A perspective on emerging polymer technologies for bis

Polymer International 61, 1485-1491

DOI: 10.1002/pi.4323

Citation Report

#	Article	IF	CITATIONS
1	Polymer International in the year 2012. Polymer International, 2013, 62, 1-1.	1.6	0
2	Applying the Principles of Green Chemistry to Polymer Production Technology. Macromolecular Reaction Engineering, 2014, 8, 7-28.	0.9	132
3	Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 2014, 114, 1827-1870.	23.0	1,504
4	Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants. Polymer Chemistry, 2014, 5, 5139.	1.9	85
5	Regioselective synthesis of renewable bisphenols from 2,3-pentanedione and their application as plasticizers. Green Chemistry, 2014, 16, 1999-2007.	4.6	28
6	Chromium-Catalyzed CO ₂ –Epoxide Copolymerization. Organometallics, 2014, 33, 4401-4409.	1.1	18
7	Bio-based epoxy resin toughening with cashew nut shell liquid-derived resin. Green Materials, 2015, 3, 80-92.	1.1	23
8	Synthesis and Characterization of Decahydronaphthalene-Containing Polyesters. Macromolecules, 2015, 48, 8733-8737.	2.2	24
9	Bio-Based Alternative to the Diglycidyl Ether of Bisphenol A with Controlled Materials Properties. Biomacromolecules, 2015, 16, 1021-1031.	2.6	114
10	Synthesis and evaluation of the thermal properties of biosourced poly(ether)ureas and copoly(ether)ureas from 1,4:3,6â€dianhydrohexitols. Polymer International, 2015, 64, 513-520.	1.6	6
11	Cyclohexene oxide/carbon dioxide copolymerization by chromium(<scp>iii</scp>) amino-bis(phenolato) complexes and MALDI-TOF MS analysis of the polycarbonates. Polymer Chemistry, 2015, 6, 6305-6315.	1.9	30
12	Synthesis of bio-based epoxy monomers from natural allyl- and vinyl phenols and the estimation of their affinity to the estrogen receptor \hat{l}_{\pm} by molecular docking. New Journal of Chemistry, 2016, 40, 7701-7710.	1.4	35
13	Structure–property relationships of a bioâ€based reactive diluent in a bioâ€based epoxy resin. Journal of Applied Polymer Science, 2016, 133, .	1.3	26
14	Biorenewable Epoxy Resins Derived from Plant-Based Phenolic Acids. ACS Sustainable Chemistry and Engineering, 2016, 4, 6524-6533.	3.2	44
16	Curing Kinetics of Biobased Epoxies for Tailored Applications. Macromolecules, 2016, 49, 5315-5324.	2,2	40
18	Diglycidylether of iso-eugenol: a suitable lignin-derived synthon for epoxy thermoset applications. RSC Advances, 2016, 6, 68732-68738.	1.7	39
19	Synthesis and characterization of an adipic acid–derived epoxy resin. Journal of Polymer Science Part A, 2016, 54, 2625-2631.	2.5	10
20	Structure property relationships of biobased n-alkyl bisferulate epoxy resins. Green Chemistry, 2016, 18, 4961-4973.	4.6	73

#	Article	IF	Citations
21	Bio-based epoxy-anhydride thermosets from six-armed linoleic acid-derived epoxy resin. RSC Advances, 2016, 6, 52549-52555.	1.7	30
22	Nanocomposites of a Cashew Nut Shell Derived Epoxy Resin and Graphene Platelets: From Flexible to Tough. ACS Sustainable Chemistry and Engineering, 2016, 4, 1715-1721.	3.2	31
23	Reaction: Benign by Design Demands Innovation. CheM, 2017, 2, 7-8.	5.8	1
24	Mechanistic Studies of Cyclohexene Oxide/CO ₂ Copolymerization by a Chromium(III) Pyridylamineâ€Bis(Phenolate) Complex. ChemSusChem, 2017, 10, 1266-1273.	3.6	24
25	Copolycarbonates of bio-based rigid isosorbide and flexible 1,4-cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates. Polymer, 2017, 116, 153-159.	1.8	69
26	Syringaresinol: A Renewable and Safer Alternative to Bisphenolâ€A for Epoxyâ€Amine Resins. ChemSusChem, 2017, 10, 738-746.	3.6	102
27	Chain mobility, secondary relaxation, and oxygen transport in terephthalate copolyesters with rigid and flexible cyclic diols. Polymer, 2017, 129, 117-126.	1.8	32
28	Synthesis and Characterization of Amorphous Bibenzoate (Co)polyesters: Permeability and Rheological Performance. Macromolecules, 2017, 50, 7603-7610.	2.2	23
29	Isocyanate-Free Synthesis and Characterization of Renewable Poly(hydroxy)urethanes from Syringaresinol. ACS Sustainable Chemistry and Engineering, 2017, 5, 8648-8656.	3.2	73
30	Influence of cyclobutane segments in cycloaliphatic decahydronaphthalene-containing copolyesters. High Performance Polymers, 2017, 29, 750-756.	0.8	12
31	Polybenzoxazine Materials From Renewable Diphenolic Acid., 2017,, 427-449.		1
32	Tunable Thermosetting Epoxies Based on Fractionated and Well-Characterized Lignins. Journal of the American Chemical Society, 2018, 140, 4054-4061.	6.6	220
33	The quest for high glass transition temperature bioplastics. Journal of Materials Chemistry A, 2018, 6, 9298-9331.	5. 2	179
34	Cytotoxicity measurement of Bisphenol A (BPA) and its substitutes using human keratinocytes. Environmental Research, 2018, 164, 655-659.	3.7	24
35	Effect of Catalyst on the Molecular Structure and Thermal Properties of Isosorbide Polycarbonates. Industrial & Engineering Chemistry Research, 2018, 57, 4824-4831.	1.8	45
36	Ferulic Acid- and Sinapic Acid-Based Bisphenols: Promising Renewable and Safer Alternatives to Bisphenol A for the Production of Bio-Based Polymers and Resins. ACS Symposium Series, 2018, , 221-251.	0.5	5
37	Sugarâ€Derived Poly(βâ€thioester)s as a Biomedical Scaffold. Macromolecular Chemistry and Physics, 2018, 219, 1800177.	1.1	16
38	Reactive blending of bisphenol-A polycarbonate with isosorbide-based polycarbonates: Effect of chain flexibility and compatibility. Reactive and Functional Polymers, 2019, 143, 104328.	2.0	9

#	Article	IF	Citations
39	Study on the Synthetic Characteristics of Biomass-Derived Isosorbide-Based Poly(arylene ether) Tj ETQq0 0 0 rgB	T /Oyerlocl	₹ 10 Tf 50 74
40	Design and Formulation of a Completely Biobased Epoxy Structural Adhesive. ACS Sustainable Chemistry and Engineering, 2019, 7, 16382-16391.	3.2	27
41	Determination of Endocrine Disruption Potential of Bisphenol A Alternatives in Food Contact Materials Using <i>In Vitro</i> Assays: State of the Art and Future Challenges. Journal of Agricultural and Food Chemistry, 2019, 67, 12613-12625.	2.4	19
42	Sustainable and recyclable super engineering thermoplastic from biorenewable monomer. Nature Communications, 2019, 10, 2601.	5.8	83
43	A synthetic strategy toward isosorbide polycarbonate with a high molecular weight: the effect of intermolecular hydrogen bonding between isosorbide and metal chlorides. Polymer Chemistry, 2019, 10, 3380-3389.	1.9	23
44	Reactive blending and transesterification-induced degradation of isosorbide-based polycarbonate blends. Polymer Degradation and Stability, 2019, 162, 201-212.	2.7	14
45	Recent Advances in Bio-Based Flame Retardant Additives for Synthetic Polymeric Materials. Polymers, 2019, 11, 224.	2.0	117
46	Amorphous copolyesters based on bibenzoic acids and neopentyl glycol. Journal of Polymer Science Part A, 2019, 57, 579-587.	2.5	8
47	Sustaining our Passion for Sustainability. Polymer International, 2019, 68, 5-6.	1.6	0
48	Influence of Bibenzoate Regioisomers on Cyclohexanedimethanol-Based (Co)polyester Structure–Property Relationships. Macromolecules, 2019, 52, 835-843.	2.2	13
49	Synthesis of isosorbide bis (methyl carbonate) by transesterification of isosorbide with dimethyl carbonate, and evidence of its usefulness as a monomer for manufacturing polycarbonates. Arabian Journal of Chemistry, 2019, 12, 4764-4774.	2.3	19
50	Polymers in the press: catalyzing a reaction. Polymer International, 2020, 69, 5-6.	1.6	0
51	Development of Bis-GMA-free biopolymer to avoid estrogenicity. Dental Materials, 2020, 36, 157-166.	1.6	17
52	Next-generation polymers: Isosorbide as a renewable alternative. Progress in Polymer Science, 2020, 101, 101196.	11.8	140
53	3D printing of bio-based polycarbonate and its potential applications in ecofriendly indoor manufacturing. Additive Manufacturing, 2020, 31, 100974.	1.7	40
54	Aliphatic polycarbonates derived from epoxides and CO2: A comparative study of poly(cyclohexene) Tj ETQq1 1 ().784314 r 1.8	gBT /Overlo
55	Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chemical Society Reviews, 2020, 49, 6329-6363.	18.7	87
56	Synthesis and characterization of BPA-free polyesters by incorporating a semi-rigid cyclobutanediol monomer. Polymer Chemistry, 2020, 11, 6081-6090.	1.9	11

#	Article	IF	CITATIONS
57	Isosorbide bis(methyl carbonate) synthesis from isosorbide and dimethyl carbonate: the key role of dual basic–nucleophilic catalysts. RSC Advances, 2020, 10, 18728-18739.	1.7	17
58	Protecting Group-Controlled Remote Regioselective Electrophilic Aromatic Halogenation Reactions. Journal of Organic Chemistry, 2020, 85, 6862-6871.	1.7	9
59	A Sensitive Impedimetric Sensor Based on Biosourced Polyphosphine Films for the Detection of Lead Ions. Chemosensors, 2020, 8, 34.	1.8	9
60	Efficient synthesis of isosorbide-based polycarbonate with scalable dicationic ionic liquid catalysts by balancing the reactivity of the <i>endo</i> OH and <i>exo</i> OH. Green Chemistry, 2021, 23, 973-982.	4.6	24
61	The effect of modified tannic acid (TA) eco-epoxy adhesives on mode I fracture toughness of bonded joints. Polymer Testing, 2021, 96, 107122.	2.3	15
62	Molecular Carbonyl Insertion as the Homogeneous Catalysis Mechanism for Transesterification of Dimethyl Terephthalate with Ethylene Glycol. Industrial & Engineering Chemistry Research, 2021, 60, 5090-5101.	1.8	2
63	Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material. Materials, 2021, 14, 2139.	1.3	2
64	DFT Analysis of Organotin Catalytic Mechanisms in Dehydration Esterification Reactions for Terephthalic Acid and 2,2,4,4-Tetramethyl-1,3-cyclobutanediol. Journal of Physical Chemistry A, 2021, 125, 4943-4956.	1.1	0
65	Microplastic toxicity: A review of the role of marine sentinel species in assessing the environmental and public health impacts. Case Studies in Chemical and Environmental Engineering, 2021, 3, 100073.	2.9	25
66	Poly(1,5-pentylene-co-2,2,4,4-tetramethyl cyclobutylene terephthalate) copolyesters with high Tg and improved ductility and thermal stability. Polymer, 2021, 232, 124152.	1.8	7
67	Hydrolytic degradation of isosorbide-based polycarbonates: Effects of terminal groups, additives, and residue catalysts. Polymer Degradation and Stability, 2021, 192, 109703.	2.7	7
68	Copolyesters based on bibenzoic acids. Polymer, 2018, 135, 120-130.	1.8	11
69	Inherently degradable cross-linked polyesters and polycarbonates: resins to be cheerful. Polymer Chemistry, 2020, 11, 6397-6412.	1.9	25
70	Pinene-Based Oxidative Synthetic Toolbox for Scalable Polyester Synthesis. Jacs Au, 2021, 1, 1949-1960.	3.6	13
71	Renewable and flexible thermosetting epoxies based on functionalized biorefinery lignin fractions. Materials Today Sustainability, 2021, 15, 100083.	1.9	14
72	Catalyzed Transesterification Kinetics in Early Stage of Polycarbonate Melt Polymerization. Porrime, 2015, 39, 235-239.	0.0	0
73	Évaluation du potentiel d'émission d'alkylphénols et de bisphénol A par lessivage des matéri construction, des pièces et des consommables automobiles. Techniques - Sciences - Methodes, 2017, , 71-90.	aux de 0.0	0
74	Blended vinylogous urethane/urea vitrimers derived from aromatic alcohols. Polymer Chemistry, 2022, 13, 946-958.	1.9	14

#	Article	IF	CITATIONS
7 5	Sugar-Based Polymers with Stereochemistry-Dependent Degradability and Mechanical Properties. Journal of the American Chemical Society, 2022, 144, 1243-1250.	6.6	24
76	Colorless Transparent Cyclobutanediol-Based Copolyesters with Excellent Polymerization Robustness, Thermal Stability, and High Performance. ACS Applied Polymer Materials, 2022, 4, 2006-2016.	2.0	1
77	The accumulation of microplastic pollution in a commercially important fishing ground. Scientific Reports, 2022, 12, 4217.	1.6	7
78	Liquid-phase hydrogenation of 2,2,4,4-tetramethyl-1,3-cyclobutanedione over supported Ru based catalysts. Catalysis Communications, 2022, 166, 106453.	1.6	4
79	Bioâ€based epoxyâ€anhydride thermosets from multiâ€armed cardanolâ€derived epoxy oligomers. Polymers for Advanced Technologies, 2022, 33, 2571-2580.	1.6	3
80	Highly Selective Synthesis of cisâ€2,2,4,4â€Tetramethylcyclobutaneâ€1,3â€diol via Solventâ€Free Hydrogenation and Isomerization. Asian Journal of Organic Chemistry, 0, , .	1.3	1
81	USAEME-GC/MS Method for Easy and Sensitive Determination of Nine Bisphenol Analogues in Water and Wastewater. Molecules, 2022, 27, 4977.	1.7	5
82	Influence of carboxytelechelic oligomer molecular weight on the properties of chain extended polyethylenes. Polymer, 2022, 259, 125319.	1.8	2
83	Understanding glycidylation reaction for the formation of pure mono, diglycidyl and dual monomers as glycidyl methacrylate of vanillyl alcohol. Journal of Applied Polymer Science, 0, , .	1.3	0
84	Surface Mechanical Properties and Topological Characteristics of Thermoplastic Copolyesters after Precisely Controlled Abrasion. ACS Applied Materials & Interfaces, 2023, 15, 7552-7561.	4.0	O
85	Plastics to fertilizer: guiding principles for functionable and fertilizable fully bio-based polycarbonates. Polymer Chemistry, 2023, 14, 2469-2477.	1.9	3
86	EDCs: Focus on male fish reproductive alterations. , 2023, , 269-281.		O
87	Endocrine-disrupting chemicals (EDCs) in environmental matrices and human bodily fluids. , 2023, , 25-43.		1