Reversible Reduction of Oxygen to Peroxide Facilitated

Science 335, 450-453 DOI: 10.1126/science.1212678

Citation Report

#	Article	IF	CITATIONS
2	Functionalized derivatives of 1,4-dimethylnaphthalene as precursors for biomedical applications: synthesis, structures, spectroscopy and photochemical activation in the presence of dioxygen. Organic and Biomolecular Chemistry, 2012, 10, 7062.	1.5	21
3	Catalytic Disproportionation of the Superoxide Intermediate from Electrochemical O ₂ Reduction in Nonaqueous Electrolytes. Chemistry - A European Journal, 2013, 19, 8679-8683.	1.7	20
4	Reactivity of Carbon in Lithium–Oxygen Battery Positive Electrodes. Nano Letters, 2013, 13, 4697-4701.	4.5	262
5	Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy and Environmental Science, 2013, 6, 750.	15.6	825
6	Alfred Werner's expanded legacy: Anion and metal ion coordination in an unsymmetrical, octaamido cryptand. Polyhedron, 2013, 52, 515-523.	1.0	8
7	A mechanistic study of the electrochemical oxygen reduction on the model semiconductor n-Ge(100) by ATR-IR and DFT. Physical Chemistry Chemical Physics, 2013, 15, 5771-5781.	1.3	40
8	High-yield synthesis of potentially ditopic coordinating cryptands and their metal complexes. Tetrahedron Letters, 2013, 54, 3363-3365.	0.7	3
9	Oxygen, sulfur, selenium, tellurium and polonium. Annual Reports on the Progress of Chemistry Section A, 2013, 109, 80.	0.8	2
10	Dioxygen Reactivity with a Ferrocene–Lewis Acid Pairing: Reduction to a Boron Peroxide in the Presence of Tris(pentafluorophenyl)borane. Angewandte Chemie - International Edition, 2014, 53, 12893-12896.	7.2	40
11	Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. Journal of the American Chemical Society, 2014, 136, 17530-17536.	6.6	575
12	Aprotic and Aqueous Li–O ₂ Batteries. Chemical Reviews, 2014, 114, 5611-5640.	23.0	975
13	A family of [Ni ₈] cages templated by μ ₆ -peroxide from dioxygen activation. Inorganic Chemistry Frontiers, 2014, 1, 487-494.	3.0	6
14	Aprotic Li–O ₂ Battery: Influence of Complexing Agents on Oxygen Reduction in an Aprotic Solvent. Journal of Physical Chemistry C, 2014, 118, 3393-3401.	1.5	36
15	Electron-Transfer Studies of a Peroxide Dianion. Inorganic Chemistry, 2014, 53, 5384-5391.	1.9	5
16	Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 19707-19716.	5.2	52
17	ExCage. Journal of the American Chemical Society, 2014, 136, 10669-10682.	6.6	132
18	A High Power Density Dual-electrolyte Lithium-Silver Battery with Celgard® 2325 Separator. Electrochimica Acta, 2014, 116, 429-433.	2.6	8
19	Interaction of Tris(2-aminoethyl)amine-based Ureas and Thiourea with Superoxide Anion and Peroxide Dianion through Multiple Hydrogen Bonding, Chemistry Letters, 2014, 43, 760-762.	0.7	2

#	Article	IF	CITATIONS
20	Dioxygen Reactivity with a Ferrocene–Lewis Acid Pairing: Reduction to a Boron Peroxide in the Presence of Tris(pentafluorophenyl)borane. Angewandte Chemie, 2014, 126, 13107-13110.	1.6	10
21	From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein Journal of Nanotechnology, 2015, 6, 1016-1055.	1.5	368
22	A review of cathode materials and structures for rechargeable lithium–air batteries. Energy and Environmental Science, 2015, 8, 2144-2198.	15.6	415
23	Zinc-air and other types of metal-air batteries. , 2015, , 441-461.		1
24	Ultrafast Photoinduced Electron Transfer from Peroxide Dianion. Journal of Physical Chemistry B, 2015, 119, 7422-7429.	1.2	12
25	Solar fuels vis-Ã-vis electricity generation from sunlight: The current state-of-the-art (a review). Renewable and Sustainable Energy Reviews, 2015, 44, 904-932.	8.2	54
26	Catalytic two-electron reduction of dioxygen catalysed by metal-free [14]triphyrin(2.1.1). Chemical Science, 2015, 6, 6496-6504.	3.7	28
27	Mechanistic insights for the development of Li–O ₂ battery materials: addressing Li ₂ O ₂ conductivity limitations and electrolyte and cathode instabilities. Chemical Communications, 2015, 51, 12701-12715.	2.2	109
28	Editorial for the ACS Select Virtual Issue on Inorganic Chemistry Driving the Energy Sciences. Inorganic Chemistry, 2015, 54, 3079-3083.	1.9	5
29	Electrochemistry of rechargeable lithium–air batteries. , 2015, , 149-181.		1
30	Anion-Receptor Mediated Oxidation of Carbon Monoxide to Carbonate by Peroxide Dianion. Journal of the American Chemical Society, 2015, 137, 14562-14565.	6.6	26
31	Pushing Single-Oxygen-Atom-Bridged Bimetallic Systems to the Right: A Cryptand-Encapsulated Co–O–Co Unit. Journal of the American Chemical Society, 2015, 137, 15354-15357.	6.6	9
32	New Evidence of LiO ₂ Dismutation in Lithium–Air Battery Cathodes. ChemElectroChem, 2016, 3, 1537-1540.	1.7	13
33	Tuning the structure and solubility of nanojars by peripheral ligand substitution, leading to unprecedented liquid–liquid extraction of the carbonate ion from water into aliphatic solvents. Dalton Transactions, 2016, 45, 8327-8339.	1.6	23
34	Peroxo and Superoxo Moieties Bound to Copper Ion: Electron-Transfer Equilibrium with a Small Reorganization Energy. Journal of the American Chemical Society, 2016, 138, 7055-7066.	6.6	52
35	On the oxidation states of metal elements in MO3 - (M=V, Nb, Ta, Db, Pr, Gd, Pa) anions. Science China Chemistry, 2016, 59, 442-451.	4.2	28
36	Anions Stabilize Each Other inside Macrocyclic Hosts. Angewandte Chemie, 2016, 128, 14263-14268.	1.6	25
37	Anions Stabilize Each Other inside Macrocyclic Hosts. Angewandte Chemie - International Edition, 2016, 55, 14057-14062.	7.2	115

CITATION REPORT

#	Article	IF	CITATIONS
38	Extreme Stabilization and Redox Switching of Organic Anions and Radical Anions by Large-Cavity, CH Hydrogen-Bonding Cyanostar Macrocycles. Journal of the American Chemical Society, 2016, 138, 15057-15065.	6.6	53
39	Molecular recognition and activation by polyaza macrocyclic compounds based on host–guest interactions. Chemical Communications, 2016, 52, 10322-10337.	2.2	40
40	A Molten Salt Lithium–Oxygen Battery. Journal of the American Chemical Society, 2016, 138, 2656-2663.	6.6	114
41	Copper(II)–Silver(I) Macrocyclic Metal–Organic Framework: A Highly Efficient Reusable Triplet Oxygen Collector and Singlet Oxygen Generator. Inorganic Chemistry, 2017, 56, 1049-1052.	1.9	2
42	Fluoride Anion Complexation by a Triptyceneâ€Based Distiborane: Taking Advantage of a Weak but Observable Câ^'Hâ‹â‹â‹F Interaction. Angewandte Chemie - International Edition, 2017, 56, 1799-1804.	7.2	71
43	Fluoride Anion Complexation by a Triptyceneâ€Based Distiborane: Taking Advantage of a Weak but Observable Câ^'Hâ‹â‹â‹F Interaction. Angewandte Chemie, 2017, 129, 1825-1830.	1.6	21
44	On the incompatibility of lithium–O ₂ battery technology with CO ₂ . Chemical Science, 2017, 8, 6117-6122.	3.7	30
45	Structural Basis for Copper–Oxygen Mediated Câ^'H Bond Activation by the Formylglycineâ€Generating Enzyme. Angewandte Chemie, 2017, 129, 8227-8231.	1.6	10
46	Structural Basis for Copper–Oxygen Mediated Câ~'H Bond Activation by the Formylglycineâ€Generating Enzyme. Angewandte Chemie - International Edition, 2017, 56, 8115-8119.	7.2	34
47	Ion Pairing and Coâ€facial Stacking Drive Highâ€Fidelity Bisulfate Assembly with Cyanostar Macrocyclic Hosts. Chemistry - A European Journal, 2017, 23, 10652-10662.	1.7	56
48	Mechanistic Evolution of Aprotic Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602934.	10.2	130
49	Second-Coordination-Sphere Assisted Selective Colorimetric Turn-on Fluoride Sensing by a Mono-Metallic Co(II) Hexacarboxamide Cryptand Complex. Inorganic Chemistry, 2017, 56, 7615-7619.	1.9	20
51	Li–S and Li–O2 Batteries with High Specific Energy. Springer Briefs in Molecular Science, 2017, , 1-48.	0.1	3
52	Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. Nano Research, 2017, 10, 472-482.	5.8	32
53	Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chemical Reviews, 2018, 118, 2340-2391.	23.0	483
54	Exploiting the Strong Hydrogen Bond Donor Properties of a Borinic Acid Functionality for Fluoride Anion Recognition. Angewandte Chemie, 2018, 130, 530-534.	1.6	17
55	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
56	Exploiting the Strong Hydrogen Bond Donor Properties of a Borinic Acid Functionality for Fluoride Anion Recognition. Angewandte Chemie - International Edition, 2018, 57, 521-525.	7.2	39

CITATION REPORT

#	Article	IF	CITATIONS
57	Promise and Challenge of Phosphorus in Science, Technology, and Application. Advanced Functional Materials, 2018, 28, 1803471.	7.8	65
58	Large-bite diboranes for the μ(1,2) complexation of hydrazine and cyanide. Chemical Science, 2018, 9, 6210-6218.	3.7	32
59	Hydrogen Bonds Dictate O ₂ Capture and Release within a Zinc Tripod. Journal of the American Chemical Society, 2018, 140, 10075-10079.	6.6	35
60	An Azoaromatic Ligand as Four Electron Four Proton Reservoir: Catalytic Dehydrogenation of Alcohols by Its Zinc(II) Complex. Inorganic Chemistry, 2018, 57, 6816-6824.	1.9	45
61	Tris(pyrazolyl)borate Copper Hydroxide Complexes Featuring Tunable Intramolecular H-Bonding. Inorganic Chemistry, 2019, 58, 11248-11255.	1.9	9
62	Small triiminopyrrolic molecular cage with high affinity and selectivity for fluoride. Chemical Communications, 2019, 55, 10876-10879.	2.2	30
63	Impact of Intramolecular Hydrogen Bonding on the Reactivity of Cupric Superoxide Complexes with Oâ^'H and Câ^'H Substrates. Angewandte Chemie, 2019, 131, 17736-17740.	1.6	2
64	Ionophore-Assisted Electrochemistry of Neutral Molecules: Oxidation of Hydrogen in an Ionic Liquid Electrolyte. Journal of Physical Chemistry Letters, 2019, 10, 6910-6914.	2.1	1
65	Impact of Intramolecular Hydrogen Bonding on the Reactivity of Cupric Superoxide Complexes with Oâ^'H and Câ^'H Substrates. Angewandte Chemie - International Edition, 2019, 58, 17572-17576.	7.2	28
66	Expanding reversible chalcogenide binding: supramolecular receptors for the hydroselenide (HSe ^{â^²}) anion. Chemical Science, 2019, 10, 67-72.	3.7	20
67	Structure of formylglycine-generating enzyme in complex with copper and a substrate reveals an acidic pocket for binding and activation of molecular oxygen. Chemical Science, 2019, 10, 7049-7058.	3.7	16
68	Dioxygen/Hydrogen Peroxide Interconversion Using Redox Couples of Saddle-Distorted Porphyrins and Isophlorins. Journal of the American Chemical Society, 2019, 141, 5987-5994.	6.6	17
69	Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions. Advanced Materials, 2019, 31, e1804587.	11.1	254
70	Potassium promoted core–shell-structured FeK@SiO ₂ -GC catalysts used for Fischer–Tropsch synthesis to olefins without further reduction. New Journal of Chemistry, 2020, 44, 87-94.	1.4	4
71	Advances in the chemistry and applications of alkali-metal–gas batteries. Nature Reviews Chemistry, 2020, 4, 566-583.	13.8	70
72	Bifunctional Carbenium Dications as Metal-Free Catalysts for the Reduction of Oxygen. Journal of the American Chemical Society, 2020, 142, 13651-13656.	6.6	21
73	Unraveling the Promotion Effects of a Soluble Cobaltocene Catalyst with Respect to Li–O ₂ Battery Discharge. Journal of Physical Chemistry Letters, 2020, 11, 7028-7034.	2.1	14
74	Selective Recognition of Chloride Anion in Water. Organic Letters, 2020, 22, 4878-4882.	2.4	27

#	Article	IF	CITATIONS
75	Stimulus-Mediated Ultrastable Radical Formation. CheM, 2020, 6, 1819-1830.	5.8	28
76	High-Efficiency Gold Recovery Using Cucurbit[6]uril. ACS Applied Materials & Interfaces, 2020, 12, 38768-38777.	4.0	41
77	Half-Sandwich Ruthenium Complexes of Amide-Phosphine Based Ligands: H-Bonding Cavity Assisted Binding and Reduction of Nitro-substrates. Inorganic Chemistry, 2021, 60, 2009-2022.	1.9	24
78	Chloride capture using a C–H hydrogen-bonding cage. Science, 2019, 365, 159-161.	6.0	167
79	Nonspherical anion sequestration by C–H hydrogen bonding. Chemical Science, 2022, 13, 2026-2032.	3.7	10
80	Crowning Lithium Ions in Holeâ€Transport Layer toward Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, e2200978.	11.1	39
81	Chemical Challenges that the Peroxide Dianion Presents to Rechargeable Lithium–Air Batteries. Chemistry of Materials, 2022, 34, 3883-3892.	3.2	3
82	Oxygen reduction reaction in lithium-air batteries. , 2022, , 467-492.		1
83	Post‣ynthesis Conversion of an Unstable Imine Cage to a Stable Cage with Amide Moieties Towards Selective Receptor for Fluoride. Chemistry - A European Journal, 2022, 28, .	1.7	4
84	Fluoride-ion-mediated 1H/2D exchange in anion receptors: A 19F NMR probe. Journal of Molecular Structure, 2023, 1283, 135280.	1.8	3
85	EPDM rubber-based membranes for electrochemical water splitting and carbon dioxide reduction reactions. Journal of Solid State Electrochemistry, 0, , .	1.2	0
86	Magnetoelectricity-Mediated Tunable Absorption and Release of Peroxide Dianions. Nano Letters, 0, , .	4.5	0

CITATION REPORT