A high thermoelectric figure of merit ZT > 1 in Ba he

Energy and Environmental Science 5, 8543 DOI: 10.1039/c2ee22622g

Citation Report

#	Article	IF	CITATIONS
1	High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. Energy and Environmental Science, 2013, 6, 1750.	15.6	68
2	Evidence of an interlayer charge transfer route in BiCu1â^xSeO. Journal of Materials Chemistry A, 2013, 1, 12154.	5.2	27
3	Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chemical Communications, 2013, 49, 8075.	2.2	111
4	High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Materials, 2013, 5, e47-e47.	3.8	349
5	Hot-injection synthesis and characterization of monodispersed ternary Cu2SnSe3 nanocrystals for thermoelectric applications. Journal of Alloys and Compounds, 2013, 581, 646-652.	2.8	42
6	OXYCHALCOGENIDES AS NEW EFFICIENT p-TYPE THERMOELECTRIC MATERIALS. Functional Materials Letters, 2013, 06, 1340007.	0.7	7
7	Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. Journal of Alloys and Compounds, 2013, 551, 649-653.	2.8	146
8	Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying. Journal of Solid State Chemistry, 2013, 203, 187-191.	1.4	28
9	Density of state effective mass and related charge transport properties in K-doped BiCuOSe. Applied Physics Letters, 2013, 103, .	1.5	69
10	Thermoelectric Properties of <scp><scp>Pb</scp></scp> â€Doped <scp><scp>BiCuSeO</scp></scp> Ceramics. Journal of the American Ceramic Society, 2013, 96, 2710-2713.	1.9	50
11	Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Scientific Reports, 2013, 3, 3449.	1.6	138
12	Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy and Environmental Science, 2013, 6, 2916.	15.6	326
13	Electrical and thermal transport properties of AgIn5Te8. Journal of Alloys and Compounds, 2013, 566, 50-53.	2.8	11
14	Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Advances, 2013, 3, 8504.	1.7	133
15	Influence of Te substitution on the structural and electronic properties of thermoelectric BiCuSeO. Journal of Materials Chemistry A, 2013, 1, 2921.	5.2	48
16	Synthesis, structural characterisation and thermoelectric properties of Bi1â~'xPbxOCuSe. Journal of Materials Chemistry A, 2013, 1, 12270.	5.2	47
17	Synthesis, Crystal Structure, and High Temperature Transport Properties of <i>p</i> -Type Cu ₂ Zn _{1–<i>x</i>} Fe _{<i>x</i>} SnSe ₄ . Inorganic Chemistry, 2013, 52, 14364-14367.	1.9	33
10	Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch = S,) Tj ETQq1 1 C).78ू4,314 r	gBT_/Qverloc

#	Article	IF	CITATIONS
19	Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. Journal of Materials Chemistry A, 2013, 1, 11942.	5.2	128
20	Rapid synthesis of high-performance thermoelectric materials directly from natural mineral tetrahedrite. MRS Communications, 2013, 3, 129-133.	0.8	56
21	Enhanced asymmetrical transport of carriers induced by local structural distortion in chemically tuned titania: A possible mechanism for enhancing thermoelectric properties. Physical Review B, 2013, 88, .	1.1	11
22	Influence of Pb doping on the electrical transport properties of BiCuSeO. Applied Physics Letters, 2013, 102, .	1.5	93
23	Enhanced Thermoelectric Properties of Pbâ€doped BiCuSeO Ceramics. Advanced Materials, 2013, 25, 5086-5090.	11.1	228
24	Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Applied Physics Letters, 2013, 102, 123905.	1.5	77
25	On the Origin of Low Thermal Conductivity in High Thermoelectric Performance in n-type BiAgSeS. Microscopy and Microanalysis, 2013, 19, 2000-2001.	0.2	0
26	High pressure effect on the electronic structure and thermoelectric properties of BiCuSeO: first-principles calculations. RSC Advances, 2014, 4, 54819-54825.	1.7	33
27	Effects of the Cu off-stoichiometry on transport properties of wide gap <i>p</i> -type semiconductor, layered oxysulfide LaCuSO. Applied Physics Letters, 2014, 105, .	1.5	24
28	Electron Microscopy for Characterization of Thermoelectric Nanomaterials. , 2014, , 427-536.		0
29	Point defect-assisted doping mechanism and related thermoelectric transport properties in Pb-doped BiCuOTe. Journal of Materials Chemistry A, 2014, 2, 19759-19764.	5.2	40
30	Thermoelectric Properties of Ni Doped P-Type BiCuSeO Oxyselenides. Key Engineering Materials, 0, 602-603, 906-909.	0.4	5
31	Layered oxychalcogenide in the Bi–Cu–O–Se system as good thermoelectric materials. Semiconductor Science and Technology, 2014, 29, 064001.	1.0	42
32	Fineâ€Grained and Nanostructured AgPb _{<i>m</i>} SbTe _{<i>m</i>+2} Alloys with High Thermoelectric Figure of Merit at Medium Temperature. Advanced Energy Materials, 2014, 4, 1300937.	10.2	38
33	High Temperature Thermoelectric Properties of Dy-doped CaMnO3 Ceramics. Journal of Materials Science and Technology, 2014, 30, 821-825.	5.6	48
34	New promising bulk thermoelectrics: intermetallics, pnictides and chalcogenides. European Physical Journal B, 2014, 87, 1.	0.6	67
35	Oxide Thermoelectric Materials: A Structure–Property Relationship. Journal of Electronic Materials, 2014, 43, 962-977.	1.0	78
36	BiCuSeO oxyselenides: new promising thermoelectric materials. Energy and Environmental Science, 2014, 7, 2900-2924.	15.6	544

#	Article	IF	CITATIONS
37	Thermal stability and oxidation resistance of BiCuSeO based thermoelectric ceramics. Journal of Alloys and Compounds, 2014, 614, 394-400.	2.8	44
38	Enhanced low temperature thermoelectric performance of Ag-doped BiCuSeO. Applied Physics Letters, 2014, 105, .	1.5	34
39	Low effective mass leading to an improved ZT value by 32% for n-type BiCuSeO: a first-principles study. Journal of Materials Chemistry A, 2014, 2, 13923.	5.2	42
40	Design and Synthesis of a New Layered Thermoelectric Material LaPbBiS ₃ O. Inorganic Chemistry, 2014, 53, 11125-11129.	1.9	43
41	Optoelectronic and transport properties of Zintl phase KBa2Cd2Sb3 compound. Computational Materials Science, 2014, 95, 328-336.	1.4	13
42	The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. Journal of Materials Chemistry A, 2014, 2, 4903.	5.2	135
43	Thermoelectric properties of BiOCu _{1â^'<i>x</i>} M <i>_x</i> Se (M = Cd and Zn). Semiconductor Science and Technology, 2014, 29, 064002.	1.0	16
44	Enhanced Thermoelectric Properties of BiCuSeO/Polyaniline Composites. Journal of Electronic Materials, 2014, 43, 3695-3700.	1.0	13
45	High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping. Journal of the American Chemical Society, 2014, 136, 13902-13908.	6.6	317
46	Recent progress in thermoelectric materials. Science Bulletin, 2014, 59, 2073-2091.	1.7	113
47	Enhanced Thermoelectric Properties of Hole-Doped Bi2â^'x Ba x Sr2Co2O y Ceramics. Journal of Electronic Materials, 2014, 43, 1432-1435.	1.0	21
48	Enhanced thermoelectric performance of Zn-doped oxyselenides: BiCu _{1â^'<i>x</i>} Zn _{ <i>x</i>} SeO. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2616-2620.	0.8	11
49	Enhanced thermoelectric performance of highly dense and fine-grained (Sr1â^'xGdx)TiO3â^'δ ceramics synthesized by sol–gel process and spark plasma sintering. Journal of Alloys and Compounds, 2014, 588, 562-567.	2.8	21
50	The panoscopic approach to high performance thermoelectrics. Energy and Environmental Science, 2014, 7, 251-268.	15.6	834
51	Synthesis, crystal structure and physical properties of [Li _{0.85} Fe _{0.15} OH][FeS]. RSC Advances, 2015, 5, 38248-38253.	1.7	18
52	Exploring the origin of ultralow thermal conductivity in layered BiOCuSe. Physical Review B, 2015, 92,	1.1	67
53	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>SrAg</mml:mi><mml:mi>Cmathvariant="normal">F</mml:mi></mml:mrow> (<mml:math) 0="" 10="" 5<="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>mi> < mml: 0 102 Td (1.1</td><td>mi>hxmlns:mml=' 36</td></mml:math)>	mi> < mml: 0 102 Td (1.1	mi>hxmlns:mml=' 36
	Review B, 2015, 92, .		

#	Article	IF	CITATIONS
55	The electronic structure and thermoelectric properties of BiTl9Te6 and SbTl9Te6: First-principles calculations. Journal of Applied Physics, 2015, 118, 235703.	1.1	1
56	Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control. Applied Energy, 2015, 154, 709-717.	5.1	24
57	Effect of Cu concentration on thermoelectric properties of nanostructured p-type MgAg0.97â^'Cu Sb0.99. Acta Materialia, 2015, 87, 266-272.	3.8	53
58	EXAFS study of thermoelectric BiCuOSe: Effects of Cu vacancies. Solid State Communications, 2015, 206, 12-16.	0.9	13
59	Effects of fluorine doping on thermoelectric properties of Sr _{0.61} Ba _{0.39} Nb ₂ O ₆ ceramics. Physica Scripta, 2015, 90, 025801.	1.2	16
60	Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Applied Physics Letters, 2015, 106, .	1.5	86
61	Strong correlation of the growth mode and electrical properties of BiCuSeO single crystals with growth temperature. CrystEngComm, 2015, 17, 6136-6141.	1.3	17
62	The effect of nickel doping on electron and phonon transport in the n-type nanostructured thermoelectric material CoSbS. Journal of Materials Chemistry C, 2015, 3, 10442-10450.	2.7	47
63	Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. Nano Energy, 2015, 13, 554-562.	8.2	91
64	Enhancement of the thermoelectric properties of BaCu2Se2 by potassium doping. Materials Letters, 2015, 152, 117-120.	1.3	10
65	Multi-role of Sodium Doping in BiCuSeO on High Thermoelectric Performance. Journal of Electronic Materials, 2015, 44, 2849-2855.	1.0	26
66	Structure and Transport Properties of the BiCuSeO-BiCuSO Solid Solution. Materials, 2015, 8, 1043-1058.	1.3	33
67	Dual Vacancies: An Effective Strategy Realizing Synergistic Optimization of Thermoelectric Property in BiCuSeO. Journal of the American Chemical Society, 2015, 137, 6587-6593.	6.6	183
68	Effect of Sn-Substitution on Thermoelectric Properties of Copper-Based Sulfide, Famatinite Cu ₃ SbS ₄ . Journal of the Physical Society of Japan, 2015, 84, 044706.	0.7	47
69	Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Materials Science and Engineering Reports, 2015, 97, 1-22.	14.8	311
70	Epitaxial growth and thermoelectric properties of c-axis oriented Bi _{1â^'x} Pb _x CuSeO single crystalline thin films. CrystEngComm, 2015, 17, 8697-8702.	1.3	18
71	Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Advances, 2015, 5, 69878-69885.	1.7	67
72	Synergistic tuning of carrier and phonon scattering for high performance of n-type Bi ₂ Te _{2.5} Se _{0.5} thermoelectric material. Journal of Materials Chemistry A, 2015, 3, 22332-22338.	5.2	25

#	Article	IF	CITATIONS
73	Contrasting the Role of Mg and Ba Doping on the Microstructure and Thermoelectric Properties of p-Type AgSbSe ₂ . ACS Applied Materials & Interfaces, 2015, 7, 23047-23055.	4.0	29
74	Lattice vibration modes of the layered material BiCuSeO and first principles study of its thermoelectric properties. New Journal of Physics, 2015, 17, 083012.	1.2	51
75	Material descriptors for predicting thermoelectric performance. Energy and Environmental Science, 2015, 8, 983-994.	15.6	241
76	Studies on the thermal stability of BiCuSeO. Journal of Solid State Chemistry, 2015, 222, 53-59.	1.4	34
77	Influence of Ag doping on thermoelectric properties of BiCuSeO. Journal of the European Ceramic Society, 2015, 35, 845-849.	2.8	70
78	Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy, 2016, 27, 167-174.	8.2	40
79	Mechanical Alloying and Spark Plasma Sintering of BiCuSeO Oxyselenide: Synthesis Process and Thermoelectric Properties. Journal of the American Ceramic Society, 2016, 99, 507-514.	1.9	18
80	Bandgap narrowing in the layered oxysulfide semiconductor Ba ₃ Fe ₂ O ₅ Cu ₂ S ₂ ? FeO ₂ layer. Chinese Physics B, 2016, 25, 026101.	0.7	5
82	Review of Recent Developments in Thermoelectric Materials. , 2016, , .		2
83	Ball milling effects for induced carriers and reduced grain size on thermoelectric properties in Bi1â^'xSrxCuSeO \$(x = 0,0.1)\$. Japanese Journal of Applied Physics, 2016, 55, 115801.	0.8	3
84	Electrical and thermal transport properties of layered Bi2YO4Cu2Se2. Journal of Solid State Chemistry, 2016, 239, 178-183.	1.4	11
85	Optimization of the thermoelectric properties of Bi2O2Se ceramics by altering the temperature of spark plasma sintering. Journal of Electroceramics, 2016, 37, 66-72.	0.8	18
86	Efficacies of dopants in thermoelectric BiOCuSe. Materials Chemistry and Physics, 2016, 177, 73-78.	2.0	5
87	Layered oxychalcogenides: Structural chemistry and thermoelectric properties. Journal of Materiomics, 2016, 2, 131-140.	2.8	39
88	Thermoelectric transport properties of BiCuSeO with embedded La0.8Sr0.2CoO3 nanoinclusions. Science China Technological Sciences, 2016, 59, 1036-1041.	2.0	9
89	Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe. Physical Review B, 2016, 94, .	1.1	59
90	Ce1â^'xSrxZnSbO: New thermoelectric materials formed between intermetallics and oxides. Journal of Alloys and Compounds, 2016, 688, 849-853.	2.8	12
91	A chemists view: Metal oxides with adaptive structures for thermoelectric applications. Physica	0.8	54

#	Article	IF	CITATIONS
92	Structural and thermoelectric properties of zintl-phase CaLiPn (Pn=As, Sb, Bi). Journal of Solid State Chemistry, 2016, 243, 198-206.	1.4	10
93	Rationally Designing High-Performance Bulk Thermoelectric Materials. Chemical Reviews, 2016, 116, 12123-12149.	23.0	1,624
94	Sulfur to oxygen substitution in BiOCuSe and its effect on the thermoelectric properties. Journal of Materials Chemistry A, 2016, 4, 13859-13865.	5.2	14
95	A first-principles study on the phonon transport in layered BiCuOSe. Scientific Reports, 2016, 6, 21035.	1.6	52
96	Bi1â^'xLaxCuSeO as New Tunable Full Solar Light Active Photocatalysts. Scientific Reports, 2016, 6, 24620.	1.6	17
97	Thermal properties of layered oxychalcogenides BiCuO <i>Ch</i> (<i>Ch</i> = S, Se, and Te): A first-principles calculation. Journal of Applied Physics, 2016, 119, .	1.1	18
98	Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dualâ€Đoping Approach. Advanced Energy Materials, 2016, 6, 1502423.	10.2	178
99	Manipulating the Combustion Wave during Self-Propagating Synthesis for High Thermoelectric Performance of Layered Oxychalcogenide Bi _{1â€"<i>x</i>} Pb _{<i>x</i>} CuSeO. Chemistry of Materials, 2016, 28, 4628-4640.	3.2	88
100	Predicted thermoelectric properties of natural superlattice structural compounds BaCu Ch F (Ch Â=ÂS,) Tj ETQq	0 0 0 grgBT 2.8 rgBT	/Qverlock 10
101	Recent advances in high-performance bulk thermoelectric materials. International Materials Reviews, 2016, 61, 379-415.	9.4	394
102	Optoelectronic structure and related transport properties of BiCuSeO-based oxychalcogenides: First principle calculations. Solid State Sciences, 2016, 58, 86-93.	1.5	26
103	Cd-doping a facile approach for better thermoelectric transport properties of BiCuSeO oxyselenides. RSC Advances, 2016, 6, 33789-33797.	1.7	48
104	Thermoelectric properties of Bi-based Zintl compounds Ca _{1â^x} Yb _x Mg ₂ Bi ₂ . Journal of Materials Chemistry A, 2016, 4, 4312-4320.	5.2	92
105	Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides. Journal of Alloys and Compounds, 2016, 662, 320-324.	2.8	36
105	Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides. Journal of Alloys and Compounds, 2016, 662, 320-324. Cu-based thermoelectric materials. Energy Storage Materials, 2016, 3, 85-97.	2.8 9.5	36 247
105 106 107	Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides. Journal of Alloys and Compounds, 2016, 662, 320-324. Cu-based thermoelectric materials. Energy Storage Materials, 2016, 3, 85-97. Influence of Sodium Fluoride Doping on Thermoelectric Properties of BiCuSeO. Journal of Electronic Materials, 2016, 45, 1705-1710.	2.8 9.5 1.0	36 247 7
105 106 107 108	Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides. Journal of Alloys and Compounds, 2016, 662, 320-324. Cu-based thermoelectric materials. Energy Storage Materials, 2016, 3, 85-97. Influence of Sodium Fluoride Doping on Thermoelectric Properties of BiCuSeO. Journal of Electronic Materials, 2016, 45, 1705-1710. The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides. Acta Materialia, 2016, 102, 88-96.	2.89.51.03.8	36 247 7 35

#	Article	IF	CITATIONS
110	Theoretical investigation on thermoelectric properties of Cu-based chalcopyrite compounds. Physical Review B, 2017, 95, .	1.1	19
111	Effects of K-Doping on Thermoelectric Properties of Bilâ^'x K x CuOTe. Journal of Electronic Materials, 2017, 46, 2717-2723.	1.0	7
112	Thermoelectric properties of Bi _{1â^'x} Sn _x CuSeO solid solutions. Dalton Transactions, 2017, 46, 2510-2515.	1.6	16
113	Enhanced thermoelectric properties and electronic structures of p -type BiCu 1â^'x Ag x SeO ceramics. Ceramics International, 2017, 43, 6117-6123.	2.3	5
114	Seebeck Coefficients of Layered BiCuSeO Phases: Analysis of Their Hole-Density Dependence and Quantum Confinement Effect. Chemistry of Materials, 2017, 29, 2348-2354.	3.2	27
115	The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb. Acta Materialia, 2017, 128, 227-234.	3.8	49
116	Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap. Journal of Alloys and Compounds, 2017, 712, 386-393.	2.8	54
117	Understanding the electronic and phonon transport properties of a thermoelectric material BiCuSeO: a first-principles study. Physical Chemistry Chemical Physics, 2017, 19, 12913-12920.	1.3	41
118	Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation. Journal of Materials Chemistry A, 2017, 5, 13392-13399.	5.2	39
119	Enhanced Thermoelectric Properties in BiCuSeO Oxyselenides via Zn and S Dual-Site Substitution. Journal of Electronic Materials, 2017, 46, 5909-5915.	1.0	7
120	Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. Nano Research, 2017, 10, 1498-1509.	5.8	6
121	Enhanced thermoelectric performance of BiCuSeO via dual-doping in both Bi and Cu sites. Journal of Alloys and Compounds, 2017, 711, 434-439.	2.8	15
122	Enhancement in the thermoelectric performance of colusites Cu ₂₆ A ₂ E ₆ S ₃₂ (A = Nb, Ta; E = Sn, Ge) using E-site non-stoichiometry. Journal of Materials Chemistry C, 2017, 5, 4174-4184.	2.7	49
123	Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy and Environmental Science, 2017, 10, 1590-1599.	15.6	115
124	Chemical Intercalations in Layered Transition Metal Chalcogenides: Syntheses, Structures, and Related Properties. Crystal Growth and Design, 2017, 17, 2238-2253.	1.4	32
125	High thermoelectric performance of BiCuSeO prepared by solid state reaction and sol-gel process. Scripta Materialia, 2017, 134, 100-104.	2.6	14
126	Resonant doping in BiCuSeO thermoelectrics from first principles. Journal of Materials Chemistry A, 2017, 5, 931-936.	5.2	15
127	Thermoelectric Properties of Cl-Doped BiCuSeO Oxyselenides. Journal of Electronic Materials, 2017, 46, 2593-2598.	1.0	13

#	Article	IF	CITATIONS
128	Co-doping for significantly improved thermoelectric figure of merit in p-type Bi1-2Mg Pb CuSeO oxyselenides. Ceramics International, 2017, 43, 17186-17193.	2.3	19
129	Chemical Intercalation of Topological Insulator Grid Nanostructures for Highâ€Performance Transparent Electrodes. Advanced Materials, 2017, 29, 1703424.	11.1	21
130	Thermoelectric and piezoelectric properties of the predicted Al _x In _{1â^'x} N composites based on ab initio calculations. Physical Chemistry Chemical Physics, 2017, 19, 24613-24625.	1.3	4
131	The effect of Sn doping on thermoelectric performance of n-type half-Heusler NbCoSb. Physical Chemistry Chemical Physics, 2017, 19, 25683-25690.	1.3	26
132	Grain boundary scattering effects on mobilities in p-type polycrystalline SnSe. Journal of Materials Chemistry C, 2017, 5, 10191-10200.	2.7	50
133	Promising Thermoelectric Bulk Materials with 2D Structures. Advanced Materials, 2017, 29, 1702676.	11.1	228
134	Dopant Induced Impurity Bands and Carrier Concentration Control for Thermoelectric Enhancement in p-Type Cr ₂ Ge ₂ Te ₆ . Chemistry of Materials, 2017, 29, 7401-7407.	3.2	53
135	Structure/property relationships of the thermoelectric oxyselenides (Bi 1-x A x CuOSe) (A=Ba and Ca). Solid State Sciences, 2017, 72, 55-63.	1.5	9
136	Predicted High Thermoelectric Performance of Quasi-Two-Dimensional Compound GeAs Using First-Principles Calculations *. Chinese Physics Letters, 2017, 34, 117202.	1.3	3
137	Assessing the performance of self-consistent hybrid functional for band gap calculation in oxide semiconductors. Journal of Physics Condensed Matter, 2017, 29, 454004.	0.7	33
138	Structural Properties of Mg ₂ (Si,Ge,Sn)-Based Thermoelectric Materials Prepared by Induction Melting Method. Solid State Phenomena, 2017, 266, 207-211.	0.3	1
139	High thermoelectric performance of Bi1â^'x K x CuSeO prepared by combustion synthesis. Journal of Materials Science, 2017, 52, 11569-11579.	1.7	8
140	First-principles study the elastic constant, electronic structure and thermoelectric properties of Zr1â^²xHfxNiPb (x = 0, 0.25, 0.5, 0.75, 1). Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 801-807.	0.9	15
141	The influence of doping sites on achieving higher thermoelectric performance for nanostructured α-MgAgSb. Nano Energy, 2017, 31, 194-200.	8.2	52
142	First principles study of electronic structure dependent optical properties of oxychalcogenides BiOCuCh (ChÂ=ÂS, Se, Te). Indian Journal of Physics, 2017, 91, 403-412.	0.9	9
143	Thermoelectric properties of Sn doped BiCuSeO. Applied Surface Science, 2017, 418, 238-245.	3.1	27
144	Improved thermoelectric performance of BiCuSeO by Ag substitution at Cu site. Journal of Alloys and Compounds, 2017, 691, 572-577.	2.8	38
145	Ni substitution enhanced thermoelectric properties of ZrPd1â^'Ni Pb (xÂ= 0,0.25,0.5,0.75,1). Journal of Alloys and Compounds, 2017, 692, 599-604.	2.8	16

		CITATION I	Report	
#	Article		IF	CITATIONS
146	BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective. Materials, 201	17, 10, 198.	1.3	70
147	BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin film Rare Metals, 2018, 37, 259-273.	ns to bulks.	3.6	26
148	Increasing the thermoelectric power factor via Ag substitution at Zn site in Ba(Zn1-Ag)2 of Alloys and Compounds, 2018, 745, 228-233.	Sb2. Journal	2.8	5
149	Mechanochemical synthesis of iodine-substituted BiCuOS. Journal of Solid State Chemist 157-163.	try, 2018, 263,	1.4	6
150	Routes for high-performance thermoelectric materials. Materials Today, 2018, 21, 974-98	38.	8.3	265
151	Enhancing thermoelectric properties of BiCuSeO via uniaxial compressive strain: First-prince calculations. Journal of Alloys and Compounds, 2018, 743, 610-617.	nciples	2.8	13
152	Effect of Ba and Pb dual doping on the thermoelectric properties of BiCuSeO ceramics. N Letters, 2018, 217, 189-193.	laterials	1.3	31
153	Substituting Copper with Silver in the BiMOCh Layered Compounds (M = Cu or Ag; Ch = Crystal, Electronic Structure, and Optoelectronic Properties. Chemistry of Materials, 201 549-558.	S, Se, or Te): 8, 30,	3.2	31
154	Enhanced thermoelectric performance of CoSbS0.85Se0.15 by point defect. Rare Metals 326-332.	, 2018, 37,	3.6	18
155	Electronic Band Structure Engineering and Enhanced Thermoelectric Transport Propertie Pb-Doped BiCuOS Oxysulfide. Chemistry of Materials, 2018, 30, 1085-1094.	s in	3.2	18
156	Crystal orientation, crystallinity, and thermoelectric properties of Bi0.9Sr0.1CuSeO epita grown by pulsed laser deposition. Japanese Journal of Applied Physics, 2018, 57, 025502	xial films ·	0.8	3
157	Effect of synthesis processes on the thermoelectric properties of BiCuSeO oxyselenides. Alloys and Compounds, 2018, 754, 131-138.	Journal of	2.8	19
158	Enhanced Thermoelectric Properties of BiCuSeO Ceramics by Bi Vacancies. Materials Scie 2018, 913, 803-810.	ence Forum,	0.3	2
159	High thermoelectric performance of $\hat{l}\pm$ -MgAgSb for power generation. Energy and Enviro Science, 2018, 11, 23-44.	nmental	15.6	127
160	Enhanced thermoelectric properties of Cu1.8S by Ti-doping induced secondary phase. Jou and Compounds, 2018, 731, 577-583.	urnal of Alloys	2.8	26
161	Metal oxides for thermoelectric power generation and beyond. Advanced Composites an Materials, 2018, 1, 114-126.	d Hybrid	9.9	98
162	Thermoelectric properties of BiCuSeO with bismuth and oxygen vacancies. Journal Physic Physics, 2018, 51, 035501.	cs D: Applied	1.3	13
163	Remarkable enhancement in thermoelectric performance of BiCuSeO through biaxial stra modulation. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 392-40	ain O.	1.3	11

#	Article	IF	CITATIONS
164	Enhanced thermoelectric performance of Cs doped BiCuSeO prepared through eco-friendly flux synthesis. Journal of Alloys and Compounds, 2018, 735, 861-869.	2.8	14
165	Attempting to realize n-type BiCuSeO. Journal of Solid State Chemistry, 2018, 258, 510-516.	1.4	28
166	Enhanced Thermoelectric Performance of c-Axis-Oriented Epitaxial Ba-Doped BiCuSeO Thin Films. Nanoscale Research Letters, 2018, 13, 382.	3.1	11
167	A facile energy-saving route of fabricating thermoelectric Sb ₂ Te ₃ -Te nanocomposites and nanosized Te. Royal Society Open Science, 2018, 5, 180698.	1.1	12
168	Synergistic effects of Bi Deficiencies and Fe-doping on the thermoelectric properties and hardness of BiCuSeO ceramics. Journal of the Ceramic Society of Japan, 2018, 126, 699-705.	0.5	9
169	Advances in thermoelectrics. Advances in Physics, 2018, 67, 69-147.	35.9	383
170	A first-principles study of the effects of electron–phonon coupling on the thermoelectric properties: a case study of the SiGe compound. Journal of Materials Chemistry A, 2018, 6, 12125-12131.	5.2	33
171	Engineering electrical transport in α-MgAgSb to realize high performances near room temperature. Physical Chemistry Chemical Physics, 2018, 20, 16729-16735.	1.3	15
172	Optimizing the thermoelectric transport properties of BiCuSeO via doping with the rare-earth variable-valence element Yb. Journal of Materials Chemistry C, 2018, 6, 8479-8487.	2.7	26
173	Enhanced thermoelectric performance in BiCuSeO oxyselenides via Ba/Te dual-site substitution and 3D modulation doping. Journal of Solid State Chemistry, 2018, 266, 297-303.	1.4	16
174	Oxidation states and thermoelectric properties of BiCuSeO bulks fabricated under Bi or Se deficiencies in the nominal composition. Journal of Applied Physics, 2018, 123, 245104.	1.1	13
175	Right Heterogeneous Microstructure for Achieving Excellent Thermoelectric Performance in Ca _{0.9} R _{0.1} MnO _{3â~î} (R = Dy, Yb) Ceramics. Inorganic Chemistry, 2018, 57, 9133-9141.	1.9	13
176	Microstructure and thermoelectric transport properties of BiCuSeO thin films on amorphous glass substrates. Dalton Transactions, 2018, 47, 11091-11096.	1.6	1
177	Thermoelectric properties of BiCuSO doped with Pb. Solid State Communications, 2018, 278, 1-5.	0.9	10
178	Enhanced Thermoelectric Performance in n-Type Bi ₂ Te ₃ -Based Alloys via Suppressing Intrinsic Excitation. ACS Applied Materials & Interfaces, 2018, 10, 21372-21380.	4.0	76
179	Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation. Journal of Materials Chemistry A, 2018, 6, 13340-13349.	5.2	44
180	Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy and Environmental Science, 2018, 11, 2486-2495.	15.6	200
181	Enhancing thermoelectric and mechanical performances in BiCuSeO by increasing bond covalency and nanostructuring. Journal of Solid State Chemistry, 2018, 265, 306-313.	1.4	12

		CITATION REPORT	
#	ARTICLE	IF	CITATIONS
"			CHAITONS
182	Copper chalcogenide thermoelectric materials. Science China Materials, 2019, 62, 8-24.	3.5	111
183	Enhanced thermoelectric properties of Bi ₂ S ₃ polycrystals through an electroless nickel plating process. RSC Advances, 2019, 9, 23029-23035.	1.7	5
184	Comparisons of electrical/magneto-transport properties of degenerate semiconductors BiCuXO (X	= S,) Tj ETQqC 1.1	0 0 rgBT /Ov

185	High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application. Entropy, 2019, 21, 1058.	1.1	105
187	Carrier mobility and relaxation time in BiCuSeO. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125990.	0.9	10
188	Thermoelectric properties of Pb and Na dual doped BiCuSeO. AIP Advances, 2019, 9, .	0.6	10
189	Superconducting properties of a mixed anion layered compound, Ca and F co-doped LaFeAsO with <i>T</i> _c = 31.5 K. Japanese Journal of Applied Physics, 2019, 58, 030911.	0.8	3
190	Enhanced thermoelectric performance of BiCuTeO by excess Bi additions. Ceramics International, 2019, 45, 9254-9259.	2.3	11
191	Band structure manipulated by high pressure-assisted Te doping realizing improvement in thermoelectric performance of BiCuSeO system. Journal of Materiomics, 2019, 5, 649-656.	2.8	12
192	Complex electronic structure and compositing effect in high performance thermoelectric BiCuSeO. Nature Communications, 2019, 10, 2814.	5.8	81
193	Synthesis and Processing of Thermoelectric Nanomaterials, Nanocomposites, and Devices. , 2019, , 295-336.		8
194	Effect of Praseodymium and Lanthanum Substitution for Bismuth on the Thermoelectric Properties of BiCuSeO Oxyselenides. Semiconductors, 2019, 53, 215-219.	0.2	1
195	Thermoelectric Properties of Zn Doped BiCuSeO. Journal of Electronic Materials, 2019, 48, 3631-3642.	1.0	8
196	Highly enhanced thermoelectric performance in BiCuSeO ceramics realized by Pb doping and introducing Cu deficiencies. Journal of the American Ceramic Society, 2019, 102, 5989-5996.	1.9	19
197	Light Element Doping and Introducing Spin Entropy: An Effective Strategy for Enhancement of Thermoelectric Properties in BiCuSeO. ACS Applied Materials & Interfaces, 2019, 11, 15543-15551.	4.0	31
198	Stretchable and dynamically stable promising two-dimensional thermoelectric materials: ScPÂand ScAs. Journal of Materials Chemistry A, 2019, 7, 12604-12615.	5.2	40
199	Thermoelectric Materials Synthesized by Spark Plasma Sintering (SPS) for Clean Energy Generation. , 2019, , 493-514.		1
200	Enhanced thermoelectric properties of polycrystalline BiCuSeO <i>via</i> dual-doping in Bi sites. Inorganic Chemistry Frontiers, 2019, 6, 799-807.	3.0	22

	CITATION	Report	
#	Article	IF	CITATIONS
201	Realization of n-type BiCuSeO through Co doping. Solid State Sciences, 2019, 98, 106019.	1.5	9
202	Synergetic Tuning of the Electrical and Thermal Transport Properties via Pb/Ag Dual Doping in BiCuSeO. ACS Applied Materials & amp; Interfaces, 2019, 11, 45737-45745.	4.0	19
203	Isoelectronic indium doping for thermoelectric enhancements in BiCuSeO. Applied Surface Science, 2019, 473, 985-991.	3.1	22
204	Enhanced thermoelectric properties in BiCuSeO ceramics by Pb/Ni dual doping and 3D modulation doping. Journal of Solid State Chemistry, 2019, 271, 1-7.	1.4	23
205	Significant Enhancement in Thermoelectric Power Factor of Bulk Nanostructured Calcium Cobalt Oxide Ceramics. ACS Applied Energy Materials, 2019, 2, 269-277.	2.5	9
206	Synergetic tuning of electrical/thermal transport via dualâ€doping in Bi _{0.96â^'<i>x</i>} <scp>M</scp> g _{<i>x</i>} Pb _{0.06} CuSeO. Journal of the American Ceramic Society, 2019, 102, 1541-1547.	1.9	5
207	A comprehensive study on improved power materials for high-temperature thermoelectric generators. Journal of Power Sources, 2019, 410-411, 143-151.	4.0	42
208	Reactive spark plasma sintering and thermoelectric properties of Nd-substituted BiCuSeO oxyselenides. Journal of Alloys and Compounds, 2019, 785, 96-104.	2.8	18
209	Tailoring electronic and thermal transport properties of CaO(CaMnO3)m-based (m=1 and m=â^ž) composites for thermoelectric power generation. Acta Materialia, 2019, 164, 481-492.	3.8	16
210	Thermoelectric properties of Mn doped BiCuSeO. Materials Research Express, 2019, 6, 086305.	0.8	8
211	State-of-the-Art Reviews and Analyses of Emerging Research Findings and Achievements of Thermoelectric Materials over the Past Years. Journal of Electronic Materials, 2019, 48, 745-777.	1.0	39
212	Enhanced thermoelectric performances in BiCuSeO oxyselenides via Er and 3D modulation doping. Ceramics International, 2019, 45, 4493-4498.	2.3	30
213	Thermoelectric properties of S-substituted BiCuSeO at O sites: First-principles study. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	4
214	Preparation, Structure, and enhanced thermoelectric properties of Sm-doped BiCuSeO oxyselenide. Materials and Design, 2020, 185, 108263.	3.3	29
215	Effect of high pressure on structure characteristics and electrical transport properties of layered BiCuSeO oxyselenides. Journal of Alloys and Compounds, 2020, 812, 152106.	2.8	3
216	Ultrafast synthesis of Pb-doped BiCuSeO oxyselenides by high-energy ball milling. Materials Letters, 2020, 262, 127184.	1.3	3
217	Review on texturization effects in thermoelectric oxides. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	1.5	26
218	Band Structure Modification and Mass Fluctuation Effects of Isoelectronic Germanium-Doping on Thermoelectric Properties of ZrNiSn. ACS Applied Energy Materials, 2020, 3, 1349-1357.	2.5	27

#	Article	IF	CITATIONS
219	Realizing Excellent Thermoelectric Performance of Sb ₂ Te ₃ Based Segmented Leg with a Wide Temperature Range Using One‣tep Sintering. Advanced Electronic Materials, 2020, 6, 1901178.	2.6	18
220	Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2-2xTe2xSe. Nano Energy, 2020, 69, 104394.	8.2	45
221	Improvement of thermoelectric and mechanical properties of BiCuSeO-based materials by SiC nanodispersion. Journal of Alloys and Compounds, 2020, 818, 152899.	2.8	17
222	Prediction of higher thermoelectric performance in BiCuSeO by weakening electron–polar optical phonon scattering. Journal of Materials Chemistry A, 2020, 8, 25245-25254.	5.2	12
223	SrTiO3-based thermoelectrics: Progress and challenges. Nano Energy, 2020, 78, 105195.	8.2	127
224	Thermoelectric Properties of \$\${hbox {La}}_{1-x}{hbox {Sr}}_x{hbox {ZnAsO}}\$\$. Journal of Electronic Materials, 2020, 49, 6715-6720.	1.0	1
225	Effects of annealing process on thermoelectric performance for Pb-doped BiCuSeO. Journal of Materials Science: Materials in Electronics, 2020, 31, 21623-21631.	1.1	2
226	CuAlSe2 Inclusions Trigger Dynamic Cu+ Ion Depletion from the Cu2Se Matrix Enabling High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2020, 12, 58018-58027.	4.0	6
227	Crystal structure and thermoelectric transport properties of Cuâ^'deficient BiCuSeO oxyselenides. Journal of Materials Research and Technology, 2020, 9, 16202-16213.	2.6	17
228	Spatially resolving heterogeneous thermal conductivity of BiCuSeO based thermoelectric nanostructures via scanning thermal microscopy. Applied Physics Letters, 2020, 117, .	1.5	7
229	Boosting thermoelectric performance of BiCuSeO by improving carrier mobility through light element doping and introducing nanostructures. Journal of Alloys and Compounds, 2020, 831, 154755.	2.8	14
230	Thermoelectric properties and thermal expansion of quaternary layered compound SrFZnSb. Journal of Alloys and Compounds, 2020, 837, 155497.	2.8	1
231	Layered materials with 2D connectivity for thermoelectric energy conversion. Journal of Materials Chemistry A, 2020, 8, 12226-12261.	5.2	74
232	Direct synthesis of p-type bulk BiCuSeO oxyselenides by reactive spark plasma sintering and related thermoelectric properties. Scripta Materialia, 2020, 187, 317-322.	2.6	9
233	Sr ₅ Ga ₈ O ₃ S ₁₄ : A Nonlinear Optical Oxysulfide with Melilite-Derived Structure and Wide Band Gap. Inorganic Chemistry, 2020, 59, 9944-9950.	1.9	36
234	Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 2020, 120, 7399-7515.	23.0	1,248
235	Promising and Ecoâ€Friendly Cu ₂ Xâ€Based Thermoelectric Materials: Progress and Applications. Advanced Materials, 2020, 32, e1905703.	11.1	165
236	Strong Chemical Bond Hierarchy Leading to Exceptionally High Thermoelectric Figure of Merit in Oxychalcogenide AgBiTeO. ACS Applied Materials & Interfaces, 2020, 12, 8280-8287.	4.0	26

#	Article	IF	CITATIONS
237	The effects of microstructure, Nb content and secondary Ruddlesden–Popper phase on thermoelectric properties in perovskite CaMn _{1â^x} Nb _x O ₃ (<i>x</i>) Tj ETQ	2 q07 00 rg1	37 /Overlock
238	Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in n-Type BiCuOCh (Ch =) Tj ETQq1	1,0.7843 1.3	l∮rgBT /O∨
239	Improvement of Thermoelectric Performance in BiCuSeO Oxide by Ho Doping and Band Modulation*. Chinese Physics Letters, 2020, 37, 037201.	1.3	5
240	Efficient interlayer charge release for high-performance layered thermoelectrics. National Science Review, 2021, 8, nwaa085.	4.6	15
241	Review of inorganic thermoelectric materials. , 2021, , 81-145.		1
242	High-performance thermoelectrics based on metal selenides. , 2021, , 217-246.		2
243	Defect chemistry and doping of BiCuSeO. Journal of Materials Chemistry A, 2021, 9, 20685-20694.	5.2	23
244	Hierarchical structures lead to high thermoelectric performance in Cu _{m+n} Pb ₁₀₀ Sb _m 100Sb _m 2n2m2m Energy and Environmental Science, 2021, 14, 451-461.	15.6	47
246	Oxychalcogenides as Thermoelectric Materials: An Overview. ACS Applied Energy Materials, 2021, 4, 2022-2040.	2.5	36
247	Cu ₂ Se as Textured Adjuvant for Pb-Doped BiCuSeO Materials Leading to High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2021, 13, 11977-11984.	4.0	14
248	First-Principles Hydrothermal Synthesis Design to Optimize Conditions and Increase the Yield of Quaternary Heteroanionic Oxychalcogenides. Chemistry of Materials, 2021, 33, 2726-2741.	3.2	15
249	Rational Electronic and Structural Designs Advance BiCuSeO Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101289.	7.8	48
250	Effect of Al Doping and Cu Deficiency on the Microstructures and Thermoelectric Properties of BiCuSeO-Based Thermoelectric Materials. Journal of Electronic Materials, 2021, 50, 3580-3591.	1.0	4
251	Optimization of electrical and thermal transport properties of layered Bi2O2Se via Nb doping. Journal of Materials Science, 2021, 56, 12732-12739.	1.7	3
252	Recent Developments and Progress on BiCuSeO Based Thermoelectric Materials. Nanobiotechnology Reports, 2021, 16, 294-307.	0.2	9
253	Effect of band structure adjustment based of Cu site on the thermoelectric properties of BiCuSeO. Journal of Materials Science: Materials in Electronics, 2021, 32, 14956-14965.	1.1	1
254	Structural, elastic, electronic, optical and thermoelectric properties of oxychalcogenides BiCuChO (ChÂ= S and Se): A computational study. Computational Condensed Matter, 2021, 27, e00529.	0.9	2
255	Effect of Aluminum Doping on Microstructures and Thermoelectric Properties of BiCuSeO Thermoelectric Materials. Transactions of the Indian Institute of Metals, 2021, 74, 2367-2377.	0.7	6

ARTICLE

IF CITATIONS

256 Electronic and thermoelectric properties of natural layered structural compounds SrCuChF (Ch=S,) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

257	Thermoelectric properties of Bi2O2Se single crystals. Applied Physics Letters, 2021, 119, 081901.	1.5	9
258	Study on the optimization of thermoelectric properties of BiCuSeO ceramics by highly insulating/adiabatic SiO2 aerogel dispersion. Journal of Materials Science: Materials in Electronics, 2021, 32, 25473-25480.	1.1	2
259	On manipulating the thermoelectric potential of p-type ZnO by nanostructuring. Materials Today Energy, 2021, 21, 100752.	2.5	5
260	P-Ca ₃ Co ₄ O ₉ /n-Zn _{0.98} Al _{0.02} O module for high temperature thermoelectric generator. Journal of Physics: Conference Series, 2021, 2013, 012022.	0.3	0
261	High thermoelectric properties of p-type BiCuSeO coâ^'doped with Ca2+ and Ba2+. Journal of Alloys and Compounds, 2021, 876, 159969.	2.8	17
262	Enhancing thermoelectric performance of SrFBiS2â^'Se via band engineering and structural texturing. Journal of Materiomics, 2021, , .	2.8	2
263	Enhancing thermoelectric performance of n-type Bi6Cu2Se4O6 through introducing transition metal elements. Scripta Materialia, 2021, 202, 114010.	2.6	10
264	Double perovskite Pr2CoFeO6 thermoelectric oxide: Roles of Sr-doping and Micro/nanostructuring. Chemical Engineering Journal, 2021, 425, 130668.	6.6	39
265	Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0.8W0.2Al) against an oxide such as NaCO2O4. Optik, 2021, 247, 168035.	1.4	4
266	Constructing multi-type defects in In0.1Sb1.9Te3-(MgB2) composites: Simultaneously enhancing the thermoelectric and mechanical properties. Nano Energy, 2021, 90, 106530.	8.2	10
267	Enhanced light-induced transverse thermoelectric effect in c-axis inclined Ba-doped BiCuSeO thin films. Applied Surface Science, 2021, 570, 151254.	3.1	11
268	Two-dimensional (2D) thermoelectric materials. , 2021, , 233-260.		3
269	Zintl Phase Yb _{1–<i>x</i>} Ba <i>_x</i> Mg ₂ Bi _{1.98} Compounds with Enhanced Thermoelectric Performance Caused by Cation Substitution. ACS Applied Energy Materials, 2020, 3, 11036-11041.	2.5	5
270	Chalcogenide Thermoelectric Materials. RSC Energy and Environment Series, 2016, , 27-59.	0.2	8
271	Enhancement of Thermoelectric Properties of Layered Chalcogenide Materials. Reviews on Advanced Materials Science, 2020, 59, 371-378.	1.4	26
272	Defects Engineering with Multiple Dimensions in Thermoelectric Materials. Research, 2020, 2020, 9652749.	2.8	56
273	Effects of Se substitution for Te on electrical and thermal transport properties of BiCuTeO. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 077201.	0.2	3

#	Article	IF	CITATIONS
274	The electrical- and magneto-transport properties of Rb-, Sn-, and Co-doped BiCuSeO crystals. AIP Advances, 2021, 11, 105207.	0.6	2
275	Strained Endotaxial PbS Nanoprecipitates Boosting Ultrahigh Thermoelectric Quality Factor in nâ€Type PbTe Asâ€Cast Ingots. Small, 2021, 17, e2104496.	5.2	20
276	The Effects of Al-substitution on Thermoelectric and Charge Transport Properties of BiCuOSe Compounds. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2015, 28, 847-851.	0.0	0
277	Chapter 5. Properties and Applications of Layered Thermoelectric Materials. RSC Smart Materials, 2019, , 129-164.	0.1	0
278	Investigation of Electronic and Optical Properties of Novel Oxychalcogenides by Density Functional Theory. Annals of West University of Timisoara: Physics, 2020, 62, 120-129.	0.2	0
279	Enhanced Thermoelectric and Mechanical Properties of BaO-Doped BiCuSeO _δ Ceramics. ACS Applied Energy Materials, 2021, 4, 13077-13084.	2.5	7
280	Synergistically Optimized Electron and Phonon Transport of Polycrystalline BiCuSeO <i>via</i> Pb and Yb Co-Doping. ACS Applied Materials & Interfaces, 2021, 13, 57638-57645.	4.0	15
281	First-principles calculations to investigate Zr substitution enhanced thermoelectric performance of p-type Zr Hf1â°CoBi (x =â€0,0.25,0.5,0.75,1) compounds. Physics Letters, Section A: General, Atomic and Solio State Physics, 2022, 424, 127839.	do.9	2
282	Disorder effect and thermoelectric properties of Bilâ^'xCaxCulâ^'ySeO with Cu vacancy. Journal of Alloys and Compounds, 2022, 896, 163033.	2.8	3
283	Layered thermoelectric materials: Structure, bonding, and performance mechanisms. Applied Physics Reviews, 2022, 9, .	5.5	25
284	Carrier grain boundary scattering in thermoelectric materials. Energy and Environmental Science, 2022, 15, 1406-1422.	15.6	145
285	Machine Learning Approach for Maximizing Thermoelectric Properties of BiCuSeO and Discovering New Doping Element. Energies, 2022, 15, 779.	1.6	5
286	Ultra-low thermal conductivity in B ₂ O ₃ composited SiGe bulk with enhanced thermoelectric performance at medium temperature region. Journal of Materials Chemistry A, 2022, 10, 4120-4130.	5.2	12
287	Key properties of inorganic thermoelectric materials—tables (version 1). JPhys Energy, 2022, 4, 022002.	2.3	51
288	Achieving high average power factor in tetrahedrite Cu12Sb4S13 via regulating electron-phonon coupling strength. Materials Today Physics, 2022, 22, 100590.	2.9	5
289	Seeking New Layered Oxyselenides with Promising Thermoelectric Performance. Advanced Functional Materials, 2022, 32, .	7.8	14
290	Enhanced thermoelectric properties of Na and Mg coâ~'doped BiCuSeO. Ceramics International, 2022, 48, 19618-19625.	2.3	6
291	Computational prediction of high thermoelectric performance in MPtSn (M = Ti, Zr, and Hf) half-Heusler compounds by first-principle study. Solid State Sciences, 2022, 127, 106859.	1.5	5

ARTICLE IF CITATIONS # Relationship between the density of states effective mass and carrier concentration of thermoelectric phosphide Ag6Ge10P12 with strong mechanical robustness. Materials Today 292 1.9 11 Sustainability, 2022, 18, 100116. High thermoelectric performance of BiCuSeO via minimizing the electronegativity difference in Bi–O layer. Materials Today Physics, 2022, 24, 100688. Influence of Bi Substitution with Rare-Earth Elements on the Transport Properties of BiCuSeO 294 2.52 Oxyselenides. ACS Applied Energy Materials, 2022, 5, 7830-7841. Microstructure design via novel thermodynamic route to enhance the thermoelectric performance 2.9 of GeTe. Materials Today Physics, 2022, 27, 100820. Recent developments on Bi-based oxychalcogenide materials with thermoelectric and optoelectronic 296 1.7 2 applications: an overview. Materials Today Chemistry, 2022, 26, 101149. Recent advances in designing thermoelectric materials. Journal of Materials Chemistry C, 2022, 10, 2.7 12524-12555. Realizing high thermoelectric performance via selective resonant doping in oxyselenide BiCuSeO. 298 5.8 6 Nano Research, 2023, 16, 1679-1687. Insights into structural features and thermoelectric properties of layered oxychalcogenides, 200 <i>BiCuOCh</i> (<i>Ch = S, Se, Te</i>): promising green materials for energy conversion. Materials 1.0 Research Innovations, 0, , 1-14. Enhanced thermoelectric properties of p-type Bilâ^'xCaxCuSeO achieved via microwave synthesis 300 2.8 2 combined with spark plasma sintering. Journal of Alloys and Compounds, 2023, 934, 167913. Opportunities for thermoelectric generators in supporting a low carbon economy. Nanomaterials 0.1 and Energy, 2022, 11, 8-26. Improving thermoelectric performance of half-Heusler Ti0.2Hf0.8CoSb0.8Sn0.2 compounds via the 302 0 2.3introduction of excessive Ga and Co-deficiencies. Ceramics International, 2023, 49, 24414-24421. Double Doping of BiCuSeO with Ca and Pb to Increase the Electrical Transport Properties and Reduce the Lattice Thermal Conductivity Synchronously. Inorganic Chemistry, 2023, 62, 353-362. Prediction of superior thermoelectric performance in unexplored doped-BiCuSeO via machine 304 3.3 3 learning. Materials and Design, 2023, 229, 111868. Cu-doping boosts the thermoelectric properties of layered compound LaOBiS2 with weak anisotropy. Journal of Alloys and Compounds, 2023, 947, 169601. 2.8 Effects of Sm Doping to Improve the Thermoelectric Properties of ZnO Ceramics. Journal Wuhan 306 2 0.4 University of Technology, Materials Science Edition, 2022, 37, 1166-1171. Grain Boundary Phases in NbFeSb Halfâ€Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Advanced Energy Materials, 2023, 13, . BiCuSeO/GdH2 thermoelectric composite: a p-type to n-type promoter with superior charge transport. 308 1.1 1 Journal of Materials Science: Materials in Electronics, 2023, 34, . Physics and technology of thermoelectric materials and devices. Journal Physics D: Applied Physics, 309 1.3 2023, 56, 333001.

		CITATION REPORT	
#	Article	IF	CITATIONS
310	Realizing Plain Optimization of the Thermoelectric Properties in BiCuSeO Oxide via Self-Substitution-Induced Lattice Dislocations. Research, 2023, 6, .	2.8	2
311	High-performance thermoelectric oxide ceramics. , 2023, , 327-345.		0
312	High-performance thermoelectric ceramics and their applications. , 2023, , 347-362.		0