Sickle Cell Mice Exhibit Mechanical Allodynia and Enha Cutaneous Mechanoreceptors

Molecular Pain 8, 1744-8069-8-62 DOI: 10.1186/1744-8069-8-62

Citation Report

#	Article	IF	CITATIONS
1	Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: Therapeutic implications for migraine and other pains. Cephalalgia, 2014, 34, 853-869.	1.8	187
2	Cold hypersensitivity increases with age in mice with sickle cell disease. Pain, 2014, 155, 2476-2485.	2.0	54
3	Early insights into the neurobiology of pain in sickle cell disease: A systematic review of the literature. Pediatric Blood and Cancer, 2015, 62, 1501-1511.	0.8	51
4	Dexmedetomidine ameliorates nocifensive behavior in humanized sickle cell mice. European Journal of Pharmacology, 2015, 754, 125-133.	1.7	15
5	Sensory and Thermal Quantitative Testing in Children With Sickle Cell Disease. Journal of Pediatric Hematology/Oncology, 2015, 37, 185-189.	0.3	54
6	Sensitization of nociceptive spinal neurons contributes to pain in a transgenic model of sickle cell disease. Pain, 2015, 156, 722-730.	2.0	86
7	Rapamycin increases fetal hemoglobin and ameliorates the nociception phenotype in sickle cell mice. Blood Cells, Molecules, and Diseases, 2015, 55, 363-372.	0.6	37
8	Sickle cell disease in mice is associated with sensitization of sensory nerve fibers. Experimental Biology and Medicine, 2015, 240, 87-98.	1.1	34
9	Mechanisms of Pain in Sickle Cell Disease. , 2016, , .		2
10	Chronic Opioid Therapy and Central Sensitization in Sickle Cell Disease. American Journal of Preventive Medicine, 2016, 51, S69-S77.	1.6	65
11	Electroacupuncture in conscious free-moving mice reduces pain by ameliorating peripheral and central nociceptive mechanisms. Scientific Reports, 2016, 6, 34493.	1.6	16
12	Distinct calcitonin gene-related peptide expression pattern in primary afferents contribute to different neuropathic symptoms following chronic constriction or crush injuries to the rat sciatic nerve. Molecular Pain, 2016, 12, 174480691668156.	1.0	18
13	Quantitative sensory testing and pain-evoked cytokine reactivity. Pain, 2016, 157, 949-956.	2.0	47
14	Cognitive and behavior deficits in sickle cell mice are associated with profound neuropathologic changes in hippocampus and cerebellum. Neurobiology of Disease, 2016, 85, 60-72.	2.1	32
15	Sensitization of C-fiber nociceptors in mice with sickle cell disease is decreased by local inhibition of anandamide hydrolysis. Pain, 2017, 158, 1711-1722.	2.0	37
16	Sickle cell disease: a natural model of acute and chronic pain. Pain, 2017, 158, S79-S84.	2.0	41
17	Central sensitization associated with low fetal hemoglobin levels in adults with sickle cell anemia. Scandinavian Journal of Pain, 2017, 17, 279-286.	0.5	18
18	Psychological Characteristics and Pain Frequency Are Associated With Experimental Pain Sensitivity in Pediatric Patients With Sickle Cell Disease, Journal of Pain, 2017, 18, 1216-1228.	0.7	23

#	Article	IF	CITATIONS
19	Five lessons learned about long-term pain management in adults with sickle cell disease. Hematology American Society of Hematology Education Program, 2017, 2017, 406-411.	0.9	11
20	Peripheral Mechanisms of Ischemic Myalgia. Frontiers in Cellular Neuroscience, 2017, 11, 419.	1.8	37
21	Chemokine (c-c motif) receptor 2 mediates mechanical and cold hypersensitivity in sickle cell disease mice. Pain, 2018, 159, 1652-1663.	2.0	25
22	Iron Chelation with Transdermal Deferoxamine Accelerates Healing of Murine Sickle Cell Ulcers. Advances in Wound Care, 2018, 7, 323-332.	2.6	11
23	The role of nitrite in muscle function, susceptibility to contraction injury, and fatigability in sickle cell mice. Nitric Oxide - Biology and Chemistry, 2018, 80, 70-81.	1.2	7
24	New and emerging treatments for vaso-occlusive pain in sickle cell disease. Expert Review of Hematology, 2019, 12, 857-872.	1.0	6
25	Gabapentin alleviates chronic spontaneous pain and acute hypoxiaâ€related pain in a mouse model of sickle cell disease. British Journal of Haematology, 2019, 187, 246-260.	1.2	12
26	Sensitization of nociceptors and dorsal horn neurons contributes to pain in sickle cell disease. Neuroscience Letters, 2019, 705, 20-26.	1.0	14
27	Children and adolescents with sickle cell disease have worse cold and mechanical hypersensitivity during acute painful events. Pain, 2019, 160, 407-416.	2.0	27
28	Peripheral nerve pathology in sickle cell disease mice. Pain Reports, 2019, 4, e765.	1.4	8
29	Neuronal transient receptor potential (TRP) channels and noxious sensory detection in sickle cell disease. Neuroscience Letters, 2019, 694, 184-191.	1.0	12
30	Neuropathic Pain Screening: Construct Validity in Patients With Sickle Cell Disease. Western Journal of Nursing Research, 2020, 42, 125-130.	0.6	9
31	Opioid treatment for acute and chronic pain in patients with sickle cell disease. Neuroscience Letters, 2020, 714, 134534.	1.0	16
32	Sensitivities to Thermal and Mechanical Stimuli: Adults With Sickle Cell Disease Compared to Healthy, Pain-Free African American Controls. Journal of Pain, 2020, 21, 957-967.	0.7	15
33	Nitric oxide and sickle cell disease—Is there a painful connection?. Experimental Biology and Medicine, 2021, 246, 332-341.	1.1	4
34	Sex-Dependent Reduction in Mechanical Allodynia in the Sural-Sparing Nerve Injury Model in Mice Lacking Merkel Cells. Journal of Neuroscience, 2021, 41, 5595-5619.	1.7	5
35	Comparative Analysis of Pain Behaviours in Humanized Mouse Models of Sickle Cell Anemia. PLoS ONE, 2016, 11, e0160608.	1.1	33
36	Updated Mechanisms of Sickle Cell Disease-Associated Chronic pain. Translational Perioperative and Pain Medicine, 2015, 2, .	0.0	12

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Updated Mechanisms of Sickle Cell Disease-Associated Chronic pain. Translational Perioperative and Pain Medicine, 2015, 2, 8-17.	0.0	15
38	Inhibition of DAGLÎ ² as a therapeutic target for pain in sickle cell disease. Haematologica, 2023, 108, 859-869.	1.7	11
39	Targeting TRPV1 activity via highâ€dose capsaicin in patients with sickle cell disease. EJHaem, 2022, 3, 653-659.	0.4	2
40	PATHOPHYSIOLOGICAL CHARACTERIZATION OF THE TOWNES MOUSE MODEL FOR SICKLE CELL DISEASE. Translational Research, 2022, , .	2.2	4
41	Peripheral transient receptor potential vanilloid type 4 hypersensitivity contributes to chronic sickle cell disease pain. Pain, 2023, 164, 1874-1886.	2.0	2