CITATION REPORT List of articles citing

A stable solution-processed polymer semiconductor with record high-mobility for printed transistors

DOI: 10.1038/srep00754 Scientific Reports, 2012, 2, 754.

Source: https://exaly.com/paper-pdf/54018059/citation-report.pdf

Version: 2024-04-09

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
764	Alkyl Chain Extension as a Route to Novel Thieno[3,2-b]thiophene Flanked Diketopyrrolopyrrole Polymers for Use in Organic Solar Cells and Field Effect Transistors. <i>Macromolecules</i> , 2013 , 46, 5961-59	6 7 ·5	67
763	High mobility isoindigo-based Extended conjugated polymers bearing di(thienyl)ethylene in thin-film transistors. 2013 , 4, 5688		52
762	Air-stability and bending properties of flexible organic field-effect transistors based on poly[N-9?-heptadecanyl-2,7-carbazole-alt-5,5-(4?,7?-di-2-thienyl-2?,1?,3?-benzothiadiazole)]. <i>Organic Electronics</i> , 2013 , 14, 2635-2644	3.5	29
761	25th anniversary article: recent advances in n-type and ambipolar organic field-effect transistors. <i>Advanced Materials</i> , 2013 , 25, 5372-91	24	541
760	Naphthalene Diimide Incorporated Thiophene-Free Copolymers with Acene and Heteroacene Units: Comparison of Geometric Features and Electron-Donating Strength of Co-units. 2013 , 25, 3251-3259		79
759	Correlation between Crystallinity, Charge Transport, and Electrical Stability in an Ambipolar Polymer Field-Effect Transistor Based on Poly(naphthalene-alt-diketopyrrolopyrrole). 2013 , 117, 11479	9-11486	5 ²⁰
75 ⁸	High-performance organic field-effect transistors with dielectric and active layers printed sequentially by ultrasonic spraying. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4384	7.1	26
757	High-resolution direct-writing of metallic electrodes on flexible substrates for high performance organic field effect transistors. <i>Organic Electronics</i> , 2013 , 14, 2249-2256	3.5	35
756	Dramatically enhanced molecular ordering and charge transport of a DPP-based polymer assisted by oligomers through antiplasticization. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4423	7.1	27
755	New Core-Expanded Naphthalene Diimides for n-Channel Organic Thin Film Transistors. 2013 , 31, 1428	-1438	10
754	25th anniversary article: key points for high-mobility organic field-effect transistors. <i>Advanced Materials</i> , 2013 , 25, 6158-83	24	598
753	Naphthalenediimide-Based Copolymers Incorporating Vinyl-Linkages for High-Performance Ambipolar Field-Effect Transistors and Complementary-Like Inverters under Air. 2013 , 25, 3589-3596		111
75 ²	Effect of the Longer I-Unsubstituted Oliogothiophene Unit (6T and 7T) on the Organic Thin-Film Transistor Performances of Diketopyrrolopyrrole-Oliogothiophene Copolymers. 2013 , 25, 4290-4296		43
751	On the Supramolecular Packing of High Electron Mobility Naphthalene Diimide Copolymers: The Perfect Registry of Asymmetric Branched Alkyl Side Chains. <i>Macromolecules</i> , 2013 , 46, 8171-8178	5.5	37
750	Synthesis, characterization, and field-effect transistor performance of naphtho[1,2-b:5,6-b?]dithiophene-based donor copolymers. 2013 , 3, 18944		11
749	Modulation of carrier mobility of diketopyrrolopyrrole and quaterthiophene containing copolymer with self-assembled monolayers on gate dielectrics of thin film transistors. 2013 , 184, 61-67		4
748	Relating chemical structure to device performance via morphology control in diketopyrrolopyrrole-based low band gap polymers. 2013 , 135, 19248-59		109

747	Materials science. Unraveling charge transport in conjugated polymers. 2013, 341, 1072-3		35
746	Influences of using a high mobility donor polymer on solar cell performance. <i>Organic Electronics</i> , 2013 , 14, 3484-3492	3.5	13
745	Dithienylbenzodipyrrolidone: New Acceptor for Donor Acceptor Low Band Gap Polymers. <i>Macromolecules</i> , 2013 , 46, 7232-7238	5.5	49
744	Flexible air-stable three-dimensional polymer field-effect transistors with high output current density. <i>Organic Electronics</i> , 2013 , 14, 2908-2915	3.5	16
743	High-crystalline medium-band-gap polymers consisting of benzodithiophene and benzotriazole derivatives for organic photovoltaic cells. <i>ACS Applied Materials & Description of the European Control of</i>	9.5	52
742	Current Trends in Sensors Based on Conducting Polymer Nanomaterials. 2013 , 3, 524-549		273
741	A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. 2013 , 5, 1185	0-5	116
740	Non-volatile hybrid memory devices with excellent reliability. 2013 , 3, 13156		3
739	Dialkoxybithiazole: a new building block for head-to-head polymer semiconductors. 2013 , 135, 1986-96		164
738	High-mobility pyrene-based semiconductor for organic thin-film transistors. <i>ACS Applied Materials & Materials (Materials Lamp; Interfaces</i> , 2013 , 5, 3855-60	9.5	40
737	Low-temperature molecular vapor deposition of ultrathin metal oxide dielectric for low-voltage vertical organic field effect transistors. <i>ACS Applied Materials & Dielectric for Low-voltage Materials & Dielectric for Low-voltage vertical organic field effect transistors. ACS Applied Materials & Dielectric for Low-voltage vertical organic field effect transistors. <i>ACS Applied Materials & Dielectric for Low-voltage vertical organic field effect transistors.</i></i>	9.5	25
736	Integrated materials design of organic semiconductors for field-effect transistors. 2013 , 135, 6724-46		1124
735	New alternating electron donor acceptor conjugated polymers entailing (E)-[4,4?-biimidazolylidene]-5,5?(1H,1?H)-dione moieties. 2013 , 4, 5283		19
734	Thieno[3,4-c]pyrrole-4,6-dione Containing Copolymers for High Performance Field-Effect Transistors. <i>Macromolecules</i> , 2013 , 46, 3887-3894	5.5	64
733	Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. 2013 , 135, 9540-7		422
732	A charge transfer single crystal field effect transistor operating at low voltages. 2013 , 49, 5847-9		46
731	Efficient charge injection in p-type polymer field-effect transistors with low-cost molybdenum electrodes through V2O5 interlayer. <i>ACS Applied Materials & Distributed Materi</i>	9.5	29
730	High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. 2013 , 6, 1684		55 ²

729	Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm□V(-1) s(-1) under ambient conditions. 2013 , 135, 12168-71		246
728	Monoliths of semiconducting block copolymers by magnetic alignment. 2013 , 7, 5514-21		50
727	A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer. <i>Advanced Materials</i> , 2013 , 25, 2583-8	24	230
726	Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm[]V(-1) s(-1). 2013 , 135, 2338-49		344
7 2 5	Effect of a furan Ebridge on polymer coplanarity and performance in organic field effect transistors. 2013 , 4, 4199		14
724	Scalable Synthesis of Fused Thiophene-Diketopyrrolopyrrole Semiconducting Polymers Processed from Nonchlorinated Solvents into High Performance Thin Film Transistors. 2013 , 25, 782-789		110
723	Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. <i>Advanced Materials</i> , 2013 , 25, 4210-44	24	433
722	High performance and stable N-channel organic field-effect transistors by patterned solvent-vapor annealing. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 10745-52	9.5	53
721	Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors. 2013 , 7, 10245-56		45
720	Low voltage, high performance inkjet printed carbon nanotube transistors with solution processed ZrO2 gate insulator. 2013 , 103, 082119		41
719	A BDOPV-based donor-acceptor polymer for high-performance n-type and oxygen-doped ambipolar field-effect transistors. <i>Advanced Materials</i> , 2013 , 25, 6589-93	24	156
718	Fabrication of Polymer-Based Transistors with Carbon Nanotube Source Drain Electrodes Using Softlithography Techniques. 2013 , 52, 05DB13		3
717	"Liquid-liquid-solid"-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors. <i>Advanced Materials</i> , 2013 , 25, 6526-33	24	29
716	Temperature-independent transport in high-mobility dinaphtho-thieno-thiophene (DNTT) single crystal transistors. <i>Advanced Materials</i> , 2013 , 25, 3478-84	24	115
715	Control of charge transport in a semiconducting copolymer by solvent-induced long-range order. <i>Scientific Reports</i> , 2013 , 3, 3425	4.9	113
714	Alternating Copolymers Incorporating Dithienogemolodithiophene for Field-Effect Transistor Applications. <i>Macromolecules</i> , 2014 , 47, 8602-8610	5.5	22
713	New Alkoxy-Functionalized Naphthodithiophene-Based Semiconducting Oligomers and Polymers. 2014 , 54, 796-816		
712	Ordered conjugated polymer nano- and microstructures: Structure control for improved performance of organic electronics. 2014 , 9, 705-721		29

711	Complementary D Flip-Flops Based on Inkjet Printed Single-Walled Carbon Nanotubes and Zinc Tin Oxide. 2014 , 35, 1245-1247	14
710	Benzodithiophene and benzotrithiophene-based conjugated polymers for organic thin-film transistors application: Impact of conjugated- and acyl-side chain. <i>Organic Electronics</i> , 2014 , 15, 2608-26 ²⁵	9
709	Organic Semiconductor/Insulator Polymer Blends for High-Performance Organic Transistors. 2014 , 6, 1057-1073	59
708	Megahertz-class printed high mobility organic thin-film transistors and inverters on plastic using attoliter-scale high-speed gravure-printed sub-5 fb gate electrodes. <i>Organic Electronics</i> , 2014 , 15, 3639-3647	47
707	Band tail recombination in polymer:fullerene organic solar cells. 2014 , 116, 074503	45
706	Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. <i>Advanced Materials</i> , 2014 , 26, 7300-7	204
7°5	Naphtho[1,2-b:5,6-b?]dithiophene Based Two-Dimensional Conjugated Polymers for Highly Efficient Thick-Film Inverted Polymer Solar Cells. 2014 , 26, 6947-6954	40
704	Versatile threshold voltage control of OTFTs via discontinuous pn-heterojunction formation. Organic Electronics, 2014 , 15, 3439-3444 3.5	7
703	Quantitative femtosecond charge transfer dynamics at organic/electrode interfaces studied by core-hole clock spectroscopy. <i>Advanced Materials</i> , 2014 , 26, 7880-8	26
702	Diels-Alder Crosslinked Block-Copolymer Gate Dielectrics for Low Voltage Operated Top-Gate Organic Field-Effect Transistors. 2014 , 598, 69-77	1
701	Bulk charge carrier transport in push-pull type organic semiconductor. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 20904-12	18
700	Development of high-performance printed polymer field-effect transistors for flexible display. 2014 , 15, 213-229	12
699	Electrospun Polymer Fibers for Electronic Applications. 2014 , 7, 906-947	78
698	Solution Processed Organic Thin-Film Transistors With Hybrid Low/High Voltage Operation. 2014 , 10, 971-974	10
697	Advances in Charge Carrier Mobilities of Semiconducting Polymers Used in Organic Transistors. 2014 , 26, 647-663	335
696	Side Chain Engineering in Solution-Processable Conjugated Polymers. 2014 , 26, 604-615	798
695	Organic spin transporting materials: present and future. 2014 , 2, 48-57	52
694	EBuilding Blocks for Organic Electronics: Revaluation of Inductiveland Resonancel Effects of Electron Deficient Units. 2014 , 26, 587-593	178

693	25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. <i>Advanced Materials</i> , 2014 , 26, 1319-35	24	1758
692	Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. <i>Advanced Materials</i> , 2014 , 26, 2586-91	24	339
691	"Conformation locked" strong electron-deficient poly(p-phenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: synthesis, properties, and effects of fluorine substitution position. 2014 , 136, 2135-41		262
690	25th anniversary article: high-mobility hole and electron transport conjugated polymers: how structure defines function. <i>Advanced Materials</i> , 2014 , 26, 2119-36	24	182
689	Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers. 2014 , 47, 1117-26		309
688	Bandgap engineering through controlled oxidation of polythiophenes. 2014 , 53, 1832-6		42
687	A direct arylation-derived DPP-based small molecule for solution-processed organic solar cells. 2014 , 25, 014006		27
686	New organic semiconductors with imide/amide-containing molecular systems. <i>Advanced Materials</i> , 2014 , 26, 6965-77	24	164
685	Charge Transport Anisotropy in Highly Oriented Thin Films of the Acceptor Polymer P(NDI2OD-T2). 2014 , 4, 1301659		100
684	Palladium-catalyzed chain-growth polycondensation of AB-type monomers: high catalyst turnover and polymerization rates. 2014 , 53, 2402-7		43
683	Effect of Non-Chlorinated Mixed Solvents on Charge Transport and Morphology of Solution-Processed Polymer Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2014 , 24, 3524-353	34 ^{15.6}	73
682	Regioselective Deposition Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards All-Solution-Processed, High-Performance, Bottom-Contacted, Flexible, Polymer-Based Electronics. <i>Advanced Functional Materials</i> , 2014 , 24, 3783-3789	15.6	29
681	Palladium-Catalyzed Chain-Growth Polycondensation of AB-type Monomers: High Catalyst Turnover and Polymerization Rates. 2014 , 126, 2434-2439		2
68o	Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers. 2014 , 140, 164710		24
679	Mapping orientational order of charge-probed domains in a semiconducting polymer. 2014 , 8, 5968-78		31
678	Symmetrically functionalized diketopyrrolopyrrole with alkylated thiophene moiety: from synthesis to electronic devices applications. 2014 , 49, 4215-4224		11
677	Impact of N-substitution of a carbazole unit on molecular packing and charge transport of DPPBarbazole copolymers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1683	7.1	15
676	Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. 2014 , 5, 2954		315

(2014-2014)

675	Synthesis and Characterization of Angular-Shaped Naphtho[1,2-b;5,6-b?]difuranDiketopyrrolopyrrole-Containing Copolymers for High-Performance Organic Field-Effect Transistors. <i>Macromolecules</i> , 2014 , 47, 616-625	5.5	36
674	Conjugated electron donor acceptor molecules with (E)-[4,4?-biimidazolylidene]-5,5?(1H,1?H)-dione for new organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1149-1157	7.1	7
673	Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3099-3117	7.1	209
672	Donor-acceptor-donor type organic semiconductor containing quinoidal benzo[1,2-b:4,5-b']dithiophene for high performance n-channel field-effect transistors. 2014 , 50, 985-7	,	23
671	Naphthalenediimides Fused with 2-(1,3-Dithiol-2-ylidene)acetonitrile: Strong Electron-Deficient Building Blocks for High-Performance n-Type Polymeric Semiconductors. 2014 , 3, 1174-1177		33
670	Phase Transitions and Anisotropic Thermal Expansion in High Mobility Core-expanded Naphthalene Diimide Thin Film Transistors. <i>Advanced Functional Materials</i> , 2014 , 24, n/a-n/a	15.6	11
669	Facile conversion of polymer organic thin film transistors from ambipolar and p-type into unipolar n-type using polyethyleneimine (PEI)-modified electrodes. <i>Organic Electronics</i> , 2014 , 15, 3787-3794	3.5	13
668	Approaching disorder-free transport in high-mobility conjugated polymers. 2014 , 515, 384-8		692
667	Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications. 2014 , 345, 95-138		23
666	P3HT and Other Polythiophene Field-Effect Transistors. 2014 , 107-137		17
665	High-performance field-effect transistors based on furan-containing diketopyrrolopyrrole copolymer under a mild annealing temperature. 2014 , 52, 1970-1977		15
664	Template-guided solution-shearing method for enhanced charge carrier mobility in diketopyrrolopyrrole-based polymer field-effect transistors. <i>Advanced Materials</i> , 2014 , 26, 6031-5	24	54
663	A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors. 2014 , 50, 3180-3		68
662	All-Solution-Processed Low-Voltage Organic Thin-Film Transistor Inverter on Plastic Substrate. 2014 , 61, 1175-1180		33
661	New dithienyl-diketopyrrolopyrrole-based conjugated molecules entailing electron withdrawing moieties for organic ambipolar semiconductors and photovoltaic materials. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 10101-10109	7.1	25
660	New building blocks for Etonjugated polymer semiconductors for organic thin film transistors and photovoltaics. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8651-8661	7.1	71
659	Inkjet printed fine silver electrodes for all-solution-processed low-voltage organic thin film transistors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1995	7.1	49
658	Naphtalenediimide-based donor\(lcceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors. \(\text{Journal of Materials Chemistry C. \) 2014 , 2, 5149-5154	7.1	22

657	Pentacyclic aromatic bislactam-based conjugated polymers: constructed by Beckmann rearrangement and application in organic field-effect transistor. 2014 , 5, 5369-5374		9
656	Nonadiabatic Molecular Dynamics Modeling of the Intrachain Charge Transport in Conjugated Diketopyrrolo-pyrrole Polymers. 2014 , 118, 6631-6640		26
655	The impact of molecular planarity on electronic devices in thienoisoindigo-based organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 10455-10467	7.1	32
654	Controlling the surface wettability of the polymer dielectric for improved resolution of inkjet-printed electrodes and patterned channel regions in low-voltage solution-processed organic thin film transistors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5553	7.1	26
653	Small band gap polymers incorporating a strong acceptor, thieno[3,2-b]thiophene-2,5-dione, with p-channel and ambipolar charge transport characteristics. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 230	07 ⁷ -2 ⁷ 312	2 ²⁵
652	High-performance n-channel field effect transistors based on solution-processed dicyanomethylene-substituted tetrathienoquinoid. 2014 , 4, 16939-16943		12
651	Heteroatom substituted organic/polymeric semiconductors and their applications in field-effect transistors. <i>Advanced Materials</i> , 2014 , 26, 6898-904	24	64
650	Synthesis and properties of azothiazole based Etonjugated polymers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7096-7103	7.1	5
649	StructureBroperty relationships in multifunctional thieno(bis)imide-based semiconductors with different sized and shaped N-alkyl ends. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3448	7.1	22
648	Stabilizing cations in the backbones of conjugated polymers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3407-3415	7.1	7
647	Transition between band and hopping transport in polymer field-effect transistors. <i>Advanced Materials</i> , 2014 , 26, 8169-73	24	56
646	Extended conjugation in poly(triarylamine)s: synthesis, structure and impact on field-effect mobility. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6520-6528	7.1	10
645	3,3'-(Ethane-1,2-diylidene)bis(indolin-2-one) based conjugated polymers for organic thin film transistors. 2014 , 50, 6509-12		15
644	Comparative Studies on the Relations between Composition Ratio and Charge Transport of Diketopyrrolopyrrole-Based Random Copolymers. <i>Macromolecules</i> , 2014 , 47, 7030-7035	5.5	39
643	Conformation-Insensitive Ambipolar Charge Transport in a Diketopyrrolopyrrole-Based Co-polymer Containing Acetylene Linkages. 2014 , 26, 3928-3937		59
642	High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. 2014 , 14, 3683-7		122
641	Triphenylamine modified bis-diketopyrrolopyrrole molecular donor materials with extended conjugation for bulk heterojunction solar cells. <i>Organic Electronics</i> , 2014 , 15, 2575-2586	3.5	15
640	Enhancing Field-Effect Mobility of Conjugated Polymers Through Rational Design of Branched Side Chains. <i>Advanced Functional Materials</i> , 2014 , 24, 3734-3744	15.6	103

(2014-2014)

639	Benzodipyrrolidone (BDP)-based polymer semiconductors containing a series of chalcogen atoms: comprehensive investigation of the effect of heteroaromatic blocks on intrinsic semiconducting properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4872-82	9.5	28
638	Recent trends in crystal engineering of high-mobility materials for organic electronics. 2014 , 56, 4-19		23
637	Spectral dependence of the internal quantum efficiency of organic solar cells: effect of charge generation pathways. 2014 , 136, 11465-72		75
636	Influence of side-chain regiochemistry on the transistor performance of high-mobility, all-donor polymers. 2014 , 136, 15154-7		88
635	Systematic Investigation of Side-Chain Branching Position Effect on Electron Carrier Mobility in Conjugated Polymers. <i>Advanced Functional Materials</i> , 2014 , 24, 6270-6278	15.6	97
634	Imide- and amide-functionalized polymer semiconductors. <i>Chemical Reviews</i> , 2014 , 114, 8943-9021	68.1	721
633	Control of active semiconducting layer packing in organic thin film transistors through synthetic tailoring of dielectric materials. 2014 , 4, 29383-29392		3
632	Analysis of charge transport in high-mobility diketopyrrolopyrole polymers by space charge limited current and time of flight methods. 2014 , 4, 35344		21
631	Gradual Controlling the Work Function of Metal Electrodes by Solution-Processed Mixed Interlayers for Ambipolar Polymer Field-Effect Transistors and Circuits. <i>Advanced Functional Materials</i> , 2014 , 24, 6484-6491	15.6	28
630	Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out?. 2014 , 16, 17253-65		45
629	Charge Transport in Amorphous Organic Semiconductors: Effects of Disorder, Carrier Density, Traps, and Scatters. 2014 , 54, 918-926		30
628	Ambipolar Semiconducting Polymers with Espacer Linked Bis-Benzothiadiazole Blocks as Strong Accepting Units. 2014 , 26, 4933-4942		47
627	Novel diketopyrroloppyrrole random copolymers: high charge-carrier mobility from environmentally benign processing. <i>Advanced Materials</i> , 2014 , 26, 6612-6	24	74
626	Regulating charge injection in ambipolar organic field-effect transistors by mixed self-assembled monolayers. <i>ACS Applied Materials & Distriction</i> (2014), 6, 14493-9	9.5	23
625	Five-Ring Fused Tetracyanothienoquinoids as High-Performance and Solution-Processable n-Channel Organic Semiconductors: Effect of the Branching Position of Alkyl Chains. 2014 , 26, 5782-57	88	58
624	Using unsorted single-wall carbon nanotubes to enhance mobility of diketopyrrolopyrrole-quarterthiophene copolymer in thin-film transistors. <i>Organic Electronics</i> , 2014 , 15, 2639-2646	3.5	4
623	Thieno[3,2-b]thiophene-diketopyrrolopyrrole-based quinoidal small molecules: synthesis, characterization, redox behavior, and n-channel organic field-effect transistors. 2014 , 20, 13755-61		33
622	Generalized enhancement of charge injection in bottom contact/top gate polymer field-effect transistors with single-walled carbon nanotubes. <i>Organic Electronics</i> , 2014 , 15, 809-817	3.5	15

621	Organic semiconductors for device applications: current trends and future prospects. 2014 , 34, 279-338	3	38
620	A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm(2)/VL that substantially exceeds benchmark values for amorphous silicon semiconductors. 2014 , 136, 9477-83		492
619	Radical Polymers and Their Application to Organic Electronic Devices. <i>Macromolecules</i> , 2014 , 47, 6145-6	61558	108
618	Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors. 2014 , 5, 3404-3411		44
617	Combination of Two Diketopyrrolopyrrole Isomers in One Polymer for Ambipolar Transport. 2014 , 26, 3595-3598		38
616	Acene-Containing Donor Acceptor Conjugated Polymers: Correlation between the Structure of Donor Moiety, Charge Carrier Mobility, and Charge Transport Dynamics in Electronic Devices. <i>Macromolecules</i> , 2014 , 47, 3747-3754	5.5	33
615	Controlling Conformations of Diketopyrrolopyrrole-Based Conjugated Polymers: Role of Torsional Angle. 2014 , 118, 11536-11544		23
614	25th anniversary article: microstructure dependent bias stability of organic transistors. <i>Advanced Materials</i> , 2014 , 26, 1660-80	24	135
613	Record high electron mobility of 6.3 cm[JV?[]s?[]achieved for polymer semiconductors using a new building block. <i>Advanced Materials</i> , 2014 , 26, 2636-42, 2613	24	334
612	Flexible, low-voltage and high-performance polymer thin-film transistors and their application in photo/thermal detectors. <i>Advanced Materials</i> , 2014 , 26, 3631-6	24	97
611	Improving performance of selective-dewetting patterned organic transistors via semiconductor-dielectric blends. 2014 , 194, 59-64		11
610	Efficient Tin-Free Route to a DonorAcceptor Semiconducting Copolymer with Variable Molecular Weights. <i>Macromolecules</i> , 2014 , 47, 3845-3851	5.5	40
609	A high-yield vacuum-evaporation-based R2R-compatible fabrication route for organic electronic circuits. <i>Organic Electronics</i> , 2014 , 15, 1493-1502	3.5	28
608	Fabrication of polymer-based transistors with sourcedrain electrodes made of carbon nanotubes and silver nanoparticles by soft lithography techniques. 2014 , 554, 127-131		5
607	Bandgap Engineering through Controlled Oxidation of Polythiophenes. 2014 , 126, 1863-1867		18
606	Engineering semiconducting polymers for efficient charge transport. 2015 , 5, 383-395		66
605	Charge-Transport Anisotropy in a Uniaxially Aligned Diketopyrrolopyrrole-Based Copolymer. <i>Advanced Materials</i> , 2015 , 27, 7356-64	24	110
604	Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives. <i>Scientific Reports</i> , 2015 , 5, 13288	4.9	91

603	Impact of Alkyl Side Chains on Thin-film Transistor Performances in Phenanthrodithiopheneßoindigo Copolymers. 2015 , 44, 998-1000		12
602	Effects of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane doping on diketopyrrolopyrrole-based, low crystalline, high mobility polymeric semiconductor. 2015 , 107, 133302		5
601	Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics. <i>Scientific Reports</i> , 2015 , 5, 14520	4.9	10
600	Effects of Chemical Composition, Film Thickness, and Morphology on the Electrochromic Properties of Donor-Acceptor Conjugated Copolymers Based on Diketopyrrolopyrrole. 2015 , 80, 1298-1305		22
599	Enhanced Charge Injection Through Nanostructured Electrodes for Organic Field Effect Transistors. <i>Advanced Functional Materials</i> , 2015 , 25, 3855-3859	15.6	20
598	The Density of States and the Transport Effective Mass in a Highly Oriented Semiconducting Polymer: Electronic Delocalization in 1D. <i>Advanced Materials</i> , 2015 , 27, 7759-65	24	46
597	Large Modulation of Charge Transport Anisotropy by Controlling the Alignment of Stacks in Diketopyrrolopyrrole-Based Polymers. 2015 , 2, 1500153		8
596	Enhanced Polymer Thin Film Transistor Performance by Carefully Controlling the Solution Self-Assembly and Film Alignment with Slot Die Coating. <i>Advanced Electronic Materials</i> , 2015 , 1, 150003	6.4	30
595	Bulk heterojunction thickness uniformity la limiting factor in large area organic solar cells?. 2015 , 212, 2246-2254		16
594	Self-Assembled Nanodielectrics for High-Speed, Low-Voltage Solution-Processed Polymer Logic Circuits. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500226	6.4	21
593	Improvement in Solubility and Molecular Assembly of Cyclopentadithiophene B enzothiadiazole Polymer. 2015 , 216, 1244-1250		13
592	29.1: Solution-Processed Poly-Si TFTs at Paper Compatible Temperatures. 2015 , 46, 415-418		1
591	Design of High-Mobility Diketopyrrolopyrrole-Based Econjugated Copolymers for Organic Thin-Film Transistors. <i>Advanced Materials</i> , 2015 , 27, 3589-606	24	304
590	High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated Polymer Synthesized Via Direct Arylation Polycondensation. <i>Advanced Materials</i> , 2015 , 27, 6753-9	24	156
589	High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles. 2015 , 11, 4976-84		28
588	Alcohol as a Processing Solvent of Polymeric Semiconductors to Fabricate Environmentally Benign and High Performance Polymer Field Effect Transistors. <i>Advanced Functional Materials</i> , 2015 , 25, 4844-4	ı 4 56	16
587	High Charge-Carrier Mobility of 2.5 cm(2) V(-1) s(-1) from a Water-Borne Colloid of a Polymeric Semiconductor via Smart Surfactant Engineering. <i>Advanced Materials</i> , 2015 , 27, 5587-92	24	25
586	Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies. 2015 , 11, 5472-82		44

585	Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics. 2015 , 4, 424-4	479	97
584	Introduction. Springer Theses, 2015, 1-21	0.1	
583	Unidirectional coating technology for organic field-effect transistors: materials and methods. 2015 , 30, 054001		30
582	Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). 2015 , 51, 11777-9		78
581	Synthesis, characterization, and field-effect transistor properties of tetrathienoanthracene-based copolymers using a two-dimensional Econjugation extension strategy: a potential building block for high-mobility polymer semiconductors. 2015 , 6, 5393-5404		18
580	Organic Semiconductors for Field-Effect Transistors. 2015 , 51-164		2
579	Versatile organic transistors by solution processing. 2015 , 16, 1118-32		45
578	Synthesis, characterization, and field-effect properties of (E)-2-(2-(thiophen-2-yl)vinyl)thiophen-based donor (E)-2-(2-(thiophen-2-yl)vinyl)thiophen-based (E)-2-(thiophen-2-yl)vinyl)thiophen-based (E)-2-(thiophen-2-yl)vinyl)thiophen-based (E)-2-(thiophen-2-yl)vinyl)thiophen-based (E)-2-(thiophen-2-yl)vinyl)thiophen-based		16
577	Printed organic thin-film transistor-based integrated circuits. 2015 , 30, 064003		33
576	. 2015 , 103, 607-618		69
575	Engineering gate dielectric surface properties for enhanced polymer field-effect transistor		4.0
	performance. Journal of Materials Chemistry C, 2015 , 3, 12267-12272	7.1	40
574	Solution-processable low-bandgap 3-fluorothieno[3,4-b]thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. 2015 , 5, 96328-96335	7.1	8
574 573	Solution-processable low-bandgap 3-fluorothieno[3,4-b]thiophene-2-carboxylate-based conjugated	7.1	
	Solution-processable low-bandgap 3-fluorothieno[3,4-b]thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. 2015 , 5, 96328-96335 An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. <i>Journal of</i>	,	8
573	Solution-processable low-bandgap 3-fluorothieno[3,4-b]thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. 2015 , 5, 96328-96335 An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3599-3606	7.1	8 69
573 572	Solution-processable low-bandgap 3-fluorothieno[3,4-b]thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. 2015, 5, 96328-96335 An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. <i>Journal of Materials Chemistry C</i> , 2015, 3, 3599-3606 Water stable organic thin film transistors (TFTs) made on flexible substrates. 2015, Synthesis, characterization, and solar cell and transistor applications of	7.1	8 69 0
573 572 571	Solution-processable low-bandgap 3-fluorothieno[3,4-b]thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. 2015, 5, 96328-96335 An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. <i>Journal of Materials Chemistry C</i> , 2015, 3, 3599-3606 Water stable organic thin film transistors (TFTs) made on flexible substrates. 2015, Synthesis, characterization, and solar cell and transistor applications of phenanthro[1,2-b:8,7-b?]dithiopheneDiketopyrrolopyrrole semiconducting polymers. 2015, 53, 709-71	7.1	8 69 0

(2015-2015)

567	Synthetic Tailoring of Solid-State Order in Diketopyrrolopyrrole-Based Copolymers via Intramolecular Noncovalent Interactions. 2015 , 27, 829-838		107
566	Investigation of Structure P roperty Relationships in Diketopyrrolopyrrole-Based Polymer Semiconductors via Side-Chain Engineering. 2015 , 27, 1732-1739		220
565	Synthesis and properties of benzo[c]-, pyrrolo[3,4-c]-, and thieno[3,4-c]-pyrrole-4,6-dione copolymers. 2015 , 39, 2642-2650		3
564	Polymeric and Small-Molecule Semiconductors for Organic Field-Effect Transistors. 2015 , 1-100		6
563	Mixed self-assembled monolayer gate dielectrics for low-voltage solution-processed polymer field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1181-1186	7.1	6
562	Effect of molecular weight on the properties and organic solar cell device performance of a donor acceptor conjugated polymer. 2015 , 6, 2312-2318		58
561	High performance top contact fused thiophenediketopyrrolopyrrole copolymer transistors using a photolithographic metal lift-off process. <i>Organic Electronics</i> , 2015 , 20, 55-62	3.5	9
560	Highly fluorescent polycaprolactones decorated with di(thiophene-2-yl)-diketopyrrolopyrrole: A covalent strategy of tuning fluorescence properties in solid states. 2015 , 53, 1032-1042		13
559	Effect of branched alkyl side chains on the performance of thin-film transistors and photovoltaic cells fabricated with isoindigo-based conjugated polymers. 2015 , 53, 1226-1234		20
558	High performance quinacridone-based polymers in film transistors and photovoltaics: effects of vinylene linkage on crystallinity and morphology. 2015 , 6, 3283-3289		19
557	Solution-processed nanocomposite dielectrics for low voltage operated OFETs. <i>Organic Electronics</i> , 2015 , 17, 178-183	3.5	55
556	Electroactive and Photoactive Poly[Isoindigo-alt-EDOT] Synthesized Using Direct (Hetero)Arylation Polymerization in Batch and in Continuous Flow. 2015 , 27, 2137-2143		66
555	Fabrication and physical properties of self-assembled ultralong polymer/small molecule hybrid microstructures. 2015 , 5, 25550-25554		13
554	Enhancing the organic thin-film transistor performance of diketopyrrolopyrroleBenzodithiophene copolymers via the modification of both conjugated backbone and side chain. 2015 , 6, 5369-5375		17
553	Charge transport and recombination in heterostructure organic light emitting transistors. <i>Organic Electronics</i> , 2015 , 25, 37-43	3.5	7
552	Nitrile-substituted thienyl and phenyl units as building blocks for high performance n-type polymer semiconductors. 2015 , 6, 6579-6584		15
551	A Balanced Face-On to Edge-On Texture Ratio in Naphthalene Diimide-Based Polymers with Hybrid Siloxane Chains Directs Highly Efficient Electron Transport. <i>Macromolecules</i> , 2015 , 48, 5179-5187	5.5	72
550	Diketopyrrolopyrrole (DPP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8932-8941	7.1	43

549	Donor acceptor donor conjugated oligomers based on isoindigo and anthra [1,2-b] thieno [2,3-d] thiophene for organic thin-film transistors: the effect of the alkyl side chain length on semiconducting properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7567-7574	7.1	14
548	Design and structureproperty relationship of benzothienoisoindigo in organic field effect transistors. 2015 , 5, 61035-61043		30
547	Flexible organic semiconductor thin films. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8468-8479	7.1	41
546	(3E,8E)-3,8-Bis(2-oxoindolin-3-ylidene)naphtho-[1,2-b:5,6-b']difuran-2,7(3H,8H)-dione (INDF) based polymers for organic thin-film transistors with highly balanced ambipolar charge transport characteristics. 2015 , 51, 13515-8		31
545	New Semiconducting Polymers Based on Benzobisthiadiazole Analogues: Tuning of Charge Polarity in Thin Film Transistors via Heteroatom Substitution. <i>Macromolecules</i> , 2015 , 48, 4012-4023	5.5	45
544	Thin Films of Highly Planar Semiconductor Polymers Exhibiting Band-like Transport at Room Temperature. 2015 , 137, 7990-3		40
543	High mobility flexible polymer thin-film transistors with an octadecyl-phosphonic acid treated electrochemically oxidized alumina gate insulator. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7062-7066	7.1	17
542	High mobility organic semiconductors for field-effect transistors. 2015 , 58, 947-968		118
541	Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500045	6.4	8o
540	Review of a solution-processed vertical organic transistor as a solid-state vacuum tube. 2015 , 30, 05400)3	10
539	Solution-processed single-crystal perylene diimide transistors with high electron mobility. <i>Organic Electronics</i> , 2015 , 23, 64-69	3.5	8
538	A new thieno-isoindigo derivative-based DA polymer with very low bandgap for high-performance ambipolar organic thin-film transistors. 2015 , 6, 3970-3978		33
537	Solution-processed polycrystalline silicon on paper. 2015 , 106, 163502		31
536	High-performance diketopyrrolopyrrole-based organic field-effect transistors for flexible gas sensors. <i>Organic Electronics</i> , 2015 , 23, 76-81	3.5	38
535	Development of high-performance printed organic field-effect transistors and integrated circuits. 2015 , 17, 26553-74		90
534	Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer. 2015 , 8, 1463	-1470	204
533	Effect of Solution Shearing Method on Packing and Disorder of Organic Semiconductor Polymers. 2015 , 27, 2350-2359		81
532	Influence of Semiconductor Thickness and Molecular Weight on the Charge Transport of a Naphthalenediimide-Based Copolymer in Thin-Film Transistors. <i>ACS Applied Materials & Amp;</i> Interfaces 2015, 7, 12478-87	9.5	29

531	Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione-based DA polymers for high-performance n-channel transistors. 2015 , 6, 2531-2540		29
530	Air-processable silane-coupled polymers to modify a dielectric for solution-processed organic semiconductors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 5274-80	9.5	4
529	Synthesis, Characterization, and Field-Effect Transistors Properties of Novel Copolymers Incorporating Nonplanar Biindeno[2,1-b]thiophenylidene Building Blocks. <i>Macromolecules</i> , 2015 , 48, 2444-2453	5.5	24
528	Multi-length-scale relationships between the polymer molecular structure and charge transport: the case of poly-naphthalene diimide bithiophene. 2015 , 17, 8573-90		46
527	Tuning the Semiconducting Behaviors of New Alternating DithienyldiketopyrrolopyrroleAzulene Conjugated Polymers by Varying the Linking Positions of Azulene. <i>Macromolecules</i> , 2015 , 48, 2039-2047	, 5·5	66
526	Is a polymer semiconductor having a "perfect" regular structure desirable for organic thin film transistors?. 2015 , 6, 3225-3235		39
525	Isoindigo-based polymer field-effect transistors: effects of selenophene-substitution on high charge carrier mobility. 2015 , 51, 8120-2		41
524	(3Z,3?Z)-3,3?-(Hydrazine-1,2-diylidene)bis(indolin-2-one) as a new electron-acceptor building block for donor ceptor Leonjugated polymers for organic thin film transistors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4464-4470	7.1	14
523	Solvent-dependent electrical properties improvement of organic field-effect transistor based on disordered conjugated polymer/insulator blends. <i>Organic Electronics</i> , 2015 , 27, 160-166	3.5	28
522	Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. 2015 , 6, 8394		240
522 521		7.1	240 17
	MHz large-area electronics. 2015, 6, 8394 Simultaneous enhancement of charge generation quantum yield and carrier transport in organic		17
521	MHz large-area electronics. 2015 , 6, 8394 Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10799-10812 Synthesis and characterization of diketopyrrolopyrrole-based conjugated molecules flanked by		17
521	MHz large-area electronics. 2015, 6, 8394 Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. <i>Journal of Materials Chemistry C</i> , 2015, 3, 10799-10812 Synthesis and characterization of diketopyrrolopyrrole-based conjugated molecules flanked by indenothiophene and benzoindenothiophene derivatives. <i>Journal of Materials Chemistry C</i> , 2015, 3, 111 In Situ Probing of the Charge Transport Process at the Polymer/Fullerene Heterojunction Interface.		17 143
521 520 519	MHz large-area electronics. 2015, 6, 8394 Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. <i>Journal of Materials Chemistry C</i> , 2015, 3, 10799-10812 Synthesis and characterization of diketopyrrolopyrrole-based conjugated molecules flanked by indenothiophene and benzoindenothiophene derivatives. <i>Journal of Materials Chemistry C</i> , 2015, 3, 111 In Situ Probing of the Charge Transport Process at the Polymer/Fullerene Heterojunction Interface. 2015, 119, 25598-25605		17 143 5
521 520 519 518	MHz large-area electronics. 2015, 6, 8394 Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. <i>Journal of Materials Chemistry C</i> , 2015, 3, 10799-10812 Synthesis and characterization of diketopyrrolopyrrole-based conjugated molecules flanked by indenothiophene and benzoindenothiophene derivatives. <i>Journal of Materials Chemistry C</i> , 2015, 3, 111 In Situ Probing of the Charge Transport Process at the Polymer/Fullerene Heterojunction Interface. 2015, 119, 25598-25605 Complementary Semiconducting Polymer Blends for Efficient Charge Transport. 2015, 27, 7164-7170 Polyethylenimine (PEI) As an Effective Dopant To Conveniently Convert Ambipolar and p-Type	3 ⁵⁻¹ 11	17 143 5 41
521520519518517	Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10799-10812 Synthesis and characterization of diketopyrrolopyrrole-based conjugated molecules flanked by indenothiophene and benzoindenothiophene derivatives. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 111 In Situ Probing of the Charge Transport Process at the Polymer/Fullerene Heterojunction Interface. 2015 , 119, 25598-25605 Complementary Semiconducting Polymer Blends for Efficient Charge Transport. 2015 , 27, 7164-7170 Polyethylenimine (PEI) As an Effective Dopant To Conveniently Convert Ambipolar and p-Type Polymers into Unipolar n-Type Polymers. <i>ACS Applied Materials & Dopanic Interfaces</i> , 2015 , 7, 18662-71 Room-temperature bandlike transport and Hall effect in a high-mobility ambipolar polymer. 2015 ,	3 ⁵⁻¹ 11	17 143 5 41 40

513	Effect of side chain conjugation lengths on photovoltaic performance of two-dimensional conjugated copolymers that contain diketopyrrolopyrrole and thiophene with side chains. 2015 , 53, 2875	8-288	9 ¹¹
512	Facile dielectric surface-modification methodology for high-performance polymer transistors via thermal evaporation of polydimethylsiloxane. <i>Organic Electronics</i> , 2015 , 27, 59-64	3.5	3
511	Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11697-11704	7.1	54
510	Defect Analysis of High Electron Mobility Diketopyrrolopyrrole Copolymers Made by Direct Arylation Polycondensation. <i>Macromolecules</i> , 2015 , 48, 7481-7488	5.5	59
509	Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. <i>Chemical Reviews</i> , 2015 , 115, 12633-65	68.1	863
508	Naphtho[1,2b;5,6b?]difuran-based donor\(\text{lcceptor polymers for high performance organic field-effect transistors. \(\textbf{2015}\), 5, 70319-70322		8
507	High charge mobility polymers based on a new di(thiophen-2-yl)thieno[3,2-b]thiophene for transistors and solar cells. 2015 , 6, 7684-7692		7
506	Challenges and Opportunities in the Development of Conjugated Block Copolymers for Photovoltaics. <i>Macromolecules</i> , 2015 , 48, 7385-7395	5.5	88
505	Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric. 2015 , 107, 052904		38
504	Electro-Optics of Conventional and Inverted Thick Junction Organic Solar Cells. 2015 , 2, 1745-1754		33
503	Printable and flexible electronics: from TFTs to bioelectronic devices. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 12347-12363	7.1	54
502	Study of Vertical and Lateral Charge Transport Properties of DPP-Based Polymer/PC61BM Films Using Space Charge Limited Current (SCLC) and Field Effect Transistor Methods and their Effects on Photovoltaic Characteristics. 2015 , 68, 1741		5
501	Characterization of New Rubrene Analogues with Heteroaryl Substituents. 2015 , 15, 442-448		18
500	Organic Thin Film Transistors Based on Highly Dipolar Donor Acceptor Polymethine Dyes. <i>Advanced Functional Materials</i> , 2015 , 25, 44-57	15.6	37
499	High-efficiency polymerPbS hybrid solar cells via molecular engineering. 2015 , 3, 2572-2579		48
498	Ambient-Stable, Annealing-Free, and Ambipolar Organic Field-Effect Transistors Based on Solution-Processable Poly(2,2?-bis(trifluoromethyl)biphenyl-alt-2,5-divinylthiophene) without Long Alkyl Side Chains. <i>Advanced Functional Materials</i> , 2015 , 25, 606-614	15.6	15
497	Benzobisthiadiazole-based conjugated donor\(\text{lcceptor polymers for organic thin film transistors:}\) effects of \(\text{Lconjugated bridges on ambipolar transport.}\) Journal of Materials Chemistry C, \(\text{2015}\), 3, 1196-12	2 0 7	40
496	Top-Gate Dry-Etching Patterned Polymer Thin-Film Transistors With a Protective Layer on Top of the Channel. 2015 , 36, 59-61		17

(2016-2015)

495	A Timely Synthetic Tailoring of Biaxially Extended Thienylenevinylene-Like Polymers for Systematic Investigation on Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2015 , 25, 586-596	15.6	48
494	The backbone rigidity and its influence on the morphology and charge mobility of FBT based conjugated polymers. 2015 , 6, 1309-1315		18
493	A pyridine-flanked diketopyrrolopyrrole (DPP)-based donor ceptor polymer showing high mobility in ambipolar and n-channel organic thin film transistors. 2015 , 6, 938-945		57
492	Efficient, Large Area, and Thick Junction Polymer Solar Cells with Balanced Mobilities and Low Defect Densities. 2015 , 5, 1401221		75
491	Learning from nature: binary cooperative complementary nanomaterials. 2015, 11, 1072-96		79
490	A high mobility DPP-based polymer obtained via direct (hetero)arylation polymerization. 2015 , 6, 278-28	32	68
489	High mobility polymer based on a Extended benzodithiophene and its application for fast switching transistor and high gain photoconductor. <i>Scientific Reports</i> , 2014 , 4, 5482	4.9	47
488	A phthalimide- and diketopyrrolopyrrole-based A1A2 conjugated polymer for high-performance organic thin-film transistors. 2015 , 6, 418-425		12
487	Strong Electron-Deficient Polymers Lead to High Electron Mobility in Air and Their Morphology-Dependent Transport Behaviors. <i>Advanced Materials</i> , 2016 , 28, 7213-9	24	139
486	Room Temperature Grown High-Quality Polymer-Like Carbon Gate Dielectric for Organic Thin-Film Transistors. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500374	6.4	9
485	Effects of silica nanoparticle addition on polymer semiconductor wettability and carrier mobility in solution-processable organic transistors on hydrophobic substrates. 2016 , 54, 509-516		7
484	Control of Threshold Voltage for Top-Gated Ambipolar Field-Effect Transistor by Gate Buffer Layer. <i>ACS Applied Materials & Date Buffer Layer</i> . 8, 17416-20	9.5	8
483	Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs). 2016 , 49, 185102		37
482	Design directed self-assembly of donor-acceptor polymers. 2016 , 52, 10938-47		73
481	Ultrasound-Induced Organogel Formation Followed by Thin Film Fabrication via Simple Doctor Blading Technique for Field-Effect Transistor Applications. <i>ACS Applied Materials & Doctor</i> 2016, 8, 18991-7	9.5	39
480	Anisotropic Charge-Carrier Transport in High-Mobility Donor-Acceptor Conjugated Polymer Semiconductor Films. 2016 , 11, 2725-2729		4
479	High-Mobility Naphthalene Diimide and Selenophene-Vinylene-Selenophene-Based Conjugated Polymer: n-Channel Organic Field-Effect Transistors and Structure P roperty Relationship. <i>Advanced Functional Materials</i> , 2016 , 26, 4984-4997	15.6	66
478	Combinatorial Study of Temperature-Dependent Nanostructure and Electrical Conduction of Polymer Semiconductors: Even Bimodal Orientation Can Enhance 3D Charge Transport. <i>Advanced Functional Materials</i> , 2016 , 26, 4627-4634	15.6	41

477	Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices. <i>Advanced Materials</i> , 2016 , 28, 4513-23	24	147
476	Stepwise Structural Evolution of a DTS-F2BT Oligomer and Influence of Structural Disorder on Organic Field Effect Transistors and Organic Photovoltaic Performance. 2016 , 28, 8980-8987		10
475	Thiazole-Flanked Diketopyrrolopyrrole Polymeric Semiconductors for Ambipolar Field-Effect Transistors with Balanced Carrier Mobilities. <i>ACS Applied Materials & District Semiconductors</i> , 2016, 8, 34725-347	34 5	33
474	Naphthalene diimide-based polymeric semiconductors. Effect of chlorine incorporation and n-channel transistors operating in water. 2016 , 6, 47-60		23
473	Direct-written polymer field-effect transistors operating at 20 MHz. <i>Scientific Reports</i> , 2016 , 6, 38941	4.9	46
472	Effect of structural isomerism on charge transport in copolymer of BODIPY and Benzodithiophene. 2016 ,		
471	Fluorodiphenylethene-Containing Donor Acceptor Conjugated Copolymers with Noncovalent Conformational Locks for Efficient Polymer Field-Effect Transistors. <i>Macromolecules</i> , 2016 , 49, 2582-25	9 5/5	41
47°	A Novel Alkylated Indacenodithieno[3,2-b]thiophene-Based Polymer for High-Performance Field-Effect Transistors. <i>Advanced Materials</i> , 2016 , 28, 3922-7	24	100
469	Naphthodithieno[3,2-b]thiophene-based donor-acceptor copolymers: Synthesis, characterization, and their photovoltaic and charge transport properties. 2016 , 131, 1-8		6
468	On the Extraction of Charge Carrier Mobility in High-Mobility Organic Transistors. <i>Advanced Materials</i> , 2016 , 28, 151-5	24	163
467	Structure P roperty Relationships Directing Transport and Charge Separation in Isoindigo Polymers. <i>Macromolecules</i> , 2016 , 49, 4008-4022	5.5	33
466	Approaching high charge carrier mobility by alkylating both donor and acceptor units at the optimized position in conjugated polymers. 2016 , 7, 4046-4053		23
465	Diketopyrrolopyrrole-Based Low-Bandgap Conjugated Polymers with Siloxane Side Chains for Electrochromic Applications. 2016 , 69, 403		7
464	Thiophene-S,S-dioxidized indophenine (IDTO) based donor acceptor polymers for n-channel organic thin film transistors. 2016 , 6, 34849-34854		19
463	Hopping-Based Charge Transfer in Diketopyrrolopyrrole-Based Donor Acceptor Polymers: A Theoretical Study. 2016 , 120, 9581-9587		11
462	Synthesis and properties of a novel narrow band gap oligomeric diketopyrrolopyrrole-based organic semiconductor. 2016 , 131, 160-167		7
461	Highly planar thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for organic field-effect transistors. 2016 , 6, 35394-35401		14
460	High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates. 2016 , 138, 8096-103		173

(2016-2016)

459	Air-stable polythiophene-based thin film transistors processed using oxidative chemical vapor deposition: Carrier transport and channel/metallization contact interface. <i>Organic Electronics</i> , 2016 , 33, 253-262	3.5	11	
458	Requirements for Forming Efficient 3-D Charge Transport Pathway in Diketopyrrolopyrrole-Based Copolymers: Film Morphology vs Molecular Packing. <i>ACS Applied Materials & Diverfaces</i> , 2016 , 8, 12307-15	9.5	19	
457	Thiophene-S,S-dioxidized indophenines as high performance n-type organic semiconductors for thin film transistors. 2016 , 6, 45410-45418		10	
456	Siloxane Side Chains: A Universal Tool for Practical Applications of Organic Field-Effect Transistors. <i>Macromolecules</i> , 2016 , 49, 3739-3748	5.5	51	
455	Ultrathin annealing-free polymer layers: new opportunity to enhance mobility and stability of low-voltage thin-film organic transistors. 2016 , 6, 51264-51269		1	
454	From stretchable to reconfigurable inorganic electronics. 2016 , 9, 245-268		38	
453	Highly planar cross-conjugated alternating polymers with multiple conformational locks: synthesis, characterization and their field-effect properties. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9266-9275	7.1	28	
452	Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors. <i>Macromolecules</i> , 2016 , 49, 6431-6438	5.5	55	
451	High-Performance Field-Effect Transistors Fabricated with Donor Acceptor Copolymers Containing SIEO Conformational Locks Supplied by Diethoxydithiophenethenes. <i>Macromolecules</i> , 2016 , 49, 6401-64	4₹65	34	
450	Benzothiophene-flanked diketopyrrolopyrrole polymers: impact of isomeric frameworks on carrier mobilities. 2016 , 6, 83448-83455		10	
449	Adsorption and dissociation of H2 on Pd doped graphene-like SiC sheet. 2016 , 41, 22886-22898		19	
448	High Mobility n-Channel Organic Field-Effect Transistor Based a Tetratetracontane Interfacial Layer on Gate Dielectrics. 2016 , 37, 1632-1635		8	
447	Molecularly Smooth Self-Assembled Monolayer for High-Mobility Organic Field-Effect Transistors. 2016 , 16, 6709-6715		24	
446	Solution processed integrated pixel element for an imaging device. 2016 ,			
445	Aligned films of the DPP-Based conjugated polymer by solvent vapor enhanced drop casting. 2016 , 104, 123-129		8	
444	Organic Optoelectronic Materials: Mechanisms and Applications. <i>Chemical Reviews</i> , 2016 , 116, 13279-1	3 482	892	
443	Injection Length in Staggered Organic Thin Film Transistors: Assessment and Implications for Device Downscaling. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600097	6.4	21	
442	Holey Contacts: A New Approach to Enhance Charge Injection through Low-Cost Nanopore-Structured Silver Electrodes in Bottom-Gate Bottom-Contact (BGBC) Organic Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600215	6.4	6	

441	Understanding Morphology Compatibility for High-Performance Ternary Organic Solar Cells. 2016 , 28, 6186-6195		125
440	Conjugated DonorAcceptor Polymers Entailing Pechmann Dye-Derived Acceptor with Siloxane-Terminated Side Chains Exhibiting Balanced Ambipolar Semiconducting Behavior. <i>Macromolecules</i> , 2016 , 49, 5857-5865	5.5	30
439	Regioisomeric donor deceptor donor triads based on benzodithiophene and BODIPY with distinct optical properties and mobilities. 2016 , 6, 73645-73649		12
438	Inducing Elasticity through Oligo-Siloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. <i>Advanced Functional Materials</i> , 2016 , 26, 7254-7262	15.6	103
437	All ink-jet printed low-voltage organic field-effect transistors on flexible substrate. <i>Organic Electronics</i> , 2016 , 38, 186-192	3.5	52
436	Conjugated Random DonorAcceptor Copolymers of [1]Benzothieno[3,2-b]benzothiophene and Diketopyrrolopyrrole Units for High Performance Polymeric Semiconductor Applications. <i>Macromolecules</i> , 2016 , 49, 6334-6342	5.5	29
435	Highly coplanar bis(thiazol-2-yl)-diketopyrrolopyrrole based donor\(\textit{Bcceptor copolymers for ambipolar field effect transistors. \(\textit{2016}\), 6, 78008-78016		16
434	Perspective of a new trend in organic photovoltaic: ternary blend polymer solar cells. 2016 , 59, 444-458	3	34
433	Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive. 2016 , 2, e1600076		115
432	Synthesis, field-effect and photovoltaic properties of random difluorobenzothiadiazole-isoindigo electron donor-acceptor polymers. 2016 , 134, 251-257		8
431	Identification of dipole disorder in low temperature solution processed oxides: its utility and suppression for transparent high performance solution-processed hybrid electronics. 2016 , 7, 6337-634	16	34
430	Synthesis and characterization of Elactone-Pechmann dye based donor-acceptor conjugated polymers. 2016 , 134, 171-177		4
429	Computational study of structure, electronic, and microscopic charge transport properties of small conjugated diketopyrrolopyrrole-thiophene molecules. 2016 , 116, 1459-1466		9
428	Introduction. 2016 , 1-20		1
427	The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyl-diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymers. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 10827-10838	7.1	10
426	Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors. <i>Scientific Reports</i> , 2016 , 6, 24476	4.9	63
425	Contact Effects in Organic Thin-Film Transistors: Device Physics and Modeling. 2016 , 945-969		1
424	Influence of structureproperty relationships of two structural isomers of thiophene-flanked diazaisoindigo on carrier-transport properties. 2016 , 6, 109434-109441		7

423	Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel. <i>Scientific Reports</i> , 2016 , 6, 29055	4.9	39
422	Importance of the inherent and the relative surface energies in generating patterned layer in a solution process. 2016 , 68, 786-791		2
421	Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility. 2016 , 28, 8366-8378		45
420	Mobility overestimation due to gated contacts in organic field-effect transistors. 2016 , 7, 10908		365
419	Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing. <i>Scientific Reports</i> , 2016 , 6, 20671	4.9	88
418	Electronic Structure and Properties of Organic Bulk-Heterojunction Interfaces. <i>Advanced Materials</i> , 2016 , 28, 3814-30	24	66
417	Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione and bithiophene-based conjugated polymers for high performance ambipolar organic thin-film transistors: the impact of substitution positions on bithiophene units. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6391-6400	7.1	14
416	Embedding electron-deficient nitrogen atoms in polymer backbone towards high performance n-type polymer field-effect transistors. 2016 , 7, 5753-5757		69
415	Controlling aggregation and crystallization of solution processed diketopyrrolopyrrole based polymer for high performance thin film transistors by pre-metered slot die coating process. <i>Organic Electronics</i> , 2016 , 36, 113-119	3.5	15
414	ORGANIC DEVICES. Avoid the kinks when measuring mobility. 2016 , 352, 1521-2		181
			, '
413	A comparative study of bithiophene and thienothiophene based polymers for organic field-effect transistor applications. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 9143-9151	2.1	2
413 412	· · · · · · · · · · · · · · · · · · ·	2.1	2
	transistor applications. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 9143-9151 Electron transport in solution-grown TIPS-pentacene single crystals: Effects of gate dielectrics and	2.1	
412	transistor applications. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 9143-9151 Electron transport in solution-grown TIPS-pentacene single crystals: Effects of gate dielectrics and polar impurities. 2016 , 27, 1781-1787 Direct CH arylation for various Ar-cored diketopyrrolopyrrole containing small molecules in		11
412 411	Electron transport in solution-grown TIPS-pentacene single crystals: Effects of gate dielectrics and polar impurities. 2016, 27, 1781-1787 Direct CH arylation for various Ar-cored diketopyrrolopyrrole containing small molecules in solution-processed field-effect transistors. 2016, 6, 57163-57173 Fullerene Additives Convert Ambipolar Transport to p-Type Transport while Improving the Operational Stability of Organic Thin Film Transistors. Advanced Functional Materials, 2016, 26, 4472-448 High Conductivity in Molecularly p-Doped Diketopyrrolopyrrole-Based Polymer: The Impact of a		11 9
412 411 410	Electron transport in solution-grown TIPS-pentacene single crystals: Effects of gate dielectrics and polar impurities. 2016, 27, 1781-1787 Direct CH arylation for various Ar-cored diketopyrrolopyrrole containing small molecules in solution-processed field-effect transistors. 2016, 6, 57163-57173 Fullerene Additives Convert Ambipolar Transport to p-Type Transport while Improving the Operational Stability of Organic Thin Film Transistors. Advanced Functional Materials, 2016, 26, 4472-448 High Conductivity in Molecularly p-Doped Diketopyrrolopyrrole-Based Polymer: The Impact of a High Dopant Strength and Good Structural Order. Advanced Materials, 2016, 28, 6003-10 Enhancing Crystalline Structural Orders of Polymer Semiconductors for Efficient Charge Transport	3 1 5.6	11 9 31
412 411 410 409	Electron transport in solution-grown TIPS-pentacene single crystals: Effects of gate dielectrics and polar impurities. 2016, 27, 1781-1787 Direct CH arylation for various Ar-cored diketopyrrolopyrrole containing small molecules in solution-processed field-effect transistors. 2016, 6, 57163-57173 Fullerene Additives Convert Ambipolar Transport to p-Type Transport while Improving the Operational Stability of Organic Thin Film Transistors. Advanced Functional Materials, 2016, 26, 4472-448 High Conductivity in Molecularly p-Doped Diketopyrrolopyrrole-Based Polymer: The Impact of a High Dopant Strength and Good Structural Order. Advanced Materials, 2016, 28, 6003-10 Enhancing Crystalline Structural Orders of Polymer Semiconductors for Efficient Charge Transport	3 1 5.6	11 9 31 98

405	NEXAFS spectroscopy of conjugated polymers. 2016 , 81, 532-554	47
404	Polymer based on benzothiadiazole-bridged bis-isoindigo for organic field-effect transistor applications. 2016 , 125, 407-413	8
403	Significant Improvement of Semiconducting Performance of the Diketopyrrolopyrrole-Quaterthiophene Conjugated Polymer through Side-Chain Engineering via Hydrogen-Bonding. 2016 , 138, 173-85	211
402	Morphological control of conjugated polymers by additive annealing for solar cell applications. 2016 , 211, 25-29	3
401	Flexible Organic Transistors with Controlled Nanomorphology. 2016 , 16, 314-9	76
400	Complementary Semiconducting Polymer Blends: The Influence of Conjugation-Break Spacer Length in Matrix Polymers. <i>Macromolecules</i> , 2016 , 49, 2601-2608	42
399	Diazaisoindigo-Based Polymers with High-Performance Charge-Transport Properties: From Computational Screening to Experimental Characterization. 2016 , 28, 2209-2218	95
398	Diketopyrrolopyrrole-based polymer with a semi-fluorinated side chain for high-performance organic thin-film transistors. 2016 , 6, 29164-29171	13
397	D-A1-D-A2 Copolymer Based on Pyridine-Capped Diketopyrrolopyrrole with Fluorinated Benzothiadiazole for High-Performance Ambipolar Organic Thin-Film Transistors. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 8620-6	19
396	Coherent Dynamics of Mixed Frenkel and Charge-Transfer Excitons in Dinaphtho[2,3-b:2'3'-f]thieno[3,2-b]-thiophene Thin Films: The Importance of Hole Delocalization. 2016 , 7, 1374-80	23
395	Regioregular and Random Difluorobenzothiadiazole Electron Donor Acceptor Polymer Semiconductors for Thin-Film Transistors and Polymer Solar Cells. <i>Macromolecules</i> , 2016 , 49, 2541-2548 ^{5.5}	28
394	Copolymerization of zinc-activated isoindigo- and naphthalene-diimide based monomers: an efficient route to low bandgap £conjugated random copolymers with tunable properties. 2016 , 7, 2691-2697	12
393	Synthesis and characterization of two fluorenone-based conjugated polymers and their application in solar cells and thin film transistors. 2016 , 57, 1430-1434	5
392	Lactone-fused electron-deficient building blocks for n-type polymer field-effect transistors: synthesis, properties, and impact of alkyl substitution positions. 2016 , 7, 2264-2271	5
391	High Mobility Organic Field-Effect Transistors from Majority Insulator Blends. 2016 , 28, 1256-1260	66
390	Critical role of silk fibroin secondary structure on the dielectric performances of organic thin-film transistors. 2016 , 6, 5907-5914	13
389	Effects of Crystal Morphology on Singlet Exciton Fission in Diketopyrrolopyrrole Thin Films. 2016 , 120, 1357-66	100
388	DonorAcceptor Conjugated Polymers Based on Dithieno[3,2-b:3?,2?-b?]naphtho[1,2-b:5,6-b?]dithiophene: Synthesis and Semiconducting 5.5 Properties. <i>Macromolecules</i> , 2016 , 49, 825-832	25

(2017-2016)

387	Dithienobenzochalcogenodiazole-based electron donor (acceptor polymers for organic electronics). 2016 , 129, 90-99		8
386	Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: Rough surfaces and relatively low charge mobility. 2016 , 27, 523-526		15
385	Synthesis and Characterization of Isoindigo[7,6-g]isoindigo-Based DonorAcceptor Conjugated Polymers. <i>Macromolecules</i> , 2016 , 49, 2135-2144	5.5	55
384	Mobility Exceeding 10 cm2/(V៤) in DonorAcceptor Polymer Transistors with Band-like Charge Transport. 2016 , 28, 420-424		130
383	OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel material. 2016 , 223, 114-122		47
382	Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues. 2016 , 3, 119-123		56
381	Highly Sensitive Thin-Film Field-Effect Transistor Sensor for Ammonia with the DPP-Bithiophene Conjugated Polymer Entailing Thermally Cleavable tert-Butoxy Groups in the Side Chains. <i>ACS Applied Materials & Diterfaces</i> , 2016 , 8, 3635-43	9.5	91
380	A nanogroove-guided slot-die coating technique for highly ordered polymer films and high-mobility transistors. 2016 , 52, 358-61		22
379	Toward Thermal Stable and High Photovoltaic Efficiency Ternary Conjugated Copolymers: Influence of Backbone Fluorination and Regioselectivity. 2017 , 29, 1758-1768		55
378	A Role of Side-Chain Regiochemistry of Thienylenellinylenellinienylene (TVT) in the Transistor Performance of Isomeric Polymers. <i>Macromolecules</i> , 2017 , 50, 884-890	5.5	38
377	Molecular Doping of a High Mobility DiketopyrrolopyrroleDithienylthieno[3,2-b]thiophene DonorAcceptor Copolymer with F6TCNNQ. <i>Macromolecules</i> , 2017 , 50, 914-926	5.5	51
376	Precise Side-Chain Engineering of Thienylenevinylene-Benzotriazole-Based Conjugated Polymers with Coplanar Backbone for Organic Field Effect Transistors and CMOS-like Inverters. <i>ACS Applied Materials & Discrete Materials (Materials & Discrete Materials & Discr</i>	9.5	34
375	5,5'-Diazaisoindigo: an Electron-Deficient Building Block for Donor-Acceptor Conjugated Polymers. 2017 , 12, 302-307		20
374	Multi-Scale Assembly of Polythiophene-Surfactant Supramolecular Complexes for Charge Transport Anisotropy. <i>Macromolecules</i> , 2017 , 50, 1047-1055	5.5	14
373	High, Anisotropic, and Substrate-Independent Mobility in Polymer Field-Effect Transistors Based on Preassembled Semiconducting Nanofibrils. 2017 , 11, 2000-2007		6
372	Acceptor-donor-acceptor conjugated oligomers based on diketopyrrolopyrrole and thienoacenes with four, five and six rings for organic thin-film transistors. 2017 , 35, 480-489		4
371	Organic Field-Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometer-Sized Devices. <i>Advanced Functional Materials</i> , 2017 , 27, 1605715	15.6	20
370	Robust Direct (Hetero)arylation Polymerization in Biphasic Conditions. 2017 , 139, 2816-2824		55

369	Donor-acceptor stacking arrangements in bulk and thin-film high-mobility conjugated polymers characterized using molecular modelling and MAS and surface-enhanced solid-state NMR spectroscopy. 2017 , 8, 3126-3136		50
368	Universal Compact Model for Thin-Film Transistors and Circuit Simulation for Low-Cost Flexible Large Area Electronics. 2017 , 64, 2030-2037		22
367	Donor Acceptor Conjugated Polymers Based on Indacenodithiophene Derivative Bridged Diketopyrrolopyrroles: Synthesis and Semiconducting Properties. <i>Macromolecules</i> , 2017 , 50, 2344-2353	5.5	32
366	Multifluorination toward High-Mobility Ambipolar and Unipolar n-Type Donor-Acceptor Conjugated Polymers Based on Isoindigo. <i>Advanced Materials</i> , 2017 , 29, 1606217	24	139
365	Spatially Uniform Thin-Film Formation of Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces by Self-Assisted Flow-Coating. <i>ACS Applied Materials & Company Continued Materials & Con</i>	62:45	7
364	Ultralow bandgap molecular semiconductors for ambient-stable and solution-processable ambipolar organic field-effect transistors and inverters. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2368-2	2379	39
363	Buta-1,3-diyne-Based Econjugated Polymers for Organic Transistors and Solar Cells. <i>Macromolecules</i> , 2017 , 50, 1430-1441	5.5	37
362	Influence of Electric Fields on the Electron Transport in DonorAcceptor Polymers. 2017, 121, 3714-3723	;	4
361	Side-chain modulation of dithienofluorene-based copolymers to achieve high field-effect mobilities. 2017 , 8, 2942-2951		38
360	Hybrid ZnO-organic semiconductor interfaces in photodetectors: A comparison of two near-infrared donor-acceptor copolymers. <i>Organic Electronics</i> , 2017 , 45, 115-123	3.5	16
359	Environmentally benign fabrication processes for high-performance polymeric semiconductors. Journal of Materials Chemistry C, 2017 , 5, 2745-2757	7.1	25
358	All Polymer FETs Direct-Written on Flexible Substrates Achieving MHz Operation Regime. 2017 , 64, 196	0-196	7 5
357	Naphthodipyrrolidone (NDP) based conjugated polymers with high electron mobility and ambipolar transport properties. 2017 , 8, 3255-3260		17
356	Bias stress effects in pentacene thin-film transistors with poly(methyl methacrylate) gate insulator. 2017 , 645, 36-42		
355	Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors. <i>Advanced Materials</i> , 2017 , 29, 1700411	24	43
354	Flexible and Highly Photosensitive Electrolyte-Gated Organic Transistors with Ionogel/Silver Nanowire Membranes. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 18134-18141	9.5	17
353	Solution-Processed Nanoporous Organic Semiconductor Thin Films: Toward Health and Environmental Monitoring of Volatile Markers. <i>Advanced Functional Materials</i> , 2017 , 27, 1701117	15.6	90
352	Densely Packed Random Quarterpolymers Containing Two Donor and Two Acceptor Units: Controlling Absorption Ability and Molecular Interaction to Enable Enhanced Polymer Photovoltaic Devices 2017 7 1700349		20

334

Photo-Response of Low Voltage Flexible TIPS-Pentacene Organic Field-Effect Transistors. 2017, 17, 3689-36977 351 Crystalline Organic Pigment-Based Field-Effect Transistors. ACS Applied Materials & Description of the Company 350 9.5 42 2017, 9, 21891-21899 Trends in molecular design strategies for ambient stable n-channel organic field effect transistors. 349 7.1 40 Journal of Materials Chemistry C, 2017, 5, 7404-7430 Chlorinated 2,1,3-Benzothiadiazole-Based Polymers for Organic Field-Effect Transistors. 348 28 5.5 Macromolecules, 2017, 50, 4649-4657 Highly sensitive near infrared organic phototransistors based on conjugated polymer nanowire 347 3.5 47 networks. Organic Electronics, 2017, 48, 12-18 Ethanol-Processable, Highly Crystalline Conjugated Polymers for Eco-Friendly Fabrication of 346 5.5 49 Organic Transistors and Solar Cells. Macromolecules, 2017, 50, 4415-4424 Solution-processed organic horganic hybrid CMOS inverter exhibiting a high gain reaching 890. 345 3.5 13 Organic Electronics, 2017, 48, 127-131 A new rod-shaped BODIPY-acetylene molecule for solution-processed semiconducting 19 344 microribbons in n-channel organic field-effect transistors. 2017, 41, 6232-6240 Solution Processing with a Good Solvent Additive for Highly Reliable Organic Thin-Film Transistors. 343 27 **2017**, 121, 13930-13937 Flexible Organic/Inorganic Hybrid Near-Infrared Photoplethysmogram Sensor for Cardiovascular 24 342 137 Monitoring. Advanced Materials, 2017, 29, 1700975 Real-time observation of the reception of silver ink in soft blanket gravure printing. 2017, 341 1 Isoindigo dye incorporated copolymers with diselenophenylethene: Synthesis, characterization, and enhanced mobilities in field-effect transistors with electrodes modified by thiol-based 340 10 self-assembled monolayers. 2017, 112, 180-188 Rational design of diarylethylene-based polymeric semiconductors for high-performance organic 339 12 field-effect transistors. 2017, 55, 585-603 Recent advances in organic ternary solar cells. 2017, 5, 11501-11517 338 91 Microstructure engineering of polymer semiconductor thin films for high-performance field-effect 12 337 transistors using a bi-component processing solution. Journal of Materials Chemistry C, 2017, 5, 3568-35781 Effect of alkyl chain spacer on charge transport in n-type dominant polymer semiconductors with a 336 diketopyrrolopyrrole-thiophene-bithiazole acceptorflonorflcceptor unit. Journal of Materials 7.1 21 Chemistry C, 2017, 5, 3616-3622 Thermal Gradient During Vacuum-Deposition Dramatically Enhances Charge Transport in Organic Semiconductors: Toward High-Performance N-Type Organic Field-Effect Transistors. ACS Applied 335 9.5 3 Materials & amp; Interfaces, 2017, 9, 9910-9917 Bis(2-oxo-7-azaindolin-3-ylidene)benzodifuran-dione-based donor acceptor polymers for

high-performance n-type field-effect transistors. 2017, 8, 2381-2389

13

333	High-Performance, Air-Stable Field-Effect Transistors Based on Heteroatom-Substituted Naphthalenediimide-Benzothiadiazole Copolymers Exhibiting Ultrahigh Electron Mobility up to 8.5 cm V s. <i>Advanced Materials</i> , 2017 , 29, 1602410	24	158
332	Fully solution-processed organic thin-film transistors by consecutive roll-to-roll gravure printing. <i>Organic Electronics</i> , 2017 , 42, 361-366	3.5	36
331	High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. 2017 , 16, 356-362		276
330	Hole Mobility and Electron Injection Properties of D-A Conjugated Copolymers with Fluorinated Phenylene Acceptor Units. <i>Advanced Materials</i> , 2017 , 29, 1603830	24	40
329	Ambipolar tetrafluorodiphenylethene-based donor\(\text{lcceptor copolymers: synthesis, properties, backbone conformation and fluorine-induced conformational locks. \(\text{2017}, 8, 879-889 \)		10
328	Ambipolar charge distribution in donor\(\text{lcceptor polymer field-effect transistors.}\) Journal of Materials Chemistry C, \(2017\), 5, 754-762	7.1	11
327	Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 566-	-372	38
326	Thiophene-Based Organic Semiconductors. 2017 , 375, 84		50
325	Effect of Donor Building Blocks on the Charge-Transfer Characteristics of Diketopyrrolopyrrole-Based Donor-Acceptor-Type Semiconducting Copolymers. <i>ACS Applied Materials & Donor Acceptor Acce</i>	9.5	20
324	Ultra-high mobility in defect-free poly(3-hexylthiophene-2,5-diyl) field-effect transistors through supra-molecular alignment. <i>Organic Electronics</i> , 2017 , 51, 94-102	3.5	20
323	Direct writing of inkjet-printed short channel organic thin film transistors. <i>Organic Electronics</i> , 2017 , 51, 485-489	3.5	11
322	Tuning carrier transport properties of thienoisoindigo-based copolymers by loading fluorine atoms onto the diarylethylene-based electron-donating units. 2017 , 132, 12-22		6
321	Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. 2017 , 8, 1202		230
320	Plasma Polymerization: Electronics and Biomedical Application. 2017 , 593-657		4
319	Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Applied Materials & Applied &</i>	9.5	32
318	Extended Isoindigo-Based Derivative: A Promising Electron-Deficient Building Block for Polymer Semiconductors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 40549-40555	9.5	26
317	Influence of Simultaneous Tuning of Molecular Weights and Alkyl Substituents of Poly(thienoisoindigo-alt-naphthalene)s on Morphology and Change Transport Properties. <i>ACS Applied Materials & Distriction (Communication of Materials & Distriction of Materials & Distriction (Communication of Materials & Distriction of M</i>	9.5	11
316	Measurements of Ambipolar Seebeck Coefficients in High-Mobility Diketopyrrolopyrrole Donor ∆ cceptor Copolymers. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700225	6.4	19

315	New Fluorinated Dithienyldiketopyrrolopyrrole Monomers and Polymers for Organic Electronics. <i>Macromolecules</i> , 2017 , 50, 7080-7090	5.5	41
314	Evaluation of (E)-1,2-di(furan-2-yl)ethene as building unit in diketopyrrolopyrrole alternating copolymers for transistors. 2017 , 8, 6181-6187		17
313	An Imide-Based Pentacyclic Building Block for n-Type Organic Semiconductors. 2017 , 23, 14723-14727		10
312	Engineering of Amorphous Polymeric Insulators for Organic Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700157	6.4	32
311	Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. <i>Advanced Functional Materials</i> , 2017 , 27, 1701973	15.6	59
310	Directional Solution Coating by the Chinese Brush: A Facile Approach to Improving Molecular Alignment for High-Performance Polymer TFTs. <i>Advanced Materials</i> , 2017 , 29, 1606987	24	58
309	Use of high-k encapsulation to improve mobility in trap-limited metal-oxide semiconductors. 2017 , 254, 1700124		5
308	Recent progress in the development of n-type organic semiconductors for organic field effect transistors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8654-8681	7.1	274
307	Exonjugated naphthodithiophene homopolymers bearing alkyl/alkylthio-thienyl substituents: facile synthesis using hexamethylditin and their charge-transport and photovoltaic properties. 2017 , 49, 729-734		
306	Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. <i>Chemical Reviews</i> , 2017 , 117, 112	23 38 .111	2 68 4
305	Effect of capping group on the properties of non-polymeric diketopyrrolopyrroles for solution-processed bulk heterojunction solar cells. <i>Organic Electronics</i> , 2017 , 50, 339-346	3.5	2
304	Hydrogen-Bonding-Directed Ordered Assembly of Carboxylated Poly(3-Alkylthiophene)s. 2017 , 2, 8526	-8535	15
303	Self-Assembled Porous Alumina Based Organic Nanotriode Arrays. 2017, 17, 7945-7950		8
302	Regioregular Bis-Pyridal[2,1,3]thiadiazole-Based Semiconducting Polymer for High-Performance Ambipolar Transistors. 2017 , 139, 17735-17738		83
301	High Conductivity in a Nonplanar n-Doped Ambipolar Semiconducting Polymer. 2017 , 29, 9742-9750		35
300	Difluorobenzoxadiazole-Based Polymer Semiconductors for High-Performance Organic Thin-Film Transistors with Tunable Charge Carrier Polarity. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700100	6.4	9
299	Synthesis of High-Crystallinity DPP Polymers with Balanced Electron and Hole Mobility. 2017 , 29, 10220)-1023	 2 29
298	Linear Conjugated Polymer Backbones Improve Alignment in Nanogroove-Assisted Organic Field-Effect Transistors. 2017 , 139, 17624-17631		52

297	Fully solution processed low voltage OFET platform for vapour sensing applications. 2017,		4
296	Reduced exchange narrowing caused by gate-induced charge carriers in high-mobility donor copolymers. 2017 , 95,		6
295	Controlled Crystallization of Conjugated Polymer Films from Solution and Solvent Vapor for Polymer Electronics. <i>Advanced Functional Materials</i> , 2017 , 27, 1603083	15.6	41
294	Rational design of Ebridges for ambipolar DPP-RH-based small molecules in organic photovoltaic cells. 2017 , 45, 338-348		16
293	Flexible Hybrid Electronic Circuits and Systems. 2017 , 7, 27-37		17
292	Electric Field and Mobility Dependent First-Order Recombination Losses in Organic Solar Cells. 2017 , 7, 1601379		24
291	Chain conformations and phase behavior of conjugated polymers. 2016 , 13, 49-67		102
290	Charge delocalization characteristics of regioregular high mobility polymers. 2017 , 8, 1146-1151		10
289	Synthesis, characterization, and field-effect performance of the halogenated indolone derivatives. 2017 , 136, 434-440		3
288	Organic Field-Effect Transistor: Device Physics, Materials, and Process. 2017,		3
287	6,6?-Diaryl-substituted biazulene diimides for solution-processable high-performance n-type organic semiconductors. 2018 , 2, 975-985		35
286	Electrical Double-Slope Nonideality in Organic Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2018 , 28, 1707221	15.6	45
285	Printed Thin-Film Transistors: Research from China. <i>ACS Applied Materials & Comp.; Interfaces</i> , 2018 , 10, 25902-25924	9.5	44
284	Nano-Alignment in Semiconducting Polymer Films: A Path to Achieve High Current Density and Brightness in Organic Light Emitting Transistors. 2018 , 5, 2137-2144		26
283	Mobility overestimation due to minority carrier injection and trapping in organic field-effect transistors. <i>Organic Electronics</i> , 2018 , 57, 34-44	3.5	30
282	Charge-Trapping-Induced Non-Ideal Behaviors in Organic Field-Effect Transistors. <i>Advanced Materials</i> , 2018 , 30, e1800017	24	51
281	High-performance didodecylbenzothienobenzothiophene-based top-gate organic transistors processed by spin coating using binary solvent mixtures. <i>Organic Electronics</i> , 2018 , 58, 306-312	3.5	6
280	Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors. 2018 , 12, 3938-3946		40

279	Synthesis of diketopyrrolopyrrole-based polymers with polydimethylsiloxane side chains and their application in organic field-effect transistors. 2018 , 5, 172025		6
278	Quantitative Femtosecond Charge Transfer Dynamics at Organic/Electrode Interfaces Studied by Core-Hole Clock Spectroscopy. 2018 , 137-178		1
277	Synthesis and structural analysis of dimethylaminophenyl-end-capped diketopyrrolopyrrole for highly stable electronic devices with polymeric gate dielectric. 2018 , 42, 4052-4060		4
276	Hydrocarbons-Driven Crystallization of Polymer Semiconductors for Low-Temperature Fabrication of High-Performance Organic Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2018 , 28, 17063	72 ^{15.6}	13
275	Effect of methyl substitution on the diketopyrrolopyrrole-based semiconducting polymers for organic thin film transistors. <i>Organic Electronics</i> , 2018 , 56, 129-138	3.5	9
274	Integrated circuits based on conjugated polymer monolayer. 2018 , 9, 451		50
273	Quinoline-Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6 cm V s in Flexible Thin Film Devices. <i>Advanced Materials</i> , 2018 , 30, 1704843	24	73
272	High-Performance n-Channel Organic Transistors Using High-Molecular-Weight Electron-Deficient Copolymers and Amine-Tailed Self-Assembled Monolayers. <i>Advanced Materials</i> , 2018 , 30, e1707164	24	70
271	Fast optical inspection of operations of large-area active-matrix backplane by gate modulation imaging. <i>Organic Electronics</i> , 2018 , 55, 187-193	3.5	5
270	Stretchable Polymer Semiconductors for Plastic Electronics. Advanced Electronic Materials, 2018, 4, 17	′00 4 .49	133
270 269	Stretchable Polymer Semiconductors for Plastic Electronics. <i>Advanced Electronic Materials</i> , 2018 , 4, 17 Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. 2018 , 2, 331-337	'00 4 .29	133
	Influence of catalytic systems in Stille polymerization on the electrochromic performance of	°00 4. 29	
269	Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrole-based conjugated polymers. 2018 , 2, 331-337 Well-Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures		12
269 268	Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. 2018 , 2, 331-337 Well-Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward High-Performance Flexible Field-Effect Transistors. <i>Advanced Materials</i> , 2018 , 30, 1705286 Improved Electron Transport with Reduced Contact Resistance in N-Doped Polymer Field-Effect		12 57
269268267	Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. 2018, 2, 331-337 Well-Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward High-Performance Flexible Field-Effect Transistors. Advanced Materials, 2018, 30, 1705286 Improved Electron Transport with Reduced Contact Resistance in N-Doped Polymer Field-Effect Transistors with a Dimeric Dopant. 2018, 39, e1700726 Tunable intrinsic semiconducting properties of diketopyrrolopyrrole-based copolymers with		12 57 8
269268267266	Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. 2018, 2, 331-337 Well-Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward High-Performance Flexible Field-Effect Transistors. Advanced Materials, 2018, 30, 1705286 Improved Electron Transport with Reduced Contact Resistance in N-Doped Polymer Field-Effect Transistors with a Dimeric Dopant. 2018, 39, e1700726 Tunable intrinsic semiconducting properties of diketopyrrolopyrrole-based copolymers with electron donating thiophene and electron accepting thiazole moieties. 2018, 236, 1-7 Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of		12 57 8
269 268 267 266	Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. 2018, 2, 331-337 Well-Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward High-Performance Flexible Field-Effect Transistors. Advanced Materials, 2018, 30, 1705286 Improved Electron Transport with Reduced Contact Resistance in N-Doped Polymer Field-Effect Transistors with a Dimeric Dopant. 2018, 39, e1700726 Tunable intrinsic semiconducting properties of diketopyrrolopyrrole-based copolymers with electron donating thiophene and electron accepting thiazole moieties. 2018, 236, 1-7 Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of 2,4-dichlorophenoxyacetic acid. 2018, 113, 32-38 Probing Device Degradation and Electric Fields in Polymeric Field-Effect Transistors by SFG		12 57 8 8

261	Regioregular dithienosilole- and dithienogermole-based small molecules with symmetric distal/distal orientation of F atoms. 2018 , 155, 7-13		4
260	Thieno[3,2-b]pyrrole-benzothiadiazole Banana-Shaped Small Molecules for Organic Field-Effect Transistors. <i>ACS Applied Materials & Discrete States and Procest Applied Materials & Discrete States and Process Applied Materials & Discrete States & Discrete Stat</i>	9.5	28
259	Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films. 2018 , 34, 1109-1122		44
258	High-performance FDTE-based polymer semiconductors with F?H intramolecular noncovalent interactions: Synthesis, characterization, and their field-effect properties. 2018 , 149, 149-157		13
257	Conjugated DA terpolymers for organic field-effect transistors and solar cells. 2018, 50, 21-31		17
256	Organic semiconductor crystals. 2018 , 47, 422-500		429
255	Fabrication of Ultraviolet-Curable Piezoelectric Composite for Sensor and Actuator Applications. 2018 ,		1
254	Uniaxial Alignment of Conjugated Polymer Films for High-Performance Organic Field-Effect Transistors. <i>Advanced Materials</i> , 2018 , 30, e1705463	24	118
253	NIR polymers and phototransistors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13049-13058	7.1	19
252	A Review of Fusible Interlinings Usage in Garment Manufacture. 2018 , 10,		6
251	Synthesis and Properties of Soluble Fused Thiophene Diketopyrrolopyrrole-Based Polymers with Tunable Molecular Weight. <i>Macromolecules</i> , 2018 , 51, 9422-9429	5.5	14
250	Conjugated Polymers Based on Thiazole Flanked Naphthalene Diimide for Unipolar n-Type Organic Field-Effect Transistors. 2018 , 30, 8343-8351		24
249	Inkjet-printed unipolar n-type transistors on polymer substrates based on dicyanomethylene-substituted diketopyrrolopyrrole quinoidal compounds. <i>Organic Electronics</i> , 2018 , 63, 267-275	3.5	6
248	Theoretical Calculations for Highly Selective Direct Heteroarylation Polymerization: New Nitrile-Substituted Dithienyl-Diketopyrrolopyrrole-Based Polymers. 2018 , 23,		7
247	Synthesis and opto-electronic properties of functionalized pyrimidine-based conjugated polymers. 2018 , 56, 2547-2553		1
246	Functional Electronic Inks. 2018 , 11-52		
245	A comparative analysis of symmetric diketopyrrolopyrrole-cored small conjugated molecules with aromatic flanks: From geometry to charge transport. 2018 , 39, 2526-2538		2
244	Investigating the Optical Properties of Thiophene Additions to s-Indacene Donors with Diketopyrrolopyrrole, Isoindigo, and Thienothiophene Acceptors. 2018 , 122, 27713-27733		7

243	Quasi-One-Dimensional Charge Transport Can Lead to Nonlinear Current Characteristics in Organic Field-Effect Transistors. 2018 , 9, 6550-6555		12
242	Surface Structure of Organic Semiconductor [n]Phenacene Single Crystals. 2018 , 140, 14046-14049		2
241	Efficient Electron Mobility in an All-Acceptor Napthalenediimide-Bithiazole Polymer Semiconductor with Large Backbone Torsion. <i>ACS Applied Materials & Data Samp; Interfaces</i> , 2018 , 10, 40070-40077	9.5	12
240	Influence of Branched Alkyl Ester-Labeled Side Chains on Specific Chain Arrangement and Charge-Transport Properties of Diketopyrrolopyrrole-Based Conjugated Polymers. <i>ACS Applied Materials & Diketopyroles & Materials & Diketopyroles & Di</i>	9.5	13
239	Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors. <i>Advanced Functional Materials</i> , 2018 , 28, 1804222	15.6	75
238	Insight into High-Performance Conjugated Polymers for Organic Field-Effect Transistors. 2018 , 4, 2748-	-2785	176
237	A Thiazole Naphthalene Diimide Based n-Channel Donor Acceptor Conjugated Polymer. <i>Macromolecules</i> , 2018 , 51, 7320-7328	5.5	22
236	The effect of single atom replacement on organic thin film transistors: case of thieno[3,2-b]pyrrole vs. furo[3,2-b]pyrrole. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10050-10058	7.1	10
235	Correlating Charge Transport with Structure in Deconstructed Diketopyrrolopyrrole Oligomers: A Case Study of a Monomer in Field-Effect Transistors. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 10, 19844-19852	9.5	7
234	Incorporation of Thieno[3,2-b]pyrrole into Diketopyrrolopyrrole-Based Copolymers for Efficient Organic Field Effect Transistors. 2018 , 7, 629-634		17
233	High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. <i>Chemical Reviews</i> , 2018 , 118, 5690-5754	68.1	354
232	Solution-Processed High-Performance Tetrathienothiophene-Based Small Molecular Blends for Ambipolar Charge Transport. <i>Advanced Functional Materials</i> , 2018 , 28, 1801025	15.6	21
232	· · · · · · · · · · · · · · · · · · ·	15.6 6.4	21
	Ambipolar Charge Transport. <i>Advanced Functional Materials</i> , 2018 , 28, 1801025 Enhancing Molecular Alignment and Charge Transport of Solution-Sheared Semiconducting		
231	Ambipolar Charge Transport. <i>Advanced Functional Materials</i> , 2018 , 28, 1801025 Enhancing Molecular Alignment and Charge Transport of Solution-Sheared Semiconducting Polymer Films by the Electrical-Blade Effect. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800110 Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect	6.4	21
231	Ambipolar Charge Transport. Advanced Functional Materials, 2018, 28, 1801025 Enhancing Molecular Alignment and Charge Transport of Solution-Sheared Semiconducting Polymer Films by the Electrical-Blade Effect. Advanced Electronic Materials, 2018, 4, 1800110 Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Company Interfaces, 2018, 10, 18948-18955	6.4	21
231 230 229	Ambipolar Charge Transport. Advanced Functional Materials, 2018, 28, 1801025 Enhancing Molecular Alignment and Charge Transport of Solution-Sheared Semiconducting Polymer Films by the Electrical-Blade Effect. Advanced Electronic Materials, 2018, 4, 1800110 Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. ACS Applied Materials & Dielectric Layer for Enhanced Electron Transport in Polymer for Enhanced Electron Transport in Polymer for Enh	6.4	21187

225	Reducing charge recombination of polymer solar cells by introducing composite anode buffer layer. 2018 , 171, 8-15		6
224	Nonhalogenated Solvent Processable and Printable High-Performance Polymer Semiconductor Enabled by Isomeric Nonconjugated Flexible Linkers. <i>Macromolecules</i> , 2018 , 51, 4976-4985	5.5	49
223	Stretchable and Degradable Semiconducting Block Copolymers. <i>Macromolecules</i> , 2018 , 51, 5944-5949	5.5	44
222	Effect of donor units in methylated DPP-based polymers on performance of organic field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10464-10471	7.1	7
221	Poly(naphthalene diimide-alt-bithiophene) Prepared by Direct (Hetero)arylation Polymerization for Efficient All-Polymer Solar Cells. 2018 , 30, 5353-5361		37
220	Performance Comparisons of Polymer Semiconductors Synthesized by Direct (Hetero)Arylation Polymerization (DHAP) and Conventional Methods for Organic Thin Film Transistors and Organic Photovoltaics. 2018 , 23,		14
219	Flexible and Broad-Spectral Hybrid Optical Modulation Transistor Based on a Polymer-Silver Nanoparticle Blend. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 26586-26593	9.5	2
218	Spectroscopic Study of Charge Transport at Organic SolidWater Interface. 2018 , 30, 5422-5428		7
217	Interfacial effects on solution-sheared thin-film transistors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12006-12015	7.1	11
216	Study on the Miscibility of Polypyrrole and Polyaniline Polymer Blends. 2018, 2018, 1-5		5
215	Controlled ambipolar charge transport of polymer semiconductors by viologen-doping for complementary-like electronic circuits. <i>Organic Electronics</i> , 2018 , 59, 224-229	3.5	7
214	Direct arylation polymerization: A guide to optimal conditions for effective conjugated polymers. 2018 , 83, 135-201		75
213	Embedding pyridine units in acceptors to construct donor-acceptor conjugated polymers. 2019 , 30, 25-	30	10
212	Impact of new skeletal isomerization in polymer semiconductors. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10860-10867	7.1	5
211	Low Band Gap Donor Acceptor Conjugated Polymers with Indanone-Condensed Thiadiazolo [3,4-g] quinoxaline Acceptors. <i>Macromolecules</i> , 2019 , 52, 6149-6159	5.5	25
210	Flexible Pressure-Sensitive Contact Transistors Operating in the Subthreshold Regime. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 31111-31118	9.5	16
209	Microscopic observation of efficient charge transport processes across domain boundaries in donor-acceptor-type conjugated polymers. 2019 , 2,		17
208	Highly-soluble multi-alkylated polymer semiconductors and applications in high-performance field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9591-9598	7.1	7

207	Influence of Molecular Weight on the Solidification of a Semiconducting Polymer during Time-Controlled Spin-Coating. 2019 , 123, 17102-17111		8	
206	Dimethylacetamide-promoted Direct Arylation Polycondensation of 6,6?-Dibromo-7,7?-diazaisoindigo and (E)-1,2-bis(3,4-difluorothien-2-yl)ethene toward High Molecular Weight n-Type Conjugated Polymers. 2019 , 37, 1099-1104		6	
205	Tuning Backbone Planarity in Thiadiazolobenzotriazole B is(thienothiophenyl)ethylene Copolymers for Organic Field-Effect Transistors. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2302-2312	4.3	6	
204	A High Mobility Conjugated Polymer Enables Air and Thermally Stable CsPbI2Br Perovskite Solar Cells with an Efficiency Exceeding 15%. 2019 , 4, 1900311		39	
203	Emerging research directions for n-type conjugated polymers. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12809-12821	7.1	32	
202	Fully Printed Organic Electrochemical Transistors from Green Solvents. <i>Advanced Functional Materials</i> , 2019 , 29, 1905266	15.6	28	
201	Understanding of Fluorination Dependence on Electron Mobility and Stability of Naphthalenediimide-Based Polymer Transistors in Environment with 100% Relative Humidity. <i>ACS Applied Materials & Discounty Interfaces</i> , 2019 , 11, 40347-40357	9.5	17	
200	Recent Efforts in Understanding and Improving the Nonideal Behaviors of Organic Field-Effect Transistors. <i>Advanced Science</i> , 2019 , 6, 1900375	13.6	29	
199	A Simple Structure Conjugated Polymer for High Mobility Organic Thin Film Transistors Processed from Nonchlorinated Solvent. <i>Advanced Science</i> , 2019 , 6, 1902412	13.6	18	
198	UVDzone Modified Sol G el Processed ZnO for Improved Diketopyrrolopyrrole-Based Hybrid Photodetectors. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 2455-2462	4	10	
197	Machine Learning for Understanding the Relationship between the Charge Transport Mobility and Electronic Energy Levels for n-Type Organic Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900573	6.4	13	
196	Ethanediylidenebis(isoquinolinedione): A Six-Membered-Ring Diimide Building Block for Ambipolar Semiconducting Polymers. <i>Macromolecules</i> , 2019 , 52, 8238-8247	5.5	4	
195	One-Volt, Solution-Processed Organic Transistors with Self-Assembled Monolayer-TaO Gate Dielectrics. 2019 , 12,		12	
194	High-Performance Proximity Sensors with Nanogroove-Template-Enhanced Extended-Gate Field-Effect Transistor Configuration. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900586	6.4	13	
193	Feasibility Study of Single-Crystal Si Island Manufacturing by Microscale Printing of Nanoparticles and Laser Crystallization. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 34416-34423	9.5	1	
192	An ADA?D? strategy enables perylenediimide-based polymer dyes exhibiting enhanced electron transport characteristics. 2019 , 180, 121712		4	
191	Sol?Gel-Processed Organic?Inorganic Hybrid for Flexible Conductive Substrates Based on Gravure-Printed Silver Nanowires and Graphene. 2019 , 11,		2	
190	Effect of the length and branching point of alkyl side chains on DPP-thieno[3,2-b]thiophene copolymers for organic thin-film transistors. 2019 , 88, 500-507		8	

189	Transmission electron diffraction study of a uniaxially-ordered high-mobility polymeric semiconductor. 2019 , 68, 167-173		1
188	Self-assembly of donor-acceptor conjugated polymers induced by miscible 'poor' solvents. 2019 , 15, 1799-1812		25
187	Nanoscale Ion-Doped Polymer Transistors. 2019 , 19, 1712-1718		15
186	Morphological/nanostructural control toward intrinsically stretchable organic electronics. 2019 , 48, 17	741-178	36 87
185	Effect of solvent structural isomer on microstructural evolution in polythiophene film during solidification. <i>Organic Electronics</i> , 2019 , 71, 150-155	3.5	4
184	Augmenting n-Type Performance of Ambipolar Top-Contact Organic Thin-Film Transistors by Self-Generated Interlayers. 2019 , 31, 7046-7053		9
183	Measuring Energetic Disorder in Organic Semiconductors Using the Photogenerated Charge-Separation Efficiency. 2019 , 10, 3863-3870		21
182	Dithienosilole-co-5-fluoro-2,1,3-benzothiadiazole-containing regioisomeric polymers for organic field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8522-8526	7.1	6
181	Direct Arylation Polymerization for Synthesizing a Library of Conjugated Porous Polymers Containing Thiophene-Flanked Building Blocks. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 1697-1706	4.3	6
180	Effect of structural isomerism in BODIPY based donor-acceptor co-polymers on their photovoltaic performance. 2019 , 186, 215-224		7
179	Enhanced gate-bias stress stability of organic field-effect transistors by introducing a fluorinated polymer in semiconductor/insulator ternary blends. 2019 , 481, 642-648		12
178	Doping-Dedoping Interplay to Realize Patterned/Stacked All-Polymer Optoelectronic Devices. <i>ACS Applied Materials & Devices, 2019</i> , 11, 18580-18589	9.5	5
177	Conjugated polymer/paraffin blends for organic field-effect transistors with high environmental stability. 2019 , 11, 10004-10016		19
176	Bioderived and Eco-Friendly Solvent-Processed High-Mobility Ambipolar Plastic Transistors through Controlled Irregularity of the Polymer Backbone. 2019 , 31, 3831-3839		15
175	Improving Operational Stability of p-Type Field-Effect Transistors by Charge Selective Electrodes: a General Strategy. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900055	6.4	8
174	Efficiency enhancement of organic photovoltaics by introducing high-mobility curved small-molecule semiconductors as additives. 2019 , 7, 12740-12750		5
173	A Solution Processed Ultrathin Molecular Dielectric for Organic Field-Effect Transistors. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 485-493	4	4
172	Knowledge discovery through chemical space networks: the case of organic electronics. 2019 , 25, 87		13

171	Recent Progress in Inkjet-Printed Thin-Film Transistors. Advanced Science, 2019, 6, 1801445	13.6	109
170	Polymer binder assisted, solution processed cyanophenyl functionalized diketopyrrolopyrrole microwire for n-channel field-effect transistors. 2019 , 250, 152-160		4
169	Increased charge carrier mobility and molecular packing of a solution sheared diketopyrrolopyrrole-based donor copolymer by alkyl side chain modification. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3665-3674	7.1	14
168	Thin-film transistors of rhodanine end-capped oligothiophene. 2019 , 58, SBBG09		O
167	Emerging efficient charge-transport landscape based on short-range order in conjugated polymers. 2019 , 251, 104-119		9
166	Recent Progress in Aromatic Polyimide Dielectrics for Organic Electronic Devices and Circuits. <i>Advanced Materials</i> , 2019 , 31, e1806070	24	85
165	Photovoltaic donor-acceptor conjugated polymers with minimally substituted acceptor moieties. <i>Organic Electronics</i> , 2019 , 68, 280-284	3.5	9
164	A Freely Soluble, High Electron Affinity Molecular Dopant for Solution Processing of Organic Semiconductors. 2019 , 31, 1500-1506		22
163	Realizing low-voltage operating crystalline monolayer organic field-effect transistors with a low contact resistance. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3436-3442	7.1	21
162	Non-halogenated solution-processed ambipolar plastic transistors based on conjugated polymers prepared by asymmetric donor engineering. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 14977-14985	7.1	7
161	Diketopyrrolopyrrole tailoring charge transport characteristics of naphthalene diimide based polymers: From unipolar n-typed to ambipolar polymers. 2019 , 136, 46926		4
160	On the Operational, shelf life and degradation mechanism in polymer field effect transistors. 2019 , 126, 125-131		5
159	Dithienobenzothiadiazole-Based Donor-Acceptor Polymer: Synthesis and Characterization for Organic Field-Effect Transistor. <i>Macromolecular Research</i> , 2019 , 27, 227-231	1.9	8
158	Nitrogen-embedded small-molecule semiconducting materials: Effect of chlorine atoms on their electrochemical, self-assembly, and carrier transport properties. 2019 , 163, 615-622		2
157	Design and synthesis of high performance Etonjugated materials through antiaromaticity and quinoid strategy for organic field-effect transistors. 2019 , 136, 13-26		45
156	Effect of the length of a symmetric branched side chain on charge transport in thienoisoindigo-based polymer field-effect transistors. <i>Organic Electronics</i> , 2019 , 65, 251-258	3.5	10
155	Carbon nanotubes assisting interchain charge transport in semiconducting polymer thin films towards much improved charge carrier mobility. 2019 , 62, 813-822		6
154	Hybrid bilayer gate dielectric-based organic thin film transistors. 2019 , 42, 1		6

153	Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Two-Step C?H Activation Strategy. <i>Advanced Materials</i> , 2019 , 31, e1806010	24	43
152	Organic Transistor Based on Cyclopentadithiophene-Benzothiadiazole DonorAcceptor Copolymer for the Detection and Discrimination between Multiple Structural Isomers. <i>Advanced Functional Materials</i> , 2019 , 29, 1808188	15.6	12
151	Finding the Right Bricks for Molecular Legos: A Data Mining Approach to Organic Semiconductor Design. 2019 , 31, 969-978		30
150	Facile fabrication of large area oriented conjugated polymer films by ribbon-shaped FTM and its implication on anisotropic charge transport. <i>Organic Electronics</i> , 2019 , 65, 1-7	3.5	19
149	Silver film etching processing using the inkjet method for the organic thin film transistor. <i>Organic Electronics</i> , 2020 , 77, 105479	3.5	2
148	Donor Acceptor-Conjugated Polymer for High-Performance Organic Field-Effect Transistors: A Progress Report. <i>Advanced Functional Materials</i> , 2020 , 30, 1904545	15.6	133
147	2-Phenylbenzothiophene-based liquid crystalline semiconductors. 2020 , 173, 107964		2
146	Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. 2020 , 100, 1011	81	77
145	Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices. 2020 , 31, 092002		14
144	Synthesis of Cyclopentadithiophene-Diketopyrrolopyrrole Donor-Acceptor Copolymers for High-Performance Nonvolatile Floating-Gate Memory Transistors with Long Retention Time. <i>ACS Applied Materials & Diterfaces</i> , 2020 , 12, 2743-2752	9.5	17
143	Bridging R2R Printed Wireless 1 Bit-Code Generator with an Electrophoretic QR Code Acting as WORM for NFC Carrier Enabled Authentication Label. 2020 , 5, 1900935		17
142	3,7-Bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b?]difuran-2,6-dione Dicyanides with Engineered Side Chains for Unipolar n-Type Transistors. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 103-110	4	O
141	Phototuning Selectively Hole and Electron Transport in Optically Switchable Ambipolar Transistors. <i>Advanced Functional Materials</i> , 2020 , 30, 1908944	15.6	18
140	AB- Versus AA+BB-Suzuki Polycondensation: A Palladium/Tris(tert-butyl)phosphine Catalyst Can Outperform Conventional Catalysts. 2020 , 41, e1900521		3
139	Chain Conformation and Aggregation Structure Formation of a High Charge Mobility DPP-Based Donor Acceptor Conjugated Polymer. <i>Macromolecules</i> , 2020 , 53, 8255-8266	5.5	9
138	Foldable semi-ladder polymers: novel aggregation behavior and high-performance solution-processed organic light-emitting transistors. 2020 , 11, 11315-11321		9
137	Systematic Study on the Morphological Development of Blade-Coated Conjugated Polymer Thin Films via In Situ Measurements. <i>ACS Applied Materials & Empty Interfaces</i> , 2020 , 12, 36417-36427	9.5	3
136	Synchronously improved stretchability and mobility by tuning the molecular weight for intrinsically stretchable transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15646-15654	7.1	9

135	A Flexible 3D Organic Preamplifier for a Lactate Sensor. 2020 , 20, e2000144		8
134	Progress in the synthesis of imide-based N-type polymer semiconductor materials 2020 , 10, 41764-417	779	2
133	Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing. 2020 , 13,		1
132	Perovskite/Organic Semiconductor-Based Photonic Synaptic Transistor for Artificial Visual System. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 39487-39495	9.5	65
131	Electronic processes investigation from ultrafast terahertz in photovoltaic DPPDTT-PCBM films. 2020 , 215, 110684		1
130	Effective interplay of donor and acceptor groups for tuning optoelectronic properties in oligothiophenefiaphthalimide assemblies. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15277-15289	7.1	5
129	Tuning Intra and Intermolecular Interactions for Balanced Hole and Electron Transport in Semiconducting Polymers. 2020 , 32, 7338-7346		12
128	A-D-A Type Semiconducting Small Molecules with Bis(alkylsulfanyl)methylene Substituents and Control of Charge Polarity for Organic Field-Effect Transistors. <i>ACS Applied Materials & Discrete Control of Charge Polarity for Organic Field-Effect Transistors.</i>	9.5	9
127	Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers. 2020 , 56, 11867-11870		9
126	High-Performance, Transparent Solution-Processed Organic Field-Effect Transistor with Low-k Elastomeric Gate Dielectric and Liquid Crystalline Semiconductor: Promises and Challenges. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 3336-3345	4	7
125	n-Channel organic phototransistors with an n-type conjugated polymer based on indacenodithiophene and naphthalenediimide units. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15778-15	787	8
124	Vibronic exciton model for low bandgap donor-acceptor polymers. 2020 , 153, 244901		7
123	Organic Thin Films Based on DPP-DTT:C60 Blends Deposited by MAPLE. 2020 , 10,		3
122	Photoluminescence Quenching of a Novel Electroconductive Poly(propylene thiophenoimine)-co-Poly(ethylenedioxy thiophene) Star Copolymer. 2020 , 12,		1
121	High-performance near-infrared organic phototransistors based on diketopyrrolopyrrole conjugated polymers with partial removal of long branched alkyl side chains. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16915-16922	7.1	5
120	Effect of the Interface Improved by Self-Assembled Aromatic Organic Semiconductor Molecules on Performance of OLED. 2020 , 9, 041007		2
119	Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors. 2020 , 164, 112251		19
118	Mobility of Air-Stable p-type Polythiophene Field-Effect Transistors Fabricated Using Oxidative Chemical Vapor Deposition. <i>Journal of Electronic Materials</i> , 2020 , 49, 3465-3471	1.9	1

117	Understanding of copolymers containing pyridine and selenophene simultaneously and their polarity conversion in transistors. 2020 , 4, 3567-3577		5
116	Air and temperature sensitivity of n-type polymer materials to meet and exceed the standard of N2200. <i>Scientific Reports</i> , 2020 , 10, 4014	4.9	17
115	Printable Organic Semiconductors for Radiation Detection: From Fundamentals to Fabrication and Functionality. 2020 , 8,		18
114	Shear-Enhanced Stretchable Polymer Semiconducting Blends for Polymer-based Field-Effect Transistors. <i>Macromolecular Research</i> , 2020 , 28, 660-669	1.9	6
113	Impact of Gate Size on Abnormal Current Rise Under an Electric Field in Organic Thin-Film Transistors. 2020 , 67, 1143-1148		
112	Molecular Semiconductors for Logic Operations: Dead-End or Bright Future?. <i>Advanced Materials</i> , 2020 , 32, e1905909	24	75
111	Highly Efficient Microscopic Charge Transport within Crystalline Domains in a Furan-Flanked Diketopyrrolopyrrole-Based Conjugated Copolymer. <i>Advanced Functional Materials</i> , 2020 , 30, 2000389	15.6	5
110	Visualization of Carrier Transport in Luminescent Polymer Thin Film by Using Transient Photoluminescence Decay Imaging. 2020 , 217, 1901031		
109	A novel design of donor acceptor polymer semiconductors for printed electronics: application to transistors and gas sensors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 8410-8419	7.1	18
108	Effect of post-deposition annealing temperature on the charge carrier mobility and morphology of DPPDTT based organic field effect transistors. 2020 , 750, 137507		4
107	Nonideal double-slope effect in organic field-effect transistors. 2021 , 16, 1		1
106	Development of conjugated polymers for organic flexible electronics. 2021 , 27-70		1
105	High-performance near-infrared polymeric phototransistors realized by combining cross-linked polymeric semiconductors and bulk heterojunction bilayer structures. 2021 , 22, 100899		16
104	Memory Devices for Flexible and Neuromorphic Device Applications. 2021 , 3, 2000206		7
103	Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. 2021 ,		9
102	Impact of Intermolecular Interactions Between a Diketopyrrolopyrrole-Based Conjugated Polymer and Bromobenzaldehyde on Field-Effect Transistors. <i>Macromolecular Research</i> , 2021 , 29, 89-97	1.9	3
101	Pushing the limits of high-resolution polymer microscopy using antioxidants. 2021 , 12, 153		7
100	Organic crystalline monolayers for ideal behaviours in organic field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 12057-12062	7.1	2

(2021-2021)

99	A Highly Stable Diketopyrrolopyrrole (DPP) Polymer for Chemiresistive Sensors. <i>Advanced Electronic Materials</i> , 2021 , 7, 2000935	6.4	6
98	Revealing Charge Transport and Device Operations of Organic Ambipolar Transistors and Inverters by Four-Probe Measurement. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001134	6.4	2
97	Ultrasensitive and Reliable Organic Field-Effect Transistor-Based Biosensors in Early Liver Cancer Diagnosis. 2021 , 93, 6188-6194		13
96	Dynamics in Electronically Excited States of Diketopyrrolopyrrole T hiophene Conjugated Polymer Thin Films. 2021 , 125, 5572-5580		Ο
95	Recent advances on Econjugated polymers as active elements in high performance organic field-effect transistors. 2021 , 16, 1		24
94	Electrically programmable multilevel nonvolatile memories based on solution-processed organic floating-gate transistors. 2021 , 118, 103301		5
93	Solution-Processed Organic and ZnO Field-Effect Transistors in Complementary Circuits. 2021 , 2, 60-71		О
92	Organic thin film transistors-based biosensors. 2021 , 3, e12094		17
91	Synergy between Photoluminescence and Charge Transport Achieved by Finely Tuning Polymeric Backbones for Efficient Light-Emitting Transistor. 2021 , 143, 5239-5246		7
90	Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films. <i>Macromolecules</i> , 2021 , 54, 3907-3926	5.5	19
89	Highly responsive biosensors based on organic field-effect transistors under light irradiation. 2021 , 32, 3364-3364		2
88	Fabrication and characterization of a novel photoactive-based (0B) piezocomposite material with potential as a functional material for additive manufacturing of piezoelectric sensors. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 11883-11892	2.1	
87	Charge Carrier Mobility Improvement in Diketopyrrolopyrrole Block-Copolymers by Shear Coating. 2021 , 13,		3
86	Controlling Structural and Energetic Disorder in High-Mobility Polymer Semiconductors via Doping with Nitroaromatics. 2021 , 33, 2937-2947		5
85	Understanding the influence of contact resistances on short-channel high-mobility organic transistors in linear and saturation regimes. 2021 , 14, 041010		1
84	Flexible low-voltage organic thin-film transistors and PMOS inverters: the effect of channel width on noise margin. 2021 , 54, 315102		3
83	Greater than 10 cm2[VIIIsII: A breakthrough of organic semiconductors for field-effect transistors. 2021 , 3, 613-630		14
82	Investigation of the Performance of DonorAcceptor Conjugated Polymers in Electrolyte-Gated Organic Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100071	6.4	5

81	Solid-Phase Deposition: Conformal Coverage of Micron-Scale Relief Structures with Stretchable Semiconducting Polymers. 2021 , 3, 988-995		3
80	Facile Functionalization Strategy for Ultrasensitive Organic Protein Biochips in Multi-Biomarker Determination. 2021 , 93, 11305-11311		4
79	Electronic Transport in Organic Semiconductors. 2021 , 41-67		
78	Direction-Selectable Ultra-Highly Oriented State of DonorAcceptor Conjugated Polymer Induced by Slow Bar Coating Process. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100313	4	4
77	HJ-aggregates of donor-acceptor-donor oligomers and polymers. 2021 , 155, 034905		6
76	Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors. <i>ACS Applied Materials & Description</i> 12, 13, 34616-34624	5	3
75	Toward High Mobility Green Solvent-Processable Conjugated Polymers: A Systematic Study on Chalcogen Effect in Poly(Diketopyrrolopyrrole-alt-Terchalcogenophene)s. <i>Advanced Functional Materials</i> , 2021 , 31, 2104881	:.6	7
74	Recent progress in organic field-effect transistor-based integrated circuits.		10
73	Data Science Guided Experiments Identify Conjugated Polymer Solution Concentration as a Key Parameter in Device Performance. 2021 , 3, 1321-1327		3
72	Improving the field-effect transistor performance of (E)-1,2-di(thiophen-2-yl)ethenyl-co-naphthalenyl-based polymers by introducing alkoxy sidechains. 2021 , 278, 116801		1
71	Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. 2021 , 12, 4937		4
70	Enhancing Doping Efficiency of Diketopyrrolopyrrole-Copolymers by Introducing Sparse Intramolecular Alkyl Chain Spacing. <i>Macromolecules</i> , 2021 , 54, 7870-7879	5	1
69	Synthesis of Conjugated Polymers via Transition Metal Catalysed C-H Bond Activation. 2021 , 16, 2896-291	9	О
68	Infrared spectroscopy depth profiling of organic thin films. 2021 , 8, 1461-1471		4
67	Stille Polycondensation: A Versatile Synthetic Approach to Functional Polymers. 1-58		4
66	Organic Ambipolar Transistors and Circuits. 2016 , 971-995		3
65	Organic Ambipolar Transistors and Circuits. 2014 , 1-21		1
64	Tuning Charge Transport in PVDF-Based Organic Ferroelectric Transistors: Status and Outlook. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12, 26757-26775	5	11

63	Thin-Film Engineering of Solution-Processable n-Type Silicon Phthalocyanines for Organic Thin-Film Transistors. <i>ACS Applied Materials & Discrete States</i> , 2021 , 13, 1008-1020	9.5	13
62	Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors.		1
61	A printed electronic platform for the specific detection of biomolecules. 2017,		2
60	Diketopyrrolopyrrole-based conjugated polymers synthesized by direct arylation polycondensation for anisole-processed high mobility organic thin-film transistors. <i>Journal of Materials Chemistry C</i> ,	7.1	1
59	Electrolyte-gated transistors for enhanced performance bioelectronics <i>Nature Reviews Methods Primers</i> , 2021 , 1,		42
58	Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymers. <i>Advanced Materials</i> , 2021 , e2106235	24	16
57	Toward Efficient Charge Transport of Polymer-Based Organic Field-Effect Transistors: Molecular Design, Processing, and Functional Utilization. <i>Accounts of Materials Research</i> ,	7.5	5
56	Semiconducting Materials for Printed Flexible Electronics. Springer Series in Materials Science, 2022, 159	0-2250	
55	BDOPVA Strong Electron-Deficient Building Block for Polymer Field-Effect Transistors. <i>Springer Theses</i> , 2015 , 81-112	0.1	
54	Contact Effects in Organic Thin-Film Transistors: Device Physics and Modeling. 2016 , 1-25		
54	Contact Effects in Organic Thin-Film Transistors: Device Physics and Modeling. 2016 , 1-25 Amine Detection Using Organic Field Effect Transistor Gas Sensors. <i>Sensors</i> , 2020 , 21,	3.8	4
			4 3
53	Amine Detection Using Organic Field Effect Transistor Gas Sensors. <i>Sensors</i> , 2020 , 21, Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for		
53 52	Amine Detection Using Organic Field Effect Transistor Gas Sensors. <i>Sensors</i> , 2020 , 21, Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Review. <i>Coatings</i> , 2021 , 11, 1368 Effect of Branching position of alkyl side chain on charge-transport characteristics of diketopyrrolopyrrole- and dichlorodithienylethene-based organic field-effect transistors. <i>Organic</i>	2.9	3
53 52 51	Amine Detection Using Organic Field Effect Transistor Gas Sensors. Sensors, 2020, 21, Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Review. Coatings, 2021, 11, 1368 Effect of Branching position of alkyl side chain on charge-transport characteristics of diketopyrrolopyrrole- and dichlorodithienylethene-based organic field-effect transistors. Organic Electronics, 2022, 101, 106403 End-Capping Conjugated Naphthodithiophene Diimide (NDTI)-Based Triads with Noncovalent Intramolecular SIIID Interactions: A Route towards High-Performance Solution-Processable	2.9 3.5	3
53 52 51 50	Amine Detection Using Organic Field Effect Transistor Gas Sensors. Sensors, 2020, 21, Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Review. Coatings, 2021, 11, 1368 Effect of Branching position of alkyl side chain on charge-transport characteristics of diketopyrrolopyrrole- and dichlorodithienylethene-based organic field-effect transistors. Organic Electronics, 2022, 101, 106403 End-Capping EConjugated Naphthodithiophene Diimide (NDTI)-Based Triads with Noncovalent Intramolecular SIIID Interactions: A Route towards High-Performance Solution-Processable Air-Stable n-Type Semiconductors. ACS Applied Electronic Materials,	2.9 3.5	3 0 0
53 52 51 50 49	Amine Detection Using Organic Field Effect Transistor Gas Sensors. Sensors, 2020, 21, Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Review. Coatings, 2021, 11, 1368 Effect of Branching position of alkyl side chain on charge-transport characteristics of diketopyrrolopyrrole- and dichlorodithienylethene-based organic field-effect transistors. Organic Electronics, 2022, 101, 106403 End-Capping Econjugated Naphthodithiophene Diimide (NDTI)-Based Triads with Noncovalent Intramolecular SIIID Interactions: A Route towards High-Performance Solution-Processable Air-Stable n-Type Semiconductors. ACS Applied Electronic Materials, Organic Devices: Fabrication, Applications, and Challenges. Journal of Electronic Materials, 2022, 51, 447	2.9 3.5 4	3 0 0

45	Poly(Imethyl styrene) polymer additive for organic thin film transistors. <i>Journal of Materials Science: Materials in Electronics</i> , 2022 , 33, 1101-1122	2.1	1
44	Improved electrical ideality and photoresponse in near-infrared phototransistors realized by bulk heterojunction channels <i>IScience</i> , 2022 , 25, 103711	6.1	1
43	Semiconducting Polymers for Neural Applications Chemical Reviews, 2022,	68.1	14
42	Variable-Temperature Scattering and Spectroscopy Characterizations for Temperature-Dependent Solution Assembly of PffBT4T-Based Conjugated Polymers. <i>ACS Applied Polymer Materials</i> ,	4.3	4
41	Benchmarking contact quality in N-type organic thin film transistors through an improved virtual-source emission-diffusion model. <i>Applied Physics Reviews</i> , 2022 , 9, 011418	17.3	3
40	A Dual Functional Diketopyrrolopyrrole-Based Conjugated Polymer as Single Component Semiconducting Photoresist by Appending Azide Groups in the Side Chains <i>Advanced Science</i> , 2022 , e2106087	13.6	O
39	The Impact of Benzothiadiazole on the Optoelectronic Performance of Polymer/PC 71 BM Blend Films and Their Application in NIR Phototransistors. <i>Advanced Electronic Materials</i> , 2101297	6.4	1
38	Analytical model for donor like Gaussian traps in organic thin-film transistor. <i>Organic Electronics</i> , 2022 , 103, 106464	3.5	
37	Doping and Thermoelectric Behaviors of Donor-Acceptor Polymers with Extended Planar Backbone. <i>Macromolecular Research</i> , 2021 , 29, 887-894	1.9	2
36	Dynamics of Preaggregation and Film Formation of DonorAcceptor Econjugated Polymers. 2022 , 4, 205-211		1
35	Vinylene Flanked Naphtho[1,2-c:5,6-c?]bis[1,2,5]thiadiazole Polymer for Low-Crystallinity Ambipolar Transistors. <i>Macromolecules</i> , 2022 , 55, 331-337	5.5	O
34	An isotropic three-dimensional organic semiconductor 2-(thiopyran-4-ylidene)-1,3-benzodithiole (TP-BT): asymmetric molecular design to suppress access resistance. <i>CrystEngComm</i> ,	3.3	
33	An OFET-Based Involutive Logic Circuit with Wide-Range Threshold Shift Compensability. <i>Advanced Electronic Materials</i> , 2200442	6.4	
32	Ultrahigh On-Current Density of Organic Field-Effect Transistors Facilitated by Molecular Monolayer Crystals. <i>Advanced Functional Materials</i> , 2202632	15.6	1
31	Diketopyrrolopyrrole based polymers for n-type organic electrochemical transistors. 2020,		
30	Chain-Extending Polymerization for Significant Improvement in Organic Thin-Film Transistor Performance. 2022 , 14, 36918-36926		O
29	Lamination of Flexible Organic Transistors on Fabric for E-Textile. 2022, 69, 5144-5148		О
28	CHAPTER 10. Printed Electronics Applications: Microelectronic, Optoelectronic Devices and Displays. 2022 , 385-444		O

27	Thiazoloisoindigo-based ambipolar polymers for excellent balanced hole and electron mobility.	O
26	Balancing the trade-off between the mechanical and electrical properties of conjugated polymer blend films for organic field-effect transistors.	O
25	Visualizing transport in thiazole flanked isoindigo-based donor acceptor polymer field-effect transistors.	0
24	Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics. 2204804	2
23	Organic Field-Effect Transistors. 2022 , 107-129	0
22	Solvent Exchange in Controlling Semiconductor Morphology.	Ο
21	Molecular single crystals induce chain alignment in a semiconducting polymer.	0
20	A comparative study on binary polymer blends comprising rigid planar low-bandgap semiconductor and flexible coil-type insulator. 2022 , 110890	Ο
19	Fast-Coating Process Based on Elongated Rodlike Preaggregate for Highly Oriented Thin Film of Donor Acceptor Econjugated Polymer.	0
18	Pyrrolo[3,4-c]pyridine-1,2-dione: a new electron acceptor for electrochromic conjugated polymers.	O
17	Improving OFF-State Bias-Stress Stability in High-Mobility Conjugated Polymer Transistors with an Anti-Solvent Treatment. 2205377	1
16	Detection of Volatile Organic Compounds Using Solution Processed Organic Field-Effect Transistors. 2023 , 310-322	O
15	A DPP-DTT Field-Effect Transistor-based Biosensor for Detecting Interleukin-6. 2022 , 1-4	0
14	Enabling Fast Photoresponse in Near-Infrared Organic Phototransistors by Manipulating Minority Charge Trapping and Recombination. 2202008	1
13	Biodegradable Materials for Transient Organic Transistors. 2208521	0
12	Molecular single crystals induce chain alignment in a semiconducting polymer. 2023, 6,	O
11	Revealing the Enhanced Thermoelectric Properties of Controllably Doped Donor-Acceptor Copolymer: The Impact of Regioregularity. 2206233	O
10	Spacer Length Effect of Tributylsilyl-Terminated Side Chains on the Properties of Poly(diketopyrrolopyrrole-alt-terthiophene)s.	O

9	Hydration of a Side-Chain-Free n-Type Semiconducting Ladder Polymer Driven by Electrochemical Doping.	1
8	Experiment study and analytical modeling of fully solution processed organic thin film transistors with conductive polymer top-gate electrode: Performance optimization. 2023 , 157, 107325	O
7	Overlap concentration generates optimum device performance for DPP-based conjugated polymers. 2023 , 117, 106779	0
6	Molecularly Hybridized Conduction in DPP-Based DonorAcceptor Copolymers toward High-Performance Iono-Electronics. 2207554	O
5	Recent Progress in Donor-Acceptor Type Conjugated Polymers for Organic Field-effect Transistors.	O
4	Diketopyrrolopyrrole-based Conjugated Polymers as Representative Semiconductors for High-Performance Organic Thin-Film Transistors and Circuits.	О
3	Current developments of eco-friendly organic field-effect transistors: from molecular engineering of organic semiconductors to greener device processing.	0
2	Rapid Self-Assembly Process at Air/Water Confined Interface for Highly Aligned Crystalline Polymeric Semiconductor Films.	Ο
1	The electrical and photophysical performances of axially-substituted naphthalene diimide-based small molecules as interface layer. 2023 , 294, 116510	0