Aldose Reductase, Oxidative Stress, and Diabetic Mellit

Frontiers in Pharmacology 3, 87 DOI: 10.3389/fphar.2012.00087

Citation Report

#	Article	IF	CITATIONS
1	Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies. Journal of Cardiovascular Translational Research, 2012, 5, 509-518.	1.1	104
2	Role of Endothelial Cell Metabolism in Vessel Sprouting. Cell Metabolism, 2013, 18, 634-647.	7.2	320
3	Proteomic analysis of seminal plasma from infertile patients with oligoasthenoteratozoospermia due to oxidative stress and comparison with fertile volunteers. Fertility and Sterility, 2013, 100, 355-366.e2.	0.5	37
4	Synthesis of derivatives of the keto-pyrrolyl-difluorophenol scaffold: Some structural aspects for aldose reductase inhibitory activity and selectivity. Bioorganic and Medicinal Chemistry, 2013, 21, 869-873.	1.4	19
5	Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract. Journal of Ethnopharmacology, 2013, 149, 215-221.	2.0	31
6	X-ray structure of the V301L aldo–keto reductase 1B10 complexed with NADP+ and the potent aldose reductase inhibitor fidarestat: Implications for inhibitor binding and selectivity. Chemico-Biological Interactions, 2013, 202, 178-185.	1.7	14
7	Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Archives of Pharmacal Research, 2013, 36, 912-917.	2.7	79
8	Neuroprotective effects of the Chinese Yi-Qi-Bu-Shen recipe extract on injury of rat hippocampal neurons induced by hypoxia/reoxygenation. Journal of Ethnopharmacology, 2013, 145, 168-174.	2.0	16
9	The Akt–FoxO3a–manganese superoxide dismutase pathway is involved in the regulation of oxidative stress in diabetic nephropathy. Experimental Physiology, 2013, 98, 934-945.	0.9	65
10	Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress. Molecular Medicine Reports, 2013, 7, 431-440.	1.1	33
11	Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: relationship with subclinical disease, undertreatment, and poor adherence: implications of new evidence upon optimizing cardiovascular patient outcomes. Vascular Health and Risk Management, 2013, 9, 617.	1.0	71
12	Prospecting for Novel Plant-Derived Molecules of Rauvolfia serpentina as Inhibitors of Aldose Reductase, a Potent Drug Target for Diabetes and Its Complications. PLoS ONE, 2013, 8, e61327.	1.1	45
13	Editorial on research topic: aldo-keto reductases and role in human disease. Frontiers in Pharmacology, 2013, 4, 65.	1.6	2
14	Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress. Journal of Diabetes Research, 2014, 2014, 1-11.	1.0	261
15	Evaluation of ranirestat for the treatment of diabetic neuropathy. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 1051-1059.	1.5	6
16	Development of novel pyrazolone derivatives as inhibitors of aldose reductase: An eco-friendly one-pot synthesis, experimental screening and in silico analysis. Bioorganic Chemistry, 2014, 53, 67-74.	2.0	27
18	Metabolism of stromal and immune cells in health and disease. Nature, 2014, 511, 167-176.	13.7	377
19	Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. Acta Crystallographics Section D: Biological Crystallography, 2014, 70, 889-903	2.5	28

#	Article	IF	CITATIONS
20	Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1–Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radical Biology and Medicine, 2014, 67, 91-102.	1.3	88
21	Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: A proteomic analysis. Molecular Medicine Reports, 2015, 12, 2953-2960.	1.1	14
22	Structural Determinants of the Selectivity of 3â€Benzyluracilâ€lâ€acetic Acids toward Human Enzymes Aldose Reductase and AKR1B10. ChemMedChem, 2015, 10, 1989-2003.	1.6	13
23	[5-(Benzyloxy)-1H-indol-1-yl]acetic acid, an aldose reductase inhibitor and PPARÎ ³ ligand. Acta Biochimica Polonica, 2015, 62, 523-528.	0.3	7
24	Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance. Journal of Clinical Biochemistry and Nutrition, 2015, 57, 1-12.	0.6	73
25	Roles of Pyruvate, NADH, and Mitochondrial Complex I in Redox Balance and Imbalance in <i>β</i> Cell Function and Dysfunction. Journal of Diabetes Research, 2015, 2015, 1-12.	1.0	56
26	Diabetes and Alzheimer Disease, Two Overlapping Pathologies with the Same Background: Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	1.9	91
27	Aldose reductase expression as a risk factor for cataract. Chemico-Biological Interactions, 2015, 234, 247-253.	1.7	54
28	In vitro efficacy evaluation for prevention of diabetes and diabetic complications using Aster sphathulifolius. Food Science and Biotechnology, 2015, 24, 301-306.	1.2	6
29	Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease. Journal of Inherited Metabolic Disease, 2015, 38, 753-763.	1.7	44
30	Phenolic 4-hydroxy and 3,5-dihydroxy derivatives of 3-phenoxyquinoxalin-2(1H)-one as potent aldose reductase inhibitors with antioxidant activity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3924-3927.	1.0	30
31	Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry, 2015, 114, 114-124.	1.4	31
32	Targeting Aldose Reductase for the Treatment of Diabetes Complications and Inflammatory Diseases: New Insights and Future Directions. Journal of Medicinal Chemistry, 2015, 58, 2047-2067.	2.9	140
33	Chronic mTOR Inhibition by Rapamycin and Diabetes. , 2016, , 365-378.		0
34	Bioactive Thiazine and Benzothiazine Derivatives: Green Synthesis Methods and Their Medicinal Importance. Molecules, 2016, 21, 1054.	1.7	66
35	Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity. , 2016, 7, 90.		99
36	Sources and implications of NADH/NAD+ redox imbalance in diabetes and its complications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2016, 9, 145.	1.1	85
37	Manipulating Angiogenesis by Targeting Endothelial Metabolism: Hitting the Engine Rather than the Drivers—A New Perspective?. Pharmacological Reviews, 2016, 68, 872-887.	7.1	49

#	Article	IF	CITATIONS
38	Caveolin 1 Modulates Aldosteroneâ€Mediated Pathways of Glucose and Lipid Homeostasis. Journal of the American Heart Association, 2016, 5, .	1.6	41
39	Protein Modifications as Manifestations of Hyperglycemic Glucotoxicity in Diabetes and Its Complications. Biochemistry Insights, 2016, 9, BCI.S36141.	3.3	53
40	Ranirestat has a stronger inhibitory activity on aldose reductase and suppresses inflammatory reactions in high glucose–exposed endothelial cells. Diabetes and Vascular Disease Research, 2016, 13, 312-315.	0.9	7
41	Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice. Molecular Neurobiology, 2016, 53, 662-676.	1.9	53
42	Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H153-H173.	1.5	68
43	Increased sorbitol levels in the hypertrophic ligamentum flavum of diabetic patients with lumbar spinal canal stenosis. Journal of Orthopaedic Research, 2017, 35, 1058-1066.	1.2	5
44	Synthesis and structure–activity relationship studies of phenolic hydroxyl derivatives based on quinoxalinone as aldose reductase inhibitors with antioxidant activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 887-892.	1.0	20
45	1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress. Biochemical Pharmacology, 2017, 128, 34-45.	2.0	25
46	Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biology, 2017, 11, 51-59.	3.9	64
47	Synthesis and <i>In Vivo</i> Evalution of Decursinol Derivatives as Antidiabetics. Bulletin of the Korean Chemical Society, 2017, 38, 1075-1079.	1.0	1
48	Analysis of protein profiles in diabetic rat blood plasma that induced by alloxan. AIP Conference Proceedings, 2017, , .	0.3	1
49	Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochemistry and Biophysics Reports, 2017, 11, 119-129.	0.7	40
50	Aldose Reductase Mediates NLRP3 Inflammasome–Initiated Innate Immune Response in Hyperglycemia-Induced Thp1 Monocytes and Male Mice. Endocrinology, 2017, 158, 3661-3675.	1.4	44
51	Comprehensive Metabolomics Study To Assess Longitudinal Biochemical Changes and Potential Early Biomarkers in Nonobese Diabetic Mice That Progress to Diabetes. Journal of Proteome Research, 2017, 16, 3873-3890.	1.8	13
52	Proteomic profile of the lens in a streptozotocin-induced diabetic rat model using shotgun proteomics. Biomedical Reports, 2017, 7, 445-450.	0.9	5
53	Coconut phytocompounds inhibits polyol pathway enzymes: Implication in prevention of microvascular diabetic complications. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 127, 20-24.	1.0	19
54	Glucose 6-phosphate dehydrogenase and the kidney. Current Opinion in Nephrology and Hypertension, 2017, 26, 43-49.	1.0	38
55	Curcumin attenuates oxidative stress in liver in Type 1 diabetic rats. Open Life Sciences, 2017, 12, 452-459.	0.6	8

#	Article	IF	CITATIONS
56	Phlorotannins: Towards New Pharmacological Interventions for Diabetes Mellitus Type 2. Molecules, 2017, 22, 56.	1.7	64
57	Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients, 2017, 9, 405.	1.7	76
58	Correlation between Oxidative Stress, Nutrition, and Cancer Initiation. International Journal of Molecular Sciences, 2017, 18, 1544.	1.8	281
59	The Contribution of Singlet Oxygen to Insulin Resistance. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	1.9	26
60	Ginger Ingredients Alleviate Diabetic Prostatic Complications: Effect on Oxidative Stress and Fibrosis. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-12.	0.5	15
61	Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins. Journal of Diabetes Research, 2017, 2017, 1-9.	1.0	16
62	Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. BioMed Research International, 2017, 2017, 1-11.	0.9	9
63	The human brain produces fructose from glucose. JCl Insight, 2017, 2, e90508.	2.3	58
64	Polyol Pathway Links Glucose Metabolism to the Aggressiveness of Cancer Cells. Cancer Research, 2018, 78, 1604-1618.	0.4	83
65	The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 607-614.	2.5	23
66	Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. Journal of Experimental Biology, 2018, 221, .	0.8	84
67	Epalrestat-loaded silicone hydrogels as contact lenses to address diabetic-eye complications. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 126-136.	2.0	59
68	Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Progress in Cardiovascular Diseases, 2018, 61, 3-9.	1.6	79
69	A spontaneously immortalized Schwann cell line from aldose reductaseâ€deficient mice as a useful tool for studying polyol pathway and aldehyde metabolism. Journal of Neurochemistry, 2018, 144, 710-722.	2.1	18
70	Respiratory stress in mitochondrial electron transport chain complex mutants of Candida albicans activates Snf1 kinase response. Fungal Genetics and Biology, 2018, 111, 73-84.	0.9	19
71	Nutritional and Pharmacological Effects on Oxidative Stress in Soft Tissue and Bone Remodeling. Journal of Nutrition and Metabolism, 2018, 2018, 1-9.	0.7	10
72	Hyperglycemia-Induced Endothelial Dysfunction. , 0, , .		9
73	Curcumin, Cardiometabolic Health and Dementia. International Journal of Environmental Research and Public Health, 2018, 15, 2093.	1.2	46

	CITATION R	EPORT	
#	Article	IF	Citations
74	Inhibitory activity of methanol extracts from different colored flowers on aldose reductase and HPLC-UV analysis of quercetin. Horticulture Environment and Biotechnology, 2018, 59, 899-907.	0.7	6
75	The effects of celery leaf (<i>apium graveolens L</i> .) treatment on blood glucose and insulin levels in elderly pre-diabetics. Journal of King Abdulaziz University, Islamic Economics, 2018, 39, 154-160.	0.5	22
76	Ameliorative Influence of Dietary Fenugreek (Trigonella foenum-graecum) Seeds and Onion (Allium) Tj ETQq0 0 Experimental Diabetes. Current Eye Research, 2018, 43, 1108-1118.	0 rgBT /O [.] 0.7	verlock 10 Tf ! 8
77	Cataract as Early Ocular Complication in Children and Adolescents with Type 1 Diabetes Mellitus. International Journal of Endocrinology, 2018, 2018, 1-6.	0.6	23
78	Antidiabetic Activity of Curcumin. , 2018, , 385-401.		5
79	Novel aldose reductase inhibitory and antioxidant chlorogenic acid derivatives obtained by heat treatment of chlorogenic acid and amino acids. Food Chemistry, 2018, 266, 449-457.	4.2	17
80	Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed Purple Vegetables. Nutrients, 2018, 10, 456.	1.7	14
81	The 1H-NMR-based metabolite profile of acute alcohol consumption: A metabolomics intervention study. PLoS ONE, 2018, 13, e0196850.	1.1	18
82	Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treatment Reviews, 2018, 70, 98-111.	3.4	73
83	Aldose Reductase Inhibition Prevents Development of Posterior Capsular Opacification in an In Vivo Model of Cataract Surgery. , 2018, 59, 3591.		27
84	Acetazolamide alleviates sequelae of hyperglycaemic intracerebral haemorrhage by suppressing astrocytic reactive oxygen species. Free Radical Research, 2018, 52, 1010-1019.	1.5	3
85	Molecular dynamics/quantum mechanics guided designing of natural products based prodrugs of Epalrestat. Journal of Molecular Structure, 2018, 1171, 556-563.	1.8	13
86	The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta Pharmacologica Sinica, 2019, 40, 86-97.	2.8	46
87	Zinc Supplementation Ameliorates Diabetic Cataract Through Modulation of Crystallin Proteins and Polyol Pathway in Experimental Rats. Biological Trace Element Research, 2019, 187, 212-223.	1.9	17
88	Aldose Reductase Inhibitors of Plant Origin in the Prevention and Treatment of Alcoholic Liver Disease: A Minireview. BioMed Research International, 2019, 2019, 1-8.	0.9	5
89	New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia, 2019, 62, 1539-1549.	2.9	240
90	Comparison of Data Fusion Methods as Consensus Scores for Ensemble Docking. Molecules, 2019, 24, 2690.	1.7	14
91	Role of Platelet Mitochondria: Life in a Nucleus-Free Zone. Frontiers in Cardiovascular Medicine, 2019, 6, 153.	1.1	124

#	Article	IF	CITATIONS
92	Synthesis and investigation of polyhydroxylated pyrrolidine derivatives as novel chemotypes showing dual activity as glucosidase and aldose reductase inhibitors. Bioorganic Chemistry, 2019, 92, 103298.	2.0	13
93	Quercetin based derivatives as sirtuin inhibitors. Biomedicine and Pharmacotherapy, 2019, 111, 1326-1333.	2.5	41
94	Anticataractogenic Potential of Dietary Spices in diabetic condition. , 2019, , 515-527.		0
95	Glucose Metabolism in Cardiac Hypertrophy and Heart Failure. Journal of the American Heart Association, 2019, 8, e012673.	1.6	180
96	Quantitative assessment of diabetic amyotrophy using magnetic resonance neurography—a case-control analysis. European Radiology, 2019, 29, 5910-5919.	2.3	15
97	<p>In silico and in vitro studies of lupeol and iso-orientin as potential antidiabetic agents in a rat model</p> . Drug Design, Development and Therapy, 2019, Volume 13, 1501-1513.	2.0	23
98	Aldose reductase inhibition enhances lens regeneration in mice. Chemico-Biological Interactions, 2019, 307, 58-62.	1.7	6
99	Efficacy of aldose reductase inhibitors is affected by oxidative stress induced under X-ray irradiation. Scientific Reports, 2019, 9, 3177.	1.6	11
100	Anti-diabetic Properties of Calcium Channel Blockers: Inhibition Effects on Aldose Reductase Enzyme Activity. Applied Biochemistry and Biotechnology, 2019, 189, 318-329.	1.4	70
101	Protective effect of glycine in streptozotocin-induced diabetic cataract through aldose reductase inhibitory activity. Biomedicine and Pharmacotherapy, 2019, 114, 108794.	2.5	8
102	Characterization of novel kainic acid analogs as inhibitors of select microglial functions. European Journal of Pharmacology, 2019, 851, 25-35.	1.7	4
103	Aldose reductase inhibitors: 2013-present. Expert Opinion on Therapeutic Patents, 2019, 29, 199-213.	2.4	62
104	The olive constituent oleuropein exerts nephritic protective effects on diabetic nephropathy in db/db mice. Archives of Physiology and Biochemistry, 2022, 128, 455-462.	1.0	11
105	Effects of a Combined Mitochondria-Targeted Treatment on the State of Mitochondria and Synaptic Membranes from the Brains of Diabetic Rats. Neurophysiology, 2019, , 1.	0.2	1
106	A non-invasive, multi-target approach to treat diabetic retinopathy. Biomedicine and Pharmacotherapy, 2019, 109, 708-715.	2.5	25
107	Biologically active prenylated flavonoids from the genus <i>Sophora</i> and their structure–activity relationship—A review. Phytotherapy Research, 2019, 33, 546-560.	2.8	45
108	New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biology, 2019, 20, 247-260.	3.9	397
109	Berberine mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity. Free Radical Biology and Medicine, 2019, 130, 196-205.	1.3	42

#	Article	IF	CITATIONS
110	Effect of <i>Costus spiralis</i> (<scp>Jacq</scp> .) <scp>Roscoe</scp> Leaves, Methanolic Extract and Guaijaverin on Blood Glucose and Lipid Levels in a Type II Diabetic Rat Model. Chemistry and Biodiversity, 2019, 16, e1800365.	1.0	2
111	Inhibitory effect of effective fraction of Salvia officinalis on aldose reductase activity: strategy to reduce complications of type 2 diabetes. Oriental Pharmacy and Experimental Medicine, 2019, 19, 211-216.	1.2	5
112	Ameliorative effects of Mentha aquatica on diabetic and nephroprotective potential activities in STZ-induced renal injury. Comparative Clinical Pathology, 2020, 29, 189-199.	0.3	11
113	Relationship between aldose reductase enzyme and the signaling pathway of protein kinase C in an in vitro diabetic retinopathy model. Canadian Journal of Physiology and Pharmacology, 2020, 98, 243-251.	0.7	12
114	Herbal medicines used to treat diabetes in Southern regions of Pakistan and their pharmacological evidence. Journal of Herbal Medicine, 2020, 21, 100323.	1.0	9
115	Glucose induces metabolic reprogramming in neutrophils during type 2 diabetes to form constitutive extracellular traps and decreased responsiveness to lipopolysaccharides. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165940.	1.8	27
116	Potential Role of Gene Regulator NFAT5 in the Pathogenesis of Diabetes Mellitus. Journal of Diabetes Research, 2020, 2020, 1-13.	1.0	14
117	Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. European Journal of Medicinal Chemistry, 2020, 207, 112742.	2.6	36
118	Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorganic Chemistry, 2020, 102, 104110.	2.0	56
119	Cardioprotection via Metabolism for Rat Heart Preservation Using the High-Pressure Gaseous Mixture of Carbon Monoxide and Oxygen. International Journal of Molecular Sciences, 2020, 21, 8858.	1.8	10
120	Mushroom and plant extracts as potential intervention supplements in diabetes management. , 2020, , 247-256.		2
121	The Relationship Between Reactive Oxygen Species and Endothelial Cell Metabolism. Frontiers in Chemistry, 2020, 8, 592688.	1.8	55
122	In-Vivo Antidiabetic Activity and In-Silico Mode of Action of LC/MS-MS Identified Flavonoids in Oleaster Leaves. Molecules, 2020, 25, 5073.	1.7	13
123	Aldose reductase inhibition of Rosa hybrida petals and its active component, kaempferol. Horticulture Environment and Biotechnology, 2020, 61, 601-607.	0.7	1
124	Kaempferol Rhamnosides from Geranium sibiricum as Aldose Reductase Inhibitors and Their Content by HPLC Analysis. Processes, 2020, 8, 694.	1.3	1
125	Physiological effects of carotenoids on hyperglycemia and associated events. Studies in Natural Products Chemistry, 2020, , 303-320.	0.8	2
126	Addressing selectivity issues of aldose reductase 2Âinhibitors for the management of diabetic complications. Future Medicinal Chemistry, 2020, 12, 1327-1358.	1.1	18
127	Three common caffeoylquinic acids as potential hypoglycemic nutraceuticals: Evaluation of αâ€glucosidase inhibitory activity and glucose consumption in HepG2 cells. Journal of Food Biochemistry, 2020, 44, e13361.	1.2	15

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
128	Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. Nanomaterials, 2020, 10, 1234.	1.9	83
129	Nerve damage induced skeletal muscle atrophy is associated with increased accumulation of intramuscular glucose and polyol pathway intermediates. Scientific Reports, 2020, 10, 1908.	1.6	16
130	Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Frontiers in Cell and Developmental Biology, 2020, 8, 77.	1.8	28
131	Targeting Redox Imbalance as an Approach for Diabetic Kidney Disease. Biomedicines, 2020, 8, 40.	1.4	27
132	Effects of D-Limonene on aldose reductase and protein glycation in diabetic rats. Journal of King Saud University - Science, 2020, 32, 1953-1958.	1.6	7
133	Substituted 2â€thioxothiazolidinâ€4â€one derivatives showed protective effects against diabetic cataract via inhibition of aldose reductase. Archiv Der Pharmazie, 2020, 353, 1900371.	2.1	3
134	Antidiabetic Potential of Marine Brown Algae—a Mini Review. Journal of Diabetes Research, 2020, 2020, 1-13.	1.0	53
135	Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 2021, 209, 112891.	2.6	328
136	Postprandial Dried Blood Spot–Based Nutritional Metabolomic Analysis Discriminates a High-Fat, High-Protein Meat-Based Diet from a High Carbohydrate Vegan Diet: A Randomized Controlled Crossover Trial. Journal of the Academy of Nutrition and Dietetics, 2021, 121, 931-941.e2.	0.4	5
137	Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nature Reviews Cardiology, 2021, 18, 194-209.	6.1	304
138	Biomarker discovery in highly invasive lung cancer cell through proteomics approaches. Cell Biochemistry and Function, 2021, 39, 367-379.	1.4	4
139	Determination of Afzelin and Astragalin from Lespedeza cuneata on Aldose Reductase Inhibition. Journal of Chromatographic Science, 2021, 59, 381-387.	0.7	3
140	Anti-Cataract and Plant Extracts-Based Natural Products: A Review. , 0, , .		0
141	Design and development of novel thiazole-sulfonamide derivatives as a protective agent against diabetic cataract in Wistar rats via inhibition of aldose reductase. Heterocyclic Communications, 2021, 27, 63-70.	0.6	3
142	Exploring the molecular role of endostatin in diabetic neuropathy. Molecular Biology Reports, 2021, 48, 1819-1836.	1.0	1
143	Bio-medical potential of chalcone derivatives and their metal complexes as antidiabetic agents: a review. Journal of Coordination Chemistry, 2021, 74, 725-742.	0.8	14
144	Inhibitory Effects of Zingiber officinale Roscoe Roots, Stems, and Leaves on Oxidative Stress through Free Radical Scavenging Activity. Journal of the Korean Society of Food Science and Nutrition, 2021, 50, 128-135.	0.2	1
145	Insight into Gentisic Acid Antidiabetic Potential Using In Vitro and In Silico Approaches. Molecules, 2021, 26, 1932.	1.7	19

#	Article	IF	CITATIONS
146	Vitamin B-6-Induced Neuropathy: Exploring the Mechanisms of Pyridoxine Toxicity. Advances in Nutrition, 2021, 12, 1911-1929.	2.9	40
147	Rhodanine-3-acetamide derivatives as aldose and aldehyde reductase inhibitors to treat diabetic complications: synthesis, biological evaluation, molecular docking and simulation studies. BMC Chemistry, 2021, 15, 28.	1.6	11
148	The Effect of Oxidative Stress and Antioxidant Therapies on Pancreatic Î ² -cell Dysfunction: Results from in Vitro and in Vivo Studies. Current Medicinal Chemistry, 2021, 28, 1328-1346.	1.2	16
149	Advanced Pharmacological Uses of Marine Algae as an Anti-Diabetic Therapy. , 0, , .		5
150	C. difficile exploits a host metabolite produced during toxin-mediated disease. Nature, 2021, 593, 261-265.	13.7	48
151	Pathophysiological Association of Endothelial Dysfunction with Fatal Outcome in COVID-19. International Journal of Molecular Sciences, 2021, 22, 5131.	1.8	29
152	Purification and characterization of aldose reductase from jerboa (Jaculus orientalis) and evaluation of its inhibitory activity by Euphorbia regis-jubae (Webb & Berth) extracts. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 244, 109001.	1.3	1
153	Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions. Current Medicinal Chemistry, 2021, 28, 3683-3712.	1.2	12
154	Fructose Metabolism and Cardiac Metabolic Stress. Frontiers in Pharmacology, 2021, 12, 695486.	1.6	8
155	Isatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity. Medicinal Chemistry Research, 2021, 30, 1588-1602.	1.1	4
156	Aldose Reductase: a cause and a potential target for the treatment of diabetic complications. Archives of Pharmacal Research, 2021, 44, 655-667.	2.7	61
157	Dual Targeting of PTP1B and Aldose Reductase with Marine Drug Phosphoeleganin: A Promising Strategy for Treatment of Type 2 Diabetes. Marine Drugs, 2021, 19, 535.	2.2	11
158	Physiological and Pathological Roles of Aldose Reductase. Metabolites, 2021, 11, 655.	1.3	40
159	The nexus between redox state and intermediary metabolism. FEBS Journal, 2022, 289, 5440-5462.	2.2	7
160	AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle. Metabolism: Clinical and Experimental, 2021, 123, 154864.	1.5	16
161	Role of Glucose Metabolism and Mitochondrial Function in Diabetic Kidney Disease. Current Diabetes Reports, 2021, 21, 6.	1.7	8
162	Quantification of the electric field inside protein active sites and fullerenes. Physical Chemistry Chemical Physics, 2021, 23, 14755-14763.	1.3	1
163	Sodium-glucose co-transporter 2 inhibitors and diabetic retinopathy: insights into preservation of sight and looking beyond. Cardiovascular Endocrinology and Metabolism, 2021, 10, 3-13.	0.5	13

#	Article	IF	CITATIONS
164	Estimation of Aldose Reductase Activity and Malondialdehyde Levels in Patients with Type 2 Diabetes Mellitus. Biomedical and Pharmacology Journal, 2019, 12, 1001-1007.	0.2	3
165	A New Approach to Control the Enigmatic Activity of Aldose Reductase. PLoS ONE, 2013, 8, e74076.	1.1	39
166	Fructose Levels Are Markedly Elevated in Cerebrospinal Fluid Compared to Plasma in Pregnant Women. PLoS ONE, 2015, 10, e0128582.	1.1	22
167	Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest. Oncotarget, 2016, 7, 5598-5612.	0.8	118
168	Effects of Moringa Oleifera Aqueous Leaf Extract on Submandibular Salivary Glands of Diabetic Albino Rats. Egyptian Dental Journal, 2018, 64, 1293-1303.	0.1	6
169	A Systematic Review on Anti-diabetic Properties of Chalcones. Current Medicinal Chemistry, 2020, 27, 2257-2321.	1.2	59
170	Roles of p38-MAPK in Insulin Resistant Heart: Evidence from Bench to Future Bedside Application. Current Pharmaceutical Design, 2013, 19, 5742-5754.	0.9	16
171	Caffeoylquinic Acids with Potential Biological Activity from Plant In vitro Cultures as Alternative Sources of Valuable Natural Products. Current Pharmaceutical Design, 2020, 26, 2817-2842.	0.9	14
172	Hiperglisemi, Oksidatif Stres ve Tip 2 Diyabette Oksidatif Stres Belirteçlerinin Tanımlanması. Turkish Journal of Diabetes and Obesity, 2020, 4, 60-68.	0.0	3
173	A Novel Carboxymethylated Mercaptotriazinoindole Inhibitor of Aldose Reductase Interferes With the Polyol Pathway in Streptozotocin-Induced Diabetic Rats. Physiological Research, 2015, 64, 587-591.	0.4	15
174	Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects?. Biomedicines, 2021, 9, 3.	1.4	67
175	Inhibitory effects of <i>Synurus excelsus</i> and <i>Weigela subsessilis</i> on aldose reductase and HPLC-UV analysis of scopolin, scopoletin, and quercetin. Journal of Applied Biological Chemistry, 2018, 61, 135-139.	0.2	3
176	Added sugars drive chronic kidney disease and its consequences: A comprehensive review. Journal of Insulin Resistance, 2016, 1, .	0.6	6
177	The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus. Neural Regeneration Research, 2017, 12, 1632.	1.6	11
178	Translating the advanced glycation end products (AGEs) knowledge into real-world nutrition strategies. European Journal of Clinical Nutrition, 2022, 76, 922-928.	1.3	11
180	Vascular Complications in Diabetes. , 2013, , 313-337.		0
181	Attributes of Hypoxic Preconditioning Determine the Complicating Atherogenesis of Plaques. , 0, , .		0
182	Aldose Reductase and Diabetic Cardiovascular Disease. , 2014, , 143-158.		0

#	Article	IF	CITATIONS
183	Selective Demethylation of 3-Phenoxyquinoxalin-2(1h)-one Acetate Derivatives. , 2015, , .		0
184	Synthesis and Functional Evaluation of Novel Aldose Reductase Inhibitors Bearing a Spirobenzopyran Scaffold. Open Medicinal Chemistry Journal, 2017, 11, 9-23.	0.9	2
185	Modes of Inhibition of Human Protein-Tyrosine Phosphatase 1B and Aldose Reductase by Moringa oleifera Lam Leaves Extract. MOJ Bioorganic & Organic Chemistry, 2017, 1, .	0.1	0
186	Electron Microscopic Investigation of Anterior Lens Capsule and Epithelium in Patients with Diabetes Mellitus. International Journal of Clinical Medicine, 2018, 09, 778-786.	0.1	1
187	Contribution of Aldose Reductase-Mediated Oxidative Stress Signaling in Inflammatory Lung Diseases. , 2019, , 225-246.		1
189	Selected Indonesian Medicinal Plants for the Management of Metabolic Syndrome: Molecular Basis and Recent Studies. Frontiers in Cardiovascular Medicine, 2020, 7, 82.	1.1	12
190	Citrus Flavanone Narirutin, In Vitro and In Silico Mechanistic Antidiabetic Potential. Pharmaceutics, 2021, 13, 1818.	2.0	18
191	The Effects of <i>Colocasia esculenta</i> Leaf Extract in Inhibition of Erythrocyte Aldose Reductase Activity and Increase of Haemoglobin in Experimental Rats. Journal of Nutritional Science and Vitaminology, 2020, 66, S320-S323.	0.2	2
192	Effective fraction of Teucrium polium suppressed polyol pathway through inhibiting the aldose reductase enzyme: strategy to reduce retinopathy. Journal of Medicinal Plants, 2020, 1, 82-90.	0.3	0
194	Computational Prediction of Phylogenetically Conserved Sequence Motifs for Five Different Candidate Genes in Type II Diabetic Nephropathy. Iranian Journal of Public Health, 2012, 41, 24-33.	0.3	1
195	Current status on the therapeutic strategies for heart failure and diabetic cardiomyopathy. Biomedicine and Pharmacotherapy, 2022, 145, 112463.	2.5	16
196	Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules, 2021, 11, 1692.	1.8	11
197	Ginsenoside Rb1 alleviates diabetic kidney podocyte injury by inhibiting aldose reductase activity. Acta Pharmacologica Sinica, 2022, 43, 342-353.	2.8	36
199	The ginger extract could improve diabetic retinopathy by inhibiting the expression of e/iNOS and G6PDH, apoptosis, inflammation, and angiogenesis. Journal of Food Biochemistry, 2022, 46, e14084.	1.2	11
201	The A allele of the rs759853 single nucleotide polymorphism in the AKR1B1 gene confers risk for diabetic kidney disease in patients with type 2 diabetes from a Brazilian population. Archives of Endocrinology and Metabolism, 2022, , .	0.3	3
202	Neuroprotective effect of aldose reductase knockout in a mouse model of spinal cord injury involves NF-κB pathway. Experimental Brain Research, 2022, 240, 853-859.	0.7	2
203	Prothrombotic Milieu, Thrombotic Events and Prophylactic Anticoagulation in Hospitalized COVID-19 Positive Patients: A Review. Clinical and Applied Thrombosis/Hemostasis, 2022, 28, 107602962210743.	0.7	12
204	COVID-19 Induced Coagulopathy (CIC): Thrombotic Manifestations of Viral Infection. TH Open, 2022, 06, e70-e79.	0.7	4

#	Article	IF	CITATIONS
205	Multi-Biofunctional Properties of Phytofabricated Selenium Nanoparticles From Carica papaya Fruit Extract: Antioxidant, Antimicrobial, Antimycotoxin, Anticancer, and Biocompatibility. Frontiers in Microbiology, 2021, 12, 769891.	1.5	12
206	Silymarin from Milk Thistle Fruits Counteracts Selected Pathological Changes in the Lenses of Type 1 Diabetic Rats. Nutrients, 2022, 14, 1450.	1.7	2
207	Inhibitory Effect of Polyphenols from the Whole Green Jackfruit Flour against α-Glucosidase, α-Amylase, Aldose Reductase and Glycation at Multiple Stages and Their Interaction: Inhibition Kinetics and Molecular Simulations. Molecules, 2022, 27, 1888.	1.7	37
208	Ramie (Boehmeria nivea), A Functional Food and Herbal Medicine for Inflammatory Bowel Disease (IBD) and Promotes Optimal Health Natural Products Journal, 2022, 12, .	0.1	0
209	Inhibition of Aldose Reductase by Novel Phytocompounds: A Heuristic Approach to Treating Diabetic Retinopathy. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	0.5	5
210	Lycopene: A Potent Antioxidant for the Amelioration of Type II Diabetes Mellitus. Molecules, 2022, 27, 2335.	1.7	26
211	Probiotics' effect on visceral and subcutaneous adipose tissue: a systematic review of randomized controlled trials. European Journal of Clinical Nutrition, 2022, , .	1.3	5
212	Resorcinol Derivatives as Novel Aldose Reductase Inhibitors: In Silico and In Vitro Evaluation. Letters in Drug Design and Discovery, 2022, 19, .	0.4	0
214	Antioxidant and Antidiabetic Effect of Biosynthesis Zinc Nanoparticles by Using Polyherbal Aqueous Extract in Wistar Rats. Journal of Biochemical Technology, 2022, 13, 72-80.	0.1	3
215	Non-Traditional Pathways for Platelet Pathophysiology in Diabetes: Implications for Future Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 4973.	1.8	1
216	Rhodanine scaffold: A review of antidiabetic potential and structure–activity relationships (SAR). Medicine in Drug Discovery, 2022, 15, 100131.	2.3	13
217	Plasma Aldo-Keto Reductase Family 1 Member B10 as a Biomarker Performs Well in the Diagnosis of Nonalcoholic Steatohepatitis and Fibrosis. International Journal of Molecular Sciences, 2022, 23, 5035.	1.8	2
218	Metallic Engineered Nanomaterials and Ocular Toxicity: A Current Perspective. Pharmaceutics, 2022, 14, 981.	2.0	9
219	Recycling industrial food wastes for lipid production by oleaginous yeasts Rhodosporidiobolus azoricus and Cutaneotrichosporon oleaginosum. , 2022, 15, 51.		16
220	Anti-inflammatory Compounds Inhibit Aldose Reductase: A Potential Target for Cancer. Results in Chemistry, 2022, 4, 100382.	0.9	0
221	Scutellarin acts on the AR-NOX axis to remediate oxidative stress injury in a mouse model of cerebral ischemia/reperfusion injury. Phytomedicine, 2022, 103, 154214.	2.3	20
222	Systematic Investigations on the Metabolic and Transcriptomic Regulation of Lactate in the Human Colon Epithelial Cells. International Journal of Molecular Sciences, 2022, 23, 6262.	1.8	2
223	Dry eye syndrome: comprehensive etiologies and recent clinical trials. International Ophthalmology, 2022, 42, 3253-3272.	0.6	9

#	Article	IF	CITATIONS
224	Polyol pathway and redox balance in diabetes. Pharmacological Research, 2022, 182, 106326.	3.1	30
225	TFEB-Mediated Lysosomal Restoration Alleviates High Glucose-Induced Cataracts Via Attenuating Oxidative Stress. , 2022, 63, 26.		2
226	Research progress on 2,4-thiazolidinedione and 2-thioxo-4-thiazolidinone analogues as aldose reductase inhibitors. Journal of Molecular Structure, 2022, 1269, 133742.	1.8	6
227	Baicalein Acts against Candida albicans by Targeting Eno1 and Inhibiting Glycolysis. Microbiology Spectrum, 2022, 10, .	1.2	9
228	Assessing the risk factors for myocardial infarction in diet-induced prediabetes: myocardial tissue changes. BMC Cardiovascular Disorders, 2022, 22, .	0.7	2
229	Glycation-induced age-related illnesses, antiglycation and drug delivery strategies. Journal of Pharmacy and Pharmacology, 2022, 74, 1546-1567.	1.2	2
230	Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nature Reviews Urology, 2022, 19, 581-596.	1.9	13
231	Comparative Evaluation of Aldose Reductase Inhibition in Polycystic Ovarian Syndrome–Induced Rats. Reproductive Sciences, 0, , .	1.1	1
232	Hydantoin based dual inhibitors of ALR2 and PARP-1: Design, synthesis, in-vitro and in-vivo evaluation. Bioorganic Chemistry, 2022, 129, 106108.	2.0	4
233	Selective Estrogen Receptor Modulators (SERMs) for the treatment of ER+ breast cancer: An overview. Journal of Molecular Structure, 2022, 1270, 133853.	1.8	8
234	Learning and memory impairment and transcriptomic profile in hippocampus of offspring after maternal fructose exposure during gestation and lactation. Food and Chemical Toxicology, 2022, 169, 113394.	1.8	7
236	Higher NADH Dehydrogenase [Ubiquinone] Iron–Sulfur Protein 8 (NDUFS8) Serum Levels Correlate with Better Insulin Sensitivity in Type 1 Diabetes. Current Issues in Molecular Biology, 2022, 44, 3872-3883.	1.0	5
237	Multiprotein Inhibitory Effect of Dietary Polyphenol Rutin from Whole Green Jackfruit Flour Targeting Different Stages of Diabetes Mellitus: Defining a Bio-Computational Stratagem. Separations, 2022, 9, 262.	1.1	12
238	Phyto-Computational Intervention of Diabetes Mellitus at Multiple Stages Using Isoeugenol from Ocimum tenuiflorum: A Combination of Pharmacokinetics and Molecular Modelling Approaches. Molecules, 2022, 27, 6222.	1.7	13
239	Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Frontiers in Molecular Biosciences, 0, 9, .	1.6	29
240	Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Frontiers in Endocrinology, 0, 13, .	1.5	12
241	Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion. PLoS Computational Biology, 2022, 18, e1010555.	1.5	3
243	In silico identification of chemical compounds in Spondias mombin targeting aldose reductase and glycogen synthase kinase 3β to abate diabetes mellitus. Informatics in Medicine Unlocked, 2023, 36, 101126.	1.9	5

#	Article	IF	CITATIONS
244	Ranirestat improves electrophysiologic but not clinical measures of diabetic polyneuropathy: A meta-analysis. Indian Journal of Endocrinology and Metabolism, 2022, 26, 399.	0.2	0
245	Microenvironmentâ€Based Diabetic Foot Ulcer Nanomedicine. Advanced Science, 2023, 10, .	5.6	51
246	Transgenic type2 diabetes mouse models for in vivo redox measurement of hepatic mitochondrial oxidative stress. Biochimica Et Biophysica Acta - General Subjects, 2022, , 130302.	1.1	0
247	Neuroinflammation and neovascularization in diabetic eye diseases (DEDs): identification of potential pharmacotherapeutic targets. Molecular Biology Reports, 0, , .	1.0	0
248	Visual Impairment and Its Associated Factors among People Living with Type-2 Diabetes Mellitus at Dessie Town Hospitals, Northeast Ethiopia, 2020. , 0, , .		0
249	lsolation of a novel missense mutation in <i>insulin receptor</i> as a spontaneous revertant in <i>ImpL2</i> mutants in <i>Drosophila</i> . Development (Cambridge), 2023, 150, .	1.2	3
251	The Heart in Diabetic Hypertensive Patients. Updates in Hypertension and Cardiovascular Protection, 2023, , 195-215.	0.1	0
252	Novel acetic acid derivatives containing quinazolinâ€4(3 <i>H</i>)â€one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Development Research, 2023, 84, 275-295.	1.4	16
253	Biomechanical homeostasis in ocular diseases: A mini-review. Frontiers in Public Health, 0, 11, .	1.3	7
254	ANTIDIABETIC ACTIVITY OF NOVEL CHROMENE COMPOUND ISOLATED FROM PEPEROMIA PELLUCIDA L. KUNTH AND IN SILICO STUDY AGAINST DPP-IV, ALPHA-GLUCOSIDASE, ALPHA-AMYLASE, AND ALDOSE REDUCTASE FOR BLOOD GLUCOSE HOMEOSTASIS. International Journal of Applied Pharmaceutics, 0, , 110-116.	0.3	0
255	Exploration of Some Bis‣ulfide and Bis‣ulfone Derivatives as Nonâ€Classical Aldose Reductase İnhibitors. ChemistrySelect, 2023, 8, .	0.7	7
256	Activity of the cytosolic enzymes of endogenous aldehydes catabolism under the conditions of different nutrients content in a diet. The Animal Biology, 2022, 24, 3-7.	0.2	0
257	Potential of Bamboo in the Prevention of Diabetes-Related Disorders: Possible Mechanisms for Prevention. Environmental Footprints and Eco-design of Products and Processes, 2023, , 89-124.	0.7	1
258	Nucleic Acid-Based Micellar Therapy for the Treatment of Different Diseases. , 2023, , 155-174.		0
259	An Arylbenzofuran, Stilbene Dimers, and Prenylated Diels–Alder Adducts as Potent Diabetic Inhibitors from Morus bombycis Leaves. Antioxidants, 2023, 12, 837.	2.2	0
260	Astragalin ameliorates renal injury in diabetic mice by modulating mitochondrial quality control via AMPK-dependent PGC11± pathway. Acta Pharmacologica Sinica, 2023, 44, 1676-1686.	2.8	5
261	Cathepsin S Knockdown Suppresses Endothelial Inflammation, Angiogenesis, and Complement Protein Activity under Hyperglycemic Conditions In Vitro by Inhibiting NF-1®B Signaling. International Journal of Molecular Sciences, 2023, 24, 5428.	1.8	0
262	High concentrations of fructose cause brain damage in mice. Biochemistry and Cell Biology, 0, , .	0.9	0

#	Article	IF	CITATIONS
263	The Aldose Reductase Inhibitor Epalrestat Maintains Blood–Brain Barrier Integrity by Enhancing Endothelial Cell Function during Cerebral Ischemia. Molecular Neurobiology, 2023, 60, 3741-3757.	1.9	2
264	Phytochemical Profiling, Biological Activities, and In Silico Molecular Docking Studies of Causonis trifolia (L.) Mabb. & J.Wen Shoot. Plants, 2023, 12, 1495.	1.6	1
265	Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochemical Pharmacology, 2023, 211, 115528.	2.0	0
266	Sorbitol reduction via govorestat ameliorates synaptic dysfunction and neurodegeneration in sorbitol dehydrogenase deficiency. JCI Insight, 2023, 8, .	2.3	3
267	Formulation and Characterization of Epalrestat-Loaded Polysorbate 60 Cationic Niosomes for Ocular Delivery. Pharmaceutics, 2023, 15, 1247.	2.0	5
270	Biochemical Mechanisms of Vascular Complications in Diabetes. , 2023, , 795-811.		1
287	The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Research in Cardiology, 2023, 118, .	2.5	1
289	Functional Food in Promoting Health: Global Perspective. , 2023, , 323-350.		0
292	Type 2 diabetes mellitus: Novel targets and multitarget-directed phytotherapy. , 2024, , 385-408.		0
294	Unveiling the potential of prodrug and drug-conjugate strategies in treatment of diabetes mellitus and its complications. Medicinal Chemistry Research, 2024, 33, 337-353.	1.1	0