Facile design of biomaterials by â€~click†themistry

Polymer International 61, 485-494

DOI: 10.1002/pi.4135

Citation Report

#	Article	IF	CITATIONS
1	A general synthetic strategy to prepare poly(ethylene glycol)-based multifunctional copolymers. Polymer Chemistry, 2012, 3, 2342.	1.9	61
2	Aromatic aldehyde functionalized polycaprolactone and polystyrene macromonomers: Synthesis, characterization and aldehyde–aminooxy click reaction. Reactive and Functional Polymers, 2012, 72, 713-721.	2.0	10
3	Thiol–epoxy â€~click' polymerization: efficient construction of reactive and functional polymers. Polymer Chemistry, 2012, 3, 3224.	1.9	128
4	Degradable "click―polyesters from erythritol having free hydroxyl groups. Polymer Degradation and Stability, 2012, 97, 1662-1670.	2.7	19
5	Biointerface Properties of Core–Shell Poly(vinyl alcohol)-hyaluronic Acid Microgels Based on Chemoselective Chemistry. Biomacromolecules, 2012, 13, 3592-3601.	2.6	24
6	RAFT polymerization of vinyl methacrylate and subsequent conjugation via enzymatic thiolâ€ene chemistry. Journal of Polymer Science Part A, 2012, 50, 4085-4093.	2.5	16
7	Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry. Polymer Chemistry, 2013, 4, 1700.	1.9	71
8	Evaluation of thiocarbonyl and thioester moieties as thiol protecting groups for controlled radical polymerization. Polymer Chemistry, 2013, 4, 5577.	1.9	41
9	Immobilization of Antimicrobial Peptide IG-25 onto Fluoropolymers via Fluorous Interactions and Click Chemistry. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12789-12793.	4.0	28
10	Thiolâ€Ene Click Reactions – Versatile Tools for the Modification of Unsaturated Amino Acids and Peptides. European Journal of Organic Chemistry, 2013, 2013, 7101-7109.	1.2	9
11	Sulfonated hydrocarbon graft architectures for cation exchange membranes. European Polymer Journal, 2013, 49, 3601-3609.	2.6	8
12	Synthesis of Monoconjugated and Multiply Conjugated Oligonucleotides by "Click Thiol― Thiolâ€Michaelâ€₹ype Additions and by Combination with CuAAC "Click Huisgen― European Journal of Organic Chemistry, 2013, 2013, 465-473.	1.2	20
13	Polymer International in the year 2012. Polymer International, 2013, 62, 1-1.	1.6	0
14	Linear–dendritic biodegradable block copolymers: from synthesis to application in bionanotechnology. Polymer Chemistry, 2013, 4, 46-52.	1.9	46
15	Graphene veils: A versatile surface chemistry for sensors. BioTechniques, 2014, 57, 21-30.	0.8	10
16	Oneâ€pot deprotection and functionalization of polythiol copolymers via six different thiol–X reactions. Polymer International, 2014, 63, 887-893.	1.6	25
17	The pentafluorostyrene endeavours with atom transfer radical polymerization— <i>quo vadis?</i> . Polymer International, 2014, 63, 814-823.	1.6	17
18	Advanced synthetic polymer biomaterials derived from organic sources. , 2014, , 71-99.		8

#	Article	IF	CITATIONS
19	Miktoarm star conjugated multifunctional gold nanoshells: synthesis and an evaluation of biocompatibility and cellular uptake. Journal of Materials Chemistry B, 2014, 2, 6334-6344.	2.9	7
20	Synthesis of telechelic vinyl/allyl functional siloxane copolymers with structural control. Polymer Chemistry, 2014, 5, 7054-7061.	1.9	57
21	One-Pot Photo-Induced Sequential CuAAC and Thiol–Ene Click Strategy for Bioactive Macromolecular Synthesis. Macromolecules, 2014, 47, 3608-3613.	2.2	58
22	Thiol-benzoxazine chemistry as a novel Thiol-X reaction for the synthesis of block copolymers. Polymer, 2014, 55, 5550-5556.	1.8	34
23	Oneâ€Pot, Oneâ€Step Strategy for the Preparation of Clickable Melamine Based Microporous Organic Polymer Network. Macromolecular Materials and Engineering, 2015, 300, 1116-1122.	1.7	24
25	Degradable poly(ester triazole)s based on renewable resources. Journal of Polymer Science Part A, 2015, 53, 2481-2493.	2.5	10
26	Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. Biomacromolecules, 2015, 16, 2049-2058.	2.6	69
27	Influence of Cross-Linking on the Physical Properties and Cytotoxicity of Polyhydroxyalkanoate (PHA) Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 567-576.	2.6	39
28	Click grafting of alkyne-containing vinyl polymers onto biosynthesized extracellular matrix protein containing azide functionality and adhesion control of human umbilical vein endothelial cells. RSC Advances, 2015, 5, 41445-41456.	1.7	5
29	Facile syntheses of alkoxysilanated phosphorylcholines as surface modifiers: CuAAC and thiol-ene "click―reactions. RSC Advances, 2015, 5, 14273-14276.	1.7	6
30	Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC). Molecules, 2016, 21, 1174.	1.7	84
31	Synthesis, curing and properties of poly(phthalazione ether sulfone ketone) copolymers crosslinked by click chemistry. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1208-1219.	2.0	2
32	Fehling solution/DIPEA/hydrazine: an alternative catalytic medium for regioselective synthesis of 1,4-disubstituted-1H-1,2,3-triazoles using azide–alkyne cycloaddition reaction. Tetrahedron Letters, 2016, 57, 4473-4476.	0.7	17
33	Use of thiol-ene click chemistry to modify mechanical and thermal properties of polyhydroxyalkanoates (PHAs). International Journal of Biological Macromolecules, 2016, 83, 358-365.	3.6	33
34	When CuAAC 'Click Chemistry' goes heterogeneous. Catalysis Science and Technology, 2016, 6, 923-957.	2.1	132
35	Synthesis of E7 peptide-modified biodegradable polyester with the improving affinity to mesenchymal stem cells. Materials Science and Engineering C, 2017, 73, 562-568.	3.8	19
36	Synthesis of allyl endâ€block functionalized poly(εâ€caprolactone)s and their facile postâ€functionalization via thiol–ene reaction. Journal of Polymer Science Part A, 2017, 55, 928-939.	2.5	8
37	Simultaneous and Sequential Synthesis of Polyaniline- $\langle i \rangle g \langle i \rangle$ -poly(ethylene glycol) by Combination of Oxidative Polymerization and CuAAC Click Chemistry: A Water-Soluble Instant Response Glucose Biosensor Material. Macromolecules, 2017, 50, 1824-1831.	2.2	22

#	Article	IF	CITATIONS
38	CuAAC-Based Click Chemistry in Self-Healing Polymers. Accounts of Chemical Research, 2017, 50, 2610-2620.	7.6	137
39	Preparation of antimicrobial wound dressings via thiol–ene photopolymerization reaction. Journal of Materials Science, 2018, 53, 1581-1595.	1.7	22
40	Synthesis of degradable linear cationic poly(amide triazole)s with DNA-condensation capability. European Polymer Journal, 2019, 113 , $36-46$.	2.6	7
41	Biomaterial-Based Activation and Expansion of Tumor-Specific T Cells. Frontiers in Immunology, 2019, 10, 931.	2.2	15
42	The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromolecular Rapid Communications, 2020, 41, e1900359.	2.0	146
43	Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters. Polymer Reviews, 2020, 60, 86-113.	5.3	5
44	Synthesis and electropolymerization of a multifunctional naphthalimide clicked carbazole derivative. Polymer International, 2020, 69, 265-273.	1.6	5
45	Galactose-derived poly(amide-triazole)s. Degradation, deprotection and derivatization studies. European Polymer Journal, 2020, 130, 109653.	2.6	2
46	Organoselenium-chitosan derivative: Synthesis via "click―reaction, characterization and antioxidant activity. International Journal of Biological Macromolecules, 2021, 191, 19-26.	3.6	14
47	Naphthalimide clicked polycarbazoles: Synthesis, characterization, and investigation of their optical, electrochemical and spectroelectrochemical properties. Synthetic Metals, 2022, 285, 117031.	2.1	4
48	Light-induced synthesis and characterization of "Clickable―polyacrylamide hydrogels. European Polymer Journal, 2022, 167, 111062.	2.6	9