Proliferation of Hydroelectric Dams in the Andean Ama Andes-Amazon Connectivity

PLoS ONE

7, e35126

DOI: 10.1371/journal.pone.0035126

Citation Report

#	Article	IF	Citations
1	Quaternary fluvial systems of tropics: Major issues and status of research. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 356-357, 1-15.	2.3	22
2	Hydropower threatens Andes–Amazon link. Nature, 2012, , .	27.8	O
3	Environmental flows in the Anthropocence: past progress and future prospects. Current Opinion in Environmental Sustainability, 2013, 5, 667-675.	6.3	182
4	The vulnerability of Amazon freshwater ecosystems. Conservation Letters, 2013, 6, 217-229.	5.7	411
6	Fish and hydropower on the U.S. Atlantic coast: failed fisheries policies from halfâ€way technologies. Conservation Letters, 2013, 6, 280-286.	5.7	138
7	Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watersheds. Chemical Geology, 2013, 351, 229-244.	3.3	52
8	Global challenges in freshwaterâ€fish conservation related to public aquariums and the aquarium industry. International Zoo Yearbook, 2013, 47, 6-45.	0.9	79
9	Enhancing conservation of largeâ€river biodiversity by accounting for tributaries. Frontiers in Ecology and the Environment, 2013, 11, 124-128.	4.0	84
10	Changes in distance decay relationships after river regulation: similarity among fish assemblages in a large <scp>A</scp> mazonian river. Ecology of Freshwater Fish, 2013, 22, 543-552.	1.4	60
11	Effects of Damâ€Induced Landscape Fragmentation on Amazonian Ant–Plant Mutualistic Networks. Conservation Biology, 2013, 27, 763-773.	4.7	37
12	Aquatic community structure across an Andesâ€toâ€Amazon fluvial gradient. Journal of Biogeography, 2013, 40, 1715-1728.	3.0	66
13	Ecuador's energy policy mix: Development versus conservation and nationalism with Chinese loans. Energy Policy, 2013, 57, 152-159.	8.8	41
14	Emissions from Amazonian dams. Nature Climate Change, 2013, 3, 1005-1005.	18.8	15
15	Human needs and environmental rights to water: a biocultural systems approach to hydrodevelopment and management. Ecosphere, 2013, 4, art39.	2.2	11
16	Description of <i>Loraxichthys lexa</i> , new genus and species (Siluriformes: Loricariidae) from the RÃo Huallaga Basin, central Peru, with notes on the morphology of the enigmatic <i>Lipopterichthys carrioni</i> Norman, 1935. Zootaxa, 2013, 3640, 557-71.	0.5	5
17	Modelling multiple threats to water security in the Peruvian Amazon using the WaterWorld policy support system. Earth System Dynamics, 2014, 5, 55-65.	7.1	13
18	Large-scale drivers of malaria and priority areas for prevention and control in the Brazilian Amazon region using a novel multi-pathogen geospatial model. Malaria Journal, 2014, 13, 443.	2.3	39
19	Birds of Antioquia: Georeferenced database of specimens from the Colecci \tilde{A}^3 n de Ciencias Naturales del Museo Universitario de la Universidad de Antioquia (MUA). ZooKeys, 2014, 410, 95-103.	1.1	O

#	Article	IF	CITATIONS
20	False Shades of Green: The Case of Brazilian Amazonian Hydropower. Energies, 2014, 7, 6063-6082.	3.1	52
21	Under the radar: mitigating enigmatic ecological impacts. Trends in Ecology and Evolution, 2014, 29, 635-644.	8.7	61
22	Seasonal abundance and breeding habitat occupancy of the Orinoco Goose (Neochen jubata) in western Brazilian Amazonia. Bird Conservation International, 2014, 24, 518-529.	1.3	7
23	Looking to the past and the future: were the Madeira River rapids a geographical barrier to the boto (Cetacea: Iniidae)?. Conservation Genetics, 2014, 15, 619.	1.5	37
24	Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: implications for the provision of ecosystem services. Landscape Ecology, 2014, 29, 261-274.	4.2	89
25	Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biological Conservation, 2014, 174, 30-38.	4.1	49
26	Downgrading, Downsizing, Degazettement, and Reclassification of Protected Areas in Brazil. Conservation Biology, 2014, 28, 939-950.	4.7	200
27	Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 2014, 29, 107-116.	8.7	1,045
28	Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nature Geoscience, 2014, 7, 899-903.	12.9	257
29	How many more dams in the Amazon?. Energy Policy, 2014, 74, 703-708.	8.8	126
30	Are largeâ€scale flow experiments informing the science and management of freshwater ecosystems?. Frontiers in Ecology and the Environment, 2014, 12, 176-185.	4.0	180
31	Genetic structure in the Amazonian catfish Brachyplatystoma rousseauxii: influence of life history strategies. Genetica, 2014, 142, 323-336.	1.1	29
32	Tree Species Distribution along Environmental Gradients in an Area Affected by a Hydroelectric Dam in Southern Amazonia. Biotropica, 2014, 46, 367-376.	1.6	24
33	A normative-empirical analysis of state duties and corporate responsibilities related to adverse human rights impacts on the Amazonian minerals-energy frontier. Journal of Cleaner Production, 2014, 84, 786-796.	9.3	5
34	Phosphorus transport by the largest Amazon tributary (Madeira River, Brazil) and its sensitivity to precipitation and damming. Inland Waters, 2015, 5, 275-282.	2.2	17
35	A Re-Assessment of Priority Amphibian Species of Peru. Tropical Conservation Science, 2015, 8, 623-645.	1.2	7
36	Opinion Paper: how vulnerable are Amazonian freshwater fishes to ongoing climateÂchange?. Journal of Applied Ichthyology, 2015, 31, 4-9.	0.7	41
37	Upstream and downstream responses of fish assemblages to an eastern Amazonian hydroelectric dam. Freshwater Biology, 2015, 60, 2037-2050.	2.4	64

#	ARTICLE	IF	CITATIONS
38	Periodic life history strategy of <i>Psectrogaster rutiloides </i> , Kner 1858, in the IquitosÂregion, Peruvian Amazon. Journal of Applied Ichthyology, 2015, 31, 31-39.	0.7	9
39	Using barcoding of larvae for investigating the breeding seasons of pimelodid catfishes from the Marañon, Napo and Ucayali rivers in the Peruvian Amazon. Journal of Applied Ichthyology, 2015, 31, 40-51.	0.7	19
40	Implementation of the Ramsar Convention on South American wetlands: an update. Research and Reports in Biodiversity Studies, 0, , 47.	0.0	32
41	Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data. PLoS ONE, 2015, 10, e0124074.	2.5	18
42	Diverse Early Life-History Strategies in Migratory Amazonian Catfish: Implications for Conservation and Management. PLoS ONE, 2015, 10, e0129697.	2.5	45
43	Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia. PLoS ONE, 2015, 10, e0129818.	2.5	175
44	Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the TucuruÃ-hydroelectricÂdam in the Amazon basin. Applied Geography, 2015, 63, 1-8.	3.7	63
45	A Hydroelectric Project and its Impact on Development Indicators in Ethiopia. Forum for Development Studies, 2015, 42, 489-505.	1.0	3
46	Policy reversals do not bode well for conservation in Brazilian Amazonia. Natureza A Conservacao, 2015, 13, 193-195.	2.5	11
47	Life in the Fast Lane: A Review of Rheophily in Freshwater Fishes. , 2015, , 107-136.		46
48	An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters, 2015, 10, 015001.	5.2	439
49	Edgeâ€mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26Âyears of isolation. Journal of Ecology, 2015, 103, 408-420.	4.0	111
50	The importance of forest cover for fish richness and abundance on the Amazon floodplain. Hydrobiologia, 2015, 750, 245-255.	2.0	44
51	Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries. Ambio, 2015, 44, 412-425.	5.5	43
52	Amazon dams and waterways: Brazil's Tapajós Basin plans. Ambio, 2015, 44, 426-439.	5.5	90
53	Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam. Biological Conservation, 2015, 187, 61-72.	4.1	139
54	Reducing the global environmental impacts of rapid infrastructure expansion. Current Biology, 2015, 25, R259-R262.	3.9	172
55	A Multilocus Molecular Phylogeny for <i>Chaetostoma</i> Clade Genera and Species with a Review of <i>Chaetostoma</i> (Siluriformes: Loricariidae) from the Central Andes. Copeia, 2015, 103, 664-701.	1.3	22

#	Article	IF	CITATIONS
56	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	10.3	122
57	Impact of water abstraction on storage and breakdown of coarse organic matter in mountain streams. Science of the Total Environment, 2015, 503-504, 233-240.	8.0	32
58	Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries, 2015, 16, 697-715.	5.3	279
59	Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project. Science of the Total Environment, 2015, 503-504, 3-9.	8.0	161
60	Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia, 2015, 746, 147-158.	2.0	77
61	Perspectives for an integrated understanding of tropical and temperate high-mountain lakes. Journal of Limnology, 2016, 75, .	1.1	44
62	Birds of Two Oceans? Trans-Andean and Divergent Migration of Black Skimmers (Rynchops niger) Tj ETQq0 0 0	rgBT /Over 2.5	lock 10 Tf 50
63	Limitations to the Use of Species-Distribution Models for Environmental-Impact Assessments in the Amazon. PLoS ONE, 2016, 11, e0146543.	2.5	31
64	Transâ€Amazonian natal homing in giant catfish. Journal of Applied Ecology, 2016, 53, 1511-1520.	4.0	67
65	Protecting apex predators. , 2015, , 361-398.		11
66	IDENTIFYING CONSERVATION PRIORITY AREAS IN THE MARAÑÓN VALLEY (PERU) BASED ON FLORISTIC INVENTORIES. Edinburgh Journal of Botany, 2016, 73, 95-123.	0.4	16
67	Survival Rates of Outâ€Migrating Yearling Chinook Salmon in the Lower Columbia River and Plume after Exposure to Gasâ€Supersaturated Water. Journal of Aquatic Animal Health, 2016, 28, 240-251.	1.4	11
68	Meander cutoffs nonlocally accelerate upstream and downstream migration and channel widening. Geophysical Research Letters, 2016, 43, 12,437.	4.0	69
69	Climate change sensitivity of threatened, and largely unprotected, Amazonian fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 91-102.	2.0	40
70	Lost fishes, who is counting? The extent of the threat to freshwater fish biodiversity., 2015, , 1-36.		66
71	Challenges and opportunities for fish conservation in dam-impacted waters., 2015,, 107-148.		44
72	Conservation of migratory fishes in freshwater ecosystems. , 2015, , 324-360.		30
74	Extinction debt on reservoir land-bridge islands. Biological Conservation, 2016, 199, 75-83.	4.1	60

#	Article	IF	CITATIONS
75	Combining H/A/Alpha Polarimetric Decomposition of PolSAR Data with Image Classification for Wetland Identification: A Case Study of Pacaya-Samiria National Reserve, Peru. Papers in Applied Geography, 2016, 2, 9-24.	1.4	2
76	Patterns of local extinction in an Amazonian archipelagic avifauna following 25 years of insularization. Biological Conservation, 2016, 199, 101-109.	4.1	31
77	2015 Snapshot of Water Security in the <scp>N</scp> ile, <scp>M</scp> ekong, and <scp>A</scp> mazon River Basins. Limnology and Oceanography Bulletin, 2016, 25, 8-14.	0.4	10
78	A moving targetâ€"incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations. Environmental Monitoring and Assessment, 2016, 188, 239.	2.7	129
79	Amazon floodplain fish diversity at different scales: do time and place really matter?. Hydrobiologia, 2016, 776, 99-110.	2.0	17
80	Freshwater vertebrate and invertebrate diversity patterns in an Andean-Amazon basin: implications for conservation efforts. Neotropical Biodiversity, 2016, 2, 99-114.	0.5	22
81	To manage inland fisheries is to manage at the social-ecological watershed scale. Journal of Environmental Management, 2016, 181, 312-325.	7.8	36
82	Initial response of fish trophic niche to hydrological alteration in the upstream of Three Gorges Dam. Ecological Processes, 2016, 5, .	3.9	10
83	Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10759-10768.	7.1	543
84	Aquatic Ecosystems. Ecological Studies, 2016, , 119-148.	1.2	25
85	The Amazon River Basin. , 2016, , 1-20.		2
86	Policy Nook: "Policy Challenges Facing Agricultural Water Use: An International Look― Water Economics and Policy, 2016, 02, 1671003.	1.0	0
87	Towards catchment classification in dataâ€scarce regions. Ecohydrology, 2016, 9, 1235-1247.	2.4	25
88	Historical and Contemporary Patterns of Mercury in a Hydroelectric Reservoir and Downstream Fishery: Concentration Decline in Water and Fishes. Archives of Environmental Contamination and Toxicology, 2016, 71, 157-170.	4.1	8
89	Projected increases in the annual flood pulse of the Western Amazon. Environmental Research Letters, 2016, 11, 014013.	5.2	42
90	Amazon floodplain fish communities: Habitat connectivity and conservation in a rapidly deteriorating environment. Biological Conservation, 2016, 195, 118-127.	4.1	93
91	How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil. Renewable and Sustainable Energy Reviews, 2016, 53, 1132-1136.	16.4	93
92	Global change synergies and tradeâ€offs between renewable energy and biodiversity. GCB Bioenergy, 2016, 8, 941-951.	5.6	61

#	Article	IF	CITATIONS
93	Impacts from hydropower production on biodiversity in an LCA frameworkâ€"review and recommendations. International Journal of Life Cycle Assessment, 2016, 21, 412-428.	4.7	55
94	Searching for trends in river dolphin abundance: Designing surveys for looming threats, and evidence for opposing trends of two species in the Colombian Amazon. Biological Conservation, 2016, 195, 136-145.	4.1	19
95	Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation, 2016, 25, 451-466.	2.6	251
96	Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 2016, 351, 128-129.	12.6	1,088
97	Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry. World Development, 2016, 77, 48-65.	4.9	160
98	Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. Fisheries Research, 2016, 173, 26-36.	1.7	240
99	Informing Watershed Connectivity Barrier Prioritization Decisions: A Synthesis. River Research and Applications, 2017, 33, 847-862.	1.7	52
100	Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles. Scientific Reports, 2017, 7, 41784.	3.3	101
101	Anthropogenic stressors and riverine fish extinctions. Ecological Indicators, 2017, 79, 37-46.	6.3	80
102	Hydropower reservoirs: cytotoxic and genotoxic assessment using the Allium cepa root model. Environmental Science and Pollution Research, 2017, 24, 8759-8768.	5.3	10
103	Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. Forest Ecology and Management, 2017, 396, 113-123.	3.2	67
104	Toward mountains without permanent snow and ice. Earth's Future, 2017, 5, 418-435.	6.3	324
105	Neotropical freshwater fishes imperilled by unsustainable policies. Fish and Fisheries, 2017, 18, 1119-1133.	5.3	151
106	Does hydroelectric reservoirs affect the structure of surrounding tree communities? A test of hypotheses in subtropical South America. Revista Brasileira De Botanica, 2017, 40, 705-715.	1.3	3
107	Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renewable and Sustainable Energy Reviews, 2017, 76, 1122-1133.	16.4	292
108	Threats to intact tropical peatlands and opportunities for their conservation. Conservation Biology, 2017, 31, 1283-1292.	4.7	70
109	Water abstraction impacts stream ecosystem functioning via wettedâ€channel contraction. Freshwater Biology, 2017, 62, 243-257.	2.4	29
110	Damming Fragments Species' Ranges and Heightens Extinction Risk. Conservation Letters, 2017, 10, 708-716.	5.7	49

#	Article	IF	Citations
111	Glacial melt content of water use in the tropical Andes. Environmental Research Letters, 2017, 12, 114014.	5.2	77
112	Incorporating phylogenetic information for the definition of floristic districts in hyperdiverse Amazon forests: Implications for conservation. Ecology and Evolution, 2017, 7, 9639-9650.	1.9	14
113	How Green is â€~Green' Energy?. Trends in Ecology and Evolution, 2017, 32, 922-935.	8.7	161
114	Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensembleâ€"the case of Ecuador. Climatic Change, 2017, 144, 611-624.	3.6	57
115	Species distribution models of rare tree species as an evaluation tool for synergistic human impacts in the Amazon rainforest. Revista Brasileira De Botanica, 2017, 40, 963-971.	1.3	14
116	A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme. Journal of Hydrology, 2017, 553, 35-48.	5.4	42
117	Hydrological controls of fisheries production in a major Amazonian tributary. Ecohydrology, 2017, 10, e1899.	2.4	21
118	The changing hydrology of a dammed Amazon. Science Advances, 2017, 3, e1700611.	10.3	198
119	Temporal fish community responses to two cascade runâ€ofâ€river dams in the <scp>Madeira River</scp> , <scp>Amazon</scp> basin. Ecohydrology, 2017, 10, e1889.	2.4	34
120	Productivity and Connectivity in Tropical Riverscapes of Northern Australia: Ecological Insights for Management. Ecosystems, 2017, 20, 492-514.	3.4	44
121	Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renewable and Sustainable Energy Reviews, 2017, 70, 161-184.	16.4	278
122	Strategies to avoid the trap: stream fish use fine-scale hydrological cues to move between the stream channel and temporary pools. Hydrobiologia, 2017, 792, 183-194.	2.0	9
123	The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE, 2017, 12, e0182254.	2.5	153
124	Reproduction, feeding and migration patterns of Prochilodus nigricans (Characiformes:) Tj ETQq1 1 0.784314 rg	BT ₁ /Overlo	ock 10 Tf 50
125	Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences, 2017, 14, 2755-2765.	3.3	25
126	Combined exposure to hydroelectric expansion, climate change and forest loss jeopardies amphibians in the Brazilian Amazon. Diversity and Distributions, 2018, 24, 1072-1082.	4.1	11
127	Economic consequences of global climate change and mitigation on future hydropower generation. Climatic Change, 2018, 147, 77-90.	3.6	21
128	Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Science Advances, 2018, 4, eaao1642.	10.3	227

#	Article	IF	Citations
129	Patterns in the distribution of fish assemblages and their association with habitat variables in the Suaza River on its way through the Cueva de los Guácharos National Park, Colombia. Ecoscience, 2018, 25, 85-95.	1.4	4
130	Mainstreaming across political sectors: Assessing biodiversity policy integration in Peru. Environmental Policy and Governance, 2018, 28, 153-171.	3.7	19
131	Using a traitâ€based approach to measure the impact of dam closure in fish communities of a Neotropical River. Ecology of Freshwater Fish, 2018, 27, 408-420.	1.4	20
132	Recent increase of river–floodplain suspended sediment exchange in a reach of the lower Amazon River. Earth Surface Processes and Landforms, 2018, 43, 322-332.	2.5	29
133	A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas. Geomorphology, 2018, 305, 209-220.	2.6	90
134	Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth-Science Reviews, 2018, 176, 195-213.	9.1	203
135	Built-up expansion between 2001 and 2011 in South America continues well beyond the cities. Environmental Research Letters, 2018, 13, 084006.	5. 2	30
136	Land Grabbing and Violence Against Environmentalists. Ecology and Ethics, 2018, , 109-123.	1.0	5
137	OBSOLETE: Dams and river fragmentation. , 2018, , .		0
138	High carnivore population density highlights the conservation value of industrialised sites. Scientific Reports, 2018, 8, 16575.	3.3	19
139	Reservoirs: New challenges for ecosystem studies and environmental management. Water Security, 2018, 4-5, 1-7.	2.5	27
140	Transmission lines are an under-acknowledged conservation threat to the Brazilian Amazon. Biological Conservation, 2018, 228, 343-356.	4.1	11
141	Sustainable hydropower in the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11891-11898.	7.1	378
142	Resource extraction and infrastructure threaten forest cover and community rights. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13164-13173.	7.1	122
143	Efficiently Optimizing for Dendritic Connectivity on Tree-Structured Networks in a Multi-Objective Framework. , 2018, , .		3
144	Spatial segregation between Chalceus guaporensis and Chalceus epakros (Osteichthyes:) Tj ETQq1 1 0.784314	rgBT_/Ove	rlock 10 Tf 50
145	Improved spatial model for Amazonian deforestation: An empirical assessment and spatial bias analysis. Ecological Modelling, 2018, 387, 1-9.	2.5	6
146	Metabarcoding by capture using a single COI probe (MCSP) to identify and quantify fish species in ichthyoplankton swarms. PLoS ONE, 2018, 13, e0202976.	2.5	30

#	ARTICLE	IF	CITATIONS
147	Assessing changes in extreme river flow regulation from non-stationarity in hydrological scaling laws. Journal of Hydrology, 2018, 562, 492-501.	5.4	5
148	Dams and River Fragmentation. , 2018, , 241-248.		3
149	Market Participation in the Age of Big Dams: The Belo Monte Hydroelectric Dam and Its Impact on Rural Agrarian Households. Sustainability, 2018, 10, 1592.	3.2	10
150	Multilocus phylogeny of the zebra mussel family Dreissenidae (Mollusca: Bivalvia) reveals a fourth Neotropical genus sister to all other genera. Molecular Phylogenetics and Evolution, 2018, 127, 1020-1033.	2.7	13
151	Remarkable Geographic Structuring of Rheophilic Fishes of the Lower Araguaia River. Frontiers in Genetics, 2018, 9, 295.	2.3	13
152	Age and growth of the Amazonian migratory catfish Brachyplatystoma rousseauxii in the Madeira River basin before the construction of dams. Neotropical Ichthyology, $2018, 16, \ldots$	1.0	14
153	Boosting Efficiency for Computing the Pareto Frontier on Tree Structured Networks. Lecture Notes in Computer Science, 2018, , 263-279.	1.3	4
154	Shifting species and functional diversity due to abrupt changes in water availability in tropical dry forests. Journal of Ecology, 2019, 107, 253-264.	4.0	13
155	Thyroid hormone concentrations associated with age, sex, reproductive status and apparent reproductive failure in the Amazon river dolphin (Inia geoffrensis)., 2019, 7, coz041.		6
156	Mapping research on hydropower and sustainability in the Brazilian Amazon: advances, gaps in knowledge and future directions. Current Opinion in Environmental Sustainability, 2019, 37, 50-69.	6.3	42
157	Designing Ecoâ€Friendly Water Intake Portfolios in a Tropical Andean Stream Network. Water Resources Research, 2019, 55, 6946-6967.	4.2	7
158	Multi-decadal hydrologic change and variability in the Amazon River basin: understanding terrestrial water storage variations and drought characteristics. Hydrology and Earth System Sciences, 2019, 23, 2841-2862.	4.9	48
159	Geomorphometric Assessment of the Impacts of Dam Construction on River Disconnectivity and Flow Regulation in the Yangtze Basin. Sustainability, 2019, 11, 3427.	3.2	16
160	Interaction between extreme weather events and megaâ€dams increases tree mortality and alters functional status of Amazonian forests. Journal of Applied Ecology, 2019, 56, 2641-2651.	4.0	13
161	Negotiating Water and Technologyâ€"Competing Expectations and Confronting Knowledges in the Case of the Coca Codo Sinclair in Ecuador. Water (Switzerland), 2019, 11, 411.	2.7	7
162	Green versus green? Adverting potential conflicts between wind power generation and biodiversity conservation in Brazil. Perspectives in Ecology and Conservation, 2019, 17, 131-135.	1.9	18
163	Large hydropower, decarbonisation and climate change uncertainty: Modelling power sector pathways for Ecuador. Energy Strategy Reviews, 2019, 23, 86-99.	7.3	61
164	Commercial traceability of & amp; lt; l& amp; gt; Arapaima & amp; lt; l& amp; gt; spp. fisheries in the Amazon basin: can biogeochemical tags be useful?. Biogeosciences, 2019, 16, 1781-1797.	3.3	13

#	Article	IF	CITATIONS
165	Conservation planning for river-wetland mosaics: A flexible spatial approach to integrate floodplain and upstream catchment connectivity. Biological Conservation, 2019, 236, 356-365.	4.1	25
166	An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland. Earth Surface Dynamics, 2019, 7, 515-536.	2.4	21
167	Biotelemetry reveals migratory behaviour of large catfish in the Xingu River, Eastern Amazon. Scientific Reports, 2019, 9, 8464.	3.3	12
168	Cost-effective protection of biodiversity in the western Amazon. Biological Conservation, 2019, 235, 250-259.	4.1	14
169	Quantifying the impacts of dams on riverine hydrology under non-stationary conditions using incomplete data and Gaussian copula models. Science of the Total Environment, 2019, 677, 599-611.	8.0	21
170	Catchment-scale cumulative impact of human activities on river channels in the late Anthropocene: implications, limitations, prospect. Geomorphology, 2019, 338, 88-104.	2.6	89
171	Spatial prediction of stream physicochemical parameters for the Napo River Basin, Ecuador. Journal of Freshwater Ecology, 2019, 34, 247-261.	1.2	11
172	Decline of Fine Suspended Sediments in the Madeira River Basin (2003–2017). Water (Switzerland), 2019, 11, 514.	2.7	14
173	Fishers' local ecological knowledge indicate migration patterns of tropical freshwater fish in an Amazonian river. Hydrobiologia, 2019, 833, 197-215.	2.0	35
174	Shedding light on the migratory patterns of the Amazonian goliath catfish, <i>Brachyplatystoma platynemum</i> , using otolith ⁸⁷ 86Sr analyses. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 397-408.	2.0	13
175	South–South Transnational Advocacy: Mobilizing Against Brazilian Dams in the Peruvian Amazon. Global Environmental Politics, 2019, 19, 77-98.	3.0	5
176	Characterizing seasonal dynamics of Amazonian wetlands for conservation and decision making. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1073-1082.	2.0	31
177	Bank erosion in an Andean p \tilde{A}_i ramo river system: Implications for hydro-development and carbon dynamics in the neotropical Andes. Journal of Mountain Science, 2019, 16, 243-255.	2.0	2
179	Limnological effects of a large Amazonian run-of-river dam on the main river and drowned tributary valleys. Scientific Reports, 2019, 9, 16846.	3.3	30
180	A geographically weighted random forest approach for evaluate forest change drivers in the Northern Ecuadorian Amazon. PLoS ONE, 2019, 14, e0226224.	2.5	23
181	Understanding Public Views on a Dam Construction Boom: the Role of Values. Water Resources Management, 2019, 33, 4687-4700.	3.9	13
182	Multiple Stressors in the Neotropical Region: Environmental Impacts in Biodiversity Hotspots. , 2019, , 205-220.		20
183	Assessing conservation priorities of endemic freshwater fishes in the Tropical Andes region. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1123-1132.	2.0	22

#	Article	IF	CITATIONS
185	Flooded and Riparian Habitats in the Tropics Community Definitions and Ecological Summaries. , 2019, , 2-9.		1
186	Fossil Primates from Flooded Habitats. , 2019, , 10-14.		0
187	Comparison of Plant Diversity and Phenology of Riverine and Mangrove Forests with Those of the Dryland Forest in Sabah, Borneo, Malaysia., 2019, , 15-28.		8
188	Lemurs in Mangroves and Other Flooded Habitats. , 2019, , 29-32.		2
189	Survey and Study Methods for Flooded Habitat Primatology. , 2019, , 33-43.		2
190	Worldwide Patterns in the Ecology of Mangrove-living Monkeys and Apes. , 2019, , 45-53.		3
191	Mangrove-living Primates in the Neotropics. , 2019, , 54-58.		2
192	The Role of Tools in the Feeding Ecology of Bearded Capuchins Living in Mangroves. , 2019, , 59-63.		4
193	Use of Mangrove Habitats by <i>Sapajus flavius </i> Assessed by Vocalization Surveys., 2019,, 64-67.		2
194	Mangrove Forests as a Key Habitat for the Conservation of the Critically Endangered Yellow-breasted Capuchin, Sapajus xanthosternos, in the Brazilian Northeast., 2019,, 68-76.		2
195	Primates of African Mangroves. , 2019, , 77-88.		3
196	Feeding Ecology of the Proboscis Monkey in Sabah, Malaysia, with Special Reference to Plant Species-Poor Forests., 2019,, 89-98.		5
197	Ebony Langurs in Mangrove and Beach Forests of Java, Bali and Lombok. , 2019, , 99-104.		3
198	Mangrove. , 2019, , 105-109.		1
199	Primates in the Sundarbans of India and Bangladesh. , 2019, , 110-123.		1
200	Behavioural Ecology of Mangrove Primates and Their Neighbours. , 2019, , 124-133.		3
201	Maritime Macaques. , 2019, , 135-143.		4
202	Long-tailed Macaque Stone Tool Use in Intertidal Habitats. , 2019, , 144-147.		3

#	ARTICLE	IF	CITATIONS
203	The Ecology of Chacma Baboon Foraging in the Marine Intertidal Zone of the Cape Peninsula, South Africa., 2019,, 148-151.		2
204	Primates and Flooded Forest in the Colombian Llanos. , 2019, , 153-162.		2
205	Primates of the South American Pantanal Wetland. , 2019, , 163-171.		0
206	Endangered Range-restricted Flooded Savanna Titi Monkey EndemicsPlecturocebus modestusandP. olallae., 2019,, 172-183.		0
207	Use of Swamp and Riverside Forest by Eastern and Western Gorillas. , 2019, , 184-194.		0
208	Use of Inundated Habitats by Great Apes in the Congo Basin. , 2019, , 195-211.		0
209	Differences in Population Density of Orangutan Between Flooded and Non-flooded Forests. , 2019, , 212-215.		0
210	Primates in Amazonian Flooded Habitats. , 2019, , 217-225.		3
211	Primate Community Structure at Three Flooded Forest Sites in Guyana., 2019, , 226-235.		0
212	Primates of the Peat Swamp in Borneo and Sumatra. , 2019, , 236-243.		0
213	Primates of Africa's Coastal Deltas and Their Conservation. , 2019, , 244-258.		1
214	Primates of Riverine and Gallery Forests. , 2019, , 259-262.		1
215	Life-history Traits and Group Dynamic in Black and Gold Howler Monkeys in Flooded Forests of Northern Argentina., 2019,, 263-269.		3
216	Riverine Red-tails. , 2019, , 270-275.		3
217	Consequences of Lakeside Living for the Diet and Social Ecology of the Lake Alaotran Gentle Lemur. , 2019, , 276-278.		1
218	Non-leaping Slow Lorises. , 2019, , 279-283.		1
219	DamsImplications of Widespread Anthropic Flooding for Primate Populations. , 2019, , 285-292.		4
220	Hapalemur alaotrensisA Conservation Case Study from the Swamps of Alaotra, Madagascar. , 2019, , 293-296.		1

#	ARTICLE	IF	Citations
221	Landscape Genetics Applied to the Conservation of Primates in Flooded ForestsA Case Study of Orangutans in the Lower Kinabatangan Wildlife Sanctuary. , 2019, , 297-303.		0
222	African Flooded Areas as Refuge Habitats. , 2019, , 304-314.		1
223	Diversity and Conservation of Primates in the Flooded Forests of Southern Nigeria., 2019, , 315-325.		0
224	MamirauÃ _i Reserve. , 2019, , 326-330.		1
225	Primates in Flooded Forests of Borneo. , 2019, , 331-339.		4
226	Conservation Value of Africa's Flooded Habitats to Non-human Primates. , 2019, , 341-346.		0
227	Southeast Asian Primates in Flooded Forests. , 2019, , 347-358.		0
228	Conservation of Primates and Their Flooded Habitats in the Neotropics. , 2019, , 359-374.		0
230	Groundwater in catchments headed by temperate glaciers: A review. Earth-Science Reviews, 2019, 188, 59-76.	9.1	28
231	Protected areas: A focus on Brazilian freshwater biodiversity. Diversity and Distributions, 2019, 25, 442-448.	4.1	103
232	Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: The collateral effects of hydropower production. Science of the Total Environment, 2019, 659, 587-598.	8.0	61
233	From shallow to deep divergences: mixed messages from Amazon Basin cichlids. Hydrobiologia, 2019, 832, 317-329.	2.0	8
234	The impact of hydroelectric dams on mercury dynamics in South America: A review. Chemosphere, 2019, 219, 546-556.	8.2	38
235	Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization. Applied Energy, 2019, 233-234, 584-598.	10.1	36
236	Dams, Chinese investments, and EIAs: A race to the bottom in South America?. Ambio, 2020, 49, 156-164.	5.5	20
237	The Avifauna of the Rio Branco, an Amazonian evolutionary and ecological hotspot in peril. Bird Conservation International, 2020, 30, 21-39.	1.3	11
238	Restoring Environmental Flows for Managing River Ecosystems: Global Scenario with Special Reference to India., 2020, , 163-183.		5
239	Flooding Dynamics Within an Amazonian Floodplain: Water Circulation Patterns and Inundation Duration. Water Resources Research, 2020, 56, e2019WR026081.	4.2	19

#	ARTICLE	IF	CITATIONS
240	Major dams and the challenge of achieving "No Net Loss―of biodiversity in the tropics. Sustainable Development, 2020, 28, 435-443.	12.5	19
241	Climatic and anthropogenic regulation of carbon transport and transformation in a karst river-reservoir system. Science of the Total Environment, 2020, 707, 135628.	8.0	40
242	Scale-dependent patterns of fish faunal homogenization in Neotropical reservoirs. Hydrobiologia, 2020, 847, 3759-3772.	2.0	17
243	Unmasking continental natal homing in goliath catfish from the upper Amazon. Freshwater Biology, 2020, 65, 325-336.	2.4	20
244	Trophic and limnological changes in highly fragmented rivers predict the decreasing abundance of detritivorous fish. Ecological Indicators, 2020, 110, 105933.	6.3	15
245	Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018. Energies, 2020, 13, 4839.	3.1	38
246	A Modeling Assessment of Large-Scale Hydrologic Alteration in South American Pantanal Due to Upstream Dam Operation. Frontiers in Environmental Science, 2020, 8, .	3.3	23
247	Tapanuli orangutan endangered by Sumatran hydropower scheme. Nature Ecology and Evolution, 2020, 4, 1438-1439.	7.8	17
248	Changing how we build hydropower infrastructure for the common good: lessons from the Brazilian Amazon. Civitas, 2020, 20, 5.	0.3	7
249	The Amazonian dwarf cichlidApistogramma agassizii(Steindachner, 1875) is a geographic mosaic of potentially tens of species: Conservation implications. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1521-1539.	2.0	3
250	The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Global Change Biology, 2020, 26, 5509-5523.	9.5	50
251	Threatened fish spawning area revealed by specific metabarcoding identification of eggs and larvae in the Beni River, upper Amazon. Global Ecology and Conservation, 2020, 24, e01309.	2.1	9
252	New insights on the classification of major Amazonian river water types. Sustainable Water Resources Management, 2020, 6, 1.	2.1	10
253	Chemometrics Applied in the Development of a Water Quality Indicator System for the Brazilian Amazon. ACS Omega, 2020, 5, 32899-32906.	3.5	3
254	Multitemporal Analysis of Deforestation in Response to the Construction of the TucuruÃ-Dam. ISPRS International Journal of Geo-Information, 2020, 9, 583.	2.9	21
255	Habitat Suitability Curves for Freshwater Macroinvertebrates of Tropical Andean Rivers. Water (Switzerland), 2020, 12, 2703.	2.7	6
256	Coexisting in the Peruvian Amazon: Interactions between fisheries and river dolphins. Journal for Nature Conservation, 2020, 56, 125859.	1.8	13
257	Unexpected but unsurprising lineage diversity within the most widespread Neotropical crocodilian genus <i>Caiman</i> (Crocodylia, Alligatoridae). Systematics and Biodiversity, 2020, 18, 377-395.	1.2	36

#	Article	IF	CITATIONS
258	What Drives the Erasure of Protected Areas? Evidence from across the Brazilian Amazon. Ecological Economics, 2020, 176, 106733.	5.7	21
259	Hydropower operations modulate sensitivity to meteorological forcing in a high altitude reservoir. Aquatic Sciences, 2020, 82, 1.	1.5	2
260	Impacts of climate change and deforestation on hydropower planning in the Brazilian Amazon. Nature Sustainability, 2020, 3, 430-436.	23.7	53
261	River dams and the stability of bird communities: A hierarchical Bayesian analysis in a tropical hydroelectric power plant. Journal of Applied Ecology, 2020, 57, 1124-1136.	4.0	8
262	The Socio-Economic and Environmental Variables Associated with Hotspots of Infrastructure Expansion in South America. Remote Sensing, 2020, 12, 116.	4.0	6
263	Using nighttime lights to assess infrastructure expansion within and around protected areas in South America. Environmental Research Communications, 2020, 2, 021002.	2.3	11
264	Palm distribution patterns in the southwestern Brazilian Amazon: Impact of a large hydroelectric dam. Forest Ecology and Management, 2020, 463, 118032.	3.2	11
265	Differences in physical habitat simulation system modelling results using benthic or pelagic fish species as indicators in Peruvian Andes–Amazon rivers. River Research and Applications, 2020, 36, 828-842.	1.7	3
266	On the representation of water reservoir storage and operations in large-scale hydrological models: implications on model parameterization and climate change impact assessments. Hydrology and Earth System Sciences, 2020, 24, 397-416.	4.9	70
267	Fish trophic guild responses to damming: Variations in abundance and biomass. River Research and Applications, 2020, 36, 430-440.	1.7	12
268	Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin. Water (Switzerland), 2020, 12, 1073.	2.7	18
269	Habitat patch size and isolation drive the near-complete collapse of Amazonian dung beetle assemblages in a 30-year-old forest archipelago. Biodiversity and Conservation, 2020, 29, 2419-2438.	2.6	13
270	Spatial segregation in the reproductive activity of Neotropical fish species as an indicator of the migratory trait. Journal of Fish Biology, 2021, 98, 694-706.	1.6	2
271	Status of illegal resource extraction within Rwenzori Mountains National Park, Uganda: Baseline studies near four hydropower projects. African Journal of Ecology, 2021, 59, 449-465.	0.9	1
272	Mountains as vulnerable places: a global synthesis of changing mountain systems in the Anthropocene. Geo Journal, 2021, 86, 585-604.	3.1	19
273	Multi-Scale Ecological Connectivity Dynamics Associated With Hydropower Station: A Case Study in the Lancang River Valley. Frontiers in Ecology and Evolution, 2021, 8, .	2.2	5
274	The Indigenous Territories and Local Sustainable Development in the Amazon Region. , 2021, , 69-112.		1
275	Community-of-interests across source-to-sea systems: an international law perspective. Water International, 2021, 46, 224-263.	1.0	4

#	Article	IF	CITATIONS
276	The shadow of the Balbina dam: A synthesis of over 35 years of downstream impacts on floodplain forests in Central Amazonia. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1117-1135.	2.0	40
277	Limnological perspectives on conservation of floodplain lakes in the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1041-1055.	2.0	13
278	Conservation of migratory fishes in the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1087-1105.	2.0	57
279	Amazon floodplain hydrology and implications for aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1029-1040.	2.0	26
280	Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE, 2021, 16, e0247876.	2.5	20
281	Current and future threats for ecological quality management of South American freshwater ecosystems. Inland Waters, 2021, 11, 125-140.	2.2	23
282	In-stream turbines for rethinking hydropower development in the Amazon basin. Nature Sustainability, 2021, 4, 680-687.	23.7	25
283	Classifying flow regimes of the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1005-1028.	2.0	10
284	The longest fragment drives fish beta diversity in fragmented river networks: Implications for river management and conservation. Science of the Total Environment, 2021, 766, 144323.	8.0	12
285	Systematic evaluation for hydropower exploitation rationality in hydro-dominant area: A case study of Sichuan Province, China. Renewable Energy, 2021, 168, 1096-1111.	8.9	10
286	Mapping the terrestrial ecoregions of the Purus-Madeira interfluve in the Amazon Forest using machine learning techniques. Forest Ecology and Management, 2021, 488, 118960.	3.2	6
287	Disentangling biotic and abiotic drivers of intraspecific trait variation in woody plant seedlings at forest edges. Ecology and Evolution, 2021, 11, 9728-9740.	1.9	3
288	Impacts of a hydroelectric power plant on the bat community in central Brazil. Mammal Research, 2021, 66, 509-518.	1.3	5
289	Impacts of an Amazonian hydroelectric dam on frog assemblages. PLoS ONE, 2021, 16, e0244580.	2.5	9
291	Contribution of meandering rivers to natural carbon fluxes: Evidence from the Ucayali River, Peruvian Amazonia. Science of the Total Environment, 2021, 776, 146056.	8.0	10
293	Avian extinctions induced by the oldest Amazonian hydropower mega dam: evidence from museum collections and sighting data spanning 172 years. Peerl, 2021, 9, e11979.	2.0	6
294	Evaluating Dam Water Release Strategies for Migrating Adult Salmon Using Computational Fluid Dynamic Modeling and Biotelemetry. Water Resources Research, 2021, 57, e2020WR028981.	4.2	10
295	Environmental compliance of hydropower projects in Nepal. Environmental Challenges, 2021, 5, 100307.	4.2	4

#	Article	IF	CITATIONS
296	Predicting the Likely Thermal Impact of Current and Future Dams Around the World. Earth's Future, 2021, 9, e2020EF001916.	6.3	11
297	Understanding the role of territorial factors in the large-scale hydropower business sustainability: A systematic literature review. Energy Reports, 2021, 7, 3249-3266.	5.1	3
298	Trends and environmental drivers of giant catfish catch in the lower Amazon River. Marine and Freshwater Research, 2021, 72, 647.	1.3	2
299	Worldwide research trends on hydropower. , 2021, , 249-280.		2
300	Assessing extinction risk from geographic distribution data in Neotropical freshwater fishes. Neotropical Ichthyology, 2021, 19, .	1.0	9
301	Toward Sustainable Rivers and Water Resources. SpringerBriefs in Environmental Science, 2018, , 105-141.	0.3	6
302	Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biological Conservation, 2017, 214, 270-277.	4.1	42
304	Discovery or Extinction of New Scleroderma Species in Amazonia?. PLoS ONE, 2016, 11, e0167879.	2.5	10
305	DNA Metabarcoding of Amazonian Ichthyoplankton Swarms. PLoS ONE, 2017, 12, e0170009.	2.5	23
306	Establishing baseline biodiversity data prior to hydroelectric dam construction to monitoring impacts to bats in the Brazilian Amazon. PLoS ONE, 2017, 12, e0183036.	2.5	22
307	The effect of dam construction on the movement of dwarf caimans, Paleosuchus trigonatus and Paleosuchus palpebrosus, in Brazilian Amazonia. PLoS ONE, 2017, 12, e0188508.	2.5	8
308	Clarifying regional hydrologic controls of the Mara $\tilde{A}\pm\tilde{A}^3$ n River, Peru through rapid assessment to inform system-wide basin planning approaches. Elementa, 2018, 6, .	3.2	5
309	Downstream effects of hydropower production on aquatic macroinvertebrate assemblages in two rivers in Costa Rica. Revista De Biologia Tropical, 2014, 62, 179.	0.4	8
310	Amazonian Erasures: Landscape and Myth-making in Lowland Bolivia. Rural Landscapes, 2018, 5, .	1.1	1
311	Effective framework for Environmental-flows estimation for data deficient Indian rivers. Journal of Applied and Natural Science, 2019, 11, 545-555.	0.4	2
312	Small dams for aquaculture negatively impact fish diversity in Amazonian streams. Aquaculture Environment Interactions, 2018, 10, 89-98.	1.8	4
313	Characterizing Growth and Condition of Endangered Humpback Chub in the Lower Colorado River. Journal of Fish and Wildlife Management, 2017, 8, 313-321.	0.9	2
316	A large and unusually colored new snake species of the genus <i>Tantilla</i> (Squamata; Colubridae) from the Peruvian Andes. PeerJ, 2016, 4, e2767.	2.0	3

#	Article	IF	CITATIONS
317	Validating anthropogenic threat maps as a tool for assessing river ecological integrity in Andean–Amazon basins. PeerJ, 2019, 7, e8060.	2.0	12
318	Hydrodynamics Regulate Longitudinal Plankton Community Structure in an Alpine Cascade Reservoir System. Frontiers in Microbiology, 2021, 12, 749888.	3.5	2
319	Immediate effects of an Amazonian mega hydroelectric dam on phyllostomid fruit bats. Ecological Indicators, 2021, 132, 108322.	6.3	5
320	Rivers, Metagenomics of., 2014, , 1-7.		0
321	How Environmental and Societal Changes Affect Wildlife in the Tropics. , 2015, , 1-15.		0
322	Amazon River Basin., 2016, , 1-20.		4
323	How Environmental and Societal Changes Affect Wildlife in the Tropics., 2016,, 2177-2195.		0
324	Ambiguities and Potentialities of Social Sciences in the Peruvian Mining Context. Anthropologie & Développement, 2016, , 31-53.	0.0	0
325	Amazon River Basin., 2018,, 727-746.		0
328	SDG 9: Industry, Innovation and Infrastructure – Anticipating the Potential Impacts on Forests and Forest-Based Livelihoods. , 2019, , 279-314.		7
329	Morfologia fluvial e din \tilde{A}^{φ} mica de sedimentos: an \tilde{A}_i lise dos efeitos a jusante do complexo hidrel \tilde{A}^{φ} trico do rio Madeira. Confins, 2020, , .	0.1	0
330	Sedimental Journey: Soil Fertility of Fluvial Islands Increases with Proximity to An Amazonian White-Water River. Wetlands, 2021, 41, 1.	1.5	2
331	Flow Regulation by Dams: Ongoing and Emerging Trends., 2022, , 1237-1254.		2
332	Evaluación de la calidad del agua en el embalse hidroeléctrico El Quimbo. Entre Ciencia E IngenierÃa, 2020, 14, 107-116.	0.2	0
333	Responses of crocodilians to construction of a hydroelectric dam on the Madeira River in the Brazilian Amazon. Herpetological Journal, 2020, , 215-221.	0.6	2
334	Understanding Hydropower Impacts on Amazonian Wildlife is Limited by a Lack of Robust Evidence: Results From a Systematic Review. Tropical Conservation Science, 2021, 14, 194008292110457.	1.2	8
335	Unveiling biogeographical patterns of the ichthyofauna in the Tuichi basin, a biodiversity hotspot in the Bolivian Amazon, using environmental DNA. PLoS ONE, 2022, 17, e0262357.	2.5	2
336	Impacts of hydropower on the habitat of jaguars and tigers. Communications Biology, 2021, 4, 1358.	4.4	7

#	Article	IF	Citations
337	Fish community turnover in a dammed Andean River over time. Neotropical Ichthyology, 2022, 20, .	1.0	8
338	Conservation of the Black-collared Swallow, Pygochelidon melanoleuca (Wied, 1820) (Aves:) Tj ETQq1 1 0.784314	4 rgBT /Ov	erlock 10 Tf
339	Reducing adverse impacts of Amazon hydropower expansion. Science, 2022, 375, 753-760.	12.6	60
340	Nutrient availability modulates the effect of water abstraction on the metabolism of 2 lowland forested streams. Freshwater Science, 0 , , .	1.8	2
341	Gone With the Water: The Loss of Genetic Variability in Black and Gold Howler Monkeys (Alouatta) Tj ETQq0 0 0 r	gBT /Overl	lock 10 Tf 50
342	Optimizing PV Microgrid Isolated Electrification Projectsâ€"A Case Study in Ecuador. Mathematics, 2022, 10, 1226.	2.2	6
343	Alteration of River Flow and Flood Dynamics by Existing and Planned Hydropower Dams in the Amazon River Basin. Water Resources Research, 2022, 58, .	4.2	20
345	Social perception assessment of hydropower sustainability: A stepwise logistic regression modeling. Environmental Science and Policy, 2022, 134, 108-118.	4.9	4
346	Hydropower development impacts on the benthic macroinvertebrates in the Indian Himalayan region. International Journal of Environmental Studies, 2023, 80, 1235-1247.	1.6	0
347	Environmental quality assessment in central Andean Rivers: Using the ecological thresholds concept, environmental quality standards, and biotic indexes. River Research and Applications, 0, , .	1.7	1
348	Death by a thousand cuts: Small local dams can produce large regional impacts in the Brazilian Legal Amazon. Environmental Science and Policy, 2022, 136, 447-452.	4.9	9
349	A simple and extensible framework to identify key areas for the conservation of single vulnerable freshwater species. Biological Conservation, 2022, 273, 109672.	4.1	4
350	Spatiotemporal analysis of hydropower projects with terrestrial environmentally sensitive areas of Nepal. Environmental Challenges, 2022, 9, 100598.	4.2	2
351	Feeding strategy of fish that colonize reservoirs in the Magdalena river basin. Universitas Scientiarum, 2022, 27, 234-252.	0.4	2
352	Environmental stressors in Amazonian riverine systems. Fish Physiology, 2022, , .	0.8	1
353	Anthropogenic influences on the distribution of a threatened apex-predator around sustainable-use reserves following hydropower dam installation. PeerJ, 0, 10, e14287.	2.0	1
354	Lista de especies de peces de la cuenca del RÃo Ucayali, Perú. Revista Peruana De Biologia, 2022, 29, e20049.	0.3	3
355	Geographic distribution, conservation status and lectotypification of Pedersenia weberbaueri (Suess.) Holub (Amaranthaceae), an endemic and highly threatened shrub from the Mara $\tilde{A}\pm\tilde{A}^3$ n valley of Peru. Revista Peruana De Biologia, 2022, 29, e23214.	0.3	1

#	Article	IF	CITATIONS
356	The impact of a runâ€ofâ€theâ€river hydroelectric dam on a nonâ€volant smallâ€mammal assemblage in Brazilian Amazonia. Austral Ecology, 2023, 48, 143-157.	1.5	1
357	Incorporating ecosystem services value into the optimal development of hydropower projects. Renewable Energy, 2023, 203, 495-505.	8.9	6
358	Free and underfit-scavenger river dynamics dominate the large Amazonian Pacaya-Samiria wetland structure. Frontiers in Environmental Science, $0,11,1$	3.3	4
359	Sustainable planning of multipurpose hydropower reservoirs with environmental impacts in a simulation–optimization framework. Hydrology Research, 2023, 54, 31-48.	2.7	2
360	New Insights on Water Quality and Land Use Dynamics in the Napo Region of Western Amazonia. The Latin American Studies Book Series, 2023, , 81-115.	0.2	0
361	Eco-morphodynamic carbon pumping by the largest rivers in the Neotropics. Scientific Reports, 2023, 13, .	3.3	2
362	Hydrological impacts of dam regulation for hydropower production: The case of Lake Sibinacocha, Southern Peru. Journal of Hydrology: Regional Studies, 2023, 46, 101319.	2.4	1
364	Threat Analysis of Forest Fragmentation and Degradation for Peruvian Primates. Diversity, 2023, 15, 276.	1.7	3
365	Vulnerability to overfishing of fish stocks in the Amazon Basin. Fisheries Research, 2023, 265, 106740.	1.7	1
366	Efficiently Approximating High-Dimensional Pareto Frontiers forÂTree-Structured Networks Using Expansion andÂCompression. Lecture Notes in Computer Science, 2023, , 1-17.	1.3	0
367	Assessment on land use changes and livelihood transition under the hydropower dam construction in Paunglaung Township, Southern Shan Highlands, Myanmar. Land Degradation and Development, 2023, 34, 5647-5661.	3.9	0
368	Sustainability and Governance Regimes in Hydropower Territories: Multiple-Case Study in Colombia. Journal of Water Resources Planning and Management - ASCE, 2023, 149, .	2.6	0
369	Unsustainable fishing in Amazonian Ecuador involving agrochemicals and explosives detected by media surveys and stakeholder perception. Journal for Nature Conservation, 2023, 76, 126498.	1.8	0
370	Large-Scale Land-Use Changes and the Amazonian Mammal Biota. , 2023, , 323-333.		O
371	Why This Book on Amazonian Mammals Is Needed. , 2023, , 3-10.		0