Converting Graphene Oxide Monolayers into Boron Car Substitutional Doping

Small 8, 1384-1391 DOI: 10.1002/smll.201101927

Citation Report

#	Article	IF	CITATIONS
1	Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale, 2012, 4, 6908.	2.8	745
2	Modelling magnetism of C at O and B monovacancies in graphene. Carbon, 2013, 64, 281-287.	5.4	35
4	Direct synthesis of electrical-conductivity-controlled boron-carbonitride films on SiO2 substrates. Journal of the Korean Physical Society, 2013, 63, 1152-1155.	0.3	2
5	Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Advances, 2013, 3, 22597.	1.7	47
6	Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors. Electrochimica Acta, 2013, 108, 666-673.	2.6	200
7	Twoâ€Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angewandte Chemie - International Edition, 2013, 52, 3110-3116.	7.2	863
8	Graphene-analogous low-dimensional materials. Progress in Materials Science, 2013, 58, 1244-1315.	16.0	684
9	Microscopic View on a Chemical Vapor Deposition Route to Boron-Doped Graphene Nanostructures. Chemistry of Materials, 2013, 25, 1490-1495.	3.2	130
10	Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale, 2013, 5, 6552.	2.8	74
11	Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon, 2013, 61, 200-208.	5.4	159
12	Investigation on the electronic structure of BN nanosheets synthesized via carbon-substitution reaction: the arrangement of B, N, C and O atoms. Physical Chemistry Chemical Physics, 2013, 15, 6929.	1.3	28
13	Highly Intensified Surface Enhanced Raman Scattering through the Formation of <i>p</i> , <i>p′</i> â€Dimercaptoazobenzene on Ag Nanoparticles/Graphene Oxide Nanocomposites. Advanced Materials Interfaces, 2014, 1, 1400119.	1.9	38
14	Oneâ€Step Formation of a Single Atomic‣ayer Transistor by the Selective Fluorination of a Graphene Film. Small, 2014, 10, 989-997.	5.2	59
15	Controllable Synthesis of Doped Graphene and Its Applications. Small, 2014, 10, 2975-2991.	5.2	58
16	Catalyst-Free Synthesis of Crumpled Boron and Nitrogen Co-Doped Graphite Layers with Tunable Bond Structure for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 3313-3321.	7.3	258
17	Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nature Communications, 2014, 5, 3193.	5.8	198
18	Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells. Chemical Communications, 2014, 50, 3328.	2.2	107
19	Graphene oxide based BCNO hybrid nanostructures: tunable band gaps for full colour white emission. RSC Advances, 2014, 4, 26855-26860.	1.7	22

#	Article	IF	CITATIONS
20	Insulating to metallic transition of an oxidized boron nitride nanosheet coating by tuning surface oxygen adsorption. Nanoscale, 2014, 6, 3731-3736.	2.8	12
21	Fluorescence from graphene oxide and the influence of ionic, ï€â€"ï€ interactions and heterointerfaces: electron or energy transfer dynamics. Physical Chemistry Chemical Physics, 2014, 16, 21183-21203.	1.3	38
22	Borane-modified graphene-based materials as CO2 adsorbents. Carbon, 2014, 79, 450-456.	5.4	53
23	Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today, 2014, 9, 324-343.	6.2	369
25	Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties. RSC Advances, 2015, 5, 97579-97588.	1.7	30
26	B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Scientific Reports, 2014, 4, 5184.	1.6	68
27	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 1181-1186.	3.2	219
28	Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015, 5, 5207-5234.	5.5	800
29	Atomically thin layers of B–N–C–O with tunable composition. Science Advances, 2015, 1, e1500094.	4.7	55
30	Simple growth of BCNO@C core shell fibres and luminescent BCNO tubes. CrystEngComm, 2015, 17, 1491-1495.	1.3	10
31	One-pot synthesis of h-BN fullerenes usinsg a graphene oxide template. Metals and Materials International, 2015, 21, 950-955.	1.8	5
32	Cheap, Gram-Scale Fabrication of BN Nanosheets via Substitution Reaction of Graphite Powders and Their Use for Mechanical Reinforcement of Polymers. Scientific Reports, 2014, 4, 4211.	1.6	39
33	Graphene-based materials: Synthesis and gas sorption, storage and separation. Progress in Materials Science, 2015, 69, 1-60.	16.0	601
34	B ₄ CN ₃ and B ₃ CN ₄ monolayers as the promising candidates for metal-free spintronic materials. New Journal of Physics, 2016, 18, 093021.	1.2	27
35	Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews, 2016, 45, 3989-4012.	18.7	936
36	Synthesis and radiation response of BCON: a graphene oxide and hexagonal boron nitride hybrid. 2D Materials, 2016, 3, 025028.	2.0	18
37	Green synthetic strategy of BCNO nanostructure and phosphor-based light – Emitting diodes. Journal of Luminescence, 2016, 179, 501-510.	1.5	13
38	Recent advances in hybrid grapheneâ€BN planar structures. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 65-82.	6.2	32

#	Article	IF	CITATIONS
39	Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties. ACS Applied Materials & Interfaces, 2016, 8, 32468-32476.	4.0	93
40	Properties of nanosheets of 2D-borocarbonitrides related to energy devices, transistors and other areas. Chemical Physics Letters, 2016, 657, 124-130.	1.2	29
41	On the use of two dimensional hexagonal boron nitride as dielectric. Microelectronic Engineering, 2016, 163, 119-133.	1.1	96
42	Single-step synthesis of crystalline <i>h</i> -BN quantum- and nanodots embedded in boron carbon nitride films. Nanotechnology, 2017, 28, 105602.	1.3	17
43	A facile approach to fabricate boron carbonitride microspheres via precursor pyrolysis. Chemical Physics Letters, 2017, 674, 164-167.	1.2	8
44	Facile Fabrication of BCN Nanosheet-Encapsulated Nano-Iron as Highly Stable Fischer–Tropsch Synthesis Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 14319-14327.	4.0	70
45	Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Materials Today, 2017, 20, 611-628.	8.3	96
46	Prediction of twoâ€dimensional materials by the global optimization approach. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1295.	6.2	25
47	Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia. New Journal of Chemistry, 2017, 41, 9497-9504.	1.4	75
48	Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C, 2017, 5, 11992-12022.	2.7	732
49	A novel, simple and rapid route to the synthesis of boron cabonitride nanosheets: combustive gaseous unfolding. Scientific Reports, 2017, 7, 3453.	1.6	42
50	Borocarbonitrides, B _{<i>x</i>} C _{<i>y</i>} N _{<i>z</i>} : Synthesis, Characterization, and Properties with Potential Applications. ACS Applied Materials & Interfaces, 2017, 9, 19478-19494.	4.0	103
51	Nitrogen Graphene: A New and Exciting Generation of Visible Light Driven Photocatalyst and Energy Storage Application. ACS Omega, 2018, 3, 1801-1814.	1.6	28
52	Large-scale preparation of B/N co-doped graphene-like carbon as an efficient metal-free catalyst for the reduction of nitroarenes. New Journal of Chemistry, 2018, 42, 2718-2725.	1.4	36
53	Bimodal Dielectric Breakdown in Electronic Devices Using Chemical Vapor Deposited Hexagonal Boron Nitride as Dielectric. Advanced Electronic Materials, 2018, 4, 1700506.	2.6	13
54	B, N Codoped and Defectâ€Rich Nanocarbon Material as a Metalâ€Free Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Advanced Science, 2018, 5, 1800036.	5.6	202
55	Biotolerability of Intracortical Microelectrodes. Advanced Biology, 2018, 2, 1700115.	3.0	7
56	Effect of boron doping level on the photocatalytic activity of graphene aerogels. Carbon, 2018, 128, 237-248.	5.4	56

#	Article	IF	Citations
57	How to realize the spin-Seebeck effect with a high spin figure of merit in magnetic boron–nitrogen nanoribbon and nanotube structures?. Journal of Materials Chemistry C, 2018, 6, 10603-10610.	2.7	27
58	Boron and nitrogen co-doped graphene aerogels: Facile preparation, tunable doping contents and bifunctional oxygen electrocatalysis. Carbon, 2018, 137, 458-466.	5.4	82
59	Full lithographic fabrication of boron-doped 3D porous carbon patterns for high volumetric energy density microsupercapacitors. Nano Energy, 2018, 53, 182-188.	8.2	57
60	2D-BCNO with Eu3+: partial energy transfer and direct natural white light for LEDs. New Journal of Chemistry, 2019, 43, 12431-12439.	1.4	6
61	Transferâ€Free Synthesis of Lateral Graphene–Hexagonal Boron Nitride Heterostructures from Chemically Converted Epitaxial Graphene. Advanced Materials Interfaces, 2019, 6, 1900419.	1.9	10
62	Defect-enriched tunability of electronic and charge-carrier transport characteristics of 2D borocarbonitride (BCN) monolayers from <i>ab initio</i> calculations. Nanoscale, 2019, 11, 19398-19407.	2.8	18
63	The Influence of Alkali metals Interaction with Al/P‣ubstituted BN Nanosheets on Their Electronic and Nonlinear Optical Properties: A DFT Theoretical Study. ChemistrySelect, 2019, 4, 1441-1447.	0.7	13
64	Boron doped graphene cathode for capacitor via a new one-step method. Ceramics International, 2019, 45, 7095-7101.	2.3	8
65	Insights into nitrogen and boron-co-doped graphene toward high-performance peroxymonosulfate activation: Maneuverable N-B bonding configurations and oxidation pathways. Applied Catalysis B: Environmental, 2019, 253, 419-432.	10.8	163
66	Microwave-constructed honeycomb architectures of h-BN/rGO nano-hybrids for efficient microwave conversion. Composites Science and Technology, 2019, 174, 184-193.	3.8	34
68	Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nature Communications, 2019, 10, 1188.	5.8	71
69	Borocarbonitrides, BxCyNz, 2D Nanocomposites with Novel Properties. Bulletin of the Chemical Society of Japan, 2019, 92, 441-468.	2.0	168
70	A Review on Dielectric Breakdown in Thin Dielectrics: Silicon Dioxide, Highâ€ <i>k</i> , and Layered Dielectrics. Advanced Functional Materials, 2020, 30, 1900657.	7.8	119
71	Nanoscale boron carbonitride semiconductors for photoredox catalysis. Nanoscale, 2020, 12, 3593-3604.	2.8	27
72	Hybrid Molybdenum Carbide/Heteroatom-Doped Carbon Electrocatalyst for Advanced Oxygen Evolution Reaction in Hydrogen Production. Catalysts, 2020, 10, 1290.	1.6	10
73	The Tribological Properties of Reduced Graphene Oxide Doped by N and B Species with Different Configurations. ACS Applied Materials & amp; Interfaces, 2020, 12, 29737-29746.	4.0	12
74	Envisaging Future Energy Storage Materials for Supercapacitors: An Ensemble of Preliminary Attempts. ChemistrySelect, 2021, 6, 1127-1161.	0.7	17
75	Solid-state synthesis and characterization of two-dimensional hexagonal BCN nanosheet using a free template method. Diamond and Related Materials, 2021, 115, 108350.	1.8	16

CITATION REPORT

#	Article	IF	CITATIONS
76	Functionalization of electronic, spin and optical properties of GeSe monolayer by substitutional doping: a first-principles study. Nanotechnology, 2021, 32, 305701.	1.3	6
77	FeCo _{66.7} Ni _{33.3} B Nanoparticles Integrated on Vertically Aligned Boron-Doped Graphene Array as Efficient Electrocatalyst for Overall Water Splitting in Wide pH Range. Journal of the Electrochemical Society, 2021, 168, 062512.	1.3	8
78	Two novel semiconducting <scp>B₂CO</scp> monolayers with high carrier mobilities. Journal of Computational Chemistry, 2021, 42, 2024-2030.	1.5	2
79	Defect states induced luminescence and electrochemical studies of boron carbon nitride nanosheets. Applied Surface Science, 2021, 559, 149982.	3.1	20
80	Structure, Properties and Applications of Twoâ€Dimensional Hexagonal Boron Nitride. Advanced Materials, 2021, 33, e2101589.	11.1	239
81	Graphene-facilitated synthesized vertically aligned hexagonal boron nitride nanowalls and their gas adsorption properties. Nanotechnology, 2021, 32, 065601.	1.3	5
82	Review—Two-Dimensional Boron Carbon Nitride: A Comprehensive Review. ECS Journal of Solid State Science and Technology, 2020, 9, 083004.	0.9	49
84	Synergy of developed micropores and electronic structure defects in carbon-doped boron nitride for CO2 capture. Science of the Total Environment, 2022, 811, 151384.	3.9	12
85	Boron and nitrogen co-doped vertical graphene electrodes for scalp electroencephalogram recording. Carbon, 2022, 189, 71-80.	5.4	12
86	Advanced porous borocarbonitride nanoarchitectonics: Their structural designs and applications. Carbon, 2022, 190, 142-169.	5.4	24
87	Regulation of Dual-Ion Batteries Via the Defects Design in Carbon Electrode Based on the Different Storage Behaviors of Pf6- and Li+. SSRN Electronic Journal, 0, , .	0.4	0
88	Ultrasensitive Boron–Nitrogen-Codoped CVD Graphene-Derived NO ₂ Gas Sensor. ACS Materials Au, 2022, 2, 356-366.	2.6	15
89	Regulation of dual-ion batteries via the defects design in carbon electrode based on the different storage behaviors of PF6â^' and Li+. Journal of Power Sources, 2022, 527, 231169.	4.0	6
90	A Highly Crystallized Hexagonal BCN Photocatalyst with Superior Anticorrosion Properties. Advanced Optical Materials, 0, , 2200282.	3.6	3
91	Honeycomb Boron Carbon Nitride as Highâ€Performance Anode Material for Liâ€ŀon Batteries. ChemNanoMat, 2022, 8, .	1.5	6
92	Elastic anisotropy and thermal properties of M-B-N (M = Al, Ga) systems using first-principles calculations. Vacuum, 2023, 207, 111626.	1.6	14
93	Template Directed Synthesis of Boron Carbon Nitride Nanotubes (BCNâ€NTs) and Their Evaluation for Energy Storage Properties. Advanced Materials Interfaces, 2023, 10, .	1.9	6
94	Recent insights into BCN nanomaterials – synthesis, properties and applications. New Journal of Chemistry, 2023, 47, 2137-2160.	1.4	18

CITATION REPORT

ARTICLE

IF CITATIONS