Skin dose in longitudinal and transverse linacâ€MRIs u field models

Medical Physics 39, 6509-6521 DOI: 10.1118/1.4754657

Citation Report

#	Article	IF	CITATIONS
1	The Potential for an Enhanced Role for MRI in Radiation-Therapy Treatment Planning. Technology in Cancer Research and Treatment, 2013, 12, 429-446.	0.8	162
2	Prior data assisted compressed sensing: A novel MR imaging strategy for real time tracking of lung tumors. Medical Physics, 2014, 41, 082301.	1.6	18
3	MR guidance in radiotherapy. Physics in Medicine and Biology, 2014, 59, R349-R369.	1.6	175
4	Electron contamination modeling and reduction in a 1 T open bore inline MRI-linac system. Medical Physics, 2014, 41, 051708.	1.6	40
5	The Rotating Biplanar Linac–Magnetic Resonance Imaging System. Seminars in Radiation Oncology, 2014, 24, 200-202.	1.0	222
6	A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution. Medical Physics, 2015, 42, 7182-7189.	1.6	23
7	Discontinuous finite element space-angle treatment of the first order linear Boltzmann transport equation with magnetic fields: Application to MRI-guided radiotherapy. Medical Physics, 2015, 43, 195-204.	1.6	14
8	Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study. Medical Physics, 2015, 43, 368-377.	1.6	30
9	Neuralâ€network based autocontouring algorithm for intrafractional lungâ€ŧumor tracking using Linacâ€MR. Medical Physics, 2015, 42, 2296-2310.	1.6	37
10	A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields. Medical Physics, 2015, 42, 780-793.	1.6	24
11	Breast dosimetry in transverse and longitudinal field MRI‣inac radiotherapy systems. Medical Physics, 2015, 42, 925-936.	1.6	11
12	Proton beam deflection in MRI fields: Implications for MRIâ€guided proton therapy. Medical Physics, 2015, 42, 2113-2124.	1.6	63
13	MRI-based IMRT planning for MR-linac: comparison between CT- and MRI-based plans for pancreatic and prostate cancers. Physics in Medicine and Biology, 2016, 61, 3819-3842.	1.6	38
14	Minimal skin dose increase in longitudinal rotating biplanar linac-MR systems: examination of radiation energy and flattening filter design. Physics in Medicine and Biology, 2016, 61, 3527-3539.	1.6	24
15	Influence of standard RF coil materials on surface and buildup dose from a 6 MV photon beam in magnetic field. Medical Physics, 2016, 43, 5808-5816.	1.6	15
16	Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field. Medical Physics, 2016, 43, 2927-2932.	1.6	1
17	Backscatter dose effects for high atomic number materials being irradiated in the presence of a magnetic field: A Monte Carlo study for the MRI linac. Medical Physics, 2016, 43, 4665-4673.	1.6	10
18	Experimental verification of <scp>EGS</scp> nrc Monte Carlo calculated depth doses within a realistic parallel magnetic field in a polystyrene phantom. Medical Physics, 2017, 44, 4804-4815.	1.6	10

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Future of medical physics: Realâ€ŧime MRIâ€guided proton therapy. Medical Physics, 2017	7, 44, e77-e90.	1.6	99
20	Effects of magnetic field orientation and strength on the treatment planning of nonsmall cancer. Medical Physics, 2017, 44, 6621-6631.	cell lung	1.6	8
21	Modulation of lateral positions of Bragg peaks via magnetic fields inside cancer patients: 1 magnetic field modulated proton therapy. Medical Physics, 2017, 44, 5325-5338.	Toward	1.6	5
22	MR-guided radiation therapy: transformative technology and its role in the central nervous Neuro-Oncology, 2017, 19, ii16-ii29.	s system.	0.6	49
23	Spiraling contaminant electrons increase doses to surfaces outside the photon beam of ar with a perpendicular magnetic field. Physics in Medicine and Biology, 2018, 63, 095001.	ו MRI-linac	1.6	42
24	Technical Note: Experimental verification of EGS nrc calculated depth dose within a paralle field in a lung phantom. Medical Physics, 2018, 45, 5653-5658.	el magnetic	1.6	2
25	Technical Note: EPID 's response to 6Â MV photons in a strong, parallel magnetic field. Me 2018, 46, 340-344.	dical Physics,	1.6	1
26	MRI-guidance for motion management in external beam radiotherapy: current status and f challenges. Physics in Medicine and Biology, 2018, 63, 22TR03.	future	1.6	94
27	A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Medicine and Biology, 2018, 63, 125008.	Physics in	1.6	55
28	Technical Note: Experimental characterization of the dose deposition in parallel MRIâ€ŀina magnetic field strengths. Medical Physics, 2019, 46, 5152-5158.	cs at various	1.6	7
29	Dosimetry needs for MRI-linacs. Journal of Physics: Conference Series, 2019, 1305, 01201	0.	0.3	12
30	Experimental characterization of magnetically focused electron contamination at the surfa highâ€field inline MRIâ€linac. Medical Physics, 2019, 46, 5780-5789.	ace of a	1.6	16
31	Monte Carlo simulations of outâ€ofâ€field skin dose due to spiralling contaminant electro perpendicular magnetic field. Medical Physics, 2019, 46, 1467-1477.	ons in a	1.6	14
32	Impact of inline magnetic fields on dose distributions for VMAT in lung tumor. Physica Mer 59, 100-106.	dica, 2019,	0.4	4
33	Monte Carlo simulations of out-of-field surface doses due to the electron streaming effect orthogonal magnetic fields. Physics in Medicine and Biology, 2019, 64, 115029.	: in	1.6	27
34	Influence of a transverse magnetic field on the response of different detectors in a high er photon beam near the surface. Zeitschrift Fur Medizinische Physik, 2019, 29, 22-30.	nergy	0.6	7
35	Proton beam behavior in a parallel configured <scp>MRI</scp> â€proton therapy hybrid: Ef timeâ€varying gradient magnetic fields. Medical Physics, 2019, 46, 822-838.	ffects of	1.6	12
36	Normal lung tissue complication probability in MR-Linac and conventional radiotherapy. Re Practical Oncology and Radiotherapy, 2020, 25, 961-968.	eports of	0.3	0

CITATION REPORT

#	Article	IF	CITATIONS
37	Impact of a parallel magnetic field on radiation dose beneath thin copper and aluminum foils. Biomedical Physics and Engineering Express, 2020, 6, 037002.	0.6	3
38	Dosimetric Optimization and Commissioning of a High Field Inline MRI-Linac. Frontiers in Oncology, 2020, 10, 136.	1.3	11
39	Impact of magnetic fields on calculated AAPM TC-43 parameters for 192Ir and 60Co HDR brachytherapy sources: A Monte Carlo study. Applied Radiation and Isotopes, 2020, 159, 109088.	0.7	2
40	Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a Code of Practice. Physics in Medicine and Biology, 2021, 66, 05TR02.	1.6	33
41	Magnetic modeling of actively shielded rotating MRI magnets in the presence of environmental steel. Physics in Medicine and Biology, 2021, 66, 045004.	1.6	1
42	Effects on skin dose from unwanted air gaps under bolus in an MR-guided linear accelerator (MR-linac) system. Physics in Medicine and Biology, 2021, 66, 065021.	1.6	7
43	The effect of the magnetic fields from three different configurations of the MRIgRT systems on the dose deposition from lateral opposing photon beams in a laryngeal geometry – A Monte Carlo study. Radiation Medicine and Protection, 2021, 2, 103-111.	0.4	3
44	Simulation of therapeutic electron beam tracking through a non-uniform magnetic field using finite element method. Electronic Physician, 2017, 9, 4171-4179.	0.2	1
45	Analytical investigation of magnetic field effects on Proton lateral deflection and penetrating depth in the water phantom: A relativistic approach. Electronic Physician, 2017, 9, 5932-5939.	0.2	2
46	Transport of Charged Particles. Biological and Medical Physics Series, 2017, , 141-193.	0.3	0
47	Development and clinical implementation of a hybrid system consisting of an MRI and medical linear accelerator. , 2017, , .		0
48	6 Specifieke bestralingsapparatuur. Medische Beeldvorming En Radiotherapie, 2019, , 189-251.	0.0	0
49	The effect of magnetic field on Linac based Stereotactic Radiosurgery dosimetric parameters. Biomedical Physics and Engineering Express, 2021, 7, 015016.	0.6	1
51	Advances in Image-Guided Radiotherapy in the Treatment of Oral Cavity Cancer. Cancers, 2022, 14, 4630.	1.7	6
52	Magnetic Resonance-Guided Adaptive Radiotherapy: Technical Concepts. , 2022, , 135-158.		0
53	ACPSEM position paper: dosimetry for magnetic resonance imaging linear accelerators. Physical and Engineering Sciences in Medicine, 2023, 46, 1-17.	1.3	0
54	Magnetic field induced dose effects in radiation therapy using MRâ€linacs. Medical Physics, 2023, 50, 3623-3636.	1.6	6