Dengue Outbreak in Key West, Florida, USA, 2009

Emerging Infectious Diseases 18, 135-137 DOI: 10.3201/eid1801.110130

Citation Report

#		IF	CITATIONS
π	ARTICLE	п	CHAHONS
1	Dengue and chikungunya in travelers. Current Opinion in Infectious Diseases, 2012, 25, 523-529.	3.1	24
2	Dengue in the context of "safe blood―and global epidemiology: to screen or not to screen?. Transfusion, 2012, 52, 1634-1639.	1.6	49
3	Tough Art and Microbial Drama. Emerging Infectious Diseases, 2012, 18, 196-197.	4.3	0
4	Evaluation of boric acid sugar baits against Aedes albopictus (Diptera: Culicidae) in tropical environments. Parasitology Research, 2013, 112, 1583-1587.	1.6	57
5	Spatial and temporal patterns of abundance of <i>Aedes aegypti</i> L. (<i>Stegomyia aegypti</i>) and <i>Aedes albopictus</i> (Skuse) [<i>Stegomyia albopictus</i> (Skuse)] in southern Florida. Medical and Veterinary Entomology, 2013, 27, 421-429.	1.5	84
6	Resting and Energy Reserves of Aedes albopictus Collected in Common Landscaping Vegetation in St. Augustine, Florida. Journal of the American Mosquito Control Association, 2013, 29, 231-236.	0.7	24
7	Vertical Transmission of Key West Dengue-1 Virus by <i>Aedes aegypti</i> and <i>Aedes albopictus</i> (Diptera: Culicidae) Mosquitoes From Florida. Journal of Medical Entomology, 2013, 50, 1291-1297.	1.8	60
8	Genetic Relatedness of Dengue Viruses in Key West, Florida, USA, 2009–2010. Emerging Infectious Diseases, 2013, 19, 652-654.	4.3	24
9	Implications of Dengue Outbreaks for Blood Supply, Australia. Emerging Infectious Diseases, 2013, 19, 787-789.	4.3	51
10	Ears of the Armadillo: Clobal Health Research and Neglected Diseases in Texas. PLoS Neglected Tropical Diseases, 2013, 7, e2021.	3.0	10
11	Analytical and Clinical Performance of the CDC Real Time RT-PCR Assay for Detection and Typing of Dengue Virus. PLoS Neglected Tropical Diseases, 2013, 7, e2311.	3.0	266
12	<i>Aedes</i> (<i>Stegomyia</i>) <i>aegypti</i> in the Continental United States: A Vector at the Cool Margin of Its Geographic Range. Journal of Medical Entomology, 2013, 50, 467-478.	1.8	108
13	Optimization of the Cutoff Value for a Commercial Anti-Dengue Virus IgG Immunoassay. Vaccine Journal, 2013, 20, 358-362.	3.1	16
15	Dengue Surveillance in Veterans Affairs Healthcare Facilities, 2007–2010. PLoS Neglected Tropical Diseases, 2013, 7, e2040.	3.0	4
16	Multiplex Microsphere Immunoassays for the Detection of IgM and IgG to Arboviral Diseases. PLoS ONE, 2013, 8, e75670.	2.5	42
17	Serological Evidence of Ongoing Transmission of Dengue Virus in Permanent Residents of Key West, Florida. Vector-Borne and Zoonotic Diseases, 2014, 14, 783-787.	1.5	20
18	The Role of Platelets in the Pathogenesis of Viral Hemorrhagic Fevers. PLoS Neglected Tropical Diseases, 2014, 8, e2858.	3.0	92
19	Dengue Virus Infections among Haitian and Expatriate Non-governmental Organization Workers — Léogane and Port-au-Prince, Haiti, 2012. PLoS Neglected Tropical Diseases, 2014, 8, e3269.	3.0	7

ATION REDO

	CITATION R	CITATION REPORT	
#	ARTICLE Immuno-Chromatographic Wicking Assay for the Rapid Detection of Dengue Viral Antigens in	IF	CITATIONS
20	Mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 2014, 51, 220-225.	1.0	0
21	Dengue Vectors, Human Activity, and Dengue Virus Transmission Potential in the Lower Rio Grande Valley, Texas, United States. Journal of Medical Entomology, 2014, 51, 1019-1028.	1.8	19
22	Evaluating Public Housing Residents for Knowledge, Attitudes, and Practices Following Dengue Prevention Outreach in Key West, Florida. Vector-Borne and Zoonotic Diseases, 2014, 14, 788-793.	1.5	6
23	Dengue in Florida (USA). Insects, 2014, 5, 991-1000.	2.2	53
24	Celluloseâ€Based Diagnostic Devices for Diagnosing Serotypeâ€2 Dengue Fever in Human Serum. Advanced Healthcare Materials, 2014, 3, 187-196.	7.6	41
25	The History of Dengue in the United States and its Recent Emergence. Current Tropical Medicine Reports, 2014, 1, 32-35.	3.7	13
26	Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus. Journal of NeuroVirology, 2014, 20, 539-560.	2.1	151
27	Chikungunya virus: new risk to transfusion safety in the <scp>A</scp> mericas. Transfusion, 2014, 54, 1911-1915.	1.6	29
28	Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites and Vectors, 2014, 7, 338.	2.5	280
29	Control of Aedes albopictus with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in St. Augustine, Florida. Parasitology Research, 2014, 113, 73-79.	1.6	63
30	Origin of the dengue virus outbreak in Martin County, Florida, USA 2013. Virology Reports, 2014, 1-2, 2-8.	0.4	31
32	Effective suppression of Dengue virus using a novel group-l intron that induces apoptotic cell death upon infection through conditional expression of the Bax C-terminal domain. Virology Journal, 2014, 11, 111.	3.4	20
33	Flaviviruses (Dengue, Yellow Fever, Japanese Encephalitis, West Nile Encephalitis, St. Louis) Tj ETQq0 0 0 rgBT /C 2015, , 1881-1903.e6.)verlock 10	0 Tf 50 267 To 14
34	Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR. PLoS Neglected Tropical Diseases, 2015, 9, e0004002.	3.0	67
35	Climate change influences on global distributions of dengue and chikungunya virus vectors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140135.	4.0	301
36	Current Neurological Observations and Complications of Dengue Virus Infection. Current Neurology and Neuroscience Reports, 2015, 15, 29.	4.2	26
37	A Household Serosurvey to Estimate the Magnitude of a Dengue Outbreak in Mombasa, Kenya, 2013. PLoS Neglected Tropical Diseases, 2015, 9, e0003733.	3.0	55
38	Itaya virus, a NovelOrthobunyavirusAssociated with Human Febrile Illness, Peru. Emerging Infectious Diseases, 2015, 21, 781-8.	4.3	25

# 39	ARTICLE Post Outbreak Review: Dengue Preparedness and Response in Key West, Florida. American Journal of Tropical Medicine and Hygiene, 2015, 93, 397-400.	IF 1.4	CITATIONS 9
40	Dengue: Update on Epidemiology. Current Infectious Disease Reports, 2015, 17, 457.	3.0	51
41	Viruses Responsible for Hemorrhagic Fevers. , 2016, , 161-181.		0
42	Considerations for Disrupting Dengue Virus Transmission; Ecology of Aedes aegypti and Current (Nongenetic) Methods of Control. , 2016, , 103-124.		4
43	Chikungunya: epidemiology. F1000Research, 2016, 5, 82.	1.6	100
44	Dengue, Zika and Chikungunya: Emerging Arboviruses in the New World. Western Journal of Emergency Medicine, 2016, 17, 671-679.	1.1	243
45	Public Health Responses to and Challenges for the Control of Dengue Transmission in High-Income Countries: Four Case Studies. PLoS Neglected Tropical Diseases, 2016, 10, e0004943.	3.0	29
46	Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas. PLoS Neglected Tropical Diseases, 2016, 10, e0005055.	3.0	89
47	Epidemiological and Virological Characterizations of the 2014 Dengue Outbreak in Guangzhou, China. PLoS ONE, 2016, 11, e0156548.	2.5	34
48	Riboflavin and ultraviolet light: impact on dengue virus infectivity. Vox Sanguinis, 2016, 111, 235-241.	1.5	29
49	Dengue and chikungunya: modelling the expansion of mosquito-borne viruses into naÃ ⁻ ve populations. Parasitology, 2016, 143, 860-873.	1.5	12
50	Zika Virus. Clinical Microbiology Reviews, 2016, 29, 487-524.	13.6	1,196
51	Willingness to Pay for Mosquito Control in Key West, Florida and Tucson, Arizona. American Journal of Tropical Medicine and Hygiene, 2016, 94, 775-779.	1.4	9
52	Ecological effects on arbovirus-mosquito cycles of transmission. Current Opinion in Virology, 2016, 21, 124-131.	5.4	17
53	Dengue in a changing climate. Environmental Research, 2016, 151, 115-123.	7.5	330
54	Mosquito Avoidance Practices and Knowledge of Arboviral Diseases in Cities with Differing Recent History of Disease. American Journal of Tropical Medicine and Hygiene, 2016, 95, 945-953.	1.4	18
55	Potential for Extrinsic Incubation Temperature to Alter Interplay between Transmission Potential and Mortality of Dengue-Infected <i>Aedes aegypti</i> . Environmental Health Insights, 2016, 10, EHI.S38345.	1.7	43
56	Low sensitivity of the tourniquet test for differential diagnosis of dengue: an analysis of 28,000 trials in patients. BMC Infectious Diseases, 2016, 16, 627.	2.9	7

# 57	ARTICLE Knowledge, attitudes, and practices of Florida physicians regarding dengue before and after an educational intervention. BMC Medical Education, 2016, 16, 124.	IF 2.4	CITATIONS 8
58	Reported Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995-2016 (Diptera: Culicidae). Journal of Medical Entomology, 2016, 53, 1169-1175.	1.8	103
59	Molecular epidemiology demonstrates that imported and local strains circulated during the 2014 dengue outbreak in Guangzhou, China. Virologica Sinica, 2017, 32, 63-72.	3.0	27
60	A New Look at an Old Disease: Recent Insights into the Global Epidemiology of Dengue. Current Epidemiology Reports, 2017, 4, 11-21.	2.4	35
61	Dengue: knowledge gaps, unmet needs, and research priorities. Lancet Infectious Diseases, The, 2017, 17, e88-e100.	9.1	153
62	A decade of colonization: the spread of the Asian tiger mosquito in Pennsylvania and implications for disease risk. Journal of Vector Ecology, 2017, 42, 3-12.	1.0	6
63	Decision making in the face of uncertainty: the challenge of emerging infectious diseases. Transfusion, 2017, 57, 723-728.	1.6	5
64	Factors of Concern Regarding Zika and Other <italic>Aedes aegypti</italic> -Transmitted Viruses in the United States. Journal of Medical Entomology, 2017, 54, 251-257.	1.8	18
65	Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States. Journal of Medical Entomology, 2017, 54, 1605-1614.	1.8	72
66	Modes of Transmission of Zika Virus. Journal of Infectious Diseases, 2017, 216, S875-S883.	4.0	96
67	The Burden of Dengue and Chikungunya Worldwide: Implications for the Southern United States and California. Annals of Global Health, 2018, 80, 466.	2.0	70
68	Insecticide Susceptibility Screening Against Culex and Aedes (Diptera: Culicidae) Mosquitoes From the United States. Journal of Medical Entomology, 2018, 55, 398-407.	1.8	27
69	Challenges in dengue research: A computational perspective. Evolutionary Applications, 2018, 11, 516-533.	3.1	22
70	From Incriminating Stegomyia fasciata to Releasing Wolbachia pipientis: Australian Research on the Dengue Virus Vector, Aedes aegypti, and Development of Novel Strategies for Its Surveillance and Control. Tropical Medicine and Infectious Disease, 2018, 3, 71.	2.3	5
71	History of Mosquitoborne Diseases in the United States and Implications for New Pathogens. Emerging Infectious Diseases, 2018, 24, 821-826.	4.3	32
72	Identification and characterization of permissive cells to dengue virus infection in human hematopoietic stem and progenitor cells. Transfusion, 2019, 59, 2938-2951.	1.6	8
73	A Novel Densovirus Isolated From the Asian Tiger Mosquito Displays Varied Pathogenicity Depending on Its Host Species. Frontiers in Microbiology, 2019, 10, 1549.	3.5	14
74	Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis. PLoS Computational Biology, 2019, 15, e1007369.	3.2	14

#	Article	IF	CITATIONS
75	Molecular epidemiological characteristics of dengue virus carried by 34 patients in Guangzhou in 2018. PLoS ONE, 2019, 14, e0224676.	2.5	2
76	Florida <i>Aedes aegypti</i> (Diptera: Culicidae) and <i>Aedes albopictus</i> Vector Competency for Zika Virus. Journal of Medical Entomology, 2019, 56, 341-346.	1.8	14
77	Proteomics Profiling of Host Cell Response via Protein Expression and Phosphorylation upon Dengue Virus Infection. Virologica Sinica, 2019, 34, 549-562.	3.0	23
78	Temperature impacts on dengue emergence in the United States: Investigating the role of seasonality and climate change. Epidemics, 2019, 28, 100344.	3.0	40
79	Stateâ€wide survey of <i>Aedes aegypti</i> and <i>Aedes albopictus</i> (Diptera: Culicidae) in Florida. Journal of Vector Ecology, 2019, 44, 210-215.	1.0	24
80	Arbovirus emergence in the temperate city of Córdoba, Argentina, 2009–2018. Scientific Data, 2019, 6, 276.	5.3	25
81	Predictors and Clinical Outcomes of Poor Platelet Recovery in Adult Dengue With Thrombocytopenia: A Multicenter, Prospective Study. Clinical Infectious Diseases, 2020, 71, 383-389.	5.8	5
82	The Global Expansion of Dengue: How <i>Aedes aegypti</i> Mosquitoes Enabled the First Pandemic Arbovirus. Annual Review of Entomology, 2020, 65, 191-208.	11.8	203
83	â€ ⁻ Clean up your rain gutters!': mosquito control, responsibility, and blame following the 2009–2010 dengue fever outbreak in Key West, Florida. Geo Journal, 2022, 87, 1335-1347.	3.1	1
84	A decade of arbovirus emergence in the temperate southern cone of South America: dengue, Aedes aegypti and climate dynamics in Córdoba, Argentina. Heliyon, 2020, 6, e04858.	3.2	8
85	Epidemiology of dengue fever in Guatemala. PLoS Neglected Tropical Diseases, 2020, 14, e0008535.	3.0	4
86	Baseline Susceptibility Status of Florida Populations of Aedes aegypti (Diptera: Culicidae) and Aedes albopictus. Journal of Medical Entomology, 2020, 57, 1550-1559.	1.8	22
87	Human Blood Feeding by Aedes aegypti (Diptera: Culicidae) in the Florida Keys and a Review of the Literature. Journal of Medical Entomology, 2020, 57, 1640-1647.	1.8	11
88	Climate change and viral emergence: evidence from Aedes-borne arboviruses. Current Opinion in Virology, 2020, 40, 41-47.	5.4	55
89	Evaluation of boric acid as toxic sugar bait against resistant <i>Aedes aegypti</i> mosquitoes. Journal of Vector Ecology, 2020, 45, 100-103.	1.0	5
90	Comprehensive Profiling of Zika Virus Risk with Natural and Artificial Mitigating Strategies, United States. Emerging Infectious Diseases, 2020, 26, 700-710.	4.3	0
91	Framework for PESTEL dimensions of sustainable healthcare waste management: Learnings from COVID-19 outbreak. Journal of Cleaner Production, 2021, 287, 125562.	9.3	75
92	A tetravalent live attenuated dengue virus vaccine stimulates balanced immunity to multiple serotypes in humans. Nature Communications, 2021, 12, 1102.	12.8	40

#	Article	IF	CITATIONS
93	Mosquito Vector Production across Socio-Economic Divides in Baton Rouge, Louisiana. International Journal of Environmental Research and Public Health, 2021, 18, 1420.	2.6	2
94	Defining levels of dengue virus serotype-specific neutralizing antibodies induced by a live attenuated tetravalent dengue vaccine (TAK-003). PLoS Neglected Tropical Diseases, 2021, 15, e0009258.	3.0	27
95	Challenges to Mitigating the Urban Health Burden of Mosquito-Borne Diseases in the Face of Climate Change. International Journal of Environmental Research and Public Health, 2021, 18, 5035.	2.6	23
96	Risk predictors of progression to severe disease during the febrile phase of dengue: a systematic review and meta-analysis. Lancet Infectious Diseases, The, 2021, 21, 1014-1026.	9.1	84
97	Laboratory Evaluation of the Rapid Analyte Measurement Platform Assay to Detect Dengue Virus in Mosquito Pools. Journal of the American Mosquito Control Association, 2021, 37, 152-156.	0.7	0
99	Characteristics of the 100 largest modern zoonotic disease outbreaks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200535.	4.0	21
100	Tracking Dengue on Twitter Using Hybrid Filtration-Polarity and Apache Flume. Computer Systems Science and Engineering, 2022, 40, 913-926.	2.4	5
101	Intersecting vulnerabilities: climatic and demographic contributions to future population exposure to Aedes-borne viruses in the United States. Environmental Research Letters, 2020, 15, 084046.	5.2	9
102	Emergent and Reemergent Arboviruses in South America and the Caribbean: Why So Many and Why Now?. Journal of Medical Entomology, 2017, 54, 509-532.	1.8	43
104	Genetically Modified (GM) Mosquito Use to Reduce Mosquito-Transmitted Disease in the US: A Community Opinion Survey. PLOS Currents, 2016, 8, .	1.4	24
105	Assessing the Origin of and Potential for International Spread of Chikungunya Virus from the Caribbean. PLOS Currents, 2014, 6, .	1.4	64
106	Suppression of the Arboviruses Dengue and Chikungunya Using a Dual-Acting Group-I Intron Coupled with Conditional Expression of the Bax C-Terminal Domain. PLoS ONE, 2015, 10, e0139899.	2.5	17
107	A Large Scale Biorational Approach Using Bacillus thuringiensis israeliensis (Strain AM65-52) for Managing Aedes aegypti Populations to Prevent Dengue, Chikungunya and Zika Transmission. PLoS ONE, 2017, 12, e0170079.	2.5	35
108	Dengue serosurvey after a 2-month long outbreak in Nîmes, France, 2015: was there more than met the eye?. Eurosurveillance, 2018, 23, .	7.0	6
109	Origin of a High-Latitude Population of Aedes aegypti in Washington, DC. American Journal of Tropical Medicine and Hygiene, 2018, 98, 445-452.	1.4	36
111	Influence and Impact of Mosquito-borne Diseases on the History of Florida, USA. Life: the Excitement of Biology, 2013, 1, 53-68.	0.1	5
113	Dengue Fever and Climate Change. , 2014, , 167-191.		1
114	Dengue Viral Pathogenesis and Immune Responses in Humanized Mice. , 2014, , 469-479.		1 _

#	Article	IF	CITATIONS
115	Survey of Antiretroviral Drug Resistance Pattern Among HIV-Infected Patients with Treatment Failure in Iran. Journal of Human Virology & Retrovirology, 2015, 2, .	0.2	2
116	Dengue Outbreak in Martin County, Florida in 2013. Journal of Human Virology & Retrovirology, 2015, 2, .	0.2	1
118	Epidemiological Profile and Laboratory Characteristics of Dengue Virus Infection during 2011 Outbreak in Rawalpindi, Islamabad Pakistan. Journal of Human Virology & Retrovirology, 2016, 3, .	0.2	0
119	Enfermedades transmitidas por vectores y cambio climático. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, 2017, , 118-128.	0.1	1
120	Dengue Outbreak Response and Control in Khyber Pakhtunkhwa, Pakistan: A Mixed Methods Study. Journal of Epidemiology and Global Health, 2020, 10, 74.	2.9	5
122	Systematic review: the impact of socioeconomic factors on <i>Aedes aegypti</i> mosquito distribution in the mainland United States. Reviews on Environmental Health, 2021, 36, 63-75.	2.4	3
123	Geographic Partitioning of Dengue Virus Transmission Risk in Florida. Viruses, 2021, 13, 2232.	3.3	8
125	SARS-COV-2 ANTIBODY PREVALENCE AMONG HEALTHCARE WORKERS AND FIRST RESPONDERS, FLORIDA, MAY-JUNE 2020. , 2021, 18, 1-10.		2
126	Emergence potential of mosquito-borne arboviruses from the Florida Everglades. PLoS ONE, 2021, 16, e0259419.	2.5	9
127	Imported Dengue Case Numbers and Local Climatic Patterns Are Associated with Dengue Virus Transmission in Florida, USA. Insects, 2022, 13, 163.	2.2	7
128	Assessing Entomological and Epidemiological Efficacy of Pyriproxyfen-Treated Ovitraps in the Reduction of Aedes Species: A Quasi-Experiment on Dengue Infection Using Saliva Samples. International Journal of Environmental Research and Public Health, 2022, 19, 3026.	2.6	4
129	A molecular surveillance-guided vector control response to concurrent dengue and West Nile virus outbreaks in a COVID-19 hotspot of Florida. The Lancet Regional Health Americas, 2022, 11, 100231.	2.6	4
137	Impacts of differential mosquito control treatment regimens on insecticide susceptibility status of Aedes aegypti (Diptera: Culicidae). SN Applied Sciences, 2022, 4, .	2.9	3
138	Updating the Insecticide Resistance Status of Aedes aegypti and Aedes albopictus in Asia: A Systematic Review and Meta-Analysis. Tropical Medicine and Infectious Disease, 2022, 7, 306.	2.3	8
139	Changing temperature profiles and the risk of dengue outbreaks. , 2023, 2, e0000115.		5
140	<i>Notes From the Field:</i> First Evidence of Locally Acquired Dengue Virus Infection — Maricopa County, Arizona, November 2022. Morbidity and Mortality Weekly Report, 2023, 72, 290-291.	15.1	5
141	Epidemiology and burden of dengue fever in the United States: a systematic review. Journal of Travel Medicine, 2023, 30, .	3.0	1
142	Response to An Outbreak of Locally Transmitted Dengue in Key Largo, FL, by The Florida Keys Mosquito Control District. Journal of the American Mosquito Control Association, 2023, 39, 251-257.	0.7	0

#	Article	IF	CITATIONS
143	Resistance and inhibitor testing on Aedes aegypti (Linnaeus) (Culicidae: Diptera) populations in the Florida Keys. Journal of Vector Ecology, 2023, 49, .	1.0	0