applied Energy Materials, 2018, 1, 4304-4312.	2.5	23
446	A durable nanocatalyst of potassium-doped iron-carbide/alumina for significant production of linear alpha olefins via Fischer-Tropsch synthesis. Applied Catalysis A: General, 2018, 564, 190-198.	2.2	19
447	Exploring the performance of nanostructured reagents with organic-group-defined morphology in cross-coupling reaction. Nature Communications, 2018, 9, 2936.	5.8	34
448	Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether. Angewandte Chemie, 2018, 130, 12188-12192.	1.6	17
449	Î ³ -Iron Phase Stabilized at Room Temperature by Thermally Processed Graphene Oxide. Journal of the American Chemical Society, 2018, 140, 9051-9055.	6.6	24
450	Magnetically Recyclable Catalytic Carbon Nanoreactors. Advanced Functional Materials, 2018, 28, 1802869.	7.8	17
451	Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite. Journal of CO2 Utilization, 2018, 27, 81-88.	3.3	65
452	New development in Fe/Co catalysts: Structure modulation and performance optimization for syngas conversion. Chinese Journal of Catalysis, 2018, 39, 1329-1346.	6.9	20
453	Coprecipitated Fe/K/spinel nanocomposites for Fischer-Tropsch to lower olefins. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	9
454	Unravelling the New Roles of Na and Mn Promoter in CO ₂ Hydrogenation over Fe ₃ O ₄ â€Based Catalysts for Enhanced Selectivity to Light αâ€Olefins. ChemCatChem, 2018, 10, 4718-4732.	1.8	122
455	Tailoring of Fe/MnK-CNTs Composite Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins from Syngas. Industrial & Engineering Chemistry Research, 2018, 57, 11554-11560.	1.8	21
456	Coâ€Based Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for the Photothermal Production of Light Olefins. Advanced Materials, 2018, 30, e1800527.	11.1	139
457	Emerging bioeconomy sectors in energy systems modeling – Integrated systems analysis of electricity, heat, road transport, aviation, and chemicals: a case study for the Netherlands. Biofuels, Bioproducts and Biorefining, 2018, 12, 665-693.	1.9	20
458	Direct conversion of simulated propene-rich bio-syngas to liquid iso-hydrocarbons via FT-oligomerization integrated catalytic process. Energy Conversion and Management, 2018, 171, 211-221.	4.4	10
459	Confinement Impact for the Dynamics of Supported Metal Nanocatalyst. Small, 2018, 14, 1801586.	5.2	4
460	Characterization of CoMn catalyst by in situ X-ray absorption spectroscopy and wavelet analysis for Fischer–Tropsch to olefins reaction. Journal of Energy Chemistry, 2019, 32, 118-123.	7.1	31
461	Selective conversion of syngas to propane over ZnCrO -SSZ-39 OX-ZEO catalysts. Journal of Energy Chemistry, 2019, 36, 141-147.	7.1	26
462	Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer-Tropsch synthesis. Nano Research, 2019, 12, 2568-2575.	5.8	18

#	Article	IF	CITATIONS
463	CO2 hydrogenation to light olefins with high-performance Fe0.30Co0.15Zr0.45K0.10O1.63. Journal of Catalysis, 2019, 377, 224-232.	3.1	37
464	Cobalt-Nanoparticles Catalyzed Efficient and Selective Hydrogenation of Aromatic Hydrocarbons. ACS Catalysis, 2019, 9, 8581-8591.	5.5	52
465	Enhancement of Light Olefins Selectivity Over N-Doped Fischer-Tropsch Synthesis Catalyst Supported on Activated Carbon Pretreated with KMnO4. Catalysts, 2019, 9, 505.	1.6	5
466	Enhanced performance of well-dispersed Co species incorporated on porous carbon derived from metal-organic frameworks in 1,3-butadiene hydrogenation. Microporous and Mesoporous Materials, 2019, 288, 109557.	2.2	12
467	Synergy of nanoconfinement and promotion in the design of efficient supported iron catalysts for direct olefin synthesis from syngas. Journal of Catalysis, 2019, 376, 1-16.	3.1	26
468	Iron Carbides: Control Synthesis and Catalytic Applications in CO <i>_x</i> Hydrogenation and Electrochemical HER. Advanced Materials, 2019, 31, e1901796.	11.1	69
469	Activation of CO and surface carbon species for conversion of syngas to light olefins on ZnCrO -Al2O3 catalysts. Applied Surface Science, 2019, 494, 353-360.	3.1	25
470	Carbon Monoxide Activation on Cobalt Carbide for Fischer–Tropsch Synthesis from First-Principles Theory. ACS Catalysis, 2019, 9, 8093-8103.	5.5	47
471	Crystal phase effect of iron oxides on the aerobic oxidative coupling of alcohols and amines under mild conditions: A combined experimental and theoretical study. Journal of Catalysis, 2019, 377, 145-152.	3.1	37
472	Regulating C–C coupling in thermocatalytic and electrocatalytic CO _x conversion based on surface science. Chemical Science, 2019, 10, 7310-7326.	3.7	34
473	Experimental Study of Effective Mass and Spin–Orbital Energy of the Al ₂ O ₃ /NiO Nanoheterostructure Material. Journal of Physical Chemistry A, 2019, 123, 9857-9864.	1.1	0
474	Electrochemical study and physicochemical characterization of iron nanoparticles electrodeposited onto HOPG from Fe(III) ions dissolved in the choline chloride-urea deep eutectic solvent. Journal of Electroanalytical Chemistry, 2019, 851, 113453.	1.9	20
475	Extremely productive iron-carbide nanoparticles on graphene flakes for CO hydrogenation reactions under harsh conditions. Journal of Catalysis, 2019, 378, 289-297.	3.1	17
476	Effects of pyrolysis temperatures on the textural, magnetic, morphology, and catalytic properties of supported nickel nanoparticles. Journal of Saudi Chemical Society, 2019, 23, 999-1005.	2.4	1
477	Influence of Ligand Size and Chelation Strength on Zerovalent Iron Nanoparticle Adsorption and Oxidation Behavior in the Presence of Water Vapor and Liquid Water. Journal of Physical Chemistry C, 2019, 123, 2474-2487.	1.5	9
478	CO Adsorption and Activation of ÎFe ₂ C Fischer–Tropsch Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 21296-21303.	1.8	9
479	High-Temperature Fischer–Tropsch Synthesis of Light Olefins over Nano-Fe ₃ O ₄ @MnO ₂ Core–Shell Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 21350-21362.	1.8	21
480	FeK on 3D Graphene–Zeolite Tandem Catalyst with High Efficiency and Versatility in Direct CO ₂ Conversion to Aromatics. ACS Sustainable Chemistry and Engineering, 2019, 7, 17825-17833.	3.2	53

#	Article		CITATIONS
481	Li-decorated Fe-Mn nanocatalyst for high-temperature Fischer–Tropsch synthesis of light olefins. Fuel, 2019, 257, 116101.	3.4	29
482	Design and synthesis of spherical-platelike ternary copper-cobalt-manganese catalysts for direct conversion of syngas to ethanol and higher alcohols. Journal of Catalysis, 2019, 378, 1-16.	3.1	48
483	CO Coupling Chemistry of a Terminal Mo Carbide: Sequential Addition of Proton, Hydride, and CO Releases Ethenone. Journal of the American Chemical Society, 2019, 141, 15664-15674.	6.6	33
484	Fischer–Tropsch Synthesis to Olefins: Catalytic Performance and Structure Evolution of Co ₂ C-Based Catalysts under a CO ₂ Environment. ACS Catalysis, 2019, 9, 9554-9567.	5.5	64
485	lron ore as precursor for preparation of highly active χ-Fe5C2 core-shell catalyst for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2019, 587, 117264.	2.2	16
486	Ex-Solution Synthesis of Sub-5-nm FeO _{<i>x</i>} Nanoparticles on Mesoporous Hollow N,O-Doped Carbon Nanoshells for Electrocatalytic Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 6092-6097.	2.4	30
487	Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols. Molecular Catalysis, 2019, 479, 110610.	1.0	15
488	Mn decorated Na/Fe catalysts for CO ₂ hydrogenation to light olefins. Catalysis Science and Technology, 2019, 9, 456-464.	2.1	96
489	From CO ₂ methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 2019, 48, 205-259.	18.7	205
490	Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. Angewandte Chemie - International Edition, 2019, 58, 4627-4631.	7.2	92
491	The promotional effect of Mn on Fe-based Fischer–Tropsch catalysts for the synthesis of C ₅₊ hydrocarbons. Sustainable Energy and Fuels, 2019, 3, 219-226.	2.5	16
492	Direct production of olefins <i>via</i> syngas conversion over Co ₂ C-based catalyst in slurry bed reactor. RSC Advances, 2019, 9, 4131-4139.	1.7	10
493	Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. Angewandte Chemie, 2019, 131, 4675-4679.	1.6	65
494	Is oxidation–reduction a real robust strategy for lignin conversion? A comparative study on lignin and model compounds. Green Chemistry, 2019, 21, 803-811.	4.6	46
495	Linear α-olefin production with Na-promoted Fe–Zn catalysts <i>via</i> Fischer–Tropsch synthesis. RSC Advances, 2019, 9, 14176-14187.	1.7	27
496	Carbon dioxide hydrogenation to light olefins over ZnO-Y2O3 and SAPO-34 bifunctional catalysts. Catalysis Communications, 2019, 129, 105711.	1.6	40
497	Nitrogenâ€Rich Porous Organic Polyamines for Stabilization of Highly Dispersed Metal Nanoparticles and Catalytic Application. Macromolecular Rapid Communications, 2019, 40, 1900100.	2.0	5
498	Plasma assisted carburization of CoPt/TiO2 catalysts with improved Fischer-Tropsch synthesis performance. Fuel, 2019, 254, 115577.	3.4	12

#	Article		CITATIONS
499	New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO ₂ into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48, 3193-3228.	18.7	742
500	Co supported on N-doped carbon, derived from bimetallic azolate framework-6: a highly effective oxidative desulfurization catalyst. Journal of Materials Chemistry A, 2019, 7, 17823-17833.	5.2	55
501	Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. Journal of Molecular Liquids, 2019, 290, 111059.	2.3	76
502	Direct production of aromatics from syngas over a hybrid FeMn Fischer–Tropsch catalyst and HZSM-5 zeolite: local environment effect and mechanism-directed tuning of the aromatic selectivity. Catalysis Science and Technology, 2019, 9, 3933-3946.	2.1	41
503	Insight into the Intrinsic Active Site for Selective Production of Light Olefins in Cobalt-Catalyzed Fischer–Tropsch Synthesis. ACS Catalysis, 2019, 9, 7073-7089.	5.5	60
504	Atomic-Scale Investigation of the Structural and Electronic Properties of Cobalt–Iron Bimetallic Fischer–Tropsch Catalysts. ACS Catalysis, 2019, 9, 7998-8011.	5.5	37
505	Effect of Ca Promoter on the Structure and Catalytic Behavior of FeK/Al 2 O 3 Catalyst in Fischerâ€Tropsch Synthesis. ChemCatChem, 2019, 11, 3220-3226.	1.8	15
506	Controlling the Reduction Extent for Metal Catalysts. ChemistrySelect, 2019, 4, 5496-5502.	0.7	1
507	Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts. Applied Catalysis B: Environmental, 2019, 256, 117816.	10.8	84
508	Understanding the effects of metal particle size on the NO2 reduction from a DFT study. Applied Surface Science, 2019, 489, 1019-1029.	3.1	10
509	On the High Structural Heterogeneity of Fe-Impregnated Graphitic-Carbon Catalysts from Fe Nitrate Precursor. Catalysts, 2019, 9, 303.	1.6	21
510	Selective Transformation of CO ₂ and H ₂ into Lower Olefins over In ₂ O ₃ â€ZnZrO _{<i>x</i>} /SAPOâ€34 Bifunctional Catalysts. ChemSusChem, 2019, 12, 3582-3591.	3.6	103
511	Stabilizing the active phase of iron-based Fischer–Tropsch catalysts for lower olefins: mechanism and strategy. Chemical Science, 2019, 10, 6083-6090.	3.7	41
512	The role of intermediate Co _x Mn _{1â^{°°}x} O (<i>x</i> = 0.6–0.85) nanocrystals in the formation of active species for the direct production of lower olefins from syngas. Chemical Communications, 2019, 55, 6595-6598.	2.2	31
513	Eco-friendly green synthesis and characterization of novel Fe3O4/SiO2/Cu2O–Ag nanocomposites using Crataegus pentagyna fruit extract for photocatalytic degradation of organic contaminants. Journal of Materials Science: Materials in Electronics, 2019, 30, 10994-11004.	1.1	39
514	Potassium-promoted magnesium ferrite on 3D porous graphene as highly efficient catalyst for CO hydrogenation to lower olefins. Journal of Catalysis, 2019, 374, 24-35.	3.1	20
515	Tandem Conversion of CO ₂ to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts. ChemCatChem, 2019, 11, 2879-2886.	1.8	57
516	<i>In situ</i> XAFS study on the formation process of cobalt carbide by Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 2019, 21, 10791-10797.	1.3	18

#	Article		CITATIONS
517	Development of Highly Selective Support for CO Hydrogenation to Light Olefins with Partially Passivated Iron Catalysts. ChemCatChem, 2019, 11, 3187-3199.	1.8	11
518	Selective Conversion of Syngas to Aromatics over Fe ₃ O ₄ @MnO ₂ and Hollow HZSM-5 Bifunctional Catalysts. ACS Catalysis, 2019, 9, 5147-5156.	5.5	103
519	Effect of a potassium promoter on the Fischer–Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon. Catalysis Science and Technology, 2019, 9, 2728-2741.	2.1	98
520	Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nature Communications, 2019, 10, 1297.	5.8	129
521	Zeolite Nanoreactor for Investigating Sintering Effects of Cobalt-Catalyzed Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2019, 58, 5140-5145.	1.8	15
522	Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C ₁ olarchemie. Angewandte Chemie, 2019, 131, 17690-17715.	1.6	31
523	Sustainable olefin supply chain network design under seasonal feedstock supplies and uncertain carbon tax rate. Journal of Cleaner Production, 2019, 222, 280-299.	4.6	34
524	From Solar Energy to Fuels: Recent Advances in Lightâ€Đriven C ₁ Chemistry. Angewandte Chemie - International Edition, 2019, 58, 17528-17551.	7.2	285
525	Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation. ACS Catalysis, 2019, 9, 3866-3876.	5.5	177
526	Synthesis of High-Performance and High-Stability Pd(II)/NaY Catalyst for CO Direct Selective Conversion to Dimethyl Carbonate by Rational Design. ACS Catalysis, 2019, 9, 3595-3603.	5.5	37
527	Zirconium Doped Precipitated Fe-Based Catalyst for Fischer–Tropsch Synthesis to Light Olefins at Industrially Relevant Conditions. Catalysis Letters, 2019, 149, 1486-1495.	1.4	15
528	Supported Cobalt Nanoparticles with a Single Active Phase for Fischer–Tropsch Synthesis. ACS Applied Nano Materials, 2019, 2, 2266-2272.	2.4	22
529	Direct conversion of CO and H2O into liquid fuels under mild conditions. Nature Communications, 2019, 10, 1389.	5.8	31
530	Iron and Iron Oxide-Based Eco-nanomaterials for Catalysis and Water Remediation. , 2019, , 301-321.		2
531	Highâ€Quality Gasoline Directly from Syngas by Dual Metal Oxide–Zeolite (OXâ€ZEO) Catalysis. Angewandte Chemie - International Edition, 2019, 58, 7400-7404.	7.2	95
532	High yield of nano zero-valent iron (nZVI) from carbothermal synthesis using lignin-derived substances from municipal biowaste. Journal of Analytical and Applied Pyrolysis, 2019, 140, 239-244.	2.6	21
533	Highâ€Quality Gasoline Directly from Syngas by Dual Metal Oxide–Zeolite (OXâ€ZEO) Catalysis. Angewandte Chemie, 2019, 131, 7478-7482.	1.6	15
534	Ethanol and Higher Alcohols Synthesis from Syngas over CuCoM (M=Fe, Cr, Ga and Al) Nanoplates Derived From Hydrotalciteâ€Like Precursors. ChemCatChem, 2019, 11, 2695-2706.	1.8	29

#	Article	IF	CITATIONS
535	Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions. ACS Catalysis, 2019, 9, 3026-3053.	5.5	238
536	Highly Active and Stable Carbon Nanosheets Supported Iron Oxide for Fischerâ€Tropsch to Olefins Synthesis. ChemCatChem, 2019, 11, 1625-1632.	1.8	8
537	Development of Tandem Catalysts for CO ₂ Hydrogenation to Olefins. ACS Catalysis, 2019, 9, 2639-2656.	5.5	201
538	Systemic Concocting of Crossâ€Linked Enzyme Aggregates of <i>Candida antarctica</i> Lipase B (Novozyme 435) for the Biomanufacturing of Rhamnolipids. Journal of Surfactants and Detergents, 2019, 22, 477-490.	1.0	23
539	Bio-syngas converting to liquid fuels over co modified Fe3O4-MnO2 catalysts. Chinese Journal of Chemical Physics, 2019, 32, 721-726.	0.6	1
540	Ethylene adsorption on Ag(111), Rh(111) and Ir(111) by (meta)-GGA based density functional theory calculations. Chinese Journal of Chemical Physics, 2019, 32, 437-443.	0.6	9
541	Selective mild oxidation of methane to methanol or formic acid on Fe–MOR catalysts. Catalysis Science and Technology, 2019, 9, 6946-6956.	2.1	29
542	CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10, 5698.	5.8	571
543	Preparative Asymmetric Synthesis of Canonical and Non anonical αâ€amino Acids Through Formal Enantioselective Biocatalytic Amination of Carboxylic Acids. Advanced Synthesis and Catalysis, 2019, 361, 1348-1358.	2.1	22
544	A Newly Designed Core-Shell-Like Zeolite Capsule Catalyst for Synthesis of Light Olefins from Syngas via Fischer–Tropsch Synthesis Reaction. Catalysis Letters, 2019, 149, 441-448.	1.4	15
545	Effect of Na Promoter on Fe-Based Catalyst for CO ₂ Hydrogenation to Alkenes. ACS Sustainable Chemistry and Engineering, 2019, 7, 925-932.	3.2	117
546	Discovery of a Fischerâ€Tropsch Hybrid Reaction: Hydrogenation of Methylformate to Longâ€Chain Hydrocarbons with Andersonâ€5chulzâ€Flory Chain Length Distribution. ChemCatChem, 2019, 11, 1200-1204.	1.8	10
547	Realizing and Recognizing Syngas-to-Olefins Reaction via a Dual-Bed Catalyst. ACS Catalysis, 2019, 9, 1026-1032.	5.5	86
548	Metal–Organic Frameworks in Solid–Gas Phase Catalysis. ACS Catalysis, 2019, 9, 130-146.	5.5	229
549	Increasing the activity and selectivity of Co-based FTS catalysts supported by carbon materials for direct synthesis of clean fuels by the addition of chromium. Journal of Catalysis, 2019, 370, 251-264.	3.1	30
550	Lattice Strained Ni-Co alloy as a High-Performance Catalyst for Catalytic Dry Reforming of Methane. ACS Catalysis, 2019, 9, 2693-2700.	5.5	124
551	Beyond Cars: Fischerâ€Tropsch Synthesis for Nonâ€Automotive Applications. ChemCatChem, 2019, 11, 1412-1424.	1.8	38
552	Unravelling the structure-performance relationship over iron-based Fischer-Tropsch synthesis by depositing the iron carbonyl in syngas on SiO2 in a fixed-bed reactor. Applied Catalysis A: General, 2019, 572, 197-209.	2.2	8

#	Article	IF	CITATIONS
553	Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nature Communications, 2019, 10, 167.	5.8	79
554	Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion. Journal of Energy Chemistry, 2019, 35, 44-48.	7.1	58
555	Particle Size Effects of Cobalt Carbide for Fischer–Tropsch to Olefins. ACS Catalysis, 2019, 9, 798-809.	5.5	45
556	Size Effects of ZnO Nanoparticles in Bifunctional Catalysts for Selective Syngas Conversion. ACS Catalysis, 2019, 9, 960-966.	5.5	100
557	Hydrogenation of CO2 over Co supported on carbon nanotube, carbon nanotube-Nb2O5, carbon nanofiber, low-layered graphite fragments and Nb2O5. Journal of the Energy Institute, 2019, 92, 18-26.	2.7	26
558	Perspectives on the effect of sulfur on the hydrocarbonaceous overlayer on iron Fischer-Tropsch catalysts. Catalysis Today, 2020, 339, 32-39.	2.2	11
559	Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catalysis Today, 2020, 342, 161-166.	2.2	46
560	Post doped nitrogen-decorated hollow carbon spheres as a support for Co Fischer-Tropsch catalysts. Catalysis Today, 2020, 342, 99-110.	2.2	29
561	Size and promoter effects on iron nanoparticles confined in carbon nanotubes and their catalytic performance in light olefin synthesis from syngas. Catalysis Today, 2020, 357, 203-213.	2.2	17
562	Construction of three-dimensional nitrogen-doped graphene aerogel (NGA) supported cobalt catalysts for Fischer-Tropsch synthesis. Catalysis Today, 2020, 355, 10-16.	2.2	12
563	Effects of initial crystal structure of Fe2O3 and Mn promoter on effective active phase for syngas to light olefins. Applied Catalysis B: Environmental, 2020, 261, 118219.	10.8	55
564	Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide. Angewandte Chemie, 2020, 132, 160-166.	1.6	13
565	Bioinspired growth of iron derivatives on mesoporous silica: effect on thermal degradation and fire behavior of polystyrene. Nanotechnology, 2020, 31, 065601.	1.3	3
566	Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide. Angewandte Chemie - International Edition, 2020, 59, 154-160.	7.2	68
567	Carbon chain growth reaction of synthesis of lower olefins from syngas on Fe-Co catalyst. Applied Surface Science, 2020, 504, 144211.	3.1	5
568	Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible light up to 600Ânm. Journal of Energy Chemistry, 2020, 46, 1-7.	7.1	59
569	From Molecular Precursors to Nanoparticles—Tailoring the Adsorption Properties of Porous Carbon Materials by Controlled Chemical Functionalization. Advanced Functional Materials, 2020, 30, 1908371.	7.8	57
570	Investigation of the deactivation behavior of Co catalysts in Fischer–Tropsch synthesis using encapsulated Co nanoparticles with controlled SiO2 shell layer thickness. Catalysis Science and Technology, 2020, 10, 1182-1192.	2.1	21

#	Article		CITATIONS
571	Fischer-Tropsch to olefins over CoMn-based catalysts: Effect of preparation methods. Applied Catalysis A: General, 2020, 592, 117414.	2.2	22
572	Highly efficient iron based MOFs mediated catalysts for Fischer–Tropsch synthesis: Effect of reduction atmosphere. Journal of the Taiwan Institute of Chemical Engineers, 2020, 107, 44-53.	2.7	20
573	Influence of Promotion on the Growth of Anchored Colloidal Iron Oxide Nanoparticles during Synthesis Gas Conversion. ACS Catalysis, 2020, 10, 1913-1922.	5.5	12
574	Resolving CO2 activation and hydrogenation pathways over iron carbides from DFT investigation. Journal of CO2 Utilization, 2020, 38, 10-15.	3.3	41
575	An Exceptionally Mild and Scalable Solution-Phase Synthesis of Molybdenum Carbide Nanoparticles for Thermocatalytic CO ₂ Hydrogenation. Journal of the American Chemical Society, 2020, 142, 1010-1019.	6.6	79
576	Potassium promoted core–shell-structured FeK@SiO ₂ -GC catalysts used for Fischer–Tropsch synthesis to olefins without further reduction. New Journal of Chemistry, 2020, 44, 87-94.	1.4	4
577	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
578	Efficient and New Production Methods of Chemicals and Liquid Fuels by Carbon Monoxide Hydrogenation. ACS Omega, 2020, 5, 49-56.	1.6	33
579	Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation. Journal of Catalysis, 2020, 381, 150-162.	3.1	35
580	Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time. Frontiers of Chemical Science and Engineering, 2020, 14, 802-812.	2.3	6
581	Theoretically predicted surface morphology of FCC cobalt nanoparticles induced by Ru promoter. Catalysis Science and Technology, 2020, 10, 187-195.	2.1	9
582	Direct Conversion of Syngas into Light Olefins with Low CO ₂ Emission. ACS Catalysis, 2020, 10, 2046-2059.	5.5	77
583	Quantitative production of butenes from biomass-derived Î ³ -valerolactone catalysed by hetero-atomic MFI zeolite. Nature Materials, 2020, 19, 86-93.	13.3	74
584	Manganese Oxide Modified Nickel Catalysts for Photothermal CO Hydrogenation to Light Olefins. Advanced Energy Materials, 2020, 10, 1902860.	10.2	56
585	Insights into the Hydrogen Coverage Effect and the Mechanism of Fischer–Tropsch to Olefins Process on Fe ₅ C ₂ (510). ACS Catalysis, 2020, 10, 689-701.	5.5	41
586	Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization. Fuel, 2020, 263, 116803.	3.4	18
587	Fischer–Tropsch synthesis of syngas to liquid hydrocarbons. , 2020, , 217-248.		9
588	Insight of boron induced single-step synthesis of short-chain olefins from bio-derived syngas. Fuel, 2020, 263, 116663	3.4	7

#	Article	IF	CITATIONS
589	Tuning the Facet Proportion of Co ₂ C Nanoprisms for Fischerâ€Tropsch Synthesis to Olefins. ChemCatChem, 2020, 12, 1630-1638.	1.8	23
590	Effect of Support on Catalytic Performance of Photothermal Fischer-Tropsch Synthesis to Produce Lower Olefins over Fe5C2-based Catalysts. Chemical Research in Chinese Universities, 2020, 36, 1006-1012.	1.3	14
591	Catalysis for Selected C1 Chemistry. CheM, 2020, 6, 2497-2514.	5.8	148
592	Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts. Journal of CO2 Utilization, 2020, 41, 101290.	3.3	28
593	Role of Câ€Defective Sites in CO Adsorption over ϵâ€Fe 2 C and ηâ€Fe 2 C Fischerâ€Tropsch Catalysts. Chemistry an Asian Journal, 2020, 15, 4014-4022.	[/] 1.7	9
594	Supported metal and metal oxide particles with proximity effect for catalysis. RSC Advances, 2020, 10, 35449-35472.	1.7	32
595	Biogas as a Source of Energy and Chemicals. , 0, , .		8
596	Synthesis and crystal structure of a new heteronuclear complex of Fe(<scp>iii</scp>)–K designed to produce effective catalysts for CO hydrogenation. Dalton Transactions, 2020, 49, 10498-10508.	1.6	6
597	CO ₂ hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: influence of the zeolite structure and crystal size. Catalysis Science and Technology, 2020, 10, 5648-5658.	2.1	15
598	Theoretical exploration of intrinsic facet-dependent CH4 and C2 formation on Fe5C2 particle. Applied Catalysis B: Environmental, 2020, 278, 119308.	10.8	30
599	Identification of Iron Carbides in Fe(â^'Naâ^'S)/αâ€Al ₂ O ₃ Fischerâ€Tropsch Synthesis Catalysts with Xâ€ray Powder Diffractometry and Mössbauer Absorption Spectroscopy. ChemCatChem, 2020, 12, 5121-5139.	1.8	13
600	Review of Catalyst Design and Mechanistic Studies for the Production of Olefins from Anthropogenic CO ₂ . ACS Catalysis, 2020, 10, 14258-14282.	5.5	66
601	Hydrogenation of CO to olefins over a supported iron catalyst on MgAl ₂ O ₄ spinel: effects of the spinel synthesis method. RSC Advances, 2020, 10, 40815-40829.	1.7	7
602	Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer–Tropsch synthesis conditions. Nature Communications, 2020, 11, 6219.	5.8	83
603	Photocatalytic CO ₂ conversion: What can we learn from conventional CO _x hydrogenation?. Chemical Society Reviews, 2020, 49, 6579-6591.	18.7	268
604	Promotive effect of boron oxide on the iron-based catalysts for Fischer-Tropsch synthesis. Fuel, 2020, 281, 118714.	3.4	12
605	Nanoscale Spatial Distribution of Supported Nanoparticles Controls Activity and Stability in Powder Catalysts for CO Oxidation and Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2020, 142, 14481-14494.	6.6	25
606	Sodium modified Fe-Mn microsphere catalyst for Fischer–Tropsch synthesis of light olefins. Catalysis Today, 2022, 388-389, 199-207.	2.2	15

#	Article		CITATIONS
607	Photo and Bio Activities of Magnetic Electrospun Recycled Polyester Mat. Journal of Polymers and the Environment, 2020, 28, 3235-3243.	2.4	2
608	Metal 3D printing technology for functional integration of catalytic system. Nature Communications, 2020, 11, 4098.	5.8	82
609	Facile Synthesis of Iron-Titanate Nanocomposite as a Sustainable Material for Selective Amination of Substitued Nitro-Arenes. Catalysts, 2020, 10, 871.	1.6	4
611	Ru/TiO ₂ Catalysts with Size-Dependent Metal/Support Interaction for Tunable Reactivity in Fischer–Tropsch Synthesis. ACS Catalysis, 2020, 10, 12967-12975.	5.5	83
612	Fischer–Tropsch synthesis over the Fe–Mn/Al ₂ O ₃ catalyst: modeling and optimization of light olefins using the RSM method. New Journal of Chemistry, 2020, 44, 18457-18468.	1.4	5
613	Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite. Journal of Catalysis, 2020, 391, 459-470.	3.1	44
614	NbOPO ₄ Supported Rh Nanoparticles with Strong Metalâ^'Support Interactions for Selective CO ₂ Hydrogenation. ChemSusChem, 2020, 13, 6300-6306.	3.6	19
615	Role of SAPO-18 Acidity in Direct Syngas Conversion to Light Olefins. ACS Catalysis, 2020, 10, 12370-12375.	5.5	47
616	Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catalysis, 2020, 10, 11318-11345.	5.5	215
617	Combined In Situ X-ray Powder Diffractometry/Raman Spectroscopy of Iron Carbide and Carbon Species Evolution in Fe(â Na–S)/α-Al ₂ O ₃ Catalysts during Fischer–Tropsch Synthesis. ACS Catalysis, 2020, 10, 9837-9855.	5.5	44
618	Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas. ACS Applied Materials & amp; Interfaces, 2020, 12, 57950-57962.	4.0	19
619	Enhancement of photocatalytic potential and recoverability of Fe3O4 nanoparticles by decorating over monoclinic zirconia. Journal of Environmental Health Science & Engineering, 2020, 18, 1473-1489.	1.4	24
620	Disk-Shaped Cobalt Nanocrystals as Fischer–Tropsch Synthesis Catalysts Under Industrially Relevant Conditions. Topics in Catalysis, 2020, 63, 1398-1411.	1.3	3
621	Ru catalysts supported by Si3N4 for Fischer-Tropsch synthesis. Applied Surface Science, 2020, 526, 146631.	3.1	10
622	Synthesis Gas Conversion to Lower Olefins over ZnCrâ€SAPOâ€34 Catalysts: Role of ZnOâ^'ZnCr ₂ O ₄ Interface. ChemCatChem, 2020, 12, 4387-4395.	1.8	15
623	Iron–Potassium on Single-Walled Carbon Nanotubes as Efficient Catalyst for CO ₂ Hydrogenation to Heavy Olefins. ACS Catalysis, 2020, 10, 6389-6401.	5.5	90
624	Role of surface frustrated Lewis pairs on reduced CeO2(110) in direct conversion of syngas. Chinese Journal of Catalysis, 2020, 41, 1906-1915.	6.9	23
625	Tuning the reactivity of ethylene oligomerization by HZSM-5 framework Al _f proximity. Catalysis Science and Technology, 2020, 10, 4019-4029.	2.1	14

		CITATION R	EPORT	
#	Article		IF	CITATIONS
626	Syngas conversion catalyzed by copper-embedded graphene. Applied Surface Science, 202	20, 525, 146500.	3.1	8
627	Stability of Colloidal Iron Oxide Nanoparticles on Titania and Silica Support. Chemistry of I 2020, 32, 5226-5235.	Materials,	3.2	6
628	Effective Iron Catalysts Supported on Mixed MgO–Al ₂ O ₃ for Synthesis to Olefins. Industrial & Engineering Chemistry Research, 2020, 59, 11462-1	Fischer–Tropsch I 1474.	1.8	16
629	Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for lig synthesis from syngas. Chemical Science, 2020, 11, 6167-6182.	nt olefin	3.7	17
630	Role of nanosized sheet-like SAPO-34 in bifunctional catalyst for syngas-to-olefins reactior 2020, 273, 117771.	ı. Fuel,	3.4	23
631	Syngas to lower olefins over bulk Mo 2 N catalysts prepared with citric acid. Asia-Pacific Jo Chemical Engineering, 2020, 15, e2516.	urnal of	0.8	2
632	The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins. Applied Surface Science, 2020, 525, 146622.		3.1	45
633	Localized catalysis driven by the induction heating of magnetic nanoparticles. Catalysis Sc Technology, 2020, 10, 3890-3896.	ience and	2.1	18
634	Design of a core–shell catalyst: an effective strategy for suppressing side reactions in sy direct selective conversion to light olefins. Chemical Science, 2020, 11, 4097-4105.	ngas for	3.7	95
635	An Na-modified Fe@C core–shell catalyst for the enhanced production of gasoline-rang hydrocarbons <i>via</i> Fischer–Tropsch synthesis. RSC Advances, 2020, 10, 10723-10	2 730.	1.7	8
636	Investigations on the Zn/Fe ratio and activation route during CO hydrogenation over poro iron/spinel catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 755-772.	us	0.8	5
637	Fischer–Tropsch Product Selectivity Modulation via an FeRh Nanocluster Composition D Journal of Physical Chemistry C, 2020, 124, 15225-15230.	esign.	1.5	0
638	Cobalt Ferrite Nanoparticles to Form a Catalytic Co–Fe Alloy Carbide Phase for Selective CO ₂ Hydrogenation to Light Olefins. ACS Catalysis, 2020, 10, 8660-8671.	:	5.5	95
639	Effects of Nickel Aluminate Spinel (NiAl 2 O 4) as Catalyst Support and Promoters (Ru, Rh Fischerâ€Tropsch Synthesis. ChemistrySelect, 2020, 5, 7934-7940.) in	0.7	3
640	Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nature Communications, 2020, 11, 3185.	2	5.8	114
641	Catalytic tar conversion and the prospective use of iron-based catalyst in the future develo biomass gasification: a review. Biomass Conversion and Biorefinery, 2022, 12, 1369-1392	opment of ·	2.9	28
642	Influence of Local Environments in Pores of Different Size on the Catalytic Liquid-Phase O> <scp>d</scp> -Glucose by Au Nanoparticles Supported on Nanoporous Carbon. ACS Applie Materials, 2020, 3, 7695-7703.		2.4	8
643	Effect of copper on highly effective Fe-Mn based catalysts during production of light olefir Fischer-Tropsch process with low CO2 emission. Applied Catalysis B: Environmental, 2020	ns via , 278, 119302.	10.8	58

#	Article	IF	CITATIONS
644	Tandem Catalysis for Hydrogenation of CO and CO ₂ to Lower Olefins with Bifunctional Catalysts Composed of Spinel Oxide and SAPO-34. ACS Catalysis, 2020, 10, 8303-8314.	5.5	157
645	Effects of alkali metal promoters on the structure–performance relationship of CoMn catalysts for Fischer–Tropsch synthesis. Catalysis Science and Technology, 2020, 10, 1816-1826.	2.1	20
646	Syngas Conversion to Aromatics over the Co ₂ C-Based Catalyst and HZSM-5 via a Tandem System. Industrial & Engineering Chemistry Research, 2020, 59, 4419-4427.	1.8	17
647	Structural evolution of large Fe ₃ O ₄ microspheres on graphene oxide for efficient conversion of syngas into α-olefins. New Journal of Chemistry, 2020, 44, 4987-4991.	1.4	2
648	Urea-derived Cu/ZnO catalyst being dried by supercritical CO2 for low-temperature methanol synthesis. Fuel, 2020, 268, 117213.	3.4	27
649	Direct synthesis of lower olefins from syngas via Fischer–Tropsch synthesis catalyzed by a dual-bed catalyst. Molecular Catalysis, 2020, 485, 110824.	1.0	13
650	Electronic effects of transition metal dopants on Fe(100) and Fe5C2(100) surfaces for CO activation. Catalysis Science and Technology, 2020, 10, 2047-2056.	2.1	7
651	Lower olefins from methane: recent advances. Russian Chemical Reviews, 2020, 89, 191-224.	2.5	19
652	A recyclable heterogeneous–homogeneous–heterogeneous NiO/AlOOH catalysis system for hydrocarboxylation of acetylene to acrylic acid. RSC Advances, 2020, 10, 1634-1638.	1.7	3
653	Direct Conversion of Syngas to Ethanol within Zeolite Crystals. CheM, 2020, 6, 646-657.	5.8	123
654	Opportunities for less-explored zeolitic materials in the syngas-to-olefins pathway over nanoarchitectured catalysts: a mini review. Catalysis Science and Technology, 2020, 10, 1582-1596.	2.1	35
655	Effects of Al, Si, Ti, Zr Promoters on Catalytic Performance of Iron-Based Fischer–Tropsch Synthesis Catalysts. Catalysis Letters, 2020, 150, 1993-2002.	1.4	8
656	Enhancing syngas-to-aromatics performance of ZnO&H-ZSM-5 composite catalyst via Mn modulation. Journal of Catalysis, 2020, 383, 97-102.	3.1	35
657	Effect of MgAl 2 O 4 Surface Area on the Structure of Supported Fe and Catalytic Performance in Fischer–Tropsch Synthesis. Energy Technology, 2020, 8, 1901327.	1.8	1
658	Hydrothermal Stability of High-Surface-Area α-Al ₂ O ₃ and Its Use as a Support for Hydrothermally Stable Fischer–Tropsch Synthesis Catalysts. Chemistry of Materials, 2020, 32, 4369-4374.	3.2	28
659	Carbon Pathways, Sodium‣ulphur Promotion and Identification of Iron Carbides in Ironâ€based Fischerâ€Tropsch Synthesis. ChemCatChem, 2020, 12, 4202-4223.	1.8	27
660	Mesostructured carbon-based nanocages: an advanced platform for energy chemistry. Science China Chemistry, 2020, 63, 665-681.	4.2	48
661	The effect of co-feeding ethene on Fischer-Tropsch synthesis to olefins over Co-based catalysts. Applied Catalysis A: General, 2020, 598, 117564.	2.2	9

#	Article	IF	CITATIONS
662	Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts. Applied Catalysis B: Environmental, 2020, 273, 119028.	10.8	45
663	Light olefin production on the Co–Ni catalyst: calcination conditions, and modeling and optimization of the process conditions by a statistical method. New Journal of Chemistry, 2020, 44, 7467-7483.	1.4	5
664	Tuning the interfaces of Co–Co2C with sodium and its relation to the higher alcohol production in Fischer–Tropsch synthesis. Journal of Materials Science, 2020, 55, 9037-9047.	1.7	10
665	Low-Olefin Production Process Based on Fischer–Tropsch Synthesis: Process Synthesis, Optimization, and Techno-Economic Analysis. Industrial & Engineering Chemistry Research, 2020, 59, 8728-8739.	1.8	19
666	Tuning the Metal–Support Interaction and Enhancing the Stability of Titania-Supported Cobalt Fischer–Tropsch Catalysts via Carbon Nitride Coating. ACS Catalysis, 2020, 10, 5554-5566.	5.5	39
667	Direct experimental detection of hydrogen radicals in non-oxidative methane catalytic reaction. Journal of Energy Chemistry, 2021, 52, 372-376.	7.1	16
668	Effect of support modification and precursor decomposition method on the properties of CoPt/ZrO2 Fischer–Tropsch catalysts. Catalysis Today, 2021, 375, 1-9.	2.2	9
669	Conversion of synthesis gas to aromatics at medium temperature with a fischer tropsch and ZSM-5 dual catalyst bed. Catalysis Today, 2021, 369, 175-183.	2.2	17
670	Tunable Fe3O4 nanoparticles assembled porous microspheres as catalysts for Fischer-Tropsch synthesis to lower olefins. Catalysis Today, 2021, 368, 133-139.	2.2	7
671	Fischer-Tropsch reaction within zeolite crystals for selective formation of gasoline-ranged hydrocarbons. Journal of Energy Chemistry, 2021, 54, 429-433.	7.1	30
672	Crucial roles of support modification and promoter introduction in Fe/CNT catalyzed syngas conversion to lower olefins. Catalysis Today, 2021, 368, 126-132.	2.2	5
673	Metallo-aerogels derived from chitosan with encapsulated metal nanoparticles as robust, efficient and selective nanocatalysts towards reduction of nitroarenes. Nano Research, 2021, 14, 59-65.	5.8	10
674	A recent trend: application of graphene in catalysis. Carbon Letters, 2021, 31, 177-199.	3.3	56
675	Solvent accommodation effect on dispersibility of metal oxide nanoparticle with chemisorbed organic shell. Journal of Colloid and Interface Science, 2021, 587, 574-580.	5.0	19
676	Production of Gaseous Olefins from Syngas over a Cobalt-HZSM-5 Catalyst. Catalysis Letters, 2021, 151, 526-537.	1.4	8
677	Singleâ€Atom Materials: Small Structures Determine Macroproperties. Small Structures, 2021, 2, 2000051.	6.9	195
678	Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions. Journal of Catalysis, 2021, 394, 181-192.	3.1	38
679	Synthesis new Co–Mn mixed oxide catalyst for the production of light olefins by tuning the catalyst structure. Applied Organometallic Chemistry, 2021, 35, .	1.7	4

#	Article	IF	CITATIONS
680	A Metal‣egregation Approach to Generate CoMn Alloy for Enhanced Photothermal Conversion of Syngas to Light Olefins. Solar Rrl, 2021, 5, 2000488.	3.1	16
681	Highly converting syngas to lower olefins over a dual-bed catalyst. Journal of Energy Chemistry, 2021, 58, 573-576.	7.1	10
682	Supported Fe2C catalysts originated from Fe2N phase and active for Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2021, 284, 119702.	10.8	16
683	Effects of self-reduction of Co nanoparticles on mesoporous graphitic carbon-nitride to CO hydrogenation activity to hydrocarbons. Fuel, 2021, 287, 119437.	3.4	8
684	Selective fabrication of χ-Fe5C2 by interfering surface reactions as a highly efficient and stable Fischer-Tropsch synthesis catalyst. Applied Catalysis B: Environmental, 2021, 284, 119753.	10.8	35
685	Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for Fischer-Tropsch synthesis. Carbon, 2021, 173, 364-375.	5.4	37
686	Efficient Fischer-Tropsch to light olefins over iron-based catalyst with low methane selectivity and high olefin/paraffin ratio. Fuel, 2021, 288, 119572.	3.4	13
687	Selective hydrogenation of CO2 and CO over potassium promoted Co/ZSM-5. Applied Catalysis B: Environmental, 2021, 284, 119787.	10.8	24
688	Ni ₂ P Nanoalloy as an Airâ€Stable and Versatile Hydrogenation Catalyst in Water: Pâ€Alloying Strategy for Designing Smart Catalysts. Chemistry - A European Journal, 2021, 27, 4439-4446.	1.7	18
689	Steam synergic effect on oxygen carrier performance and WGS promotion ability of iron-oxides. Energy, 2021, 215, 119117.	4.5	5
690	Insights into the unusual role of chlorine in product selectivity for direct hydrogenation of CO/CO2 to short-chain olefins. Chemical Engineering Journal, 2021, 413, 127424.	6.6	15
691	Revealing the activity of different iron carbides for Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2021, 281, 119521.	10.8	87
692	Towards the development of the emerging process of CO ₂ heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chemical Society Reviews, 2021, 50, 10764-10805.	18.7	161
693	Size effect of CoxMn1-xO precursor for Fischer-Tropsch to olefins over Co2C-based catalysts. Catalysis Science and Technology, 0, , .	2.1	5
694	Promoted Fischer-Tropsch catalysts. , 2021, , .		0
695	Mn-Decorated CeO ₂ nanorod supported iron-based catalyst for high-temperature Fischer–Tropsch synthesis of light olefins. Catalysis Science and Technology, 2021, 11, 2577-2588.	2.1	9
696	Metal-organic frameworks as chemical reaction flask. , 2021, , 365-387.		0
697	Metallic Nanoparticles in Heterogeneous Catalysis. Catalysis Letters, 2021, 151, 2153.	1.4	50

	CITATION	CITATION REPORT	
# 698	ARTICLE Carbon-based catalysts for Fischer–Tropsch synthesis. Chemical Society Reviews, 2021, 50, 2337-2366.	IF 18.7	Citations
699	Simplified preparation of a graphene-co-shelled Ni/NiO@C nano-catalyst and its application in the <i>N</i> -dimethylation synthesis of amines under mild conditions. Green Chemistry, 2021, 23, 4604-4617.	4.6	14
700	Magnetic hybrid nanoparticles for environmental remediation. , 2021, , 591-615.		0
701	A selective and stable Fe/TiO ₂ catalyst for selective hydrogenation of butadiene in alkene-rich stream. Chemical Communications, 2021, 57, 7031-7034.	2.2	6
702	Activation of CO over Ultrathin Manganese Oxide Layers Grown on Au(111). ACS Catalysis, 2021, 11, 849-857.	5.5	23
703	Syngas to light olefin synthesis over La doped Zn _x Al _y O _z composite and SAPO-34 hybrid catalysts. Catalysis Science and Technology, 2021, 11, 3231-3240.	2.1	10
704	Unravelling the K-promotion effect in highly active and stable Fe5C2 nanoparticles for catalytic linear α-olefin production. Materials Advances, 2021, 2, 1050-1058.	2.6	3
705	Effect of EDTA-2Na modification on Fe-Co/Al2O3 for hydrogenation of carbon dioxide to lower olefins and gasoline. Journal of CO2 Utilization, 2021, 43, 101369.	3.3	8
706	Designing the right protection. Science, 2021, 371, 577-577.	6.0	4
707	Formation Mechanism of the Co ₂ C Nanoprisms Studied with the CoCe System in the Fischer–Tropsch to Olefin Reaction. ACS Catalysis, 2021, 11, 2746-2753.	5.5	12
708	Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Accounts of Chemical Research, 2021, 54, 1961-1971.	7.6	54
709	Carbon-Based Materials as Catalyst Supports for Fischer–Tropsch Synthesis: A Review. Frontiers in Materials, 2021, 7, .	1.2	30
710	Effect of Hydroxyl Groups on CuCoMg Nanosheets for Ethanol and Higher Alcohol Synthesis from Syngas. Industrial & Engineering Chemistry Research, 2021, 60, 2388-2399.	1.8	17
711	Effect of the Valence State of Iron in the Precursors on the Fischer–Tropsch Synthesis Performance of an Fe/Fe Foam Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 2410-2417.	1.8	4
712	Harnessing the Synergistic Interplay of Fischerâ€īropsch Synthesis (Feâ€Co) Bimetallic Oxides in Naâ€FeMnCo/HZSMâ€5 Composite Catalyst for Syngas Conversion to Aromatic Hydrocarbons. ChemCatChem, 2021, 13, 1966-1980.	1.8	18
713	A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science, 2021, 371, 610-613.	6.0	204
714	Mechanochemistry for sustainable and efficient dehydrogenation/hydrogenation. Canadian Journal of Chemistry, 2021, 99, 93-112.	0.6	8
715	Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12, 822.	5.8	23

#	Article	IF	CITATIONS
716	Catalytic consequences of the decoration of sodium and zinc atoms during CO2 hydrogenation to olefins over iron-based catalyst. Catalysis Today, 2022, 387, 28-37.	2.2	20
717	Functionalized Carbon Materials in Syngas Conversion. Small, 2021, 17, e2007527.	5.2	29
718	Poly(2,6-diphenyl-p-phenylene oxide) supported iron catalysts for the synthesis of lower olefins via Fischer–Tropsch reaction. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 695-715.	0.8	3
719	Selective hydrogenation of CO2 and CO into olefins over Sodium- and Zinc-Promoted iron carbide catalysts. Journal of Catalysis, 2021, 395, 350-361.	3.1	58
720	The effect of microwave irradiation on heterogeneous catalysts for Fischer–Tropsch synthesis. Reviews in Chemical Engineering, 2019, .	2.3	2
721	Sodium-Mediated Bimetallic Fe–Ni Catalyst Boosts Stable and Selective Production of Light Aromatics over HZSM-5 Zeolite. ACS Catalysis, 2021, 11, 3553-3574.	5.5	50
722	A core-shell catalyst design boosts the performance of photothermal reverse water gas shift catalysis. Science China Materials, 2021, 64, 2212-2220.	3.5	21
723	Investigating catalytic performance of Ag/Ce promoted Fe/ Al 2 O 3 catalyst in the CO hydrogenation process: Selectivity modeling and optimization using response surface methodology. International Journal of Energy Research, 2021, 45, 14518-14529.	2.2	4
724	Revealing the Effect of Sodium on Iron-Based Catalysts for CO ₂ Hydrogenation: Insights from Calculation and Experiment. Journal of Physical Chemistry C, 2021, 125, 7637-7646.	1.5	20
725	CO2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Advances in Colloid and Interface Science, 2021, 290, 102349.	7.0	36
726	Selective Iron Catalysts for Direct Fischer–Tropsch Synthesis to Light Olefins. Industrial & Engineering Chemistry Research, 2021, 60, 6137-6146.	1.8	13
727	Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds. Jacs Au, 2021, 1, 501-507.	3.6	34
728	Investigating the CO activation mechanism on hcp-Fe7C3 (211) via density functional theory. Molecular Catalysis, 2021, 505, 111506.	1.0	2
729	Positive and negative effects of nanoparticles on agricultural crops. Nanotechnology for Environmental Engineering, 2021, 6, 1.	2.0	31
730	Tuning Metal–Support Interactions on Ni/Al2O3 Catalysts to Improve Catalytic Activity and Stability for Dry Reforming of Methane. Processes, 2021, 9, 706.	1.3	38
731	Hydroconversion for Hydrocarbon Generation of Highly Overmature Kerogens under Fischer–Tropsch Synthesis Conditions. Energy & Fuels, 2021, 35, 7808-7818.	2.5	4
732	Syngas-to-olefins over MOF-derived ZnZrOx and SAPO-34 bifunctional catalysts. Catalysis Communications, 2021, 152, 106292.	1.6	15
733	Transition-Metal Nanoparticle Catalysts Anchored on Carbon Supports via Short-Chain Alginate Linkers. ACS Applied Nano Materials, 2021, 4, 3900-3910.	2.4	8

#	Article	IF	CITATIONS
734	Oxide–Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer–Tropsch Synthesis. Chemical Reviews, 2021, 121, 6588-6609.	23.0	180
735	Catalytic Conversion of CO and H ₂ into Hydrocarbons on the Cobalt Co(111) Surface: Implications for the Fischer–Tropsch Process. Journal of Physical Chemistry C, 2021, 125, 11891-11903.	1.5	11
736	Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nature Communications, 2021, 12, 3135.	5.8	104
737	Dynamic Evolution of Fe and Carbon Species over Different ZrO ₂ Supports during CO Prereduction and Their Effects on CO ₂ Hydrogenation to Light Olefins. ACS Sustainable Chemistry and Engineering, 2021, 9, 7891-7903.	3.2	35
738	Role of Catalysis in Biofuels Production Process – A Review. ChemBioEng Reviews, 2021, 8, 417-438.	2.6	4
739	Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion. Applied Catalysis B: Environmental, 2021, 285, 119840.	10.8	41
740	An Efficient Catalyst Derived from Carboxylated Lignin-Anchored Iron Nanoparticle Compounds for Carbon Monoxide Hydrogenation Application. ACS Omega, 2021, 6, 16592-16599.	1.6	5
741	Tuning the Catalytic Performance of Cobalt Nanoparticles by Tungsten Doping for Efficient and Selective Hydrogenation of Quinolines under Mild Conditions. ACS Catalysis, 2021, 11, 8197-8210.	5.5	46
742	Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catalysis, 2021, 11, 7780-7819.	5.5	92
743	Stabilizing Oxygen Vacancies in ZrO ₂ by Ga ₂ O ₃ Boosts the Direct Dehydrogenation of Light Alkanes. ACS Catalysis, 2021, 11, 10159-10169.	5.5	9
744	Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide. Chemical Engineering Research and Design, 2021, 151, 401-427.	2.7	39
745	Effect of potassium on GO-modified large Fe3O4 microspheres for the production of α-olefins. Journal of Fuel Chemistry and Technology, 2021, 49, 933-944.	0.9	4
746	Surface coupling of methyl radicals for efficient low-temperature oxidative coupling of methane. Chinese Journal of Catalysis, 2021, 42, 1117-1125.	6.9	39
747	Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier?. Chemical Reviews, 2021, 121, 10559-10665.	23.0	61
748	<i>In Situ</i> Active Site for CO Activation in Fe-Catalyzed Fischer–Tropsch Synthesis from Machine Learning. Journal of the American Chemical Society, 2021, 143, 11109-11120.	6.6	52
749	Boosting CO Hydrogenation Performance of Facile Organics Modified Iron Oxide/Reduced Graphene Oxide Catalysts. Catalysis Letters, 0, , 1.	1.4	0
750	Highly active FexOy@SiO2 catalyst for Fischer-Tropsch synthesis through the confinement effect of metal organic frameworks material: Preparation and structure-activity relationship. Molecular Catalysis, 2021, 513, 111813.	1.0	5
751	Fischer-Tropsch to olefins over Co2C-based catalysts: Effect of thermal pretreatment of SiO2 support. Applied Catalysis A: General, 2021, 623, 118283.	2.2	9

#	Article	IF	Citations
" 752	Direct conversion of CO2 to light olefins over FeCo/XK-ϒAL2O3 (X = La, Mn, Zn) catalyst via	1.3	6
702	hydrogenation reaction. Research on Chemical Intermediates, 2021, 47, 5267-5289.	1.0	Ū
753	Techno-economic analysis of olefin production based on Fischer-Tropsch synthesis. CheM, 2021, 7, 1977-1980.	5.8	17
754	Janus Au–Fe _{2.2} C Catalyst for Direct Conversion of Syngas to Higher Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 11258-11268.	3.2	12
755	Quantification of critical particle distance for mitigating catalyst sintering. Nature Communications, 2021, 12, 4865.	5.8	62
756	Facetâ€Dependent Oxidative Strong Metalâ€Support Interactions of Palladium–TiO ₂ Determined by In Situ Transmission Electron Microscopy. Angewandte Chemie - International Edition, 2021, 60, 22339-22344.	7.2	60
757	Improvement of light olefins production over the <scp>Coâ€Niâ€Mn</scp> nanoâ€catalyst: modeling and optimization of process by <scp>RSM</scp> . Journal of Chemical Technology and Biotechnology, 2022, 97, 270-286.	1.6	3
758	Active phases for high temperature Fischer-Tropsch synthesis in the silica supported iron catalysts promoted with antimony and tin. Applied Catalysis B: Environmental, 2021, 292, 120141.	10.8	35
759	Facetâ€Dependent Oxidative Strong Metalâ€Support Interactions of Palladium–TiO 2 Determined by In Situ Transmission Electron Microscopy. Angewandte Chemie, 2021, 133, 22513-22518.	1.6	15
760	Microporous Sulfur-Doped Carbon Atoms as Supports for Sintering-Resistant Platinum Nanocluster Catalysts. ACS Applied Nano Materials, 2021, 4, 9489-9496.	2.4	9
761	Understanding the Product Selectivity of Syngas Conversion on ZnO Surfaces with Complex Reaction Network and Structural Evolution. ACS Catalysis, 2021, 11, 12264-12273.	5.5	30
762	Evaluation of Fischer-Tropsch synthesis to light olefins over Co- and Fe-based catalysts using artificial neural network. Journal of Cleaner Production, 2021, 321, 129003.	4.6	12
763	Review on upgrading organic waste to value-added carbon materials for energy and environmental applications. Journal of Environmental Management, 2021, 296, 113128.	3.8	45
764	Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coordination Chemistry Reviews, 2021, 445, 213982.	9.5	56
765	Mechanism insight into MnO for CO activation and O removal processes on Co(0001) surface: A DFT and kMC study. Applied Surface Science, 2021, 567, 150854.	3.1	13
766	Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO2 emission. Applied Catalysis B: Environmental, 2021, 299, 120683.	10.8	27
767	Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation. Applied Catalysis B: Environmental, 2021, 298, 120556.	10.8	55
768	Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins. Applied Catalysis B: Environmental, 2021, 298, 120567.	10.8	35
769	Surface modification of g-C3N4-supported iron catalysts for CO hydrogenation: Strategy for product distribution. Fuel, 2021, 305, 121473.	3.4	16

#	Article	IF	CITATIONS
770	First-principles-based microkinetic simulations of syngas to methanol conversion on ZnAl2O4 spinel oxide. Applied Surface Science, 2021, 569, 151064.	3.1	7
771	Three-phase electrochemistry for green ethylene production. Current Opinion in Electrochemistry, 2021, 30, 100789.	2.5	6
772	A dual-bed catalyst for producing ethylene and propylene from syngas. Journal of Energy Chemistry, 2022, 66, 190-194.	7.1	13
773	Achieving high conversion of syngas to aromatics. Journal of Energy Chemistry, 2022, 66, 597-602.	7.1	15
774	Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation. Fuel, 2022, 309, 122105.	3.4	44
775	Promotional effects of sodium and sulfur on light olefins synthesis from syngas over iron-manganese catalyst. Applied Catalysis B: Environmental, 2022, 300, 120716.	10.8	14
776	FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation. Applied Catalysis B: Environmental, 2022, 300, 120713.	10.8	40
777	Rational design of hierarchical zeolite encapsulating FeMnK architecture to enhance light olefins selectivity in Fischer-Tropsch synthesis. Fuel, 2022, 309, 122075.	3.4	8
778	High Conversion of Syngas to Ethene and Propene on Bifunctional Catalysts via the Tailoring of SAPO Zeolite Structure. Cell Reports Physical Science, 2021, 2, 100290.	2.8	15
779	Fe-Co-K/ZrO ₂ Catalytic Performance of CO ₂ Hydrogenation to Light Olefins. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 1053.	0.6	4
780	Application of Nanoparticles in Manufacturing. , 2016, , 1219-1278.		3
781	Facile synthesis of controllable graphene-co-shelled reusable Ni/NiO nanoparticles and their application in the synthesis of amines under mild conditions. Green Chemistry, 2020, 22, 7387-7397.	4.6	40
782	Hydrogen-assisted C-C coupling on reaction of CuC3Hâ^'Cluster anion with CO. Chinese Journal of Chemical Physics, 2020, 33, 628-634.	0.6	2
783	The influence of hydrophobicity on Fischer-Tropsch synthesis catalysts. Reviews in Chemical Engineering, 2022, 38, 477-502.	2.3	3
784	Design of Functional Nanostructured Carbons for Advanced Heterogeneous Catalysts: A Review. Current Organic Chemistry, 2014, 18, 1262-1279.	0.9	12
785	Catalytic Hydrogenation of Carbon Dioxide to Fuels. Current Organic Chemistry, 2014, 18, 1335-1345.	0.9	16
786	Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer–Tropsch Synthesis. CCS Chemistry, 2021, 3, 2712-2724.	4.6	41
787	Resolving the Intricate Mechanism and Selectivity of Syngas Conversion on Reduced ZnCr ₂ O <i>_x</i> : A Quantitative Study from DFT and Microkinetic Simulations. ACS Catalysis, 2021, 11, 12977-12988.	5.5	24

#	Article	IF	CITATIONS
788	Laâ€Based Perovskites Combined with HZSMâ€5 for Selective Conversion of Syngas into Aromatics. ChemistrySelect, 2021, 6, 9776-9779.	0.7	1
789	Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route. CheM, 2021, 7, 3027-3051.	5.8	60
790	Iron and copper nanoparticles inside and outside carbon nanotubes: Nanoconfinement, migration, interaction and catalytic performance in Fischer-Tropsch synthesis. Journal of Catalysis, 2021, 404, 306-323.	3.1	9
791	Effect of Various Al ₂ O ₃ Supports on CO Hydrogenation Performance over Supported Iron Catalysts. Hans Journal of Chemical Engineering and Technology, 2017, 07, 108-117.	0.0	0
792	Iron and Iron Oxide-Based Eco-Nanomaterials for Catalysis and Water Remediation. , 2018, , 1-21.		0
793	Study of the Fischer–Tropsch synthesis on nano-precipitated iron-based catalysts with different particle sizes. RSC Advances, 2020, 10, 42903-42911.	1.7	8
794	Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem, 2021, 3, 100066.	10.1	31
795	Effects of flotation and acid treatment on unburned carbon recovery from atmospheric circulating fluidized bed coal gasification fine ash and application evaluation of residual carbon. Waste Management, 2021, 136, 283-294.	3.7	35
796	Identifying the crucial role of water and chloride for efficient mild oxidation of methane to methanol over a [Cu2(μ-O)]2+-ZSM-5 catalyst. Journal of Catalysis, 2022, 405, 1-14.	3.1	19
797	Effect of Precursors of Fe-Based Fischer–Tropsch Catalysts Supported on Expanded Graphite for CO ₂ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15545-15556.	3.2	11
798	Model-based control of iron- and copper oxide particle distributions in porous γ-Al2O3 microspheres through careful tuning of the interactions during impregnation. Materials Chemistry and Physics, 2022, 276, 125428.	2.0	5
799	Plasma enhanced anti-coking performance of Pd/CeO ₂ catalysts for the conversion of methane. Sustainable Energy and Fuels, 2021, 6, 98-109.	2.5	20
800	Catalysts for the Conversion of CO2 to Low Molecular Weight Olefins—A Review. Materials, 2021, 14, 6952.	1.3	21
801	Organic-solvent assisted synthesis of highly dispersed iron based Fischer-Tropsch catalysts with MCF support: The effect of organic-solvent. Fuel, 2021, , 122666.	3.4	1
802	Light olefins synthesis from CO2 hydrogenation over mixed Fe–Co–K supported on micro-mesoporous carbon catalysts. International Journal of Hydrogen Energy, 2022, 47, 42185-42199.	3.8	11
803	Microscopic mechanisms of cooperative communications within single nanocatalysts. Proceedings of the United States of America, 2022, 119, .	3.3	5
804	Activation and catalytic transformation of methane under mild conditions. Chemical Society Reviews, 2022, 51, 376-423.	18.7	45
805	A mechanistic study of syngas conversion to light olefins over OXZEO bifunctional catalysts: insights into the initial carbon–carbon bond formation on the oxide. Catalysis Science and Technology, 2022, 12, 1289-1295.	2.1	13

#	Article	IF	CITATIONS
806	Unravelling the metal–support interactions in χ-Fe ₅ C ₂ /MgO catalysts for olefin synthesis directly from syngas. Catalysis Science and Technology, 2022, 12, 762-772.	2.1	4
807	Production of Light Olefins via Fischer-Tropsch Process Using Iron-Based Catalysts: A Review. Catalysts, 2022, 12, 174.	1.6	18
808	Potassium as a Versatile Promoter to Tailor the Distribution of the Olefins in CO ₂ Hydrogenation over Ironâ€Based Catalyst. ChemCatChem, 2022, 14, .	1.8	10
809	Modulating C5+selectivity for Fischer-Tropsch synthesis by tuning pyrolysis temperature of MOFs derived Fe-based catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104170.	2.7	6
810	Insights into effects of ZrO2 crystal phase on syngas-to-olefin conversion over ZnO/ZrO2 and SAPO-34 composite catalysts. Chinese Journal of Catalysis, 2022, 43, 877-884.	6.9	11
811	Recent advances in application of iron-based catalysts for CO hydrogenation to value-added hydrocarbons. Chinese Journal of Catalysis, 2022, 43, 731-754.	6.9	35
812	Highly effective conversion of CO2 into light olefins abundant in ethene. CheM, 2022, 8, 1376-1394.	5.8	31
813	Reusable Iron/Iron Oxide-based Nanoparticles Catalyzed Organic Reactions. Current Organic Chemistry, 2022, 26, 399-417.	0.9	2
814	Study on size effect of γ-Fe2O3 nanoparticles and gas atmosphere on carburization process. Journal of Fuel Chemistry and Technology, 2022, 50, 218-226.	0.9	0
815	Microwave modification of iron supported on beta silicon carbide catalysts for Fischer–Tropsch synthesis. Reaction Chemistry and Engineering, 2022, 7, 1307-1314.	1.9	2
816	Controllable assembly of Fe ₃ O ₄ –Fe ₃ C@MC by <i>in situ</i> doping of Mn for CO ₂ selective hydrogenation to light olefins. Catalysis Science and Technology, 2022, 12, 2360-2368.	2.1	4
817	A Hydrogen-Free Approach for Activating an Fe Catalyst Using Trace Amounts of Noble Metals and Confinement into Nanoparticles. Journal of Physical Chemistry Letters, 2022, 13, 1879-1885.	2.1	2
818	Simultaneously Achieving High Conversion and Selectivity in Syngas-to-Propane Reaction via a Dual-Bed Catalyst System. ACS Catalysis, 2022, 12, 3985-3994.	5.5	8
819	Effects of Noble Metals on a Co ₂ C-Based Supported Catalyst for Fischer–Tropsch to Olefins. Industrial & Engineering Chemistry Research, 2022, 61, 4824-4831.	1.8	3
820	FeZnK/SAPO-34 Catalyst for Efficient Conversion of CO2 to Light Olefins. Catalysis Letters, 2023, 153, 54-61.	1.4	2
821	Investigation of Atom-Level Reaction Kinetics of Carbon-Resistant Bimetallic NiCo-Reforming Catalysts: Combining Microkinetic Modeling and Density Functional Theory. ACS Catalysis, 2022, 12, 4382-4393.	5.5	36
822	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie, 2022, 134, .	1.6	1
823	Temperature-Dependent Activity of Gold Nanocatalysts Supported on Activated Carbon in Redox Catalytic Reactions: 5-Hydroxymethylfurfural Oxidation and 4-Nitrophenol Reduction Comparison. Catalysts 2022, 12, 323	1.6	5

#	Article	IF	CITATIONS
824	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
825	<i>In Situ</i> Active Site for Fe-Catalyzed Fischer–Tropsch Synthesis: Recent Progress and Future Challenges. Journal of Physical Chemistry Letters, 2022, 13, 3342-3352.	2.1	13
826	Bifunctional catalysts composed of low siliconâ€content SAPOâ€34 nanosheets and In ₂ O ₃ /ZrO ₂ with improved performance for CO ₂ hydrogenation. , 0,		1
827	Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene. Chinese Journal of Catalysis, 2022, 43, 1049-1057.	6.9	39
828	Fischer-Trospch to olefins over hydrophobic FeMnOx@SiO2 catalysts: The effect of SiO2 shell content. Applied Catalysis A: General, 2022, 635, 118552.	2.2	10
829	Mechanism insight into MnO for CHx(xÂ=Â1 to 3) hydrogenation and C1-C1 coupling processes on Co(0001) surface: A DFT and kMC study. Applied Surface Science, 2022, 586, 152840.	3.1	2
830	EDTA chemical directly orient CO2 hydrogenation towards olefins. Chemical Engineering Journal, 2022, 438, 135597.	6.6	12
831	Recent advances on syngas conversion targeting light olefins. Fuel, 2022, 321, 124124.	3.4	61
832	Selective and Stable In-Promoted Fe Catalyst for Syngas Conversion to Light Olefins. ACS Catalysis, 2021, 11, 15177-15186.	5.5	9
833	Solution-combustion Synthesized Nano-pellet α-Al2O3 and Catalytic Oxidation of Cyclohexane by Its Supported Cobalt Acetate. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 811-824.	0.4	4
834	Insights into Fe Species Structureâ€Performance Relationship for Direct Methane Conversion toward Oxygenates over Feâ€MOR Catalysts. ChemCatChem, 2022, 14, .	1.8	4
835	Rational Design of Nanostructured Metal/C Interface in 3D Selfâ€Supporting Cellulose Carbon Aerogel Facilitating Highâ€Performance Liâ€CO ₂ Batteries. Advanced Energy Materials, 2022, 12, .	10.2	22
836	Electronically Activated Fe ₅ C ₂ via N-Doped Carbon to Enhance Photothermal Syngas Conversion to Light Olefins. ACS Catalysis, 2022, 12, 5316-5326.	5.5	19
837	Carbon-supported Fe catalysts with well-defined active sites for highly selective alcohol production from Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2022, 312, 121393.	10.8	19
838	Design of Co@Zeolite/Sic Capsule Catalyst for Direct Synthesis of Middle Olefin from Syngas. SSRN Electronic Journal, 0, , .	0.4	0
841	Advances in the preparation of light alkene from carbon dioxide by hydrogenation. Fuel, 2022, 324, 124503.	3.4	8
842	Direct Construction of K-Fe3C@C Nanohybrids Utilizing Waste Biomass of Pomelo Peel as High-Performance Fischer–Tropsch Catalysts. Catalysts, 2022, 12, 542.	1.6	0
843	The Significant Role of the Atomic Surface Structure of Support in Strong Metalâ€Support Interaction. Chemistry - A European Journal, 2022, 28, .	1.7	3

ARTICLE IF CITATIONS # Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of 844 5.8 24 ZnGaOx spinel. Nature Communications, 2022, 13, 2742. Enhanced stability of a fused iron catalyst under realistic Fischer–Tropsch synthesis conditions: insights into the role of iron phases (χ·Fe₅C₂, Ĵ-Fe₃C and Ĵ±-Fe). 845 2.1 Catalysis Science and Technology, 2022, 12, 4217-4227. CO2 hydrogenation to olefins on supported iron catalysts: Effects of support properties on 846 3.4 13 carbon-containing species and product distribution. Fuel, 2022, 324, 124649. Design of a Hierarchical Co@Zsm-5/Sic Capsule Catalyst for Direct Conversion of Syngas to Middle 847 Olefin. SSRN Electronic Journal, 0, , Effect of the Zr promoter on precipitated iron-based catalysts for high-temperature Fischerâ& Tropsch 848 2.1 7 synthesis of light olefins. Catalysis Science and Technology, 2022, 12, 4624-4636. 849 Future of SMNs catalysts for industry applications., 2022, , 319-346. Promotion Effect of Vanadium on Oxygen Vacancy Formation Over Mnga Oxide for Syngas Conversion 850 0.4 0 into Light Olefins. SSRN Electronic Journal, 0, , . Pore-Confined and Diffusion-Dependent Olefin Catalytic Cracking for the Production of Propylene 1.8 over SAPO Zeolites. Industrial & amp; Engineering Chemistry Research, 2022, 61, 7760-7776. Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO2 and CH4 over 852 10.8 23 copper-based catalysts. Applied Catalysis B: Environmental, 2022, 315, 121583. Chapter 9. Bio-refining Through Nanotechnology. RSC Nanoscience and Nanotechnology, 2022, , 0.2 255-276. In Situ Surface-Sensitive Investigation of Multiple Carbon Phases on Fe(110) in the Fischerâ \in Tropsch 854 5.513 Synthesis. ACS Catalysis, 2022, 12, 7609-7621. Synthesis of SiO2-stabilized FeMn catalysts for catalytic production of liquid fuels: effect of SiO2 1.3 position over bimetallic catalysts. Journal of Porous Materials, 2022, 29, 1797-1806. A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added 856 4 chemicals and fuels., 2022, 1, 230-248. Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nature Nanotechnology, 2022, 17, 714-720. 15.6 Tugâ€ofâ€war between Two Distinct Catalytic Sites Enables Fast and Selective Ringâ€opening 858 1.6 4 Copolymerizations. Angewandte Chemie, Ó, , . Magnetically Induced Catalytic Reduction of Biomass-Derived Oxygenated Compounds in Water. ACS Catalysis, 2022, 12, 8462-8475. Tugâ€ofâ€War between Two Distinct Catalytic Sites Enables Fast and Selective Ringâ€Opening 860 7.2 16 Copolymerizations. Angewandte Chemie - International Edition, 2022, 61, . Synergetic effect of sodium and sulfur on iron catalysts for CO hydrogenation directly to lower 2.2 olefins. Applied Catalysis A: General, 2022, 643, 118756.

#	Article	IF	CITATIONS
862	Competing mechanisms of CO hydrogenation to ethanol over TM/Mo6S8 catalysts. Polyhedron, 2022, 224, 116031.	1.0	0
863	Effect of alkalis (Li, Na, and K) on precipitated iron-based catalysts for high-temperature Fischer-Tropsch synthesis. Fuel, 2022, 326, 125090.	3.4	9
864	Carbon-encapsulated metallic Co nanoparticles for Fischer-Tropsch to olefins with low CO2 selectivity. Applied Catalysis B: Environmental, 2022, 316, 121700.	10.8	8
865	Improving catalysis by moving water. Science, 2022, 377, 369-370.	6.0	1
866	Selective olefin production on silica based iron catalysts in Fischer–Tropsch synthesis. Catalysis Science and Technology, 2022, 12, 5814-5828.	2.1	9
867	Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science, 2022, 377, 406-410.	6.0	72
868	Dynamic confinement of SAPO-17 cages on the selectivity control of syngas conversion. National Science Review, 2022, 9, .	4.6	7
869	Production of light olefins and C ₅ ⁺ hydrocarbons in the Fischerâ€Tropsch synthesis by using inorganic precursor. ChemistrySelect, 2022, 7, .	0.7	0
870	Green Carbon Science: Keeping the Pace in Practice. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
871	Effect of Preparation Conditions on Precipitated Iron-Based Catalysts for High-Temperature Fischer–Tropsch Synthesis of Light Olefins. Topics in Catalysis, 2023, 66, 508-522.	1.3	1
872	Green Carbon Science: Keeping the Pace in Practice. Angewandte Chemie, 0, , .	1.6	0
873	Effects of zeolite morphologies on <scp>CO</scp> conversion to aromatics <i>via</i> a modified <scp>Fischerâ€Tropsch</scp> synthesis pathway. Journal of Chemical Technology and Biotechnology, 2023, 98, 98-105.	1.6	2
874	Rational Design of SAPO-34 Zeolite in Bifunctional Catalysts for Syngas Conversion into Light Olefins. Industrial & Engineering Chemistry Research, 2022, 61, 11397-11406.	1.8	6
875	Design of a hierarchical Co@ZSM-5/SiC capsule catalyst for direct conversion of syngas to middle olefin. Microporous and Mesoporous Materials, 2022, 343, 112134.	2.2	1
876	Regulation of product distribution in CO2 hydrogenation by modifying Ni/CeO2 catalysts. Journal of Catalysis, 2022, 414, 53-63.	3.1	6
877	The effect of alkaline earth metals Ca, Mg on Cu–Fe catalysts synthesized by solvothermal method and their CO2 hydrogenation performance. Solid State Sciences, 2022, 133, 107015.	1.5	2
878	Recent advances in Co ₂ C-based nanocatalysts for direct production of olefins from syngas conversion. Chemical Communications, 2022, 58, 9712-9727.	2.2	3
879	Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chemical Society Reviews, 2022, 51, 7994-8044.	18.7	40

#	Article	IF	CITATIONS
880	Ruthenium Nanoparticles Anchored on Nitrogen-Doped Carbon Nanocages for Fischer-Tropsch Synthesis. Acta Chimica Sinica, 2022, 80, 1100.	0.5	1
881	Supported Fe/K Nanocomposites for Effective Fischer-Tropsch to Lower Olefins. SSRN Electronic Journal, 0, , .	0.4	0
882	Hydrocarbon Synthesis from CO2 and H2 Using the Ultrafine Iron-Containing Catalytic Systems Based on Carbonized Cellulose. Eurasian Chemico-Technological Journal, 2022, 24, 149.	0.3	1
883	Advances in Selectivity Control for Fischer–Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS Catalysis, 2022, 12, 12092-12112.	5.5	31
884	Single-Phase Î,-Fe3C Derived from Prussian Blue and Its Catalytic Application in Fischer-Tropsch Synthesis. Catalysts, 2022, 12, 1140.	1.6	2
885	Promotion effect of vanadium on oxygen vacancy formation over MnGa oxide for syngas conversion into light olefins. Applied Catalysis A: General, 2022, 646, 118884.	2.2	2
886	Tiâ€doped CeO ₂ Stabilized Singleâ€Atom Rhodium Catalyst for Selective and Stable CO ₂ Hydrogenation to Ethanol. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
887	Tiâ€doped CeO ₂ Stabilized Singleâ€Atom Rhodium Catalyst for Selective and Stable CO ₂ Hydrogenation to Ethanol. Angewandte Chemie, 2022, 134, .	1.6	0
888	Direct production of olefins from syngas with ultrahigh carbon efficiency. Nature Communications, 2022, 13, .	5.8	18
889	Fabrication of a sinter-resistant Fe-MFI zeolite dragonfruit-like catalyst for syngas to aromatics conversion. Journal of Energy Chemistry, 2023, 77, 70-79.	7.1	2
890	Synergistic effect of bimetallic Fe-Ni supported on hexagonal mesoporous silica for production of hydrocarbon-like biofuels via deoxygenation under hydrogen-free condition. Energy Conversion and Management, 2022, 273, 116371.	4.4	3
891	Boosting CO2-to-CO selectivity and durability by metal-support interaction and encapsulated effect of Ni@C capsules. Chemical Engineering Journal, 2023, 454, 140000.	6.6	1
892	CO hydrogenation to ethanol and higher alcohols over ultrathin CuCoAl nanosheets derived from LDH precursor. Fuel, 2023, 333, 126308.	3.4	4
893	Facile Cî€,O bond cleavage on polynuclear vanadium nitride clusters V ₄ N ₅ ^{â^'} . Physical Chemistry Chemical Physics, 2022, 24, 29765-29771.	1.3	1
894	Critical role of sodium migration in iron-based FT- zeolite tandem catalyst system for syngas hydrogenation to gasoline. Applied Catalysis B: Environmental, 2023, 322, 122132.	10.8	3
895	Hydrogenation of CO2 to Olefins over Iron-Based Catalysts: A Review. Catalysts, 2022, 12, 1432.	1.6	7
896	Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2â^'x/Ni catalysts. Nature Communications, 2022, 13, .	5.8	16
897	Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals. Nature Catalysis, 2022, 5, 1030-1037.	16.1	67

#	Article	IF	CITATIONS
898	Porous Nanoarchitectures of Nonprecious Metal Borides: From Controlled Synthesis to Heterogeneous Catalyst Applications. ACS Catalysis, 2022, 12, 14773-14793.	5.5	62
899	Highly selective hydrogenation of CO2 to propane over GaZrOx/H-SSZ-13 composite. Nature Catalysis, 2022, 5, 1038-1050.	16.1	37
900	Chapter 12. Biomass to Liquid-syngas to Olefins. RSC Catalysis Series, 2022, , 378-396.	0.1	0
901	Doping low amount of Zirconium in Rh-LTO to prepare durable catalysts for dry reforming of methane. Molecular Catalysis, 2023, 535, 112822.	1.0	3
902	Activating nitrogen-doped carbon nanosheets by KOH treatment to promote the Fischer-Tropsch synthesis performance. Chemical Engineering Journal, 2023, 455, 140810.	6.6	4
903	Pd-modified g-C3N4 with internal donor-acceptor motifs for photocatalytic CO2 reduction to tunable syngas. Applied Surface Science, 2023, 612, 155898.	3.1	5
904	Efficient Propylene/Ethylene Separation in Highly Porous Metal–Organic Frameworks. Materials, 2023, 16, 154.	1.3	4
905	Effects of the Template on Low-Silica SAPO-34 in a Bifunctional Catalyst for the Direct Conversion of Syngas to Light Olefins. Industrial & Engineering Chemistry Research, 2023, 62, 211-222.	1.8	2
906	Graphene Nanoflake- and Carbon Nanotube-Supported Iron–Potassium 3D-Catalysts for Hydrocarbon Synthesis from Syngas. Nanomaterials, 2022, 12, 4491.	1.9	1
907	Research progress of structure design and acidity tuning of zeolites for the catalytic conversion of syngas. Journal of Fuel Chemistry and Technology, 2023, 51, 1-17.	0.9	1
908	Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coordination Chemistry Reviews, 2023, 480, 215008.	9.5	21
909	Design of ZSM-5 encapsulating FeMnK nanocatalysts for light olefins synthesis with enhanced carbon utilization efficiency. Fuel, 2023, 335, 126745.	3.4	2
910	Cobalt clusters decorated CoxMn1â^xO nanocomposites for improving the efficiency of syngas to lower olefins with lower CO2 emission. Applied Catalysis B: Environmental, 2023, 325, 122347.	10.8	1
911	Sustainable Production of Emerging Diesel Additive from Butene by Palladium-Catalyzed Alkoxycarbonylation. ACS Sustainable Chemistry and Engineering, 2023, 11, 1837-1845.	3.2	3
912	Light Olefins from Acetylene under Pressurized Conditions. Industrial & Engineering Chemistry Research, 2023, 62, 1819-1825.	1.8	1
913	Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling. Progress in Materials Science, 2023, 135, 101103.	16.0	5
914	Hydrophobic modification for CO photo-hydrogenation to olefins with low CO2 selectivity. Nano Energy, 2023, 110, 108350.	8.2	3
915	Enhanced catalytic stability of non-stoichiometric Cu–Al spinel catalysts for dimethyl ether synthesis from syngas: Effect of coordination structure. Fuel Processing Technology, 2023, 247, 107772.	3.7	3

#	Article	IF	CITATIONS
916	Hydrophobic interfaces regulate iron carbide phases and catalytic performance of FeZnOx nanoparticles for Fischer-Tropsch to olefins. Applied Catalysis B: Environmental, 2023, 331, 122697.	10.8	3
917	Tuning Fischer-Tropsch synthesis product distribution toward light olefins over nitrided Fe-Mn bimetallic catalysts. Fuel, 2023, 343, 127977.	3.4	3
918	The Effect of Hydrophobically Modified Iron Catalysts with Hexadecyltrimethoxysilane on Fischerâ€Tropsch Synthesis. ChemistrySelect, 2023, 8, .	0.7	0
919	Hydrogen spillover effects in the Fischer–Tropsch reaction over carbon nanotube supported cobalt catalysts. Catalysis Science and Technology, 2023, 13, 1888-1904.	2.1	3
920	Identifying the Performance Descriptor in Direct Syngas Conversion to Long-Chain α-Olefins over Ruthenium-Based Catalysts Promoted by Alkali Metals. ACS Catalysis, 2023, 13, 3949-3959.	5.5	3
921	Carbon defects promoting syngas into liquid fuels over Fe ₃ C@C catalysts. Catalysis Science and Technology, 2023, 13, 2010-2014.	2.1	1
922	Unraveling the Detailed Interactions between the Surface Species and Nanoparticle Catalyst by a Temperature-Programed Desorption Spectrum at the Molecular Level via a Multi-Scale Simulation and Modeling Experiment. Journal of Physical Chemistry C, 2023, 127, 5299-5307.	1.5	0
923	Effect of MgFe-LDH with Reduction Pretreatment on the Catalytic Performance in Syngas to Light Olefins. Catalysts, 2023, 13, 632.	1.6	0
924	Equilibrium shift, poisoning prevention, and selectivity enhancement in catalysis via dehydration of polymeric membranes. Nature Communications, 2023, 14, .	5.8	3
925	Direct synthesis of extra-heavy olefins from carbon monoxide and water. Nature Communications, 2023, 14, .	5.8	1
926	Tuning the Crystal Phase to Form MnGaO _{<i>x</i>} â€ 5 pinel for Highly Efficient Syngas to Light Olefins. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
927	Tuning the Crystal Phase to Form MnGaOxâ€Spinel for Highly Efficient Syngas to Light Olefins. Angewandte Chemie, 0, , .	1.6	1
928	A review of the recent progress on direct heterogeneous catalytic CO ₂ hydrogenation to gasoline-range hydrocarbons. , 2023, 1, 353-368.		4
941	Band-gap engineering of ceramic coatings. , 2023, , 39-88.		0