Tau deficiency induces parkinsonism with dementia by

Nature Medicine 18, 291-295 DOI: 10.1038/nm.2613

Citation Report

#	Article	IF	CITATIONS
2	Impaired Iron Status in Aging Research. International Journal of Molecular Sciences, 2012, 13, 2368-2386.	1.8	81
3	Ironing out tau's role in parkinsonism. Nature Medicine, 2012, 18, 197-198.	15.2	13
4	Quantitative Proteomic Analyses of Cerebrospinal Fluid Using iTRAQ in a Primate Model of Iron Deficiency Anemia. Developmental Neuroscience, 2012, 34, 354-365.	1.0	29
5	Lack of Tau Proteins Rescues Neuronal Cell Death and Decreases Amyloidogenic Processing of APP in APP/PS1 Mice. American Journal of Pathology, 2012, 181, 1928-1940.	1.9	116
6	Digital and Analog Chemical Evolution. Accounts of Chemical Research, 2012, 45, 2189-2199.	7.6	43
7	Mammalian iron metabolism and its control by iron regulatory proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1468-1483.	1.9	369
8	Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 2012, 149, 1060-1072.	13.5	9,007
9	Lessons from Tau-Deficient Mice. International Journal of Alzheimer's Disease, 2012, 2012, 1-8.	1.1	99
10	Iron and Neurodegeneration: From Cellular Homeostasis to Disease. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-8.	1.9	59
11	Modulation of iron metabolism in aging and in Alzheimer's disease: relevance of the choroid plexus. Frontiers in Cellular Neuroscience, 2012, 6, 25.	1.8	40
12	The Metal Theory of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S277-S281.	1.2	214
13	Metal dyshomeostasis and oxidative stress in Alzheimer's disease. Neurochemistry International, 2013, 62, 540-555.	1.9	376
14	Antisense Reduction of Tau in Adult Mice Protects against Seizures. Journal of Neuroscience, 2013, 33, 12887-12897.	1.7	254
15	Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathologica, 2013, 126, 671-682.	3.9	76
16	Higher iron in the red nucleus marks Parkinson's dyskinesia. Neurobiology of Aging, 2013, 34, 1497-1503.	1.5	76
17	NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: Protection against impairments in axonal transport. Neurobiology of Disease, 2013, 56, 79-94.	2.1	98
18	Mammalian iron transporters: Families SLC11 and SLC40. Molecular Aspects of Medicine, 2013, 34, 270-287.	2.7	110
19	Trasferrin receptor 2 gene regulation by microRNA 221 in SH-SY5Y cells treated with MPP+ as Parkinson's disease cellular model. Neuroscience Research, 2013, 77, 121-127.	1.0	24

#	Article	IF	CITATIONS
20	Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO Journal, 2013, 32, 2920-2937.	3.5	222
21	Therapeutic strategies for tau mediated neurodegeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 784-795.	0.9	115
22	Slow Excitotoxicity in Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 35, 643-668.	1.2	82
23	Tau Loss Attenuates Neuronal Network Hyperexcitability in Mouse and <i>Drosophila</i> Genetic Models of Epilepsy. Journal of Neuroscience, 2013, 33, 1651-1659.	1.7	195
24	Age-appropriate cognition and subtle dopamine-independent motor deficits in aged Tau knockout mice. Neurobiology of Aging, 2013, 34, 1523-1529.	1.5	102
25	Metallostasis in Alzheimer's disease. Free Radical Biology and Medicine, 2013, 62, 76-89.	1.3	297
26	Progress and Developments in Tau Aggregation Inhibitors for Alzheimer Disease. Journal of Medicinal Chemistry, 2013, 56, 4135-4155.	2.9	105
27	Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Annals of Neurology, 2013, 73, 554-559.	2.8	218
28	Direct Modulation of Microtubule Stability Contributes to Anthracene General Anesthesia. Journal of the American Chemical Society, 2013, 135, 5389-5398.	6.6	45
29	The effect of dopamine on MPTP-induced rotarod disability. Neuroscience Letters, 2013, 543, 105-109.	1.0	25
30	Genetics and iron in the systems biology of Parkinson's disease and some related disorders. Neurochemistry International, 2013, 62, 637-652.	1.9	56
31	Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Metallomics, 2013, 5, 91.	1.0	64
32	Antisense Oligonucleotides: Treating Neurodegeneration at the Level of RNA. Neurotherapeutics, 2013, 10, 486-497.	2.1	133
33	Tau pathology and neurodegeneration. Lancet Neurology, The, 2013, 12, 609-622.	4.9	893
34	Allosteric Heat Shock Protein 70 Inhibitors Rapidly Rescue Synaptic Plasticity Deficits by Reducing Aberrant Tau. Biological Psychiatry, 2013, 74, 367-374.	0.7	93
35	Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opinion on Drug Discovery, 2013, 8, 115-129.	2.5	51
36	Network modeling to identify new mechanisms and therapeutic targets for Parkinson's disease. Expert Review of Neurotherapeutics, 2013, 13, 685-693.	1.4	0
37	Increased Iron Levels and Decreased Tissue Integrity in Hippocampus of Alzheimer's Disease Detected in vivo with Magnetic Resonance Imaging. Journal of Alzheimer's Disease, 2013, 37, 127-136.	1.2	204

#	Article	IF	CITATIONS
38	Iron: Effect of Overload and Deficiency. Metal Ions in Life Sciences, 2013, 13, 229-294.	2.8	48
39	Iron Chelation and Multiple Sclerosis. ASN Neuro, 2013, 6, AN20130037.	1.5	46
40	Melatonin in Alzheimer's Disease. International Journal of Molecular Sciences, 2013, 14, 14575-14593.	1.8	178
42	NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy. Molecular Psychiatry, 2013, 18, 834-842.	4.1	66
44	Lysine‧pecific Demethylase 1‧elective Inactivators: Proteinâ€Targeted Drug Delivery Mechanism. Angewandte Chemie - International Edition, 2013, 52, 8620-8624.	7.2	69
45	lron Accumulates in Huntington's Disease Neurons: Protection by Deferoxamine. PLoS ONE, 2013, 8, e77023.	1.1	119
46	A delicate balance: Iron metabolism and diseases of the brain. Frontiers in Aging Neuroscience, 2013, 5, 34.	1.7	314
47	What Renders TAU Toxic. Frontiers in Neurology, 2013, 4, 72.	1.1	67
48	Glial Cell Ceruloplasmin and Hepcidin Differentially Regulate Iron Efflux from Brain Microvascular Endothelial Cells. PLoS ONE, 2014, 9, e89003.	1.1	90
49	Nigral Iron Elevation Is an Invariable Feature of Parkinson's Disease and Is a Sufficient Cause of Neurodegeneration. BioMed Research International, 2014, 2014, 1-9.	0.9	126
50	The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Frontiers in Pharmacology, 2014, 5, 81.	1.6	42
51	Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson's disease. Frontiers in Aging Neuroscience, 2014, 6, 89.	1.7	53
52	Metals and cholesterol: two sides of the same coin in Alzheimerââ,¬â"¢s disease pathology. Frontiers in Aging Neuroscience, 2014, 6, 91.	1.7	36
53	Role of metal ions in the cognitive decline of Down syndrome. Frontiers in Aging Neuroscience, 2014, 6, 136.	1.7	19
54	Alpha-synuclein and tau: teammates in neurodegeneration?. Molecular Neurodegeneration, 2014, 9, 43.	4.4	216
55	Laser spectrometry for multi-elemental imaging of biological tissues. Scientific Reports, 2014, 4, 6065.	1.6	117
56	A novel approach to rapidly prevent ageâ€related cognitive decline. Aging Cell, 2014, 13, 351-359.	3.0	46
57	Mutations in RAB39B Cause X-Linked Intellectual Disability and Early-Onset Parkinson Disease with α-Synuclein Pathology. American Journal of Human Genetics, 2014, 95, 729-735.	2.6	207

#	Article	IF	CITATIONS
58	Overexpression of Heme Oxygenase 1 Causes Cognitive Decline and Affects Pathways for Tauopathy in Mice. Journal of Alzheimer's Disease, 2014, 43, 519-534.	1.2	34
59	Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends in Neurosciences, 2014, 37, 721-732.	4.2	221
60	Loss of tau results in defects in photoreceptor development and progressive neuronal degeneration in <scp><i>Drosophila</i></scp> . Developmental Neurobiology, 2014, 74, 1210-1225.	1.5	44
61	ADSC Therapy in Neurodegenerative Disorders. Cell Transplantation, 2014, 23, 549-557.	1.2	51
62	Polymorphism of Tau Fibrils. , 2014, , 213-222.		1
63	Biomarker Modelling of Early Molecular Changes in Alzheimer's Disease. Molecular Diagnosis and Therapy, 2014, 18, 213-227.	1.6	4
64	Iron dysregulation in Huntington's disease. Journal of Neurochemistry, 2014, 130, 328-350.	2.1	90
65	The role of iron and reactive oxygen species in cell death. Nature Chemical Biology, 2014, 10, 9-17.	3.9	1,685
66	Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1045-1054.	1.5	75
67	Advances in Therapeutics for Neurodegenerative Tauopathies: Moving toward the Specific Targeting of the Most Toxic Tau Species. ACS Chemical Neuroscience, 2014, 5, 752-769.	1.7	63
68	An iron–dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta. Chemical Science, 2014, 5, 2160-2169.	3.7	98
69	Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chemical Society Reviews, 2014, 43, 6727-6749.	18.7	417
70	Loss of MAP Function Leads to Hippocampal Synapse Loss and Deficits in the Morris Water Maze with Aging. Journal of Neuroscience, 2014, 34, 7124-7136.	1.7	120
71	Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson's disease. Molecular Neurodegeneration, 2014, 9, 27.	4.4	60
72	Motor and cognitive deficits in aged tau knockout mice in two background strains. Molecular Neurodegeneration, 2014, 9, 29.	4.4	117
73	The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurology, The, 2014, 13, 1045-1060.	4.9	1,250
75	An anemia of Alzheimer's disease. Molecular Psychiatry, 2014, 19, 1227-1234.	4.1	114
76	O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chemical Society Reviews, 2014, 43, 6839-6858.	18.7	209

#	Article	IF	CITATIONS
77	Tau reduction prevents disease in a mouse model of <scp>D</scp> ravet syndrome. Annals of Neurology, 2014, 76, 443-456.	2.8	117
78	Seizure resistance without parkinsonism in aged mice after tau reduction. Neurobiology of Aging, 2014, 35, 2617-2624.	1.5	62
79	A role for tau at the synapse in Alzheimer's disease pathogenesis. Neuropharmacology, 2014, 76, 1-8.	2.0	160
80	Ceruloplasmin and β-amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radical Biology and Medicine, 2014, 69, 331-337.	1.3	49
81	Cortical phase changes in Alzheimer's disease at 7T MRI: A novel imaging marker. Alzheimer's and Dementia, 2014, 10, e19-26.	0.4	46
82	Brain Iron Homeostasis: From Molecular Mechanisms To Clinical Significance and Therapeutic Opportunities. Antioxidants and Redox Signaling, 2014, 20, 1324-1363.	2.5	165
83	Magnetic Resonance Imaging (MRI) to Study Striatal Iron Accumulation in a Rat Model of Parkinson's Disease. PLoS ONE, 2014, 9, e112941.	1.1	17
84	The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biology of the Cell, 2015, 107, 389-418.	0.7	36
85	Iron Chelation Inhibits Osteoclastic Differentiation In Vitro and in Tg2576 Mouse Model of Alzheimer's Disease. PLoS ONE, 2015, 10, e0139395.	1.1	18
86	Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies?. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-17.	1.9	193
87	Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nature Communications, 2015, 6, 6760.	5.8	240
89	Tau missorting and spastin-induced microtubule disruption in neurodegeneration: Alzheimer Disease and Hereditary Spastic Paraplegia. Molecular Neurodegeneration, 2015, 10, 68.	4.4	69
90	Metal chaperones prevent zinc-mediated cognitive decline. Neurobiology of Disease, 2015, 81, 196-202.	2.1	47
91	Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion, 2015, 21, 92-105.	1.6	128
92	Rare variants in β-Amyloid precursor protein (APP) and Parkinson's disease. European Journal of Human Genetics, 2015, 23, 1328-1333.	1.4	50
93	Parkinson's Disease Iron Deposition Caused by Nitric Oxide-Induced Loss of β-Amyloid Precursor Protein. Journal of Neuroscience, 2015, 35, 3591-3597.	1.7	109
94	ls early-life iron exposure critical in neurodegeneration?. Nature Reviews Neurology, 2015, 11, 536-544.	4.9	86
95	Copper(II) complexation of tacrine hybrids with potential anti-neurodegenerative roles. Journal of Inorganic Biochemistry, 2015, 151, 58-66.	1.5	19

ARTICLE IF CITATIONS # Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the 1.5 30 96 longest-lived rodent. Neurobiology of Aging, 2015, 36, 1496-1504. Mutations in the Microtubule-Associated Protein 1A (<i>Map1a</i>) Gene Cause Purkinje Cell 1.7 Degeneration. Journal of Neuroscience, 2015, 35, 4587-4598. Lack of exacerbation of neurodegeneration in a double transgenic mouse model of mutant LRRK2 and 98 1.4 14 tau. Human Molecular Genetics, 2015, 24, 3545-3556. Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiology 99 of Disease, 2015, 81, 168-175. CSF tau and tau/AÎ²42 predict cognitive decline in Parkinson's disease. Parkinsonism and Related 100 1.1 81 Disorders, 2015, 21, 271-276. Tau regulates the localization and function of Endâ€binding proteins 1 and 3 in developing neuronal 2.1 cells. Journal of Neurochemistry, 2015, 133, 653-667. Characterizing brain iron deposition in subcortical ischemic vascular dementia using 102 1.2 21 susceptibility-weighted imaging: An in vivo MR study. Behavioural Brain Research, 2015, 288, 33-38. Tau Phosphorylation at Serine 396 Residue Is Required for Hippocampal LTD. Journal of Neuroscience, 1.7 163 2015, 35, 4804-4812. Inducible Expression of a Truncated Form of TauÂin OligodendrocytesÂElicits Gait Abnormalities and a 104 Decrease in Myelin: Implications for Selective CNS Degenerative Diseases. Neurochemical Research, 1.6 15 2015, 40, 2188-2199. Enduring Elevations of Hippocampal Amyloid Precursor Protein and Iron Are Features of Î²-Amyloid 2.1 Toxicity and Are Mediated by Tau. Neurotherapeutics, 2015, 12, 862-873. Targeting mitochondrial metal dyshomeostasis for the treatment of neurodegeneration. 106 1.2 12 Neurodegenerative Disease Management, 2015, 5, 345-364. Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through 5.8 101 NMDAR activation. Nature Communications, 2015, 6, 7168. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides 108 2.1 115 of the same coin. Neurobiology of Disease, 2015, 81, 49-65. Diverse functional roles of lipocalin-2 in the central nervous system. Neuroscience and Biobehavioral 109 128 Reviews, 2015, 49, 135-156. Biometals and Their Therapeutic Implications in Alzheimer's Disease. Neurotherapeutics, 2015, 12, 110 2.1 109 109-120. Parkinson's Disease (Pathogenesis and Its Management): An Overview. , 2016, 06, . Tau: The Center of a Signaling Nexus in Alzheimer's Disease. Frontiers in Neuroscience, 2016, 10, 31. 112 1.4 94 Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Frontiers in Neuroscience, 2016, 1.4 10, 205.

	CITATION	Report	
#	Article	IF	Citations
114	New Features about Tau Function and Dysfunction. Biomolecules, 2016, 6, 21.	1.8	67
115	Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy, 2016, 12, 1487-1506.	4.3	37
116	Deletion of endogenous Tau proteins is not detrimental in Drosophila. Scientific Reports, 2016, 6, 23102.	1.6	38
117	Protein Misfolding in Prion and Prion-Like Diseases: Reconsidering a Required Role for Protein Loss-of-Function. Journal of Alzheimer's Disease, 2016, 54, 3-29.	1.2	17
118	Transferrin protects against Parkinsonian neurotoxicity and is deficient in Parkinson's substantia nigra. Signal Transduction and Targeted Therapy, 2016, 1, 16015.	7.1	36
119	Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation. Acta Neuropathologica Communications, 2016, 4, 74.	2.4	18
120	Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3428-3435.	3.3	109
121	Mitochondrial ferritin suppresses MPTP-induced cell damage by regulating iron metabolism and attenuating oxidative stress. Brain Research, 2016, 1642, 33-42.	1.1	34
122	Increased 4R-Tau Induces Pathological Changes in a Human-Tau Mouse Model. Neuron, 2016, 90, 941-947.	3.8	143
124	Impaired burrowing is the most prominent behavioral deficit of aging htau mice. Neuroscience, 2016, 329, 98-111.	1.1	26
125	The Complex Role of Apolipoprotein E in Alzheimer's Disease: an Overview and Update. Journal of Molecular Neuroscience, 2016, 60, 325-335.	1.1	64
126	The ordered assembly of tau is the gainâ€ofâ€toxic function that causes human tauopathies. Alzheimer's and Dementia, 2016, 12, 1040-1050.	0.4	54
127	Bioavailable Trace Metals in Neurological Diseases. Current Treatment Options in Neurology, 2016, 18, 46.	0.7	21
128	Tau physiology and pathomechanisms in frontotemporal lobar degeneration. Journal of Neurochemistry, 2016, 138, 71-94.	2.1	85
130	Absence of Tau triggers ageâ€dependent sciatic nerve morphofunctional deficits and motor impairment. Aging Cell, 2016, 15, 208-216.	3.0	36
131	Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses. Journal of Neurochemistry, 2016, 136, 222-233.	2.1	53
132	Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. Journal of Neurochemistry, 2016, 139, 179-197.	2.1	417
133	Microtubule Organization and Microtubule-Associated Proteins (MAPs). , 2016, , 31-75.		7

#	Article	IF	CITATIONS
134	Interactions Between α-Synuclein and Tau Protein: Implications to Neurodegenerative Disorders. Journal of Molecular Neuroscience, 2016, 60, 298-304.	1.1	29
135	Identification of a LargeDNAJB2Deletion in a Family with Spinal Muscular Atrophy and Parkinsonism. Human Mutation, 2016, 37, 1180-1189.	1.1	36
136	Typeâ€l interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson's disease. Glia, 2016, 64, 1590-1604.	2.5	71
137	Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1871-1882.	1.8	73
138	Tau Immunotherapy. Methods in Pharmacology and Toxicology, 2016, , 109-120.	0.1	1
139	Microtubule-Tau Interaction as a Therapeutic Target for Alzheimer's Disease. Journal of Molecular Neuroscience, 2016, 58, 145-152.	1.1	10
140	Cortical phase changes measured using 7â€ī MRI in subjects with subjective cognitive impairment, and their association with cognitive function. NMR in Biomedicine, 2016, 29, 1289-1294.	1.6	12
141	A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity. Journal of Neurochemistry, 2016, 138, 479-494.	2.1	33
142	Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. International Review of Cell and Molecular Biology, 2016, 321, 89-169.	1.6	79
143	Tau in physiology and pathology. Nature Reviews Neuroscience, 2016, 17, 22-35.	4.9	1,518
144	A role for iron deficiency in dopaminergic neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3417-3418.	3.3	14
145	Iron and dopamine: a toxic couple. Brain, 2016, 139, 1026-1035.	3.7	208
146	Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Progress in Neurobiology, 2016, 137, 17-38.	2.8	60
147	Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opinion on Therapeutic Targets, 2016, 20, 653-661.	1.5	24
148	Pre-treatment of rats with ad-hepcidin prevents iron-induced oxidative stress in the brain. Free Radical Biology and Medicine, 2016, 90, 126-132.	1.3	40
149	Clioquinol Improves Cognitive, Motor Function, and Microanatomy of the Alpha-Synuclein hA53T Transgenic Mice. ACS Chemical Neuroscience, 2016, 7, 119-129.	1.7	64
150	Iron and Neurodegeneration: Is Ferritinophagy the Link?. Molecular Neurobiology, 2016, 53, 5542-5574.	1.9	84
151	Brain Iron Metabolism Dysfunction in Parkinson's Disease. Molecular Neurobiology, 2017, 54, 3078-3101.	1.9	138

#	Article	IF	CITATIONS
152	Transcriptomic profiling of purified patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson's disease. Human Molecular Genetics, 2017, 26, ddw412.	1.4	62
153	Widespread hyperphosphorylated tau in the working memory circuit early after cortical impact injury of brain (Original study). Behavioural Brain Research, 2017, 323, 146-153.	1.2	13
154	FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Molecular and Cellular Biology, 2017, 37, .	1.1	12
155	Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International, 2017, 104, 34-48.	1.9	260
156	Evidence of a Cardiovascular Function for Microtubule-Associated Protein Tau. Journal of Alzheimer's Disease, 2017, 56, 849-860.	1.2	23
157	Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Science Translational Medicine, 2017, 9, .	5.8	354
158	Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events. Medical Hypotheses, 2017, 101, 69-74.	0.8	79
159	Frontotemporal dementia. , 2017, , 199-249.		1
160	Tau haploinsufficiency causes prenatal loss of dopaminergic neurons in the ventral tegmental area and reduction of transcription factor orthodenticle homeobox 2 expression. FASEB Journal, 2017, 31, 3349-3358.	0.2	6
161	Abnormal Function of Metalloproteins Underlies Most Neurodegenerative Diseases. , 2017, , 415-438.		2
162	Analogues of desferrioxamine B designed to attenuate iron-mediated neurodegeneration: synthesis, characterisation and activity in the MPTP-mouse model of Parkinson's disease. Metallomics, 2017, 9, 852-864.	1.0	23
163	Tau at the Crossroads between Neurotoxicity and Neuroprotection. Neuron, 2017, 94, 703-704.	3.8	9
164	Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases. Neuron, 2017, 94, 1056-1070.	3.8	216
165	Biomonitorization of iron accumulation in the substantia nigra from Lewy body disease patients. Toxicology Reports, 2017, 4, 188-193.	1.6	20
166	Pramipexole restores depressed transmission in the ventral hippocampus following MPTP-lesion. Scientific Reports, 2017, 7, 44426.	1.6	16
167	Systemic and network functions of the microtubule-associated protein tau: Implications for tau-based therapies. Molecular and Cellular Neurosciences, 2017, 84, 132-141.	1.0	30
168	Iron Chelation Nanoparticles with Delayed Saturation as an Effective Therapy for Parkinson Disease. Biomacromolecules, 2017, 18, 461-474.	2.6	55
169	A novel approach to explore organochalcogen chemistry of tellurium based receptor for selective determination of silver ions in aqueous medium. Polyhedron, 2017, 125, 238-245.	1.0	6

#	Article	IF	CITATIONS
170	Amyloid Precursor Protein Haploinsufficiency Preferentially Mediates Brain Iron Accumulation in Mice Transgenic for The Huntington's Disease Mutation. Journal of Huntington's Disease, 2017, 6, 115-125.	0.9	5
171	Differential Effect of Acute Iron Overload on Oxidative Status and Antioxidant Content in Regions of Rat Brain. Toxicologic Pathology, 2017, 45, 1067-1076.	0.9	5
172	Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Molecular Psychiatry, 2017, 22, 1520-1530.	4.1	449
173	Iron metabolism and its detection through MRI in parkinsonian disorders: a systematic review. Neurological Sciences, 2017, 38, 2095-2101.	0.9	30
174	Hydrophobic tagging-mediated degradation of Alzheimer's disease related Tau. RSC Advances, 2017, 7, 40362.	1.7	40
175	A unique glycan-isoform of transferrin in cerebrospinal fluid: A potential diagnostic marker for neurological diseases. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2473-2478.	1.1	26
176	Accelerated kindling epileptogenesis in Tg4510 tau transgenic mice, but not in tau knockout mice. Epilepsia, 2017, 58, e136-e141.	2.6	30
177	Emerging Diagnostic and Therapeutic Strategies for Tauopathies. Current Neurology and Neuroscience Reports, 2017, 17, 72.	2.0	31
178	Tau deletion promotes brain insulin resistance. Journal of Experimental Medicine, 2017, 214, 2257-2269.	4.2	158
179	The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease. Acta Neuropathologica Communications, 2017, 5, 53.	2.4	77
180	Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease. Molecular Neurodegeneration, 2017, 12, 45.	4.4	61
181	Expression of Iron Transporters and Pathological Hallmarks of Parkinson's and Alzheimer's Diseases in the Brain of Young, Adult, and Aged Rats. Molecular Neurobiology, 2017, 54, 5213-5224.	1.9	68
182	Hybrid Antioxidant and Metal Sequestering Small Molecules Targeting the Molecular Features of Alzheimer's Disease. Comments on Inorganic Chemistry, 2017, 37, 146-167.	3.0	2
183	Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Molecular Psychiatry, 2017, 22, 396-406.	4.1	66
184	Animal Models of Acquired Epilepsy and Tauopathies. , 2017, , 1031-1041.		5
185	Lysine-Directed Post-translational Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies. Frontiers in Molecular Biosciences, 2017, 4, 56.	1.6	104
186	Biometal Dyshomeostasis and Toxic Metal Accumulations in the Development of Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2017, 10, 339.	1.4	101
187	Targeting Transition Metals forÂNeuroprotection inÂAlzheimer's Disease. , 2017, , 193-215.		2

		CITATION RE	PORT	
#	Article		IF	Citations
188	Conformation-based assay of tau protein aggregation. Methods in Cell Biology, 2017, 2	141, 89-112.	0.5	14
189	Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuro Communications, 2017, 5, 91.	ppathologica	2.4	157
190	Tau Deficiency Down-Regulated Transcription Factor Orthodenticle Homeobox 2 Expre Dopaminergic Neurons in Ventral Tegmental Area and Caused No Obvious Motor Defic Neuroscience, 2018, 373, 52-59.	ssion in the its in Mice.	1.1	6
191	Generation of a New Tau Knockout (tauî"ex1) Line Using CRISPR/Cas9 Genome Editing Alzheimer's Disease, 2018, 62, 571-578.	in Mice. Journal of	1.2	29
192	New Beginnings in Alzheimer's Disease: The Most Prevalent Tauopathy. Journal of A 2018, 64, S529-S534.	√zheimer's Disease,	1.2	6
193	A role for tau in learning, memory and synaptic plasticity. Scientific Reports, 2018, 8, 3	184.	1.6	95
194	Alpha-synuclein inhibits Snx3–retromer-mediated retrograde recycling of iron transpo cerevisiae and C. elegans models of Parkinson's disease. Human Molecular Genetic	orters in S. s, 2018, 27, 1514-1532.	1.4	29
195	Iron as a therapeutic target for Parkinson's disease. Movement Disorders, 2018, 33, 56	8-574.	2.2	94
196	Tau Proteins and Tauopathies in Alzheimer's Disease. Cellular and Molecular Neuro 965-980.	biology, 2018, 38,	1.7	166
197	Tau reduction in the presence of amyloid-Î ² prevents tau pathology and neuronal death 2018, 141, 2194-2212.	in vivo. Brain,	3.7	84
198	The Neuronal Tau Protein Blocks <i>in Vitro</i> Fibrillation of the Amyloid-β (Aβ) Pepti Oligomeric Stage. Journal of the American Chemical Society, 2018, 140, 8138-8146.	de at the	6.6	49
199	Metals and Alzheimer's Disease: How Far Have We Come in the Clinic?. Journal of A 2018, 62, 1369-1379.	lzheimer's Disease,	1.2	133
200	Small-Molecule Activator of UNC-51-Like Kinase 1 (ULK1) That Induces Cytoprotective A Parkinson's Disease Treatment. Journal of Medicinal Chemistry, 2018, 61, 2776-27		2.9	46
201	Nexus between mitochondrial function, iron, copper and glutathione in Parkinson's dis Neurochemistry International, 2018, 117, 126-138.	ease.	1.9	46
202	Our Working Point of View of Tau Protein. Journal of Alzheimer's Disease, 2018, 62, 12	77-1285.	1.2	12
203	Iron–sulfur cluster biosynthesis and trafficking – impact on human disease conditio 2018, 10, 9-29.	ons. Metallomics,	1.0	79
204	The Ferroxidase Hephaestin But Not Amyloid Precursor Protein is Required for Ferropor Iron Efflux in Primary Hippocampal Neurons. Cellular and Molecular Neurobiology, 2018		1.7	27
205	Advances in the Chemical Biology of Desferrioxamine B. ACS Chemical Biology, 2018, 1	.3, 11-25.	1.6	62

#	Article	IF	CITATIONS
206	Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nature Reviews Neurology, 2018, 14, 9-21.	4.9	515
207	Tau in neurodegenerative disease. Annals of Translational Medicine, 2018, 6, 175-175.	0.7	140
208	Iron and Alzheimer's Disease: From Pathogenesis to Therapeutic Implications. Frontiers in Neuroscience, 2018, 12, 632.	1.4	178
209	The Dual Role of Hepcidin in Brain Iron Load and Inflammation. Frontiers in Neuroscience, 2018, 12, 740.	1.4	51
210	Tau Pathology in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 809.	1.1	125
211	Untangling Tau and Iron: Exploring the Interaction Between Iron and Tau in Neurodegeneration. Frontiers in Molecular Neuroscience, 2018, 11, 276.	1.4	61
212	Postmortem T2*- Weighted MRI Imaging of Cortical Iron Reflects Severity of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 65, 1125-1137.	1.2	47
213	Rodent models for Alzheimer disease. Nature Reviews Neuroscience, 2018, 19, 583-598.	4.9	240
214	Molecular Aspects of Concussion and Chronic Traumatic Encephalopathy. , 2018, , 335-380.		0
215	The Aging of Iron Man. Frontiers in Aging Neuroscience, 2018, 10, 65.	1.7	121
216	Ablation of tau causes an olfactory deficit in a murine model of Parkinson's disease. Acta Neuropathologica Communications, 2018, 6, 57.	2.4	11
217	Dendritic Tau in Alzheimer's Disease. Neuron, 2018, 99, 13-27.	3.8	178
218	Untangling the Tauopathy for Alzheimer's disease and parkinsonism. Journal of Biomedical Science, 2018, 25, 54.	2.6	37
219	Ferroptosis, a Recent Defined Form of Critical Cell Death in Neurological Disorders. Journal of Molecular Neuroscience, 2018, 66, 197-206.	1.1	134
220	Dysregulation of Neuronal Iron Homeostasis as an Alternative Unifying Effect of Mutations Causing Familial Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 533.	1.4	41
221	Iron and Alzheimer's Disease: An Update on Emerging Mechanisms. Journal of Alzheimer's Disease, 2018, 64, S379-S395.	1.2	205
223	Microtubule-Associated Proteins: Structuring the Cytoskeleton. Trends in Cell Biology, 2019, 29, 804-819.	3.6	201
224	Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell, 2019, 18, e13031.	3.0	403

#	Article	IF	CITATIONS
225	Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules, 2019, 9, 269.	1.8	47
226	Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer's and Parkinson's disease models. Pharmacological Research, 2019, 146, 104336.	3.1	67
228	Silicon micromachining with nanometer-thin boron masking and membrane material. Materials Research Express, 2019, 6, 116438.	0.8	4
229	Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	1.9	25
230	Loss of tau and Fyn reduces compensatory effects of MAP2 for tau and reveals a Fynâ€independent effect of tau on calcium. Journal of Neuroscience Research, 2019, 97, 1393-1413.	1.3	13
231	History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduction and Targeted Therapy, 2019, 4, 29.	7.1	370
232	Brain Iron Metabolism and CNS Diseases. Advances in Experimental Medicine and Biology, 2019, , .	0.8	11
234	Association of Transfusion With Risks of Dementia or Alzheimer's Disease: A Population-Based Cohort Study. Frontiers in Psychiatry, 2019, 10, 571.	1.3	13
235	Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1398-1409.	1.1	283
236	Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing. Free Radical Biology and Medicine, 2019, 144, 279-292.	1.3	18
237	Sex-specific Tau methylation patterns and synaptic transcriptional alterations are associated with neural vulnerability during chronic neuroinflammation. Journal of Autoimmunity, 2019, 101, 56-69.	3.0	11
238	Mechanistic approaches to understand the prion-like propagation of aggregates of the human tau protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 922-932.	1.1	8
239	Iron in Neurodegeneration – Cause or Consequence?. Frontiers in Neuroscience, 2019, 13, 180.	1.4	204
240	Dynamics of Iron Homeostasis in Health and Disease: Molecular Mechanisms and Methods for Iron Determination. Series in Bioengineering, 2019, , 105-145.	0.3	1
241	Nitric Oxide, Iron and Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 114.	1.4	55
242	Deciphering the Iron Side of Stroke: Neurodegeneration at the Crossroads Between Iron Dyshomeostasis, Excitotoxicity, and Ferroptosis. Frontiers in Neuroscience, 2019, 13, 85.	1.4	96
243	Iron Exposure and the Cellular Mechanisms Linked to Neuron Degeneration in Adult Mice. Cells, 2019, 8, 198.	1.8	47
244	Targeting the Iron-Response Elements of the mRNAs for the Alzheimer's Amyloid Precursor Protein and Ferritin to Treat Acute Lead and Manganese Neurotoxicity. International Journal of Molecular Sciences, 2019, 20, 994.	1.8	17

		CITATION F	Report	
#	Article		IF	CITATIONS
245	A walk through tau therapeutic strategies. Acta Neuropathologica Communications, 2019	, 7, 22.	2.4	211
246	Iron Dyshomeostasis Induces Binding of APP to BACE1 for Amyloid Pathology, and Impairs Complex in Microglia: Implication in Pathogenesis of Cerebral Microbleeds. Cell Transplant 28, 1009-1017.	APP/Fpn1 ation, 2019,	1.2	17
247	Axonal dispatch of iron in neuronal signaling. Nature Chemical Biology, 2019, 15, 1135-11	36.	3.9	6
248	Nouvelle stratégie de neuroprotection basée sur la chélation conservatrice du fer da Parkinson. Pratique Neurologique - FMC, 2019, 10, 44-54.	ans la maladie de	0.1	0
249	Upregulated levels and pathological aggregation of abnormally phosphorylated Tau-protein children with neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 201	n in 19, 98, 1-9.	2.9	23
250	It's all about tau. Progress in Neurobiology, 2019, 175, 54-76.		2.8	134
251	Iron Dysregulation in Parkinson's Disease: Focused on the Autophagy–Lysosome Pat Chemical Neuroscience, 2019, 10, 863-871.	chway. ACS	1.7	30
252	Ferroptosis and Its Role in Diverse Brain Diseases. Molecular Neurobiology, 2019, 56, 4880)-4893.	1.9	319
253	Treating Alzheimer's disease by targeting iron. British Journal of Pharmacology, 2019, 176,	3622-3635.	2.7	71
254	The toxin MPTP generates similar cognitive and locomotor deficits in hTau and tau knock-c Brain Research, 2019, 1711, 106-114.	but mice.	1.1	7
255	Tau Abnormalities and the Potential Therapy in Alzheimer's Disease. Journal of Alzheim 2019, 67, 13-33.	er's Disease,	1.2	18
256	A review on iron chelators as potential therapeutic agents for the treatment of Alzheimerâ Parkinson's diseases. Molecular Diversity, 2019, 23, 509-526.	€™s and	2.1	50
257	Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free R Biology and Medicine, 2019, 133, 221-233.	l adical	1.3	312
258	A neuroscience perspective of the gut theory of Parkinson's disease. European Journal of Neuroscience, 2019, 49, 817-823.		1.2	16
259	Changes in cortical protein markers of iron transport with gender, major depressive disord suicide. World Journal of Biological Psychiatry, 2020, 21, 119-126.	er and	1.3	12
260	Brain iron is associated with accelerated cognitive decline in people with Alzheimer patholo Molecular Psychiatry, 2020, 25, 2932-2941.	bgy.	4.1	202
261	The Case for an Estrogen-iron Axis in Health and Disease. Experimental and Clinical Endocr Diabetes, 2020, 128, 270-277.	inology and	0.6	18
262	The genetic ablation of tau improves long-term, but not short-term, functional outcomes a experimental traumatic brain injury in mice. Brain Injury, 2020, 34, 131-139.	fter	0.6	14

#	Article	IF	CITATIONS
263	Hepcidin and its therapeutic potential in neurodegenerative disorders. Medicinal Research Reviews, 2020, 40, 633-653.	5.0	43
264	Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Progress in Neurobiology, 2020, 184, 101716.	2.8	98
265	BACE1 inhibitors: Current status and future directions in treating Alzheimer's disease. Medicinal Research Reviews, 2020, 40, 339-384.	5.0	177
266	Brain Zinc Deficiency Exacerbates Cognitive Decline in the R6/1 Model of Huntington's Disease. Neurotherapeutics, 2020, 17, 243-251.	2.1	15
267	Characterising the spatial and temporal brain metal profile in a mouse model of tauopathy. Metallomics, 2020, 12, 301-313.	1.0	23
268	Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Disease Progression. Neuron, 2020, 105, 975-991.e7.	3.8	287
269	Conservative iron chelation for neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis. Journal of Neural Transmission, 2020, 127, 189-203.	1.4	71
270	Iron overload: Effects on cellular biochemistry. Clinica Chimica Acta, 2020, 504, 180-189.	0.5	52
271	Immunoreactivities for hepcidin, ferroportin, and hephaestin in astrocytes and choroid plexus epithelium of human brains. Neuropathology, 2020, 40, 75-83.	0.7	15
272	Microglia in Alzheimer's Disease in the Context of Tau Pathology. Biomolecules, 2020, 10, 1439.	1.8	56
273	Overdosing on iron: Elevated iron and degenerative brain disorders. Experimental Biology and Medicine, 2020, 245, 1444-1473.	1.1	26
274	Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence. Cells, 2020, 9, 2229.	1.8	9
275	Tau at the interface between neurodegeneration and neuroinflammation. Genes and Immunity, 2020, 21, 288-300.	2.2	33
276	Therapeutic applications of chelating drugs in iron metabolic disorders of the brain and retina. Journal of Neuroscience Research, 2020, 98, 1889-1904.	1.3	10
277	Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 40.	4.4	438
278	Targeting Tau to Treat Clinical Features of Huntington's Disease. Frontiers in Neurology, 2020, 11, 580732.	1.1	13
280	The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathologica, 2020, 140, 417-447.	3.9	221
281	Iron-responsive-like elements and neurodegenerative ferroptosis. Learning and Memory, 2020, 27, 395-413.	0.5	21

C	D-	
CITATIO		PUBL
CILATIO		

#	Article	IF	CITATIONS
282	Ferroptosis Is Regulated by Mitochondria in Neurodegenerative Diseases. Neurodegenerative Diseases, 2020, 20, 20-34.	0.8	30
284	Much More Than a Cytoskeletal Protein: Physiological and Pathological Functions of the Non-microtubule Binding Region of Tau. Frontiers in Neurology, 2020, 11, 590059.	1.1	45
285	Targeting tau: Clinical trials and novel therapeutic approaches. Neuroscience Letters, 2020, 731, 134919.	1.0	63
286	The Application of Ferroptosis in Diseases. Pharmacological Research, 2020, 159, 104919.	3.1	236
287	Epigenetic Regulation of Ferroportin in Primary Cultures of the Rat Blood-Brain Barrier. Molecular Neurobiology, 2020, 57, 3526-3539.	1.9	4
288	Behavioral Abnormalities in Knockout and Humanized Tau Mice. Frontiers in Endocrinology, 2020, 11, 124.	1.5	29
289	Iron Metabolism, Ferroptosis, and the Links With Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 1443.	1.4	157
290	Relationship between cortical iron and tau aggregation in Alzheimer's disease. Brain, 2020, 143, 1341-1349.	3.7	101
291	Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis. Molecules, 2020, 25, 1659.	1.7	60
292	Ferroptosis and its potential role in the physiopathology of Parkinson's Disease. Progress in Neurobiology, 2021, 196, 101890.	2.8	220
293	Formaldehyde induces ferroptosis in hippocampal neuronal cells by upregulation of the Warburg effect. Toxicology, 2021, 448, 152650.	2.0	23
294	The essential elements of Alzheimer's disease. Journal of Biological Chemistry, 2021, 296, 100105.	1.6	140
295	Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 1-20.	1.9	72
296	Tau Modulates Neurovascular Coupling. Neuroscience Bulletin, 2021, 37, 433-435.	1.5	1
297	A Comprehensive Phenotype of Non-motor Impairments and Distribution of Alpha-Synuclein Deposition in Parkinsonism-Induced Mice by a Combination Injection of MPTP and Probenecid. Frontiers in Aging Neuroscience, 2020, 12, 599045.	1.7	28
298	Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death and Differentiation, 2021, 28, 1548-1562.	5.0	275
299	Tau Deletion Prevents Cognitive Impairment and Mitochondrial Dysfunction Age Associated by a Mechanism Dependent on Cyclophilin-D. Frontiers in Neuroscience, 2020, 14, 586710.	1.4	14
300	Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science, 2021, 371, .	6.0	133

#	Article	IF	CITATIONS
301	Ex vivo <scp>threeâ€dimensional</scp> elemental imaging of mouse brain tissue block by laserâ€induced breakdown spectroscopy. Journal of Biophotonics, 2021, 14, e202000479.	1.1	12
302	Worms, Fat, and Death: Caenorhabditis elegans Lipid Metabolites Regulate Cell Death. Metabolites, 2021, 11, 125.	1.3	6
303	Ferroptosis: mechanisms and links with diseases. Signal Transduction and Targeted Therapy, 2021, 6, 49.	7.1	508
304	Benefits of Iron Chelators in the Treatment of Parkinson's Disease. Neurochemical Research, 2021, 46, 1239-1251.	1.6	42
305	Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer's disease: a systematic review and meta-analysis. Translational Neurodegeneration, 2021, 10, 10.	3.6	21
306	Reward motivation and cognitive flexibility in tau null-mutation mice. Neurobiology of Aging, 2021, 100, 106-117.	1.5	1
307	An Introduction to Ultrasensitive Assays for Plasma Tau Detection. Journal of Alzheimer's Disease, 2021, 80, 1353-1362.	1.2	8
308	The Potential Role of Ferroptosis in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 80, 907-925.	1.2	45
309	Ferroptosis: A potential therapeutic target for neurodegenerative diseases. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22830.	1.4	38
310	Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Frontiers in Molecular Neuroscience, 2021, 14, 665693.	1.4	19
311	Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. Journal of Alzheimer's Disease, 2021, 82, 71-105.	1.2	21
312	Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Medicinal Research Reviews, 2022, 42, 259-305.	5.0	234
313	Genome-wide CRISPR screen identifies protein pathways modulating tau protein levels in neurons. Communications Biology, 2021, 4, 736.	2.0	16
314	"Don't Phos Over Tau― recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer's disease and other tauopathies. Molecular Neurodegeneration, 2021, 16, 37.	4.4	89
315	Molekularne podÅ,oże proteinopatii: przyczyna zespoÅ,ów otä™piennych i zaburzeÅ,, motorycznych. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 456-473.	0.1	0
316	Tau mis-splicing correlates with motor impairments and striatal dysfunction in a model of tauopathy. Brain, 2021, 144, 2302-2309.	3.7	9
317	Ferroptosis as a New Mechanism in Parkinson's Disease Therapy Using Traditional Chinese Medicine. Frontiers in Pharmacology, 2021, 12, 659584.	1.6	19
318	A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies. Signal Transduction and Targeted Therapy, 2021, 6, 269.	7.1	21

#	Article	IF	CITATIONS
319	Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. International Journal of Molecular Sciences, 2021, 22, 9207.	1.8	50
320	Ferroptosis, a Potential Therapeutic Target in Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 704298.	1.8	42
321	Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomedicine and Pharmacotherapy, 2021, 141, 111872.	2.5	55
322	Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. Journal of Neurochemistry, 2021, 159, 804-825.	2.1	89
324	Insulin and Insulin Resistance in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 9987.	1.8	97
326	Dopaminergic dysfunction in the 3xTg-AD mice model of Alzheimer's disease. Scientific Reports, 2021, 11, 19412.	1.6	19
327	The calcium–iron connection in ferroptosis-mediated neuronal death. Free Radical Biology and Medicine, 2021, 175, 28-41.	1.3	35
328	Decrypting the potential role of α-lipoic acid in Alzheimer's disease. Life Sciences, 2021, 284, 119899.	2.0	28
329	Tau in the Pathophysiology of Parkinson's Disease. Journal of Molecular Neuroscience, 2021, 71, 2179-2191.	1.1	47
330	Deferiprone Treatment in Aged Transgenic Tau Mice Improves Y-Maze Performance and Alters Tau Pathology. Neurotherapeutics, 2021, 18, 1081-1094.	2.1	17
331	Regional brain iron associated with deterioration in Alzheimer's disease: A large cohort study and theoretical significance. Alzheimer's and Dementia, 2021, 17, 1244-1256.	0.4	71
332	ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubuleâ€associated proteins. Developmental Dynamics, 2018, 247, 138-155.	0.8	145
333	The Cytoskeleton as a Modulator of Aging and Neurodegeneration. Advances in Experimental Medicine and Biology, 2019, 1178, 227-245.	0.8	33
334	Ferroptosis in Nervous System Diseases. , 2019, , 173-195.		1
335	Diagnostics and Treatments of Iron-Related CNS Diseases. Advances in Experimental Medicine and Biology, 2019, 1173, 179-194.	0.8	9
336	Iron Pathophysiology in Alzheimer's Diseases. Advances in Experimental Medicine and Biology, 2019, 1173, 67-104.	0.8	40
337	Experimental Models of Tauopathy– From Mechanisms to Therapies. Advances in Experimental Medicine and Biology, 2019, 1184, 381-391.	0.8	16
338	Biometals and Alzheimer's Disease. , 2017, , 1-17.		4

#	Article	IF	CITATIONS
339	Ferrosenescence: The iron age of neurodegeneration?. Mechanisms of Ageing and Development, 2018, 174, 63-75.	2.2	56
340	Progressive supranuclear palsy: Advances in diagnosis and management. Parkinsonism and Related Disorders, 2020, 73, 105-116.	1.1	55
341	Iron in Eukarya. 2-Oxoglutarate-Dependent Oxygenases, 2014, , 282-302.	0.8	1
342	Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. Journal of Biological Chemistry, 2020, 295, 17827-17841.	1.6	17
343	Targeting <scp> <i>E. coli</i> </scp> invasion of the blood–brain barrier for investigating the pathogenesis and therapeutic development of <scp> <i>E. coli</i> </scp> meningitis. Cellular Microbiology, 2020, 22, e13231.	1.1	10
344	Iron metabolism: current facts and future decisions. Biochemia Medica, 2012, 22, 311-328.	1.2	65
345	Age-Dependent Effects of A53T Alpha-Synuclein on Behavior and Dopaminergic Function. PLoS ONE, 2013, 8, e60378.	1.1	72
346	β-Amyloid Precursor Protein Does Not Possess Ferroxidase Activity but Does Stabilize the Cell Surface Ferrous Iron Exporter Ferroportin. PLoS ONE, 2014, 9, e114174.	1.1	130
347	Tau Reduction Diminishes Spatial Learning and Memory Deficits after Mild Repetitive Traumatic Brain Injury in Mice. PLoS ONE, 2014, 9, e115765.	1.1	78
348	Humanized Tau Mice with Regionalized Amyloid Exhibit Behavioral Deficits but No Pathological Interaction. PLoS ONE, 2016, 11, e0153724.	1.1	11
349	No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS ONE, 2016, 11, e0163236.	1.1	35
350	Increased Tau Expression Correlates with Neuronal Maturation in the Developing Human Cerebral Cortex. ENeuro, 2020, 7, ENEURO.0058-20.2020.	0.9	19
351	Transferrin is responsible for mediating the effects of iron ions on the regulation of anterior pharynx-defective-11±/β and Presenilin 1 expression via PGE2 and PGD2 at the early stage of Alzheimer's Disease. Aging, 2018, 10, 3117-3135.	1.4	20
352	Iron overload resulting from the chronic oral administration of ferric citrate induces parkinsonism phenotypes in middle-aged mice. Aging, 2019, 11, 9846-9861.	1.4	15
353	Discovering New Treatments for Alzheimer's Disease by Repurposing Approved Medications. Current Topics in Medicinal Chemistry, 2013, 13, 2306-2327.	1.0	60
354	Monoamines and their Derivatives on GPCRs: Potential Therapy for Alzheimer's Disease. Current Alzheimer Research, 2019, 16, 871-894.	0.7	8
355	The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zoological Research, 2020, 41, 220-230.	0.9	138
356	Huperzine A: Is it an Effective Disease-Modifying Drug for Alzheimerââ,¬â"¢s Disease?. Frontiers in Aging Neuroscience, 2014, 6, 216.	1.7	67

#	Article	IF	CITATIONS
357	Beclin 1 Complex and Neurodegenerative Disorders. Advances in Medical Diagnosis, Treatment, and Care, 2020, , 236-260.	0.1	2
358	Alzheimer's Disease and Its Potential Alternative Therapeutics. , 2019, 9, .		12
359	Chaperone-dependent Neurodegeneration: A Molecular Perspective on Therapeutic Intervention. , 2013, s10, .		31
360	Brain regions susceptible to alpha-synuclein spreading. Molecular Psychiatry, 2022, 27, 758-770.	4.1	24
361	Parkinson's Disease Dementia: Synergistic Effects of Alpha-Synuclein, Tau, Beta-Amyloid, and Iron. Frontiers in Aging Neuroscience, 2021, 13, 743754.	1.7	12
362	Tau Post-Translational Modifications: Potentiators of Selective Vulnerability in Sporadic Alzheimer's Disease. Biology, 2021, 10, 1047.	1.3	14
363	Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. Journal of Nanobiotechnology, 2021, 19, 327.	4.2	37
365	Investigating some Selected Heavy Metals and Micronutrients Levels in Herbal Preparation Marketed in Nigeria: A Pilot Study. British Journal of Pharmaceutical Research, 2015, 6, 8-13.	0.4	0
369	Parkinsonism and Related Disorders. , 0, , .		0
371	Contributing Factors of Neurodegeneration in Alzheimer's Disease. , 0, , 69-84.		0
372	Antisense oligonucleotide drugs for neurological and neuromuscular disease. , 2020, , 221-245.		0
373	The Compound ATH434 Prevents Alpha-Synuclein Toxicity in a Murine Model of Multiple System Atrophy. Journal of Parkinson's Disease, 2022, 12, 105-115.	1.5	9
374	Mitochondrial iron metabolism and neurodegenerative diseases. NeuroToxicology, 2022, 88, 88-101.	1.4	34
375	Neuroprotection against iron-induced cell death by perineuronal nets - an in vivo analysis of oxidative stress. American Journal of Neurodegenerative Disease, 2012, 1, 122-9.	0.1	51
376	Tau and neuron aging. , 2013, 4, 23-8.		8
377	Rethinking IRPs/IRE system in neurodegenerative disorders: Looking beyond iron metabolism. Ageing Research Reviews, 2022, 73, 101511.	5.0	1
378	Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. Frontiers in Aging Neuroscience, 2021, 13, 745438.	1.7	5
379	Aging is associated with increased brain iron through cortex-derived hepcidin expression. ELife, 2022, 11, .	2.8	27

#	Article	IF	CITATIONS
380	Effects of metals on extracellular vesicle signaling. , 2022, , 279-298.		1
381	Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death and Disease, 2022, 13, 40.	2.7	61
382	Loss-of-function and gain-of-function studies refute the hypothesis that tau protein is causally involved in the pathogenesis of Huntington's disease. Human Molecular Genetics, 2022, 31, 1997-2009.	1.4	2
383	Ferroptosis promotes microtubule-associated protein tau aggregation via GSK-3Î ² activation and proteasome inhibition. Molecular Neurobiology, 2022, 59, 1486-1501.	1.9	13
384	Microstructural changes in prodromal dementia with Lewy bodies compared to normal ageing: Multiparametric quantitative MRI evidences. European Journal of Neuroscience, 2022, 55, 611-623.	1.2	1
386	Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration. Neural Regeneration Research, 2022, 17, 2108.	1.6	8
387	Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduction and Targeted Therapy, 2022, 7, 59.	7.1	88
388	Early-Life Environment Influence on Late-Onset Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2022, 10, 834661.	1.8	14
389	Luteolin Ameliorates Methamphetamine-Induced Podocyte Pathology by Inhibiting Tau Phosphorylation in Mice. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-13.	0.5	3
390	Iron Dyshomeostasis and Ferroptosis: A New Alzheimer's Disease Hypothesis?. Frontiers in Aging Neuroscience, 2022, 14, 830569.	1.7	43
391	Caspase-cleaved tau is senescence-associated and induces a toxic gain of function by putting a brake on axonal transport. Molecular Psychiatry, 2022, 27, 3010-3023.	4.1	18
392	Ginkgolides and Huperzine A for complementary treatment of Alzheimer's disease. IUBMB Life, 2022, 74, 763-779.	1.5	5
393	Traumatic brain injury and the development of parkinsonism: Understanding pathophysiology, animal models, and therapeutic targets. Biomedicine and Pharmacotherapy, 2022, 149, 112812.	2.5	9
394	The disorder of the iron metabolism as a possible mechanism for the development of neurodegeneration after new coronavirus infection of SARS-CoV-2. Izvestiâ Rossijskoj Voenno-medicinskoj Akademii, 2021, 40, 13-24.	0.1	1
395	Dysregulation of Neuronal Iron in Alzheimer's Disease. Current Neuropharmacology, 2021, 20, .	1.4	0
396	Role and mechanism of ferroptosis in neurological diseases. Molecular Metabolism, 2022, 61, 101502.	3.0	39
398	A brief history of brain iron accumulation in Parkinson disease and related disorders. Journal of Neural Transmission, 2022, 129, 505-520.	1.4	20
399	Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. Radiographics, 2022, 42, 1161-1176.	1.4	15

#	Article	IF	Citations
	Hippocampal Iron Accumulation Impairs Synapses and Memory via Suppressing Furin Expression and		
400	Downregulating BDNF Maturation. Molecúlar Neurobiology, 2022, 59, 5574-5590.	1.9	11
401	Investigational therapeutics for the treatment of progressive supranuclear palsy. Expert Opinion on Investigational Drugs, 2022, 31, 813-823.	1.9	1
402	Empirical evidence for biometal dysregulation in Parkinson's disease from a systematic review and Bradford Hill analysis. Npj Parkinson's Disease, 2022, 8, .	2.5	4
403	The Fate of Tau Aggregates Between Clearance and Transmission. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1
404	Caffeine Decreases Hepcidin Expression to Alleviate Aberrant Iron Metabolism under Inflammation by Regulating the IL-6/STAT3 Pathway. Life, 2022, 12, 1025.	1.1	1
405	Stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau in cellular and mouse models of tauopathies. Autophagy, 2023, 19, 660-677.	4.3	5
406	Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiology of Disease, 2022, 172, 105824.	2.1	13
407	Targeting Molecular Mediators of Ferroptosis and Oxidative Stress for Neurological Disorders. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-14.	1.9	15
408	Emerging Therapeutic Approaches for Neurodegenerative Diseases. , 2022, , 161-198.		0
409	Iron in Alzheimer's Disease: From Physiology to Disease Disabilities. Biomolecules, 2022, 12, 1248.	1.8	18
410	Exposure of metal toxicity in Alzheimer's disease: An extensive review. Frontiers in Pharmacology, 0, 13, .	1.6	13
411	Iron metabolism mediates microglia susceptibility in ferroptosis. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	18
412	Dental follicle cells show potential for treating Parkinson's disease through dopaminergic-neuronogenic differentiation. Human Cell, 2022, 35, 1708-1721.	1.2	2
415	Iron dyshomeostasis and ferroptosis in Alzheimer's disease: Molecular mechanisms of cell death and novel therapeutic drugs and targets for AD. Frontiers in Pharmacology, 0, 13, .	1.6	9
416	Somatic Mutations and Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 90, 475-493.	1.2	4
417	ATH434 Rescues Pre-motor Hyposmia in a Mouse Model of Parkinsonism. Neurotherapeutics, 2022, 19, 1966-1975.	2.1	3
418	COVID-19 and Alzheimer's Disease: Neuroinflammation, Oxidative Stress, Ferroptosis, and Mechanisms Involved. Current Medicinal Chemistry, 2023, 30, 3993-4031.	1.2	6
419	Numb regulates Tau levels and prevents neurodegeneration in tauopathy mouse models. Science Advances, 2022, 8, .	4.7	5

~			-	
	ΙΤΔΤΙ	ON	REPC	NDT
\sim			NLFU	<u> </u>

#	Article	IF	CITATIONS
420	Insight into the potential role of ferroptosis in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	9
421	Lactoferrin: from the structure to the functional orchestration of iron homeostasis. BioMetals, 2023, 36, 391-416.	1.8	7
422	Cellâ€&pecific Dysregulation of Iron and Oxygen Homeostasis as a Novel Pathophysiology in <scp>PSP</scp> . Annals of Neurology, 2023, 93, 431-445.	2.8	8
424	é¶å'铿»ä°jé~2æ2»è"å™"æŸä¼åŠèj°è€ç>,å³ç−¾ç—的转化医å┤ç"ç©¶. Scientia Sinica Vitae, 2022, , .	0.1	0
425	CSF ferritin in the clinicopathological progression of Alzheimer's disease and associations with APOE and inflammation biomarkers. Journal of Neurology, Neurosurgery and Psychiatry, 2023, 94, 211-219.	0.9	6
428	Heparan Sulfate Proteoglycans in Tauopathy. Biomolecules, 2022, 12, 1792.	1.8	3
429	The divergent effects of astrocyte ceruloplasmin on learning and memory function in young and old mice. Cell Death and Disease, 2022, 13, .	2.7	12
430	How Well Do Rodent Models of Parkinson's Disease Recapitulate Early Non-Motor Phenotypes? A Systematic Review. Biomedicines, 2022, 10, 3026.	1.4	6
431	The Strategies for Treating "Alzheimer's Diseaseâ€: Insulin Signaling May Be a Feasible Target. Current Issues in Molecular Biology, 2022, 44, 6172-6188.	1.0	5
432	Iron and Alzheimer's Disease. , 2023, , 139-170.		1
433	Ferroptosis: a potential therapeutic target for Alzheimer's disease. Reviews in the Neurosciences, 2023, 34, 573-598.	1.4	6
434	The Critical Roleplay of Iron Neurochemistry in Progression of Parkinson's Disease. , 2023, , 87-108.		0
435	Unscrambling the Role of Redox-Active Biometals in Dopaminergic Neuronal Death and Promising Metal Chelation-Based Therapy for Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 1256.	1.8	3
436	Challenges and Opportunities of Metal Chelation Therapy in Trace Metals Overload-Induced Alzheimer's Disease. Neurotoxicity Research, 2023, 41, 270-287.	1.3	10
437	The Role of Iron Metabolism, Lipid Metabolism, and Redox Homeostasis in Alzheimer's Disease: from the Perspective of Ferroptosis. Molecular Neurobiology, 2023, 60, 2832-2850.	1.9	12
438	Neural circuit changes in neurological disorders: Evidence from in vivo two-photon imaging. Ageing Research Reviews, 2023, 87, 101933.	5.0	4
439	Perturbed iron biology in the prefrontal cortex of people with schizophrenia. Molecular Psychiatry, 2023, 28, 2058-2070.	4.1	8
440	Towards early detection of neurodegenerative diseases: A gut feeling. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	7

IF ARTICLE CITATIONS # How Can Insulin Resistance Cause Alzheimer's Disease?. International Journal of Molecular Sciences, 441 1.8 8 2023, 24, 3506. Different MAPT haplotypes influence expression of total MAPT in postmortem brain tissue. Acta 443 2.4 Neuropathologica Communications, 2023, 11, . Iron, ferroptosis, and ischemic stroke. Journal of Neurochemistry, 2023, 165, 487-520. 444 2.1 21 Friend or foe: role of pathological tau in neuronal death. Molecular Psychiatry, 2023, 28, 2215-2227. 445 Imbalance of Essential Metals in Traumatic Brain Injury and Its Possible Link with Disorders of 446 1.8 4 Consciousness. International Journal of Molecular Šciénces, 2023, 24, 6867. Distribution of Copper, Iron, and Zinc in the Retina, Hippocampus, and Cortex of the Transgenic APP/PS1 Mouse Model of Alzheimer's Disease. Cells, 2023, 12, 1144. 1.8 Implications of Tau Dysregulation in Huntington's Disease and Potential for New Therapeutics. 448 0.9 4 Journal of Huntington's Disease, 2023, 12, 1-13. Are high copper levels related to Alzheimer's and Parkinson's diseases? A systematic review and 1.8 meta-analysis of articles published between 2011 and 2022. BioMetals, 2024, 37, 3-22. 477 Ferroptosis in Central Nervous System Hypoxia–Ischemia., 2023, , 309-328. 0 Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Archives of Toxicology, 2024, 98, 579-615.