Mathematical Models in Population Biology and Epiden

Texts in Applied Mathematics

DOI: 10.1007/978-1-4614-1686-9

Citation Report

,

#	Article	IF	CITATIONS
1	Discrete Epidemic Models with Arbitrary Stage Distributions and Applications to Disease Control. Bulletin of Mathematical Biology, 2013, 75, 1716-1746.	0.9	32
2	Implicit Estimation of Ecological Model Parameters. Bulletin of Mathematical Biology, 2013, 75, 223-257.	0.9	14
3	The basic reproduction number \$R_0\$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences and Engineering, 2013, 10, 1455-1474.	1.0	26
4	Nonlinear Pulse Vaccination in an SIR Epidemic Model with Resource Limitation. Abstract and Applied Analysis, 2013, 2013, 1-13.	0.3	8
5	On a fully discrete finite-difference approximation of a nonlinear diffusion–reaction model in microbial ecology. International Journal of Computer Mathematics, 2013, 90, 1915-1937.	1.0	7
6	Multilayer Networks. SSRN Electronic Journal, 0, , .	0.4	50
7	Assessing the Impact of Drug Resistance on the Transmission Dynamics of Typhoid Fever. Computational Biology Journal, 2013, 2013, 1-13.	0.6	8
8	Integrating Temperature-Dependent Life Table Data into a Matrix Projection Model for Drosophila suzukii Population Estimation. PLoS ONE, 2014, 9, e106909.	1.1	124
9	A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 89-130.	0.5	10
10	Poverty, Disease, and the Ecology of Complex Systems. PLoS Biology, 2014, 12, e1001827.	2.6	57
11	Vertical Transmission in a Two-Strain Model of Dengue Fever. Letters in Biomathematics, 2014, 1, 249-271.	0.3	14
12	The dynamics model of public opinion diffusion in online social network. , 2014, , .		0
13	Replicator Equations and Models of Biological Populations and Communities. Mathematical Modelling of Natural Phenomena, 2014, 9, 68-95.	0.9	16
14	Micromechanics of vortices in granular media: connection to shear bands and implications for continuum modelling of failure in geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38, 1247-1275.	1.7	32
15	Age-structured dengue epidemic model. Applicable Analysis, 2014, 93, 2249-2276.	0.6	0
16	A Stuctured Discrete Model for Dengue Fever Infections and the Determination of \$\$R_0\$\$ R 0 from Age-Stratified Serological Data. Bulletin of Mathematical Biology, 2014, 76, 1288-1305.	0.9	2
17	Voter model with arbitrary degree dependence: clout, confidence and irreversibility. European Physical Journal B, 2014, 87, 1.	0.6	2
18	Epidemic Spreading With External Agents. IEEE Transactions on Information Theory, 2014, 60, 4125-4138.	1.5	16

#	Article	IF	CITATIONS
19	Dynamic model predicting overweight, obesity, and extreme obesity prevalence trends. Obesity, 2014, 22, 590-597.	1.5	54
20	Global and local stability analysis in a nonlinear discrete-time population model. Advances in Difference Equations, 2014, 2014, .	3.5	12
21	On a product-type system of difference equations of second order solvable in closed form. Journal of Inequalities and Applications, 2015, 2015, .	0.5	52
22	Dynamical Behavior of a Stochastic SIRS Epidemic Model. Mathematical Modelling of Natural Phenomena, 2015, 10, 56-73.	0.9	32
23	Vaccination Control in a Stochastic SVIR Epidemic Model. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-9.	0.7	28
24	Mathematical model for smoking: Effect of determination and education. International Journal of Biomathematics, 2015, 08, 1550001.	1.5	14
25	Think locally, act locally: Detection of small, medium-sized, and large communities in large networks. Physical Review E, 2015, 91, 012821.	0.8	88
26	Dynamics of arms race model at fractional order. , 2015, , .		0
27	A dynamic allocation model for medical resources in the control of influenza diffusion. Journal of Systems Science and Systems Engineering, 2015, 24, 276-292.	0.8	22
28	Resource Consumption, Sustainability, and Cancer. Bulletin of Mathematical Biology, 2015, 77, 319-338.	0.9	6
29	An anthropologically based model of the impact of asymptomatic cases on the spread of Neisseria gonorrhoeae. Journal of the Royal Society Interface, 2015, 12, 20150067.	1.5	9
30	Spatiotemporal Dynamics in a Reaction–Diffusion Epidemic Model with a Time-Delay in Transmission. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550099.	0.7	13
31	On the dynamics of dengue virus type 2 with residence times and vertical transmission. Letters in Biomathematics, 2016, 3, 140-160.	0.3	8
32	An implementation of continuous genetic algorithm in parameter estimation of predator-prey model. AIP Conference Proceedings, 2016, , .	0.3	6
33	Examples of Dynamical Systems. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, 2016, , 5-27.	0.5	2
35	Impulsive Models in Population Dynamics. CMS Books in Mathematics, 2016, , 113-205.	0.8	0
36	Epidemiological analysis of the Eyam plague outbreak of 1665–1666. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160618.	1.2	56
37	Phenomenological modelling and simulation of cell clusters in 3D cultures. Computers in Biology and Medicine, 2016, 77, 249-260.	3.9	5

#	Article	IF	CITATIONS
38	Deciphering Dynamics of Recent Epidemic Spread and Outbreak in West Africa: The Case of Ebola Virus. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630024.	0.7	13
40	Transit times and mean ages for nonautonomous and autonomous compartmental systems. Journal of Mathematical Biology, 2016, 73, 1379-1398.	0.8	40
41	Anomalous Growth of Aging Populations. Journal of Statistical Physics, 2016, 163, 440-455.	0.5	2
42	Traveling Wave Phenomena in a Kermack–McKendrick SIR Model. Journal of Dynamics and Differential Equations, 2016, 28, 143-166.	1.0	50
43	Analysis and Control of Epidemics: A Survey of Spreading Processes on Complex Networks. IEEE Control Systems, 2016, 36, 26-46.	1.0	439
44	An attraction-based cellular automaton model for generating spatiotemporal population maps in urban areas. Environment and Planning B: Planning and Design, 2016, 43, 297-319.	1.7	4
45	Qualitative Behaviour of Generalised Beddington Model. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2016, 71, 145-155.	0.7	17
46	Multilevel hybrid split-step implicit tau-leap. Numerical Algorithms, 2017, 74, 527-560.	1.1	9
47	Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model. Physical Review E, 2017, 95, 022409.	0.8	131
48	Obtaining Informationally Consistent Decisions When Computing Costs with Limited Information. Production and Operations Management, 2017, 26, 211-230.	2.1	11
49	Dengue Agent-Based Model in South American Temperate Zone. Lecture Notes in Computer Science, 2017, , 301-312.	1.0	0
50	The Dynamics of a SEIR–SIRC Antigenic Drift Influenza Model. Bulletin of Mathematical Biology, 2017, 79, 1412-1425.	0.9	3
51	Mathematical Analysis of an SIQR Influenza Model with Imperfect Quarantine. Bulletin of Mathematical Biology, 2017, 79, 1612-1636.	0.9	42
52	A PREDATOR-PEST MODEL WITH ALLEE EFFECT AND PEST CULLING AND ADDITIONAL FOOD PROVISION TO THE PREDATOR — APPLICATION TO PEST CONTROL. Journal of Biological Systems, 2017, 25, 295-326.	0.5	21
53	Global threshold dynamics of SIQS epidemic model in time fluctuating environment. International Journal of Biomathematics, 2017, 10, 1750060.	1.5	1
54	Basic Ideas in Epidemic Modeling. , 2017, , 219-286.		0
55	Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay. Journal of Biological Dynamics, 2017, 11, 75-101.	0.8	15
56	DRIMUX: Dynamic Rumor Influence Minimization with User Experience in Social Networks. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 2168-2181.	4.0	121

#	Article	IF	CITATIONS
57	Approximate probabilistic cellular automata for the dynamics of single-species populations under discrete logisticlike growth with and without weak Allee effects. Physical Review E, 2017, 95, 052131.	0.8	3
58	Bezier Curve Parameterization Methods for Solving Optimal Control Problems of SIR Model. Lecture Notes in Computer Science, 2017, , 100-110.	1.0	0
59	A new epidemic model with indirect transmission. Journal of Biological Dynamics, 2017, 11, 285-293.	0.8	18
60	Epidemic spreading on adaptively weighted scale-free networks. Journal of Mathematical Biology, 2017, 74, 1263-1298.	0.8	28
61	A Study on Formal Methods to Generalize Heterogeneous Mobile Malware Propagation and Their Impacts. IEEE Access, 2017, 5, 27740-27756.	2.6	17
62	Space-Time Point Pattern Analysis of Flavescence Dorée Epidemic in a Grapevine Field: Disease Progression and Recovery. Frontiers in Plant Science, 2016, 7, 1987.	1.7	34
63	Bayesian model evidence as a practical alternative to deviance information criterion. Royal Society Open Science, 2018, 5, 171519.	1.1	38
64	Constrained minimization problems for the reproduction number in meta-population models. Journal of Mathematical Biology, 2018, 77, 1795-1831.	0.8	7
65	Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations. Journal of Mathematical Biology, 2018, 76, 1907-1950.	0.8	38
66	Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response. Advances in Difference Equations, 2018, 2018, .	3.5	29
67	Time Periodic Traveling Waves for a Periodic and Diffusive SIR Epidemic Model. Journal of Dynamics and Differential Equations, 2018, 30, 379-403.	1.0	54
68	Definition and estimation of vital rates from repeated censuses: Choices, comparisons and bias corrections focusing on trees. Methods in Ecology and Evolution, 2018, 9, 809-821.	2.2	38
69	grippeNET App. , 2018, , .		3
70	Clobal threshold dynamics of a stochastic epidemic model incorporating media coverage. Advances in Difference Equations, 2018, 2018, .	3.5	30
71	Analytic Solution of a Stochastic Richards Equation driven by Brownian motion. Journal of Physics: Conference Series, 2018, 1097, 012086.	0.3	1
72	Rumor propagation meets skepticism: A parallel with zombies. Europhysics Letters, 2018, 124, 18007.	0.7	8
73	The Physics of Physik. Journal of the Royal College of Physicians of Edinburgh, The, 2018, 48, 3-8.	0.2	2
74	Global dynamics of delayed intraguild predation model with intraspecific competition. International Journal of Biomathematics, 2018, 11, 1850116.	1.5	2

#	Article	IF	CITATIONS
75	Epidemic models with heterogeneous mixing and indirect transmission. Journal of Biological Dynamics, 2018, 12, 375-399.	0.8	14
76	Oscillation Criteria for Delay and Advanced Differential Equations with Nonmonotone Arguments. Complexity, 2018, 2018, 1-18.	0.9	54
77	Mathematical model of biofilm-mediated pathogen persistence in a water distribution network with time-constant flows. European Journal of Applied Mathematics, 2018, 29, 991-1019.	1.4	2
78	Spread. SpringerBriefs in Ecology, 2018, , 25-40.	0.2	0
79	Network Translation and Steady-State Properties of Chemical Reaction Systems. Bulletin of Mathematical Biology, 2018, 80, 2306-2337.	0.9	11
80	Mathematical Modeling of Protein Misfolding Mechanisms in Neurological Diseases: A Historical Overview. Frontiers in Neurology, 2018, 9, 37.	1.1	43
81	Twoâ€compartment ageâ€structured model of solitarious and gregarious locust population dynamics. Mathematical Methods in the Applied Sciences, 2018, 41, 8636-8672.	1.2	7
82	Nonlinear Leslie models for the assessment of the effects of stressors on the development of wild populations: reviewing of the basic properties. Journal of Interdisciplinary Mathematics, 2018, 21, 83-109.	0.4	4
83	Continuous and discrete dynamical systems for the declines of honeybee colonies. Mathematical Methods in the Applied Sciences, 2018, 41, 8724-8740.	1.2	1
84	On stability of a stationary solution to the Hotelling migration equation. Journal of Physics: Conference Series, 2019, 1203, 012041.	0.3	2
85	Simple framework for real-time forecast in a data-limited situation: the Zika virus (ZIKV) outbreaks in Brazil from 2015 to 2016 as an example. Parasites and Vectors, 2019, 12, 344.	1.0	42
86	Modeling Public Health Campaigns for Sexually Transmitted Infections via Optimal and Feedback Control. Bulletin of Mathematical Biology, 2019, 81, 4100-4123.	0.9	6
87	Using mathematical modelling to investigate the effect of the sexual behaviour of asymptomatic individuals and vector control measures on Zika. Letters in Biomathematics, 2019, 6, 1-19.	0.3	13
88	On parameter estimation approaches for predicting disease transmission through optimization, deep learning and statistical inference methods. Letters in Biomathematics, 0, , 1-26.	0.3	6
89	Modeling control of foot and mouth disease with two time delays. International Journal of Biomathematics, 2019, 12, 1930001.	1.5	5
90	Qualitative analysis of a diffusive Crowley–Martin predator–prey model: the role of nonlinear predator harvesting. Nonlinear Dynamics, 2019, 98, 1169-1189.	2.7	17
91	Consequences of delays and imperfect implementation of isolation in epidemic control. Scientific Reports, 2019, 9, 3505.	1.6	32
92	On the spatio-temporal dynamics of interacting economic agents: Application of the modified method of simplest equation. AIP Conference Proceedings, 2019, , .	0.3	3

#	Article	IF	CITATIONS
93	Role of Optimal Screening and Treatment on Infectious Diseases Dynamics in Presence of Self-protection of Susceptible. Differential Equations and Dynamical Systems, 2023, 31, 135-163.	0.5	9
94	Event Triggered Social Media Chatter: A New Modeling Framework. IEEE Transactions on Computational Social Systems, 2019, 6, 197-207.	3.2	8
95	A simplified stochastic optimization model for logistic dynamics with control-dependent carrying capacity. Journal of Biological Dynamics, 2019, 13, 148-176.	0.8	21
96	Preventing noise-induced ecological shifts: stochastic sensitivity analysis and control. European Physical Journal B, 2019, 92, 1.	0.6	0
97	Estimating snakebite incidence from mathematical models: A test in Costa Rica. PLoS Neglected Tropical Diseases, 2019, 13, e0007914.	1.3	30
98	Studying Controversies: Unification, Contradiction, Integration. Journal for General Philosophy of Science, 2019, 50, 103-128.	0.7	3
99	Well-Posedness for a System of Integro-Differential Equations. Differential Equations and Dynamical Systems, 2020, 28, 999-1013.	0.5	0
100	Stage-structured control on a class of predator-prey system in almost periodic environment. International Journal of Control, 2020, 93, 1442-1460.	1.2	12
101	Mathematical Model for Malaria Transmission and Chemical Control with Human-Related Activities. The National Academy of Sciences, India, 2020, 43, 59-65.	0.8	1
102	Chebyshev spectral collocation method for system of nonlinear Volterra integral equations. Numerical Algorithms, 2020, 83, 243-263.	1.1	9
103	Time periodic traveling wave solutions for a Kermack–McKendrick epidemic model with diffusion and seasonality. Journal of Evolution Equations, 2020, 20, 1029-1059.	0.6	24
104	Epidemiologic network inference. Statistics and Computing, 2020, 30, 61-75.	0.8	4
105	New Schemes of Dynamic Preservation of Diversity: Remarks on Stability and Topology. Acta Biotheoretica, 2020, 68, 157-169.	0.7	3
106	A deterministic mathematical model for the spread of two rumors. Afrika Matematika, 2020, 31, 315-331.	0.4	11
107	Numerical Optimal Control of HIV Transmission in Octave/MATLAB. Mathematical and Computational Applications, 2020, 25, 1.	0.7	13
108	Modeling breast tumor growth by a randomized logistic model: A computational approach to treat uncertainties via probability densities. European Physical Journal Plus, 2020, 135, 1.	1.2	12
109	The coronavirus disease (<scp>COVID</scp> â€19) pandemic: simulationâ€based assessment of outbreak responses and postpeak strategies. System Dynamics Review, 2020, 36, 247-293.	1.1	42
110	A new model for the spread of COVID-19 and the improvement of safety. Safety Science, 2020, 132, 104962.	2.6	52

	CITATION	Report	
#	Article	IF	CITATIONS
111	Fuzzy Approach Analyzing SEIR-SEI Dengue Dynamics. BioMed Research International, 2020, 2020, 1-11.	0.9	15
112	Modeling biological control of carrierâ€dependent infectious diseases. Computational and Mathematical Methods, 2021, 3, e1127.	0.3	0
113	A reaction–diffusion epidemic model with incubation period in almost periodic environments. European Journal of Applied Mathematics, 2021, 32, 1153-1176.	1.4	7
114	Complexity and chaos control in a discrete-time Lotka–Volterra predator–prey system. Journal of Difference Equations and Applications, 2020, 26, 1303-1320.	0.7	6
115	Prediction of confinement effects on the number of Covid-19 outbreak in Algeria. Mathematical Modelling of Natural Phenomena, 2020, 15, 37.	0.9	21
116	The anatomy of the 2019 Chilean social unrest. Chaos, 2020, 30, 073129.	1.0	11
117	Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19) Pandemic: A Survey on the State-of-the-Arts. IEEE Access, 2020, 8, 130820-130839.	2.6	212
118	A study on fractional predator–prey–pathogen model with <scp>Mittag–Leffler</scp> kernelâ€based operators. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	17
119	Predicting mortality for Covid-19 in the US using the delayed elasticity method. Scientific Reports, 2020, 10, 20811.	1.6	5
120	Mathematical Modeling of Echinococcosis in Humans, Dogs, and Sheep. Journal of Applied Mathematics, 2020, 2020, 1-18.	0.4	3
121	The Effect of Setting a Warning Vaccination Level on a Stochastic SIVS Model with Imperfect Vaccine. Mathematics, 2020, 8, 1136.	1.1	4
122	Toward Ultrametric Modeling of the Epidemic Spread. P-Adic Numbers, Ultrametric Analysis, and Applications, 2020, 12, 247-258.	0.1	2
123	Optimal control and differential game solutions for social distancing in response to epidemics of infectious diseases on networks. Optimal Control Applications and Methods, 2020, 41, 2149-2165.	1.3	8
124	Complete dimensional collapse in the continuum limit of a delayed SEIQR network model with separable distributed infectivity. Nonlinear Dynamics, 2020, 101, 1653-1665.	2.7	9
125	The Dynamical Interplay of Collective Attention, Awareness and Epidemics Spreading in the Multiplex Social Networks During COVID-19. IEEE Access, 2020, 8, 189203-189223.	2.6	8
126	On modification and application of Lotka-Volterra competition model. AIP Conference Proceedings, 2020, , .	0.3	2
127	From Color-Avoiding to Color-Favored Percolation in Diluted Lattices. Future Internet, 2020, 12, 139.	2.4	1
128	Minimize Social Network Rumors Based on Rumor Path Tree. IEEE Access, 2020, 8, 167620-167630.	2.6	2

	CITATION R	EPORT	
#	Article	IF	CITATIONS
129	A fractal kinetics SI model can explain the dynamics of COVID-19 epidemics. PLoS ONE, 2020, 15, e0237304.	1.1	16
130	Stability, Analytic Bifurcation Structure and Chaos Control in a Mutual Interference Host-Parasitoid Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050237.	0.7	8
131	Evaluating different epidemiological models with the identical basic reproduction number â"› <sub›0< 14,="" 2020,="" 849-870.<="" biological="" dynamics,="" journal="" of="" sub›.="" td=""><td>0.8</td><td>2</td></sub›0<>	0.8	2
132	The effects of drugs in chemotherapy as optimal control of tumor growth dynamical model. Journal of Physics: Conference Series, 2020, 1663, 012006.	0.3	4
133	Qualitative Analysis of a Mathematical Model in the Time of COVID-19. BioMed Research International, 2020, 2020, 1-11.	0.9	81
134	A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model. Frontiers in Public Health, 2020, 8, 230.	1.3	216
135	Accounting for symptomatic and asymptomatic in a SEIR-type model of COVID-19. Mathematical Modelling of Natural Phenomena, 2020, 15, 34.	0.9	49
136	On a discussion of Volterra–Fredholm integral equation with discontinuous kernel. Journal of the Egyptian Mathematical Society, 2020, 28, .	0.6	8
137	Biological population management based on a Hamilton–Jacobi–Bellman equation with boundary blow up. International Journal of Control, 2022, 95, 50-67.	1.2	0
138	CoViD â€19 epidemic follows the "kinetics―of enzymes with cooperative substrate binding. Biochemistry and Molecular Biology Education, 2020, 48, 452-459.	0.5	2
139	Dynamics and control of COVID-19 pandemic with nonlinear incidence rates. Nonlinear Dynamics, 2020, 101, 2013-2026.	2.7	61
140	The Timing and Nature of Behavioural Responses Affect the Course of an Epidemic. Bulletin of Mathematical Biology, 2020, 82, 14.	0.9	24
141	Turing patterns in a predator–prey model on complex networks. Nonlinear Dynamics, 2020, 99, 3313-3322.	2.7	24
142	Global dynamics for mathematical model of Echinococcus multilocularis in rodents and red foxes. Mathematical Methods in the Applied Sciences, 2020, 43, 5832-5849.	1.2	1
143	Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine, 2020, 26, 855-860.	15.2	1,373
144	A cyber-physical system approach for model based predictive control and modeling of COVID-19 in India. Journal of Interdisciplinary Mathematics, 2021, 24, 1-18.	0.4	10
145	SEIAQRDT model for the spread of novel coronavirus (COVID-19): A case study in India. Applied Intelligence, 2021, 51, 2818-2837.	3.3	26
146	Discrete-Time Modeling of COVID-19 Propagation in Argentina with Explicit Delays. Computing in Science and Engineering, 2021, 23, 35-45.	1.2	4

#	Article	IF	CITATIONS
147	Monotone skew-Product Semiflows for Carathéodory Differential Equations and Applications. Journal of Dynamics and Differential Equations, 0, , 1.	1.0	1
148	Dynamic modelling of covid-19 and the use of "Merah Putih―vaccination and herbal medicine treatment as optimal control strategies in Semarang city Indonesia. Journal of Physics: Conference Series, 2021, 1722, 012070.	0.3	0
149	A Comparison of Deterministic and Stochastic Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Recovered (SIR) Models. Open Journal of Modelling and Simulation, 2021, 09, 246-258.	0.7	0
150	SIR model with time-varying contact rate. International Journal of Biomathematics, 2021, 14, 2150017.	1.5	2
151	Qualitative analysis and optimal control of an SIR model with logistic growth, non-monotonic incidence and saturated treatment. Mathematical Modelling of Natural Phenomena, 2021, 16, 13.	0.9	8
152	Traveling wave phenomena in a nonlocal dispersal predator-prey system with the Beddington-DeAngelis functional response and harvesting. Mathematical Biosciences and Engineering, 2021, 18, 1629-1652.	1.0	2
154	Assessing the Effectiveness of Isolation and Contact-Tracing Interventions for Early Transmission Dynamics of COVID-19 in South Korea. IEEE Access, 2021, 9, 41456-41467.	2.6	8
156	Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Mathematical Biosciences and Engineering, 2021, 18, 5865-5920.	1.0	16
157	Application of Al Techniques for COVID-19 in IoT and Big Data Era: A Survey. Studies in Computational Intelligence, 2021, , 175-211.	0.7	7
158	Sensitivity analysis on the SEIR-SEI model for the dynamics of blinding trachoma. AIP Conference Proceedings, 2021, , .	0.3	1
159	Control of constrained discrete-time systems with time-varying state delay. , 2021, , 347-381.		2
160	An Al-assisted Economic Model of Endogenous Mobility and Infectious Diseases: The Case of COVID-19 in the United States. SSRN Electronic Journal, 0, , .	0.4	0
161	NUMERICAL MODELING OF THE IMPACT OF QUARANTINE MEASURES ON THE DYNAMICS OF THE EPIDEMIOLOGICAL PROCESS BASED ON THE SEIRD MODEL. Tyumen State University Herald Physical and Mathematical Modeling Oil Gas Energy, 2021, 7, 170-187.	0.0	1
162	A Survey on Mathematical, Machine Learning and Deep Learning Models for COVID-19 Transmission and Diagnosis. IEEE Reviews in Biomedical Engineering, 2022, 15, 325-340.	13.1	39
163	Improvement of disease dynamics monitoring through systematic screening and patchy structure: application to Neissera Meningitidis. Computational and Applied Mathematics, 2021, 40, 1.	1.0	0
164	A fractional-order two-strain epidemic model with two vaccinations. AIP Conference Proceedings, 2021, , .	0.3	3
165	Stability analysis of an age-structured model of cervical cancer cells and HPV dynamics. Mathematical Biosciences and Engineering, 2021, 18, 6155-6177.	1.0	4
166	Modeling of Pandemics and Intervention Strategies: The COVID-19 Outbreak. , 2021, , 1292-1301.		0

#	Article	IF	CITATIONS
167	Rate-Induced Tipping Phenomena in Compartment Models of Epidemics. Infosys Science Foundation Series, 2021, , 307-328.	0.3	1
168	Dynamic modelling of Hepatitis B and use of optimal control to reduce the infected population and minimizing the cost of vaccination and treatment. AIP Conference Proceedings, 2021, , .	0.3	1
170	A Fuzzy Susceptible-Exposed-Infected-Recovered Model Based on the Confidence Index. International Journal of Fuzzy Systems, 2021, 23, 907-917.	2.3	8
171	An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics. Chaos, Solitons and Fractals, 2021, 143, 110616.	2.5	71
172	Modelling and predicting the effect of social distancing and travel restrictions on COVID-19 spreading. Journal of the Royal Society Interface, 2021, 18, 20200875.	1.5	61
173	Adaptive mesh refinement and coarsening for diffusion–reaction epidemiological models. Computational Mechanics, 2021, 67, 1177-1199.	2.2	16
174	A review on COVID-19 forecasting models. Neural Computing and Applications, 2023, 35, 23671-23681.	3.2	137
175	Assessing the effects of time-dependent restrictions and control actions to flatten the curve of COVID-19 in Kazakhstan. PeerJ, 2021, 9, e10806.	0.9	10
176	Dynamical Behaviors and Optimal Control Problem of An SEIRS Epidemic Model with Interventions. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44, 2737-2752.	0.4	4
177	Simulation of COVID-19 Propagation Scenarios in the Madrid Metropolitan Area. Frontiers in Public Health, 2021, 9, 636023.	1.3	15
179	Modeling the role of clusters and diffusion in the evolution of COVID-19 infections during lock-down. Computational Mechanics, 2021, 67, 1485-1496.	2.2	2
180	A Linearized Compact ADI Scheme for Semilinear Parabolic Problems with Distributed Delay. Journal of Scientific Computing, 2021, 87, 1.	1.1	5
181	Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. PLoS Computational Biology, 2021, 17, e1008837.	1.5	39
182	The Structure of an Outbreak on a College Campus. Mathematics Magazine, 2021, 94, 83-98.	0.1	3
183	Estimation of undetected symptomatic and asymptomatic cases of COVIDâ€19 infection and prediction of its spread in the USA. Journal of Medical Virology, 2021, 93, 3202-3210.	2.5	31
184	Hopf bifurcation of a diffusive SIS epidemic system with delay in heterogeneous environment. Applicable Analysis, 0, , 1-26.	0.6	4
185	Control of COVID-19 Pandemic: Vaccination Strategies Simulation under Probabilistic Node-Level Model. , 2021, , .		2
186	Management of Open-Access Renewable Resources with Depensation Dynamics: Control Systems Perspective. , 2021, , .		0

	CITATION RI	CITATION REPORT	
#	ARTICLE Infection Percolation: A Dynamic Network Model of Disease Spreading, Frontiers in Physics, 2021, 9, .	IF 1.0	CITATIONS 3
189	DYNAMICS OF AN INFECTIOUS DISEASE IN THE PRESENCE OF SATURATED MEDICAL TREATMENT OF HOLLING TYPE III AND SELF-PROTECTION. Journal of Biological Systems, 2021, 29, 245-289.	0.5	1
190	A cubic nonlinear population growth model for single species: theory, an explicit–implicit solution algorithm and applications. Advances in Difference Equations, 2021, 2021, .	3.5	1
191	Computation of COVID-19 epidemiological data in Hungary using dynamic model inversion. , 2021, , .		6
192	Three pre-vaccine responses to Covid-like epidemics. PLoS ONE, 2021, 16, e0251349.	1.1	4
193	Long-range spin jump diffusion revealed by dynamic light scattering. Physical Review B, 2021, 103, .	1.1	3
194	Could amantadine possibly interfere with COVID-19 vaccines based on LNP-mRNA platform ?. Archives of Medical Science, 2021, 17, 827-828.	0.4	5
195	Spatiotemporal behavior in a predator–prey model with herd behavior and cross-diffusion and fear effect. European Physical Journal Plus, 2021, 136, 1.	1.2	27
196	An SIR-type epidemiological model that integrates social distancing as a dynamic law based on point prevalence and socio-behavioral factors. Scientific Reports, 2021, 11, 10170.	1.6	20
198	Analysis of the Impact of Mask-wearing in Viral Spread: Implications for COVID-19. , 2021, , .		8
199	Modeling COVID-19 with Uncertainty in Granada, Spain. Intra-Hospitalary Circuit and Expectations over the Next Months. Mathematics, 2021, 9, 1132.	1.1	2
200	Modeling and Simulation: A Study on Predicting the Outbreak of COVID-19 in Saudi Arabia. Discrete Dynamics in Nature and Society, 2021, 2021, 1-19.	0.5	5
202	On the Continuous-time and Discrete-Time Versions of an Alternative Epidemic Model of the SIR Class. Journal of Control, Automation and Electrical Systems, 0, , 1.	1.2	2
203	Persistence and Stability for a Class of Forced Positive Nonlinear Delay-Differential Systems. Acta Applicandae Mathematicae, 2021, 174, 1.	0.5	2
204	Leveraging A Multiple-Strain Model with Mutations in Analyzing the Spread of Covid-19. , 2021, , .		8
205	Scheduling fixed length quarantines to minimize the total number of fatalities during an epidemic. Journal of Mathematical Biology, 2021, 82, 69.	0.8	6
206	Impact of Fear Effect in a Two Prey-One Predator System with Switching Behaviour in Predation. Differential Equations and Dynamical Systems, 0, , 1.	0.5	14
207	Optimal control of a fractional order epidemic model with carriers. International Journal of Dynamics and Control, 2022, 10, 598-619.	1.5	5

#	Articif	IF	CITATIONS
208	Assessing the short-run effects of lockdown policies on economic activity, with an application to the Santiago Metropolitan Region, Chile. PLoS ONE, 2021, 16, e0252938.	1.1	8
209	Cure and death play a role in understanding dynamics for COVID-19: Data-driven competing risk compartmental models, with and without vaccination. PLoS ONE, 2021, 16, e0254397.	1.1	6
210	Scalable Estimation of Epidemic Thresholds via Node Sampling. Sankhya A, 2021, , 1-24.	0.4	1
212	A reaction–diffusion system with cross-diffusion: Lie symmetry, exact solutions and their applications in the pandemic modelling. European Journal of Applied Mathematics, 2022, 33, 785-802.	1.4	6
213	Quantitative assessment of the effectiveness of joint measures led by Fangcang shelter hospitals in response to COVID-19 epidemic in Wuhan, China. BMC Infectious Diseases, 2021, 21, 626.	1.3	12
214	Optimal control of harvest timing in discrete population models. Natural Resource Modelling, 2021, 34, e12321.	0.8	5
215	Probabilistic calibration and shortâ€ŧerm prediction of the prevalence herpes simplex type 2: A transmission dynamics modelling approach. Mathematical Methods in the Applied Sciences, 2022, 45, 3345-3359.	1.2	0
216	Moderate immigration may promote a peak of cooperation among natives. Physical Review E, 2021, 104, 014304.	0.8	10
217	Bifurcation analysis in delayed Nicholson blowflies equation with delayed harvest. Nonlinear Dynamics, 2021, 105, 1805-1819.	2.7	7
219	SIR Dynamics with Vaccination in a Large Configuration Model. Applied Mathematics and Optimization, 2021, 84, 1769-1818.	0.8	4
221	COVID-19 em Londrina-PR: Modelo SEIR com Otimização de Parâmetros. Semina: Ciências Exatas E Tecnológicas, 2021, 42, 45.	0.3	1
222	COVID-19 SIHR Modeling and Dynamic Analysis. , 2021, , .		0
224	Game-theoretic modeling of collective decision making during epidemics. Physical Review E, 2021, 104, 024314.	0.8	24
225	Environment considerations on the spread of rabies among African wild dogs (Lycaon pictus) with control measures. Mathematical Methods in the Applied Sciences, 0, , .	1.2	0
226	The Blossoming of Economic Epidemiology. Annual Review of Economics, 2021, 13, 539-570.	2.4	18
227	An epidemic model through information-induced vaccination and treatment under fuzzy impreciseness. Modeling Earth Systems and Environment, 2022, 8, 2863-2887.	1.9	5
228	Epidemic model with nonlinear incidence rate and three-infectious individual classes. Journal of Statistics and Management Systems, 0, , 1-18.	0.3	1
229	Waning Immunity and the Second Wave: Some Projections for SARS-CoV-2. American Economic Review Insights, 2021, 3, 321-338.	1.6	19

#	Article	IF	CITATIONS
230	On the spread of ultrafine particulate matter: A mathematical model for motor vehicle emissions and their effects as an asthma trigger. International Journal of Biomathematics, 0, , .	1.5	0
231	Hospital preparedness during epidemics using simulation: the case of COVID-19. Central European Journal of Operations Research, 2022, 30, 213-249.	1.1	26
232	A nonâ€Gaussian Bayesian filter for sequential data assimilation with nonâ€intrusive polynomial chaos expansion. International Journal for Numerical Methods in Engineering, 2021, 122, 7156-7181.	1.5	5
233	Challenges and Future Directions in Pandemic Control. , 2022, 6, 722-727.		13
234	Modeling, Design, and Evaluation of Active \$mathrm{ext{} d }v/mathrm{ext{} d }t\$ Balancing for Series-Connected SiC MOSFETs. IEEE Transactions on Power Electronics, 2022, 37, 534-546.	5.4	12
235	Epidemiyolojideki Kompartman Modellerinin EÅŸlenmiÅŸ Hamilton Analizi. International Journal of Advances in Engineering and Pure Sciences, 0, , .	0.2	0
236	Mathematical Modelling of the COVID-19 Epidemic in Northern Ireland in 2020. Open Journal of Modelling and Simulation, 2021, 09, 91-110.	0.7	1
237	Big Data in COVID-19 Assistance—Concepts, Motivations, Advances and Applications in Real-World. Studies in Systems, Decision and Control, 2021, , 345-361.	0.8	0
239	Introduction to Epidemic Modeling. Texts in Applied Mathematics, 2015, , 9-31.	0.4	24
240	Nonlinearity + Networks: A 2020 Vision. Advances in Dynamics, Patterns, Cognition, 2020, , 131-159.	0.2	21
241	Introduction to networks and diseases. Interdisciplinary Applied Mathematics, 2017, , 1-26.	0.2	3
242	A Stage-Structured Population Model with Time-Dependent Delay in an Almost Periodic Environment. Journal of Dynamics and Differential Equations, 2022, 34, 341-364.	1.0	10
243	A class of discrete predator–prey interaction with bifurcation analysis and chaos control. Mathematical Modelling of Natural Phenomena, 2020, 15, 60.	0.9	14
244	Differences in power law growth over time and indicators of COVID-19 pandemic progression worldwide. Physical Biology, 2020, 17, 065005.	0.8	7
245	Weights optimization using Firefly Algorithm on optimal control of zika disease from dengue symptoms by vaccination. Journal of Physics: Conference Series, 2020, 1594, 012040.	0.3	5
258	Set-Valued Control Approach Applied to a COVID-19 Model with Screening and Saturated Treatment Function. Complexity, 2020, 2020, 1-15.	0.9	10
259	Impact of reduction in contact time activity of infected individuals on the dynamics and control of directly transmitted respiratory infections in SIR models. Advances in Difference Equations, 2020, 2020, 248.	3.5	1
260	Time-continuous and time-discrete SIR models revisited: theory and applications. Advances in Difference Equations, 2020, 2020, 556.	3.5	17

#	Article	IF	CITATIONS
261	sPop: Age-structured discrete-time population dynamics model in C, Python, and R. F1000Research, 2018, 7, 1220.	0.8	3
262	Fast estimation of time-varying infectious disease transmission rates. PLoS Computational Biology, 2020, 16, e1008124.	1.5	13
263	Modeling the Spread of Multiple Concurrent Contagions on Networks. PLoS ONE, 2014, 9, e95669.	1.1	22
264	A reaction-diffusion system to better comprehend the unlockdown: Application of SEIR-type model with diffusion to the spatial spread of COVID-19 in France. Computational and Mathematical Biophysics, 2020, 8, 102-113.	0.6	26
265	Homburg's Lockdown Analysis: Conclusions without Data and an Appropriate Estimation Model. Economists' Voice, 2020, 17, .	0.2	3
266	Analysis of Fractional-Order Model of COVID-19 Pandemics With a Nonlinear Incidence Rate. Innovative Biosystems and Bioengineering, 2020, 4, 160-167.	0.2	1
267	Optimal Pandemic Control: Limited Resource and Human Mobility. SSRN Electronic Journal, 0, , .	0.4	1
268	An Economic Model of Health-vs-Wealth Prioritization during COVID-19: Optimal Lockdown, Network Centrality, and Segregation. SSRN Electronic Journal, 0, , .	0.4	1
269	Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment. Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 989-1013.	0.5	8
270	Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource. Discrete and Continuous Dynamical Systems - Series B, 2016, 21, 1469-1481.	0.5	2
271	A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 2763-2776.	0.5	5
272	Dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2013, 10, 1335-1349.	1.0	76
273	Some recent developments on linear determinacy. Mathematical Biosciences and Engineering, 2013, 10, 1419-1436.	1.0	12
274	Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10, 1615-1634.	1.0	39
275	Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences and Engineering, 2013, 10, 1651-1668.	1.0	10
276	Heterogeneous population dynamics and scaling laws near epidemic outbreaks. Mathematical Biosciences and Engineering, 2016, 13, 1093-1118.	1.0	8
277	Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents. Mathematical Biosciences and Engineering, 2017, 15, 95-123.	1.0	13
278	Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences and Engineering, 2017, 15, 485-505.	1.0	11

#	Article	IF	CITATIONS
279	Existence and asymptotic profiles of the steady state for a diffusive epidemic model with saturated incidence and spontaneous infection mechanism. Discrete and Continuous Dynamical Systems - Series S, 2021, .	0.6	0
281	Dysfunctional Markets: A Spray of Prey Perspective. Journal of Economic Issues, 2021, 55, 797-819.	0.3	0
282	Sustainable Management of Renewable Resources with Depensation Dynamics from a Control Systems Perspective. Gazi University Journal of Science, 0, , .	0.6	1
283	Global Stability of a Mumps Transmission Model with Quarantine Measure. Acta Mathematicae Applicatae Sinica, 2021, 37, 665-672.	0.4	6
284	Random resampling numerical simulations applied to a SEIR compartmental model. European Physical Journal Plus, 2021, 136, 1067.	1.2	3
285	Optimal Simulator Selection. Journal of the American Statistical Association, 2023, 118, 1264-1271.	1.8	0
286	Dynamics of infectious diseases: A review of the main biological aspects and their mathematical translation. Applied Mathematics and Nonlinear Sciences, 2022, 7, 1-26.	0.9	19
287	Estimation and optimal control of the multiscale dynamics of Covid-19: a case study from Cameroon. Nonlinear Dynamics, 2021, 106, 2703-2738.	2.7	3
288	Analysis of a Tuberculosis Infection Model considering the Influence of Saturated Recovery (Treatment). Complexity, 2021, 2021, 1-16.	0.9	2
289	Delayed epidemic peak caused by infection and recovery rate fluctuations. Chaos, 2021, 31, 101107.	1.0	7
290	Epidemic Compartmental Models and Their Insurance Applications. Springer Actuarial, 2022, , 13-40.	0.2	5
291	Linear Algebra in Mathematical Population Biology and Epidemiology. Discrete Mathematics and Its Applications, 2013, , 1205-1222.	0.1	1
292	Discrete Epidemic Models. Texts in Applied Mathematics, 2015, , 415-440.	0.4	1
294	A â€~post-honeymoon' measles epidemic in Burundi: mathematical model-based analysis and implications for vaccination timing. PeerJ, 2016, 4, e2476.	0.9	2
295	Interaction between water and plants: Rich dynamics in a simple model. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 2971-3006.	0.5	3
297	sPop: Age-structured discrete-time population dynamics model in C, Python, and R. F1000Research, 2018, 7, 1220.	0.8	3
299	ANALYSIS OF DYNAMICS IN A GENERAL INTRAGUILD PREDATION MODEL WITH INTRASPECIFIC COMPETITION. Journal of Applied Analysis and Computation, 2019, 9, 1493-1526.	0.2	1
300	Predicting and estimating probability density functions of chaotic systems. Discrete and Continuous Dynamical Systems - Series B, 2019, 24, 297-319.	0.5	0

#	Article	IF	CITATIONS
301	MODELING OF COMBINED EFFECTS OF THE EXPOSURE TO CHEMICALS (ALUMINUM) AND REGULATORY IMMUNE AND ENDOCRINE FACTORS IN RESEARCH ON CYTOKINES PRODUCTION IN EXPERIMENTS IN VITRO. Gigiena I Sanitariia, 2019, 98, 214-218.	0.1	1
302	Identifying weak focus of order 3 in a Leslie–Gower prey–predator model with prey harvesting. Advances in Difference Equations, 2019, 2019, .	3.5	1
303	Epidemic Logistics with Demand Information Updating Model II: Medical Resource Is Limited. , 2020, , 89-107.		0
304	An Economic Model of Health-vs-Wealth Prioritization during COVID-19: Optimal Lockdown, Network Centrality, and Segregation. SSRN Electronic Journal, 0, , .	0.4	Ο
308	Degenerate Hopf bifurcation in a Leslie–Gower predator–prey model with predator harvest. Advances in Difference Equations, 2020, 2020, .	3.5	2
311	استخØ⁻Ø§ÙØ§Ù"Ø⁻يانات اÙ"Ø¶Ø®ÙØ© Ù^الذكاء الاصØ∙ناعي ÙÙŚ	ś ùaòl^ا	Ø⊣هةØ
312	A Computational Procedure to Capture the Data Uncertainty in a Model Calibration: The Case of the Estimation of the Effectiveness of the Influenza Vaccine. Lecture Notes in Mechanical Engineering, 2021, , 374-382.	0.3	0
313	PDE limits of stochastic SIS epidemics on networks. Journal of Complex Networks, 2020, 8, .	1.1	1
314	Reducing the Global HIV Burden: The Importance of Uneven Exposure to the Results of HIV Prevention Trials. Mathematics of Planet Earth, 2021, , 217-239.	0.1	0
315	A new hybrid risk-averse best-worst method and portfolio optimization to select temporary hospital locations for Covid-19 patients. Journal of the Operational Research Society, 2023, 74, 509-526.	2.1	14
316	Risk evaluation at municipality level of a COVID-19 outbreak incorporating relevant geographic data: the study case of Galicia. Scientific Reports, 2021, 11, 21248.	1.6	6
317	Does the data tell the true story? A modelling assessment of early COVID-19 pandemic suppression and mitigation strategies in Ghana. PLoS ONE, 2021, 16, e0258164.	1.1	5
318	A Tour of the Basic Reproductive Number and the Next Generation of Researchers. Foundations for Undergraduate Research in Mathematics, 2020, , 87-124.	0.0	11
319	Ordinary Differential Equation Models on Social Networks. Sureys and Tutorials in the Applied Mathematical Sciences, 2020, , 3-13.	0.2	Ο
320	Engaging Students in Applied Mathematics Education and Research for Global Problem Solving. SEMA SIMAI Springer Series, 2021, , 27-49.	0.4	0
321	How long do people stick to a diet resolution? A digital epidemiological estimation of weight loss diet persistence. Public Health Nutrition, 2020, 23, 3257-3268.	1.1	1
322	Planning Ward and Intensive Care Unit Beds for COVID-19 Patients Using a Discrete Event Simulation Model. , 2020, , .		7
323	Fuzzy Modelling of Covid-19 in Turkey and Some Countries in The World. Turkish Journal of Mathematics & Computer Science, 2020, 12, 136-150.	0.3	1

#	Article	IF	CITATIONS
324	A mathematical model for human-to-human transmission of COVID-19: a case study for Turkey's data. Mathematical Biosciences and Engineering, 2021, 18, 9787-9805.	1.0	0
325	On a model for population with age structure. ITM Web of Conferences, 2020, 34, 02010.	0.4	1
326	Optimal strategic pandemic control: human mobility and travel restriction. Mathematical Biosciences and Engineering, 2021, 18, 9525-9562.	1.0	0
327	A Theory of Voluntary Testing and Self-isolation in an Ongoing Pandemic. SSRN Electronic Journal, 0, , \cdot	0.4	1
328	Undergraduate Research in Mathematical Epidemiology. Foundations for Undergraduate Research in Mathematics, 2020, , 303-324.	0.0	1
329	Global stability in a competitive infection-age structured model. Mathematical Modelling of Natural Phenomena, 2020, 15, 54.	0.9	1
330	Modeling of Pandemics and Intervention Strategies: The COVID-19 Outbreak. , 2020, , 1-10.		0
331	Kinetics and thermodynamics of thermal inactivation of partially purified bacteriocin from Pseudomonas aeroginosa. AIP Conference Proceedings, 2020, , .	0.3	0
332	Newton's Method for the McKendrick-von Foerster Equation. Springer Proceedings in Mathematics and Statistics, 2020, , 137-146.	0.1	0
333	Building New Models: Rethinking and Revising ODE Model Assumptions. Foundations for Undergraduate Research in Mathematics, 2020, , 1-86.	0.0	1
334	POSITIVE TRAVELING WAVES IN A DIFFUSIVE EPIDEMIC SYSTEM WITH DISTRIBUTED DELAY AND CONSTANT EXTERNAL SUPPLIES. Journal of Applied Analysis and Computation, 2020, .	0.2	1
336	Zweifelhafte Evaluationen von Maßnahmen zur Eindämung der COVID-19-Pandemie: Eine kritische Diskussion am Beispiel der Thesen Stefan Homburgs. Ordo, 2020, 71, 329-346.	0.1	0
337	Modeling the transmission dynamics of racism propagation with community resilience. Computational Social Networks, 2021, 8, 22.	2.1	5
338	Boundary optimal control of time–space SIR model with nonlinear Robin boundary condition. International Journal of Dynamics and Control, 2022, 10, 1279-1290.	1.5	4
341	Epidemics modeling. Cybernetics and Computer Technologies, 2020, , 30-43.	0.0	1
342	The Data Science of COVID-19 Spread: Some Troubling Current and Future Trends. Peace Economics, Peace Science and Public Policy, 2020, 26, .	0.3	1
343	Dynamics of an epidemic model with imperfect vaccinations on complex networks. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 464001.	0.7	5
344	A model for pandemic control through isolation policy. RAIRO - Operations Research, 2020, 54, 1875-1890.	1.0	1

#	Article	IF	CITATIONS
346	The Lynx and Hare Data of 200 Years as the Nonlinear Conserving Interaction Based on Noether's Conservation Laws and Stability. Journal of Applied Mathematics and Physics, 2021, 09, 2807-2847.	0.2	0
347	Ecological memory preserves phage resistance mechanisms in bacteria. Nature Communications, 2021, 12, 6817.	5.8	8
348	Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach. Chaos, Solitons and Fractals, 2022, 155, 111636.	2.5	19
349	Vector–host epidemic model with direct transmission in random environment. Chaos, 2021, 31, 113117.	1.0	3
350	What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?. Mathematical Biosciences and Engineering, 2021, 19, 537-594.	1.0	12
351	Stability and Dynamic of HIV-1 Mathematical Model with Logistic Target Cell Growth, Treatment Rate, Cure Rate and Cell-to-cell Spread. Taiwanese Journal of Mathematics, 2022, 26, .	0.2	2
352	Dynamics of an arbitrary order model of toxoplasmosis ailment in human and cat inhabitants. Journal of Taibah University for Science, 2021, 15, 882-896.	1.1	8
353	Fractional order predator-prey system with migration of preys in discrete time. AIP Conference Proceedings, 2022, , .	0.3	1
354	On numerical approximation of a delay differential equation with impulsive self-support condition. Applied Mathematics and Computation, 2022, 418, 126818.	1.4	2
355	Coronavirus Outburst Prediction in India using SEIRD, Logistic Regression and ARIMA Model. , 2020, , .		0
356	Prediction and Analysis of COVID-19 Epidemic Situation via Modified SEIR Model with Asymptomatic Infection. , 2021, , .		0
357	Use of T-Norm in an Epidemiological Model for COVID-19. Lecture Notes in Networks and Systems, 2022, , 253-264.	0.5	1
358	Finite Approximation Models for Age-Structured Population Dynamics with Self-Competition in Chemostat Reactor Applications. , 2021, , .		0
360	Operations (management) warp speed: Rapid deployment of hospitalâ€focused predictive/prescriptive analytics for the COVIDâ€19 pandemic. Production and Operations Management, 2023, 32, 1433-1452.	2.1	6
361	Global Analysis and Optimal Control Model of COVID-19. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-20.	0.7	11
362	Asymptotic behavior of a stochastic SIR model with general incidence rate and nonlinear Lévy jumps. Nonlinear Dynamics, 2022, 107, 2975-2993.	2.7	13
363	Dynamical systems on large networks with predator-prey interactions are stable and exhibit oscillations. Physical Review E, 2022, 105, 014305.	0.8	8
364	Calibration and prediction for the inexact SIR model. Mathematical Biosciences and Engineering, 2022, 19, 2800-2818.	1.0	3

#ARTICLEIFCIT365Infection dynamics of COVID-19 virus under lockdown and reopening. Scientific Reports, 2022, 12, 1526.1.66366A novel iterative scheme for solving delay differential equations and nonlinear integral equations in Banach spaces. Mathematical Methods in the Applied Sciences, 2022, 45, 5111-5134.1.28367Reachability Analysis in Stochastic Directed Graphs by Reinforcement Learning. IEEE Transactions on Automatic Control 2022, 68, 462, 4603.61	TATIONS
365Infection dynamics of COVID-19 virus under lockdown and reopening. Scientific Reports, 2022, 12, 1526.1.66366A novel iterative scheme for solving delay differential equations and nonlinear integral equations in Banach spaces. Mathematical Methods in the Applied Sciences, 2022, 45, 5111-5134.1.28367Reachability Analysis in Stochastic Directed Graphs by Reinforcement Learning. IEEE Transactions on Automatic Control 2022, 68, 462, 460.3.61	
366A novel iterative scheme for solving delay differential equations and nonlinear integral equations in Banach spaces. Mathematical Methods in the Applied Sciences, 2022, 45, 5111-5134.1.28367Reachability Analysis in Stochastic Directed Graphs by Reinforcement Learning. IEEE Transactions on Autometic Control 2023, 68, 462,4603.61	
Reachability Analysis in Stochastic Directed Graphs by Reinforcement Learning. IEEE Transactions on 3.6 1	
Automatic Control, 2023, 68, 462-469.	
A modified Susceptible-Infected-Recovered model for observed under-reported incidence data. PLoS 1.1 6 ONE, 2022, 17, e0263047.	
 Vaccination strategies through intraâ€"compartmental dynamics. Networks and Heterogeneous Media, 2022, 17, 385. 	
A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous 0.6 0 Dynamical Systems - Series S, 2022, .	
Numerical modelling of coronavirus pandemic in Peru. Epidemiologic Methods, 2022, 11, . 0.8 0	
Para-Hamiltonian form for General Autonomous ODE Systems: Introductory Results. Entropy, 2022, 24, 338.	
374Evolution of resistance to COVID-19 vaccination with dynamic social distancing. Nature Human6.227Behaviour, 2022, 6, 193-206.	7
Disentangling snakebite dynamics in Colombia: How does rainfall and temperature drive snakebite 1.3 9 temporal patterns?. PLoS Neglected Tropical Diseases, 2022, 16, e0010270.	
Modeling the Dynamics of Heroin and Illicit Opioid Use Disorder, Treatment, and Recovery. Bulletin of 0.9 6 Mathematical Biology, 2022, 84, 48.	
Artificial Intelligence Techniques for Predictive Modeling of Vector-Borne Diseases and its Pathogens: A Systematic Review. Archives of Computational Methods in Engineering, 2022, 29, 3741-3771. 6.0 20)
A theory of voluntary testing and selfâ€isolation in an ongoing pandemic. Journal of Public Economic 0.6 8 Theory, 2022, 24, 873-911.	
 Global Stability Analysis of Dengue Model with Awareness, Vector Control and Time Delays. Studies in 0.8 1 Systems, Decision and Control, 2022, 177-195. 	
381 Control of COVID-19 Outbreak for Preventing Collapse of Healthcare Capacity. , 2021, , . 0	
382A timeâ€varying network model for sexually transmitted infections accounting for behavior and control actions. International Journal of Robust and Nonlinear Control, 2023, 33, 4784-4807.2.14	
City-Scale Simulation of Covid-19 Pandemic & amp; Intervention Policies Using Agent-Based Modelling. , 2021, , .	
384 Generalized epidemiological compartmental models: guaranteed bounds via optimal control. , 2021, , . 2	

#	Article	IF	CITATIONS
386	Stochastic mathematical models for the spread of COVID-19: a novel epidemiological approach. Mathematical Medicine and Biology, 2022, 39, 49-76.	0.8	7
387	A generalization of a SIS epidemic model with fluctuations. Mathematical Methods in the Applied Sciences, 2022, 45, 3718-3731.	1.2	5
388	Modelling the spreading of the SARS-CoV-2 in presence of the lockdown and quarantine measures by a <i>kinetic-type reactions</i> approach. Mathematical Medicine and Biology, 2022, 39, 105-125.	0.8	0
389	Extreme COVID-19 waves reveal hyperexponential growth and finite-time singularity. Chaos, 2022, 32, 041104.	1.0	2
390	Sensitivity and Bifurcation Analysis of Fuzzy SEIR-SEI Dengue Disease Model. Journal of Mathematics, 2022, 2022, 1-16.	0.5	2
391	THE EFFECT OF ALLEE FACTOR ON A NONLINEAR DELAYED POPULATION MODEL WITH HARVESTING. Journal of Science and Arts, 2022, 22, 159-176.	0.1	2
392	Revisiting the standard for modeling the spread of infectious diseases. Scientific Reports, 2022, 12, 7077.	1.6	3
393	Effects of supplying additional food for a scavenger species in a prey-predator-scavenger model with quadratic harvesting. International Journal of Modelling and Simulation, 2023, 43, 250-264.	2.3	4
394	Nonlinear controller design for a fractional extended model of COVID-19 outbreak using feedback linearization method. Transactions of the Institute of Measurement and Control, 0, , 014233122210925.	1.1	0
395	Effect of Covid-19 in India- A prediction through mathematical modeling using Atangana Baleanu fractional derivative. Journal of Interdisciplinary Mathematics, 2022, 25, 2431-2444.	0.4	5
396	Inverse Impulsive Optimal Neural Control for Complex Networks Applied to Epidemic Influenza Type A Model. , 2021, , .		1
397	MATHEMATICAL INSIGHTS INTO THE DYNAMICS OF INNATE IMMUNE RESPONSE DURING INFLAMMATION. Journal of Biological Systems, 0, , 1-21.	0.5	0
398	A general mathematical model for coevolutionary dynamics of mutualisms with partner discrimination. Theoretical Ecology, 0, , .	0.4	0
399	Nonconstant positive steady states and pattern formation of a diffusive epidemic model. Electronic Journal of Qualitative Theory of Differential Equations, 2022, , 1-19.	0.2	0
400	Genetic algorithm optimization to model business investment in fashion design. International Journal of Management Science and Engineering Management, 2023, 18, 208-216.	2.6	0
401	Model-based Feedforward Control of an Intra-and Interspecific Competitive Population System. , 2022, , 1-1.		0
402	Dynamical intervention planning against COVID-19-like epidemics. PLoS ONE, 2022, 17, e0269830.	1.1	3
403	Exo-SIR: an epidemiological model to analyze the impact of exogenous spread of infection. International Journal of Data Science and Analytics, 0, , .	2.4	1

#	Article	IF	CITATIONS
404	Stability and Bifurcation Analysis of a Discrete Severe Fever with Thrombocytopenia Syndrome Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	0.7	0
405	Impact of time delay and cooperation strategy on the stability of a predator-prey model with Holling type III functional response. International Journal of Biomathematics, 0, , .	1.5	2
406	Adding a reaction-restoration type transmission rate dynamic-law to the basic SEIR COVID-19 model. PLoS ONE, 2022, 17, e0269843.	1.1	7
407	Data Management in EpiGraph COVID-19 Epidemic Simulator. Lecture Notes in Computer Science, 2022, , 267-278.	1.0	4
408	THE DYNAMIC EFFECTS OF DIFFERENT QUARANTINE MEASURES ON THE SPREAD OF COVID-19. Journal of Applied Analysis and Computation, 2022, 12, 1532-1543.	0.2	2
409	A Modified SEIR Model: Stiffness Analysis andÂApplication toÂtheÂDiffusion ofÂFake News. Lecture Notes in Computer Science, 2022, , 90-103.	1.0	1
410	Discrete spread model for COVIDâ€19: the case of Lebanon. Quantitative Biology, 2022, 10, 157-171.	0.3	0
411	Complex Dynamics and Control Strategies of Seir Heterogeneous Network Model with Saturated Treatment. SSRN Electronic Journal, 0, , .	0.4	0
412	Dynamical behavior of almost periodically forced neutral delayed equation and its applications. Proceedings of the American Mathematical Society, 0, , .	0.4	0
413	Mathematical model with timeâ€delay and delayed controller for a bioreactor. Mathematical Methods in the Applied Sciences, 2023, 46, 248-266.	1.2	0
414	Effects of human mobility and behavior on disease transmission in a COVID-19 mathematical model. Scientific Reports, 2022, 12, .	1.6	7
416	Approximate Bayesian computation approach on the maximal offspring and parameters in controlled branching processes. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2022, 116, .	0.6	0
417	Using multiagent modeling to forecast the spatiotemporal development of the COVID-19 pandemic in Poland. Scientific Reports, 2022, 12, .	1.6	1
419	Controlling epidemic extinction using early warning signals. International Journal of Dynamics and Control, 2023, 11, 851-861.	1.5	1
420	Optimal control for a SIR epidemic model with limited quarantine. Scientific Reports, 2022, 12, .	1.6	5
421	Evaluating the spread of Omicron COVID-19 variant in Spain. , 2022, , .		1
422	Asymptotic solutions of the SIR and SEIR models well above the epidemic threshold. IMA Journal of Applied Mathematics, 0, , .	0.8	1
423	A fractional version of the recursive Tau method for solving a general class of Abel-Volterra integral equations systems. Fractional Calculus and Applied Analysis, 2022, 25, 1553-1584.	1.2	3

#	Article	IF	CITATIONS
424	Analysis and dynamics of a mathematical model to predict unreported cases of COVID-19 epidemic in Morocco. Computational and Applied Mathematics, 2022, 41, .	1.0	12
425	Reformulating the susceptible–infectious–removed model in terms of the number of detected cases: well-posedness of the observational model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	1
427	Causal inference for the effect of mobility on COVID-19 deaths. Annals of Applied Statistics, 2022, 16, .	0.5	5
428	DYNAMICS OF TWO PREDATOR-PREY MODELS WITH POWER LAW RELATION. Journal of Applied Analysis and Computation, 2023, 13, 233-248.	0.2	1
429	Optimal control and sensitivity analysis of infectious disease spread in two regions using quarantine and treatment. AIP Conference Proceedings, 2022, , .	0.3	0
430	A data-validated temporary immunity model of COVID-19 spread in Michigan. Mathematical Biosciences and Engineering, 2022, 19, 10122-10142.	1.0	5
431	Analysis ofÂFuzzy Dynamics ofÂSEIR COVID-19 Disease Model. Springer Proceedings in Complexity, 2022, , 1399-1408.	0.2	0
432	Stability Analysis ofÂtheÂLeslie-Gower Model withÂtheÂEffects ofÂHarvesting andÂPrey Herd Behaviour. Springer Proceedings in Complexity, 2022, , 733-739.	0.2	0
433	The Use of Triangular Norms in Epidemiological Models: A Comparative Study Using COVID-19 Data. IEEE Transactions on Fuzzy Systems, 2022, , 1-10.	6.5	0
434	Models for Digitally Contact-Traced Epidemics. IEEE Access, 2022, 10, 106180-106190.	2.6	1
435	What Makes Products Trendy: Introducing an Innovation Adoption Model. SSRN Electronic Journal, 0, , .	0.4	0
436	On the Stability of Stationary States in Diffusion Models in Biology and Humanities. Lobachevskii Journal of Mathematics, 2022, 43, 1389-1400.	0.1	0
437	Statistical analysis and first-passage-time applications of a lognormal diffusion process with multi-sigmoidal logistic mean. Statistical Papers, 0, , .	0.7	1
438	Enhancing Online Epidemic Supervising System by Compartmental and GRU Fusion Model. Mobile Information Systems, 2022, 2022, 1-15.	0.4	0
439	Vaccination and isolation based control design of the COVID-19 pandemic based on adaptive neuro fuzzy inference system optimized with the genetic algorithm. Evolving Systems, 2023, 14, 413-435.	2.4	3
440	The Stability Analysis and Transmission Dynamics of the SIR Model with Nonlinear Recovery and Incidence Rates. Mathematical Problems in Engineering, 2022, 2022, 1-10.	0.6	1
441	Dynamics of COVID-19 Using SEIQR Epidemic Model. Journal of Mathematics, 2022, 2022, 1-21.	0.5	4
442	Efficient Numerical Solutions to a SIR Epidemic Model. Mathematics, 2022, 10, 3299.	1.1	2

#	Article	IF	CITATIONS
443	Analysis of effectiveness of quarantine and isolation on the spread of Covid-19 during vaccination's period with SEQIJR model. AIP Conference Proceedings, 2022, , .	0.3	0
444	Dynamic behavior of an age-structured houseflies model with nonconstant fertility. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, .	0.7	0
446	Bayesian computational methods for state-space models with application to SIR model. Journal of Statistical Computation and Simulation, 2023, 93, 1207-1223.	0.7	1
447	Global stability of almost periodic solutions in population dynamics. Quarterly of Applied Mathematics, 0, , .	0.5	0
448	Applications of the Delay Stochastic Simulation Algorithm (DSSA) in Mathematical Epidemiology. Mathematics, 2022, 10, 3759.	1.1	1
449	Sparse Optimal Control of Pattern Formations for an SIR Reaction-Diffusion Epidemic Model. SIAM Journal on Applied Mathematics, 2022, 82, 1764-1790.	0.8	21
450	Microscopic modeling of spatiotemporal epidemic dynamics. , 2022, , .		3
451	Inverse Optimal Impulsive Neural Control for Complex Networks Applied to Epidemic Diseases. Systems, 2022, 10, 204.	1.2	0
452	Study of HIV model via recent improved fractional differential and integral operators. AIMS Mathematics, 2023, 8, 1656-1671.	0.7	4
453	Quickest Inference of Network Cascades With Noisy Information. IEEE Transactions on Information Theory, 2023, 69, 2494-2522.	1.5	1
454	An Open-Source Co-processor for Solving Lotka-Volterra Equations. , 2022, , .		2
455	SIMULATION OF EPIDEMIC PROCESSES: A REVIEW OF MODERN METHODS, MODELS AND APPROACHES. Inter Collegas, 2022, 9, 66-75.	0.0	1
456	A Mathematical Modelling and Analysis of COVID-19 Transmission Dynamics with Optimal Control Strategy. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-15.	0.7	1
457	Probing the Oscillatory Behavior of Internet Game Addiction via Diffusion PDE Model. Axioms, 2022, 11, 649.	0.9	10
459	Modeling with Class Structure. Theoretical Biology, 2022, , 263-323.	0.0	0
460	Bifurcation and chaos in a prey predator model with intra-species competition. AIP Conference Proceedings, 2022, , .	0.3	0
461	Spatio-Temporal SIR Model with Robin Boundary Condition and Automatic Lockdown Policy. International Journal of Applied and Computational Mathematics, 2023, 9, .	0.9	0
462	Examples of creative extinction in dynamic ecology. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2023, 117, .	0.6	0

#	Article	IF	CITATIONS
463	COVID-19: A Comparative Study of Contagions Peaks in Cities from Europe and the Americas. International Journal of Environmental Research and Public Health, 2022, 19, 16953.	1.2	0
464	Linearized compact difference schemes applied to nonlinear variable coefficient parabolic equations with distributed delay. Numerical Methods for Partial Differential Equations, 0, , .	2.0	0
465	A Comparative Study for Some Mathematical Models of Epidemic Diseases with Application to Strategic Management. Applied Sciences (Switzerland), 2022, 12, 12639.	1.3	1
466	A class of anomalous diffusion epidemic models based on CTRW and distributed delay. International Journal of Biomathematics, 0, , .	1.5	0
467	Patterns in a Time-Fractional Predatorâ \in Prey System with Finite Interaction Range. , 0, , .		1
468	COVID-19 dynamics in Madrid (Spain): A new convolutional model to find out the missing information during the first three waves. PLoS ONE, 2022, 17, e0279080.	1.1	1
469	A generalized feedback control model for the logistic differential equation. International Journal of Dynamics and Control, 0, , .	1.5	0
470	Dynamic analysis and optimal control of COVID-19 with comorbidity: A modeling study of Indonesia. Frontiers in Applied Mathematics and Statistics, 0, 8, .	0.7	2
471	Architecture Optimization of a Non-Linear Autoregressive Neural Networks for Mackey-Glass Time Series Prediction Using Discrete Mycorrhiza Optimization Algorithm. Micromachines, 2023, 14, 149.	1.4	3
472	A systematic procedure for incorporating separable static heterogeneity into compartmental epidemic models. Journal of Mathematical Biology, 2023, 86, .	0.8	4
473	Ransomware as a Predator: Modelling the Systemic Risk to Prey. Digital Threats Research and Practice, 2023, 4, 1-38.	1.7	0
474	Mathematical Analysis of Epidemic Models with Treatment in Heterogeneous Networks. Bulletin of Mathematical Biology, 2023, 85, .	0.9	1
475	Syndromic surveillance using structured telehealth data: a case study of the first wave of COVID-19 in Brazil (Preprint). JMIR Public Health and Surveillance, 0, , .	1.2	0
476	A Review of Mathematical Model Based in Clustered Computer Network. , 0, , .		0
477	Logarithmic Dynamics and Aggregation in Epidemics. , 2022, , .		0
478	Modelling and Control of Epidemics Across Scales. , 2022, , .		1
479	Asymptotic stability of equilibria for difference equations via fixed points of enriched PreÅić operators. Demonstratio Mathematica, 2023, 56, .	0.6	0
480	Data suggested hospitalization as critical indicator of the severity of the COVID-19 pandemic, even at its early stages. Mathematical Biosciences and Engineering, 2023, 20, 10304-10338.	1.0	0

#	Article	IF	CITATIONS
481	Analytical bifurcation behaviors of a host–parasitoid model with Holling type III functional response. Journal of the Egyptian Mathematical Society, 2023, 31, .	0.6	1
482	Pool dynamics of time-dependent compartmental systems with application to the terrestrial carbon cycle. Journal of the Royal Society Interface, 2023, 20, .	1.5	6
483	Long term lithium availability and electric mobility: What can we learn from resource assessment?. Journal of Geochemical Exploration, 2023, 249, 107212.	1.5	1
484	Influence of age group in the spreading of fake news: contact matrices in social media. , 2022, , .		1
485	Social distancing and COVID-19: Randomization inference for a structured dose-response relationship. Annals of Applied Statistics, 2023, 17, .	0.5	0
487	Optimal strategies for controlling the outbreak of COVID-19: Reducing its cost and duration. Nonautonomous Dynamical Systems, 2022, 9, 317-330.	0.3	0
488	Mathematical Model of Basal Sprout Production in Vector-Borne Tree Disease. Forests, 2023, 14, 349.	0.9	0
489	Design of a military protective suit against biological agents. , 2023, , 141-176.		0
490	COVID-19 - Novel Short Term Prediction Methods. , 2023, , 16-35.		0
491	Mathematical Modeling and Computing to Study the Influence of Quarantine Levels and Common Mitigation Strategies on the Spread of COVID-19 on a Higher Education Campus. Springer Proceedings in Mathematics and Statistics, 2022, , 637-652.	0.1	0
492	Epidemic highs and lows: a stochastic diffusion model for active cases. Journal of Biological Dynamics, 2023, 17, .	0.8	0
493	A Fractional Treatment to Food-Borne Disease Modeling by q- Homotopy Analysis Transform Method (q-HATM). International Journal of Advanced Research in Science, Communication and Technology, 0, , 508-523.	0.0	0
494	Final size and partial distance estimate for a two-group SEIRD model. Journal of Mathematical Biology, 2023, 86, .	0.8	0
495	Learning-based importance sampling via stochastic optimal control for stochastic reaction networks. Statistics and Computing, 2023, 33, .	0.8	1
496	The emergence of a virus variant: dynamics of a competition model with cross-immunity time-delay validated by wastewater surveillance data for COVID-19. Journal of Mathematical Biology, 2023, 86, .	0.8	6
497	A Generalized Mathematical Model of Toxoplasmosis with an Intermediate Host and the Definitive Cat Host. Mathematics, 2023, 11, 1642.	1.1	2
498	Clobalization and Pandemics. American Economic Review, 2023, 113, 939-981.	4.0	12
499	Perceptive movement of susceptible individuals with memory. Journal of Mathematical Biology, 2023, 86, .	0.8	3

#	Article	IF	CITATIONS
500	Relaxation Oscillations in the Logistic Equation with Delay and Modified Nonlinearity. Mathematics, 2023, 11, 1699.	1.1	0
501	Stability Switching in Lotka-Volterra and Ricker-Type Predator-Prey Systems with Arbitrary Step Size. Axioms, 2023, 12, 390.	0.9	0
502	Concurrent dilution and amplification effects in an intraguild predation eco-epidemiological model. Scientific Reports, 2023, 13, .	1.6	4
506	Optimal Control: Application and Applicability in Times of Pandemics. Integrated Science, 2023, , 191-210.	0.1	0
508	Stability analysis of Lotka Volterra model for three species with disease. AIP Conference Proceedings, 2023, , .	0.3	0
510	The LADM approach to analyze the fractional order model for smoking habits including memory. AIP Conference Proceedings, 2023, , .	0.3	0
536	Infectious Disease Modeling: From Traditional to Evolutionary Algorithms. Archives of Computational Methods in Engineering, 2024, 31, 663-699.	6.0	1
542	Quickest Inference of Susceptible-Infected Cascades in Sparse Networks. , 2023, , .		2
547	Non-parametric model-based estimation of the effective reproduction number for SARS-CoV-2. AIP Conference Proceedings, 2023, , .	0.3	1
554	A Multi-Objective Approach to Deal with International Airspace Closure/Opening in Spain in an Early-Stage Pandemic Situation. , 2023, , .		0
559	Ageing in Place and Built Environment Amenities at Neighbourhood Scale: The Case of South Australia. , 2023, , 113-139.		0
561	Rate-Induced Tipping and Chaos in Models of Epidemics. Advances in Dynamics, Patterns, Cognition, 2023, , 85-102.	0.2	0
566	Mathematical Models: Perspectives of Mathematical Modelers and Public Health Professionals. Fields Institute Communications, 2023, , 1-35.	0.6	0
568	The Stability of the SAIR Infectious Disease Model on Community Networks. , 2023, , .		0
575	A mathematical model for the control of COVID-19 by vaccination in Baguio city. AIP Conference Proceedings, 2024, , .	0.3	0
586	Combined influences of distinct epidemiological factors and governmental-individual reactions in determining the transmission dynamics of COVID-19. AIP Conference Proceedings, 2024, , .	0.3	0