Preservation of organic matter in sediments promoted

Nature 483, 198-200 DOI: 10.1038/nature10855

Citation Report

#	Article	IF	CITATIONS
1	A rusty carbon sink. Nature, 2012, 483, 165-166.	13.7	36
2	Sorting out the sirtuins. Nature, 2012, 483, 166-167.	13.7	14
4	Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50′N East Pacific Rise. Geochimica Et Cosmochimica Acta, 2012, 88, 216-236.	1.6	84
5	Spatial mapping of Pearl River Estuary surface sediment geochemistry: Influence of data analysis on environmental interpretation. Estuarine, Coastal and Shelf Science, 2012, 115, 218-233.	0.9	25
6	Reactive iron and its buffering capacity towards dissolved sulfide in sediments of Jiaozhou Bay, China. Marine Environmental Research, 2012, 80, 46-55.	1.1	34
7	Rate and apparent quantum yield of photodissolution of sedimentary organic matter. Limnology and Oceanography, 2012, 57, 1743-1756.	1.6	22
8	Early life on land and the first terrestrial ecosystems. Ecological Processes, 2013, 2, .	1.6	77
9	Cs, Am and Pu isotopes as tracers of sedimentation processes in the Curonian Lagoon–Baltic Sea system. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296, 787-792.	0.7	10
10	Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation. New Biotechnology, 2013, 30, 793-802.	2.4	104
11	Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ("Iron Snowâ€). Applied and Environmental Microbiology, 2013, 79, 4272-4281.	1.4	60
12	Dissimilatory Reduction and Transformation of Ferrihydrite-Humic Acid Coprecipitates. Environmental Science & Technology, 2013, 47, 13375-13384.	4.6	180
13	Simulating Precambrian banded iron formation diagenesis. Chemical Geology, 2013, 362, 66-73.	1.4	88
14	Clay mineral evolution. American Mineralogist, 2013, 98, 2007-2029.	0.9	112
15	Reactive iron and manganese distributions in seabed sediments near small mountainous rivers off Oregon and California (USA). Continental Shelf Research, 2013, 54, 67-79.	0.9	50
16	Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea. Geochimica Et Cosmochimica Acta, 2013, 117, 129-143.	1.6	59
17	Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Reviews, 2013, 123, 53-86.	4.0	683
18	Long-term soil carbon loss and accumulation in a catchment following the conversion of forest to arable land in northern Laos. Agriculture, Ecosystems and Environment, 2013, 169, 43-57.	2.5	50
19	Redox sensitivity of iron in phosphorus binding does not impede lake restoration. Water Research, 2013, 47, 1491-1502.	5.3	90

γατιώΝ Ρει

#	Article	IF	CITATIONS
20	Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone, 2013, 52, 414-423.	1.4	80
21	Pu and Am sorption to the Baltic Sea bottom sediments. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 1957-1967.	0.7	8
22	Study on adsorption/desorption of As by mine sludge depending on pH and natural organic matter. Geosystem Engineering, 2013, 16, 191-199.	0.7	4
23	Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10101-10105.	3.3	360
25	Benthic fluxes of dissolved organic nitrogen in the lower St. Lawrence estuary and implications for selective organic matter degradation. Biogeosciences, 2013, 10, 7609-7622.	1.3	21
26	Mineralogical and geochemical influences on sediment color of Amazon wetlands analyzed by visible spectrophotometry. Acta Amazonica, 2013, 43, 331-342.	0.3	6
27	Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs. Astrobiology, 2014, 14, 502-521.	1.5	49
28	Mineral Matrices and Organic Matter. , 2014, , 337-359.		129
29	Interaction of Natural Organic Matter with Layered Minerals: Recent Developments in Computational Methods at the Nanoscale. Minerals (Basel, Switzerland), 2014, 4, 519-540.	0.8	48
30	Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications, 2014, 5, 2947.	5.8	288
31	Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record. Earth-Science Reviews, 2014, 135, 103-121.	4.0	110
32	Composition and fate of terrigenous organic matter along the Arctic land–ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes. Geochimica Et Cosmochimica Acta, 2014, 133, 235-256.	1.6	92
33	Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry, 2014, 117, 279-297.	1.7	196
34	Changes in the molecular composition of organic matter leached from an agricultural topsoil following addition of biomass-derived black carbon (biochar). Organic Geochemistry, 2014, 69, 52-60.	0.9	36
35	To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments. Bioresource Technology, 2014, 159, 232-239.	4.8	69
36	Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 2014, 14, 538-548.	1.5	448
37	Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption. Geochimica Et Cosmochimica Acta, 2014, 144, 258-276.	1.6	157
38	The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 2014, 12, 797-808.	13.6	627

#	Article	IF	CITATIONS
39	Organic Matter in the Contemporary Ocean. , 2014, , 151-189.		18
40	Properties of Fe-Organic Matter Associations via Coprecipitation versus Adsorption. Environmental Science & Technology, 2014, 48, 13751-13759.	4.6	371
41	Insights on the Molecular Mechanism for the Recalcitrance of Biochars: Interactive Effects of Carbon and Silicon Components. Environmental Science & Technology, 2014, 48, 9103-9112.	4.6	179
42	The role of Fe(III) bioreduction by methanogens in the preservation of organic matter in smectite. Chemical Geology, 2014, 389, 16-28.	1.4	27
43	Sediment diagenesis models: Review of approaches, challenges and opportunities. Environmental Modelling and Software, 2014, 61, 297-325.	1.9	56
44	Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy. Water Resources Research, 2014, 50, 4877-4892.	1.7	55
45	Transport of 137Cs, 241Am and Pu isotopes in the Curonian Lagoon and the Baltic Sea. Journal of Environmental Radioactivity, 2014, 127, 40-49.	0.9	17
46	Soil organic carbon and morphology as affected by pine plantation establishment in Minas Gerais, Brazil. Forest Ecology and Management, 2014, 318, 261-269.	1.4	10
47	Mobilization of colloidal carbon during iron reduction in basaltic soils. Geoderma, 2014, 221-222, 139-145.	2.3	89
48	The role of iron in the diagenesis of organic carbon and nitrogen in sediments: A long-term incubation experiment. Marine Chemistry, 2014, 162, 1-9.	0.9	36
49	Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Chemosphere, 2014, 99, 239-247.	4.2	119
50	Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: a novel analytical approach. Biogeosciences, 2014, 11, 5169-5180.	1.3	89
51	Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and seaâ€level change during the Turonian (Cretaceous). Depositional Record, 2015, 1, 53-90.	0.8	67
52	The Deep Biosphere of the Subseafloor Igneous Crust. Handbook of Environmental Chemistry, 2015, , 143-166.	0.2	9
53	Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf. Geophysical Research Letters, 2015, 42, 8122-8130.	1.5	46
54	Soil organic carbon across scales. Global Change Biology, 2015, 21, 3561-3574.	4.2	114
55	Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions. Frontiers in Earth Science, 2015, 3, .	0.8	27
56	Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea. Frontiers in Microbiology, 2015, 6, 1290.	1.5	102

#	Article	IF	CITATIONS
57	Iron isotope fractionation in sediments of an oligotrophic freshwater lake. Earth and Planetary Science Letters, 2015, 423, 164-172.	1.8	23
58	Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Frontiers in Microbiology, 2015, 6, 386.	1.5	104
59	Hoard of fjord carbon. Nature Geoscience, 2015, 8, 426-427.	5.4	5
60	Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Marine Genomics, 2015, 24, 185-196.	0.4	255
61	Managing internal phosphorus loading and vertical entrainment in a weakly stratified eutrophic lake. Lake and Reservoir Management, 2015, 31, 292-305.	0.4	9
62	Thermal Stability of Coethite-Bound Natural Organic Matter Is Impacted by Carbon Loading. Journal of Physical Chemistry A, 2015, 119, 12790-12796.	1.1	7
63	Application, Chemical Interaction and Fate of Iron Minerals in Polluted Sediment and Soils. Current Pollution Reports, 2015, 1, 265-279.	3.1	34
64	Climate-Change Effects on Soils: Accelerated Weathering, Soil Carbon, and Elemental Cycling. Advances in Agronomy, 2015, 131, 111-172.	2.4	34
65	Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria. Nature Communications, 2015, 6, 6277.	5.8	79
66	Atom Exchange between Aqueous Fe(II) and Structural Fe in Clay Minerals. Environmental Science & Technology, 2015, 49, 2786-2795.	4.6	46
67	Variable Effects of Iron (Fe (III)) Additions on Potential Methane Production in Boreal Lake Littoral Sediments. Wetlands, 2015, 35, 137-146.	0.7	12
68	Iron(III)-Bearing Clay Minerals Enhance Bioreduction of Nitrobenzene by <i>Shewanella putrefaciens</i> CN32. Environmental Science & Technology, 2015, 49, 1418-1426.	4.6	71
69	In situ visualisation and characterisation of the capacity of highly reactive minerals to preserve soil organic matter (SOM) in colloids at submicron scale. Chemosphere, 2015, 138, 225-232.	4.2	45
70	Towards a mechanistic understanding of carbon stabilization in manganese oxides. Nature Communications, 2015, 6, 7628.	5.8	102
71	Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions. Geochimica Et Cosmochimica Acta, 2015, 165, 44-61.	1.6	48
72	Selective stabilization of aliphatic organic carbon by iron oxide. Scientific Reports, 2015, 5, 11214.	1.6	89
73	Solid phases as important electron acceptors in freshwater organic sediments. Biogeochemistry, 2015, 123, 49-61.	1.7	65
74	Electrochemical Analyses of Redox-Active Iron Minerals: A Review of Nonmediated and Mediated Approaches. Environmental Science & amp; Technology, 2015, 49, 5862-5878.	4.6	120

#	Article	IF	CITATIONS
75	Secondary Mineral Formation During Ferrihydrite Reduction by <i>Shewanella oneidensis</i> MR-1 Depends on Incubation Vessel Orientation and Resulting Gradients of Cells, Fe ²⁺ and Fe Minerals. Geomicrobiology Journal, 2015, 32, 878-889.	1.0	23
76	Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid. Geochimica Et Cosmochimica Acta, 2015, 160, 117-131.	1.6	107
77	Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides. Environmental Science & Technology, 2015, 49, 10357-10365.	4.6	23
78	Iron geochemistry in surface sediments of a temperate semi-enclosed bay, North China. Estuarine, Coastal and Shelf Science, 2015, 165, 25-35.	0.9	13
79	Influence of Coprecipitated Organic Matter on Fe ²⁺ _(aq) -Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics. Environmental Science & Technology, 2015, 49, 10927-10936.	4.6	192
80	Sediment Pore Waters. , 2015, , 535-577.		54
81	The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chemical Geology, 2015, 395, 50-66.	1.4	170
82	Enrichment ratio of poorly crystallized iron mobilized with clay/silt-sized particles released via interrill erosion. Catena, 2015, 124, 130-137.	2.2	5
83	Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site. Journal of Environmental Radioactivity, 2015, 139, 43-55.	0.9	48
84	Organic Carbon Concentration in the Northern Coastal Baltic Sea between 1975 and 2011. Estuaries and Coasts, 2015, 38, 466-481.	1.0	29
85	Iron-bound organic carbon in forest soils: quantification and characterization. Biogeosciences, 2016, 13, 4777-4788.	1.3	123
86	Compost Process and Organic Fertilizers Application in China. , 2016, , .		4
87	Belowground Response to Drought in a Tropical Forest Soil. II. Change in Microbial Function Impacts Carbon Composition. Frontiers in Microbiology, 2016, 7, 323.	1.5	46
88	New strategies for submicron characterization the carbon binding of reactive minerals in long-term contrasting fertilized soils: implications for soil carbon storage. Biogeosciences, 2016, 13, 3607-3618.	1.3	38
89	Microscale decoupling of sediment oxygen consumption and microbial biomass in an oligotrophic lake. Freshwater Biology, 2016, 61, 1477-1491.	1.2	0
90	Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophysical Research Letters, 2016, 43, 1149-1157.	1.5	82
91	Particles transformation in estuaries: Fe, Mn and REE signatures through the Loire Estuary. Journal of Sea Research, 2016, 118, 103-112.	0.6	13
92	A biological switch at the ocean surface as a cause of laminations in a Precambrian iron formation. Earth and Planetary Science Letters, 2016, 446, 27-36.	1.8	17

#	Article	IF	CITATIONS
93	Effect of biofilm coatings at metal-oxide/water interfaces II: Competitive sorption between Pb(II) and Zn(II) at Shewanella oneidensis/metal-oxide/water interfaces. Geochimica Et Cosmochimica Acta, 2016, 188, 393-406.	1.6	9
94	The biogeochemical iron cycle and astrobiology. Hyperfine Interactions, 2016, 237, 1.	0.2	10
95	A multiproxy study distinguishes environmental change from diagenetic alteration in the recent sedimentary record of the inner Cadiz Bay (SW Spain). Holocene, 2016, 26, 1355-1370.	0.9	8
96	Microbial mineralization of pyrogenic organic matter in different mineral systems. Organic Geochemistry, 2016, 98, 18-26.	0.9	14
97	A computational study of the interaction of organic surfactants with goethite α-FeO(OH) surfaces. RSC Advances, 2016, 6, 91893-91903.	1.7	5
98	Soil organic carbon stabilization by iron in permafrost regions of the Qinghaiâ€Tibet Plateau. Geophysical Research Letters, 2016, 43, 10,286.	1.5	50
99	Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals. Geochimica Et Cosmochimica Acta, 2016, 191, 17-31.	1.6	28
100	Microtidal subterranean estuaries as a source of fresh terrestrial dissolved organic matter to the coastal ocean. Marine Chemistry, 2016, 186, 46-57.	0.9	32
101	Enhanced carbon loss from anoxic lake sediment through diffusion of dissolved organic carbon. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1959-1977.	1.3	31
102	Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. Handbook of Environmental Chemistry, 2016, , .	0.2	2
103	The effect of iron on the biodegradation of natural dissolved organic matter. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2544-2561.	1.3	11
104	Biological reduction of structural Fe(III) in smectites by a marine bacterium at 0.1 and 20 MPa. Chemical Geology, 2016, 438, 1-10.	1.4	19
105	Peat Moss–Like Vegetative Remains from Ordovician Carbonates. International Journal of Plant Sciences, 2016, 177, 523-538.	0.6	21
106	Spectral characterization and surface complexation modeling of low molecular weight organics on hematite nanoparticles: role of electrolytes in the binding mechanism. Environmental Science: Nano, 2016, 3, 910-926.	2.2	29
107	Thermodynamic Characterization of Iron Oxide–Aqueous Fe ²⁺ Redox Couples. Environmental Science & Technology, 2016, 50, 8538-8547.	4.6	106
108	IsoCaRB: A novel bioreactor system to characterize the lability and natural carbon isotopic (¹⁴ C, ¹³ C) signatures of microbially respired organic matter. Limnology and Oceanography: Methods, 2016, 14, 668-681.	1.0	12
109	Dissolved Organic Matter in Stream Ecosystems. , 2016, , 241-320.		22
110	Stabilization of Natural Organic Matter by Short-Range-Order Iron Hydroxides. Environmental Science & Technology, 2016, 50, 12612-12620.	4.6	75

#	Article	IF	CITATIONS
111	Benthic dissolved organic carbon fluxes in a drinking water reservoir. Limnology and Oceanography, 2016, 61, 445-459.	1.6	29
112	Simulated drawdown and rewetting of littoral sediments: implications for Lobelia lake management. Hydrobiologia, 2016, 778, 137-150.	1.0	1
113	Geographic distance and amorphous iron affect the abundance and distribution of Geobacteraceae in paddy soils in China. Journal of Soils and Sediments, 2016, 16, 2657-2665.	1.5	35
114	Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces. Geochimica Et Cosmochimica Acta, 2016, 188, 407-423.	1.6	31
115	Factors influencing 14C concentrations of algal and archaeal lipids and their associated sea surface temperature proxies in the Black Sea. Geochimica Et Cosmochimica Acta, 2016, 188, 35-57.	1.6	8
116	Element-specific downward fluxes impact the metabolism and vegetation of kettle holes. Hydrobiologia, 2016, 766, 261-274.	1.0	10
117	The role of poorly crystalline iron oxides in the stability of soil aggregate-associated organic carbon in a rice–wheat cropping system. Geoderma, 2016, 279, 1-10.	2.3	68
118	Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environmental Science & Technology, 2016, 50, 2328-2336.	4.6	344
119	The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochimica Et Cosmochimica Acta, 2016, 172, 265-286.	1.6	73
120	Asynchronous reductive release of iron and organic carbon from hematite–humic acid complexes. Chemical Geology, 2016, 430, 13-20.	1.4	44
121	Interaction of alkaline phosphatase with minerals and sediments: Activities, kinetics and hydrolysis of organic phosphorus. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 46-53.	2.3	47
122	Organic matter-clay interaction along a seawater column of the Eastern Pacific upwelling system (Antofagasta bay, Chile): Implications for source rock organic matter preservation. Marine Chemistry, 2016, 179, 23-33.	0.9	20
123	The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol. Geochimica Et Cosmochimica Acta, 2016, 180, 284-302.	1.6	67
124	Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil. Soil Biology and Biochemistry, 2016, 94, 70-79.	4.2	134
125	Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry, 2016, 94, 107-121.	4.2	198
126	Importance of microbial iron reduction in deep sediments of river-dominated continental-margins. Marine Chemistry, 2016, 178, 22-34.	0.9	26
127	Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes. Journal of Environmental Sciences, 2016, 42, 152-162.	3.2	102
128	Preservation of organic matter in nontronite against iron redox cycling. American Mineralogist, 2016, 101, 120-133.	0.9	30

#	TICLE		CITATIONS
129	Iron and Carbon Dynamics during Aging and Reductive Transformation of Biogenic Ferrihydrite. Environmental Science & Technology, 2016, 50, 25-35.		34
130	Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction. Chemical Geology, 2017, 464, 118-126.	1.4	57
131	Nitrate decline unlikely to have triggered release of dissolved organic carbon and phosphate to streams. Global Change Biology, 2017, 23, 2535-2536.	4.2	8
132	Biosignature Preservation and Detection in Mars Analog Environments. Astrobiology, 2017, 17, 363-400.	1.5	159
133	Organic matter and clay interaction in a meromictic lake: Implications for source rock OM preservation (Lac Pavin, Puy-de-Dôme, France). Organic Geochemistry, 2017, 109, 47-57.	0.9	21
134	Continental weathering and terrestrial (oxyhydr)oxide export: Comparing glacial and non-glacial catchments in Iceland. Chemical Geology, 2017, 462, 55-66.	1.4	13
135	Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions. Water Research, 2017, 109, 347-357.	5.3	61
136	Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies. Environmental Science & Technology, 2017, 51, 7903-7912.	4.6	58
137	Effects of alternative electron acceptors on the activity and community structure of methane-producing and consuming microbes in the sediments of two shallow boreal lakes. FEMS Microbiology Ecology, 2017, 93, .	1.3	33
138	Copper isotope signatures in modern marine sediments. Geochimica Et Cosmochimica Acta, 2017, 212, 253-273.	1.6	51
139	The influence of weathering and soil organic matter on Zn isotopes in soils. Chemical Geology, 2017, 466, 140-148.	1.4	36
140	Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation. Environmental Science & Technology, 2017, 51, 6308-6318.	4.6	95
141	Sequential bioavailability of sedimentary organic matter to heterotrophic bacteria. Environmental Microbiology, 2017, 19, 2629-2644.	1.8	39
142	Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. Scientific Reports, 2017, 7, 366.	1.6	95
143	Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil. Geochimica Et Cosmochimica Acta, 2017, 207, 210-231.	1.6	94
144	The importance of catchment vegetation for alkalinity, phosphorus burial and macrophytes as revealed by a recent paleolimnological study in a soft water lake. Science of the Total Environment, 2017, 580, 1097-1107.	3.9	11
145	Molecular Fractionation of Dissolved Organic Matter in a Shallow Subterranean Estuary: The Role of the Iron Curtain. Environmental Science & Technology, 2017, 51, 1312-1320.	4.6	95
146	Widespread Increases in Iron Concentration in European and North American Freshwaters. Global Biogeochemical Cycles, 2017, 31, 1488-1500.	1.9	79

#	Article	IF	CITATIONS
147	Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic–Oxic Interfaces. Environmental Science & Technology, 2017, 51, 12235-12245.	4.6	105
148	Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nature Geoscience, 2017, 10, 846-851.	5.4	41
149	Organic matter distribution and retention along transects from hilltop to kettle hole within an agricultural landscape. Biogeochemistry, 2017, 136, 47-70.	1.7	24
150	Salinity Effects on Iron Speciation in Boreal River Waters. Environmental Science & Technology, 2017, 51, 9747-9755.	4.6	21
151	Baseline biogeochemical data from Australia's continental margin links seabed sediments to water column characteristics. Marine and Freshwater Research, 2017, 68, 1593.	0.7	13
152	A mesocosm study of oxygen and trace metal dynamics in sediment microniches of reactive organic material. Scientific Reports, 2017, 7, 11369.	1.6	15
153	Optical property of dissolved organic matters (DOMs) and its link to the presence of metal ions in surface freshwaters in China. Chemosphere, 2017, 188, 502-509.	4.2	25
154	Contrasting fates of organic matter in locations having different organic matter inputs and bottom water O 2 concentrations. Estuarine, Coastal and Shelf Science, 2017, 198, 63-72.	0.9	6
155	Thin ferrihydrite sediment capping sequestrates phosphorus experiencing redox conditions in a shallow temperate lacustrine wetland. Chemosphere, 2017, 185, 673-680.	4.2	28
156	Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia. Geochimica Et Cosmochimica Acta, 2017, 213, 553-573.	1.6	45
157	ATR-FTIR and Flow Microcalorimetry Studies on the Initial Binding Kinetics of Arsenicals at the Organic–Hematite Interface. Journal of Physical Chemistry A, 2017, 121, 5569-5579.	1.1	18
158	Hypersaline sapropels act as hotspots for microbial dark matter. Scientific Reports, 2017, 7, 6150.	1.6	15
159	Physical access for residue-mineral interactions controls organic carbon retention in an Oxisol soil. Scientific Reports, 2017, 7, 6317.	1.6	12
160	Iron-mediated mineralogical control of organic matter accumulation in tropical soils. Geoderma, 2017, 306, 206-216.	2.3	110
161	Permafrost Organic Carbon Mobilization From the Watershed to the Colville River Delta: Evidence From ¹⁴ C Ramped Pyrolysis and Lignin Biomarkers. Geophysical Research Letters, 2017, 44, 11,491.	1.5	23
162	Temperature Dependence of Apparent Respiratory Quotients and Oxygen Penetration Depth in Contrasting Lake Sediments. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3076-3087.	1.3	19
163	Redox Conditions Affect Dissolved Organic Carbon Quality in Stratified Freshwaters. Environmental Science & Technology, 2017, 51, 13705-13713.	4.6	29
164	Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 2017, 8, 15972.	5.8	147

			_
#	ARTICLE	IF	CITATIONS
165	the Mi-1 deglaciation. Global and Planetary Change, 2017, 155, 109-120.	1.6	7
167	Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction. Geochimica Et Cosmochimica Acta, 2017, 212, 221-233.	1.6	107
168	Application of PAC-modified kaolin to mitigate Prorocentrum donghaiense: effects on cell removal and phosphorus cycling in a laboratory setting. Journal of Applied Phycology, 2017, 29, 917-928.	1.5	18
169	Spatial risk assessment and trace element concentration in reef associated sediments of Van Island, southern part of the Gulf of Mannar, India. Marine Pollution Bulletin, 2017, 115, 444-450.	2.3	31
170	Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments. Annual Review of Marine Science, 2017, 9, 151-172.	5.1	67
171	Land-use and hydroperiod affect kettle hole sediment carbon and nitrogen biogeochemistry. Science of the Total Environment, 2017, 574, 46-56.	3.9	28
172	Biogenic manganese oxides as reservoirs of organic carbon and proteins in terrestrial and marine environments. Geobiology, 2017, 15, 158-172.	1.1	47
173	Expanding the role of reactive transport models in critical zone processes. Earth-Science Reviews, 2017, 165, 280-301.	4.0	207
174	Chemical speciation of iron in sediments from the Changjiang Estuary and East China Sea: Iron cycle and paleoenvironmental implications. Quaternary International, 2017, 452, 116-128.	0.7	9
175	Sediment microbial activity and its relation to environmental variables along the eastern Gulf of Finland coastline. Journal of Marine Systems, 2017, 171, 101-110.	0.9	12
176	Widespread release of dissolved organic carbon from anoxic boreal lake sediments. Inland Waters, 2017, 7, 151-163.	1.1	16
177	Carbon Sequestration Potential Promoted by Oxalate Extractable Iron Oxides through Organic Fertilization. Soil Science Society of America Journal, 2017, 81, 1359-1370.	1.2	21
178	Characterization of natural organic matter in low-carbon sediments: Extraction and analytical approaches. Organic Geochemistry, 2017, 114, 12-22.	0.9	42
179	A Global Assessment of the Chemical Recalcitrance of Seagrass Tissues: Implications for Long-Term Carbon Sequestration. Frontiers in Plant Science, 2017, 8, 925.	1.7	67
180	Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment. Frontiers in Microbiology, 2017, 8, 1741.	1.5	26
181	Ferrihydrite-associated organic matter (OM) stimulates reduction by <i>Shewanella oneidensis</i> MR-1 and a complex microbial consortia. Biogeosciences, 2017, 14, 5171-5188.	1.3	44
182	Interactions between iron and organic carbon in a sandy beach subterranean estuary. Marine Chemistry, 2018, 202, 86-96.	0.9	33
183	Organic remains in late Palaeoproterozoic granular iron formations and implications for the origin of granules. Precambrian Research, 2018, 310, 133-152.	1.2	20

#	Article	IF	CITATIONS
184	Microbial decomposition of marine dissolved organic matter in cool oceanic crust. Nature Geoscience, 2018, 11, 334-339.	5.4	71
185	The taphonomic fate of isorenieratene in Lower Jurassic shales—controlled by iron?. Geobiology, 2018, 16, 237-251.	1.1	7
186	Effects of artificial aeration and iron inputs on the transformation of carbon and phosphorus in a typical wetland soil. Journal of Soils and Sediments, 2018, 18, 3244-3255.	1.5	2
187	Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction. Environmental Science & Technology, 2018, 52, 5691-5699.	4.6	116
188	Depthâ€Resolved Physicochemical Characteristics of Active Layer and Permafrost Soils in an Arctic Polygonal Tundra Region. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1366-1386.	1.3	6
189	Phases and rates of iron and magnetism changes during paddy soil development on calcareous marine sediment and acid Quaternary red-clay. Scientific Reports, 2018, 8, 444.	1.6	15
190	Redox interface-associated organo-mineral interactions: A mechanism for C sequestration under a rice-wheat cropping system. Soil Biology and Biochemistry, 2018, 120, 12-23.	4.2	55
191	Biological rejuvenation of iron oxides in bioturbated marine sediments. ISME Journal, 2018, 12, 1389-1394.	4.4	38
192	Fractionation of Dissolved Organic Matter by Co-Precipitation with Iron: Effects of Composition. Environmental Processes, 2018, 5, 5-21.	1.7	30
193	Fine-scale LA-ICP-MS study of redox oscillations and REEY cycling during the latest Devonian Hangenberg Crisis (Moravian Karst, Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 493, 30-43.	1.0	16
194	Adsorption and Molecular Fractionation of Dissolved Organic Matter on Iron-Bearing Mineral Matrices of Varying Crystallinity. Environmental Science & Technology, 2018, 52, 1036-1044.	4.6	145
195	Molecular Chemodiversity of Dissolved Organic Matter in Paddy Soils. Environmental Science & Technology, 2018, 52, 963-971.	4.6	160
196	The Search for Hesperian Organic Matter on Mars: Pyrolysis Studies of Sediments Rich in Sulfur and Iron. Astrobiology, 2018, 18, 454-464.	1.5	16
197	The synergistic effect of calcium on organic carbon sequestration to ferrihydrite. Geochemical Transactions, 2018, 19, 4.	1.8	68
198	Root Exudates and Microbial Communities Drive Mineral Dissolution and the Formation of Nano-size Minerals in Soils: Implications for Soil Carbon Storage. Soil Biology, 2018, , 143-166.	0.6	5
199	Sorption of Pb(II) by Nanosized Ferrihydrite Organo-Mineral Composites Formed by Adsorption versus Coprecipitation. ACS Earth and Space Chemistry, 2018, 2, 556-564.	1.2	63
200	Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation. Geochimica Et Cosmochimica Acta, 2018, 229, 112-128.	1.6	93
201	A Revised Iron Extraction Protocol for Environmental Samples Rich in Nitrite and Carbonate. Geomicrobiology Journal, 2018, 35, 23-30.	1.0	29

		CITATION REPORT	
#	Article	IF	CITATIONS
202	Synthesizing redox biogeochemistry at aquatic interfaces. Limnologica, 2018, 68, 59-70.	0.7	10
203	Synthetic iron (hydr)oxide-glucose associations in subsurface soil: Effects on decomposability of mineral associated carbon. Science of the Total Environment, 2018, 613-614, 342-351.	3.9	39
204	Iron geochemistry and organic carbon preservation by iron (oxyhydr)oxides in surface sediments the East China Sea and the south Yellow Sea. Journal of Marine Systems, 2018, 178, 62-74.	of 0.9	39
205	Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. Science of the Total Environment, 2018, 613-614, 1140	-1153. 3.9	66
206	Centers of organic carbon burial and oxidation at the land-ocean interface. Organic Geochemistry 2018, 115, 138-155.	y, 0.9	184
207	Carbon losses from prolonged arable cropping of Plinthosols in Southwest Burkina Faso. Soil and Tillage Research, 2018, 175, 51-61.	2.6	13
208	Variations and controls of iron oxides and isotope compositions during paddy soil evolution over millennial time scale. Chemical Geology, 2018, 476, 340-351.	a 1.4	26
209	Ferrous Iron Oxidation under Varying pO ₂ Levels: The Effect of Fe(III)/Al(III) Oxide M and Organic Matter. Environmental Science & Technology, 2018, 52, 597-606.	inerals 4.6	84
210	Mediated Electrochemical Reduction of Iron (Oxyhydr-)Oxides under Defined Thermodynamic Boundary Conditions. Environmental Science & Technology, 2018, 52, 560-570.	4.6	35
211	Contrasting effects of inorganic and organic fertilisation regimes on shifts in Fe redox bacterial communities in red soils. Soil Biology and Biochemistry, 2018, 117, 56-67.	4.2	48
212	Detecting human-knapped flint with marine high-resolution reflection seismics: A preliminary stu new possibilities for subsea mapping of submerged Stone Age sites. Underwater Technology, 20 35-49.	dy of 18, 35, 0.3	13
213	Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils. Environmental Science & Technology, 2018, 52, 14129-14139.	4.6	96
214	Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nature Climate Change, 2018, 8, 1104-1108.	8.1	179
215	Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life, 2018, 8, 56.	1.1	38
216	Exploring the Potential Role of Terrestrially Derived Humic Substances in the Marine Biogeochem of Iron. Frontiers in Earth Science, 2018, 6, .	istry 0.8	26
217	The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3556-3569.	5. 1.3	38
218	Biogeochemical changes at the sediment–water interface during redox transitions in an acidic reservoir: exchange of protons, acidity and electron donors and acceptors. Biogeochemistry, 201 139, 241-260.	8, 1.7	16
219	Mineral colloids mediate organic carbon accumulation in a temperate forest Spodosol: depth-wis changes in pore water chemistry. Biogeochemistry, 2018, 141, 75-94.	e 1.7	10

#	Article	IF	CITATIONS
220	Stability of Ferrihydrite–Humic Acid Coprecipitates under Iron-Reducing Conditions. Environmental Science & Technology, 2018, 52, 13174-13183.	4.6	31
221	Mineral Facilitated Horizontal Gene Transfer: A New Principle for Evolution of Life?. Frontiers in Microbiology, 2018, 9, 2217.	1.5	19
222	Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite–Organic Matter Coprecipitates. Environmental Science & Technology, 2018, 52, 12316-12326.	4.6	139
223	Transient O2 pulses direct Fe crystallinity and Fe(III)-reducer gene expression within a soil microbiome. Microbiome, 2018, 6, 189.	4.9	17
224	Competitive binding of Cd, Ni and Cu on goethite organo–mineral composites made with soil bacteria. Environmental Pollution, 2018, 243, 444-452.	3.7	27
225	Fe(II)-Catalyzed Transformation of Organic Matter–Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes. Environmental Science & Technology, 2018, 52, 11142-11150.	4.6	80
226	Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil. Environmental Science and Pollution Research, 2018, 25, 32130-32139.	2.7	22
227	Facet-Mediated Adsorption and Molecular Fractionation of Humic Substances on Hematite Surfaces. Environmental Science & Technology, 2018, 52, 11660-11669.	4.6	27
228	Fe(II)-Induced Mineral Transformation of Ferrihydrite–Organic Matter Adsorption and Co-precipitation Complexes in the Absence and Presence of As(III). ACS Earth and Space Chemistry, 2018, 2, 1095-1101.	1.2	41
229	Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece. Solid Earth, 2018, 9, 573-598.	1.2	18
230	The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiology Ecology, 2018, 94, .	1.3	89
231	Iron and nitrogen cycling, bacterioplankton community composition and mineral transformations involving phosphorus stabilisation in the ferruginous hypolimnion of a post-mining lake. Environmental Sciences: Processes and Impacts, 2018, 20, 1414-1426.	1.7	5
232	Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments. Chemosphere, 2018, 207, 404-412.	4.2	113
233	Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems. Environmental Science & Technology, 2018, 52, 6936-6944.	4.6	74
234	The Fate of Lipid Biosignatures in a Mars-Analogue Sulfur Stream. Scientific Reports, 2018, 8, 7586.	1.6	24
235	Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments. Biogeosciences, 2018, 15, 1243-1271.	1.3	53
236	High variability in iron-bound organic carbon among five boreal lake sediments. Biogeochemistry, 2018, 139, 19-29.	1.7	17
237	Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Frontiers in Microbiology, 2018, 9, 513.	1.5	46

#	Article	IF	CITATIONS
238	Is the adsorption of soil organic matter to haematite (αâ€Fe 2 O 3) temperature dependent?. European Journal of Soil Science, 2018, 69, 892-901.	1.8	6
239	Intercropping wheat and maize increases the uptake of phthalic acid esters by plant roots from soils. Journal of Hazardous Materials, 2018, 359, 9-18.	6.5	22
241	Photocatalytic Membrane Reactor (PMR) for Virus Removal in Drinking Water: Effect of Humic Acid. Catalysts, 2018, 8, 284.	1.6	14
242	The role of reactive iron in long-term carbon sequestration in mangrove sediments. Journal of Soils and Sediments, 2019, 19, 501-510.	1.5	21
243	Metabolic Processes Preserved as Biosignatures in Iron-Oxidizing Microorganisms: Implications for Biosignature Detection on Mars. Astrobiology, 2019, 19, 40-52.	1.5	12
244	Distribution characteristics of iron, carbon, nitrogen and phosphorus in the surface soils of different land use types near Xingkai Lake. Journal of Soils and Sediments, 2019, 19, 275-285.	1.5	12
245	The degradation of diethyl phthalate by reduced smectite clays and dissolved oxygen. Chemical Engineering Journal, 2019, 355, 247-254.	6.6	56
246	Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity. Journal of Soils and Sediments, 2019, 19, 785-797.	1.5	27
247	The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: degradation or sequestration?. Plant and Soil, 2019, 443, 575-590.	1.8	28
248	Evaluation of the bioremediation potential of mud polychaete Marphysa sp. in aquaculture pond sediments. Environmental Science and Pollution Research, 2019, 26, 29810-29821.	2.7	9
249	Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chemical Geology, 2019, 525, 210-217.	1.4	100
250	High sulfate concentration enhances iron mobilization from organic soil to water. Biogeochemistry, 2019, 144, 245-259.	1.7	15
251	Interactions between natural organic matter (NOM) and the cationic dye toluidine blue at varying pHs and ionic strengths: Effects of NOM charges and Donnan gel potentials. Chemosphere, 2019, 236, 124272.	4.2	10
252	Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances, 2019, 5, eaau1218.	4.7	111
253	Instant Attraction: Clay Authigenesis in Fossil Fungal Biofilms. Geosciences (Switzerland), 2019, 9, 369.	1.0	7
254	Authigenic metastable iron sulfide minerals preserve microbial organic carbon in anoxic environments. Chemical Geology, 2019, 530, 119343.	1.4	28
255	Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, 2019, 10, 5112.	5.8	187
256	Humic Acid Buildup Increases Carbon Dioxide Emissions from Redoxâ€Oscillating Upland Soils while Catalyzing Iron(III) Reduction and Phosphorus Desorption. Journal of Environmental Quality, 2019, 48, 1614-1621.	1.0	3

#	Article	IF	CITATIONS
257	Effects of Organic Amendments on the Transformation of Fe (Oxyhydr)Oxides and Soil Organic Carbon Storage. Frontiers in Earth Science, 2019, 7, .	0.8	18
258	Minimal biomass deposition in banded iron formations inferred from organic matter and clay relationships. Nature Communications, 2019, 10, 5022.	5.8	11
259	Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes. Biogeosciences, 2019, 16, 3725-3746.	1.3	26
260	The Stability of Fe-Isotope Signatures During Low Salinity Mixing in Subarctic Estuaries. Aquatic Geochemistry, 2019, 25, 195-218.	1.5	1
261	The Response of Magnesium, Silicon, and Calcium Isotopes to Rapidly Uplifting and Weathering Terrains: South Island, New Zealand. Frontiers in Earth Science, 2019, 7, .	0.8	17
262	Benzene promotes microbial Fe(III) reduction and flavins secretion. Geochimica Et Cosmochimica Acta, 2019, 264, 92-104.	1.6	19
263	Geochemical Fingerprint and Soil Carbon of Sandy Alfisols. Soil Systems, 2019, 3, 59.	1.0	7
264	Spring flood induced shifts in Fe speciation and fate at increased salinity. Applied Geochemistry, 2019, 109, 104385.	1.4	9
265	Hydrogeomorphic controls on soil carbon composition in two classes of subalpine wetlands. Biogeochemistry, 2019, 145, 161-175.	1.7	12
266	Past aridity's effect on carbon mineralization potentials in grassland soils. Biogeosciences, 2019, 16, 3605-3619.	1.3	7
267	Carbon in the Deep Biosphere. , 2019, , 480-523.		3
268	Persistent organic matter in oxic subseafloor sediment. Nature Geoscience, 2019, 12, 126-131.	5.4	53
269	Ferrihydrite transformation under the impact of humic acid and Pb: kinetics, nanoscale mechanisms, and implications for C and Pb dynamics. Environmental Science: Nano, 2019, 6, 747-762.	2.2	59
270	Sorption temperature and the stability of iron-bound soil organic matter. Geoderma, 2019, 341, 93-99.	2.3	13
271	Composition of dissolved organic matter controls interactions with La and Al ions: Implications for phosphorus immobilization in eutrophic lakes. Environmental Pollution, 2019, 248, 36-47.	3.7	32
272	Hematite Crystallization in the Presence of Organic Matter: Impact on Crystal Properties and Bacterial Dissolution. ACS Earth and Space Chemistry, 2019, 3, 510-518.	1.2	10
273	Enhancement of cyanobacterial growth by riverine particulate material. Chemical Geology, 2019, 525, 143-167.	1.4	5
274	Long-term fertilization and manuring with different organics alter stability of carbon in colloidal organo-mineral fraction in soils of varying clay mineralogy. Science of the Total Environment, 2019, 684, 682-693.	3.9	42

		15	C
#	ARTICLE	IF	CITATIONS
275	Meta-analysis of the effects of organic matter on polychaetes of the east coast of South America. Marine Environmental Research, 2019, 149, 148-156.	1.1	6
276	Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 2019, 570, 228-231.	13.7	354
277	Reduction of industrial iron pollution promotes phosphorus internal loading in eutrophic Hamilton Harbour, Lake Ontario, Canada. Environmental Pollution, 2019, 252, 697-705.	3.7	11
278	Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment. Chemical Engineering Journal, 2019, 373, 307-317.	6.6	84
279	Is the â€~enzyme latch' or â€~iron gate' the key to protecting soil organic carbon in peatlands?. Geoderma 2019, 349, 107-113.	^{a,} 2.3	49
280	Effects of Rare Earth Elements' Physicochemical Properties on Their Stabilization during the Fe(II)aq-induced Phase Transformation of Ferrihydrite. ACS Earth and Space Chemistry, 2019, 3, 895-904.	1.2	12
281	Interactions between microorganisms and clay minerals: New insights and broader applications. Applied Clay Science, 2019, 177, 91-113.	2.6	98
282	The environmental impact of ancient iron mining and smelting on Elba Island, Italy – A geochemical soil survey of the Magazzini site. Journal of Geochemical Exploration, 2019, 205, 106307.	1.5	12
283	Contrasting sorption behaviours affecting groundwater arsenic concentration in Kandal Province, Cambodia. Geoscience Frontiers, 2019, 10, 1701-1713.	4.3	21
284	Distribution of Fe isotopes in particles and colloids in the salinity gradient along the Lena River plume, Laptev Sea. Biogeosciences, 2019, 16, 1305-1319.	1.3	11
285	Does an â€~iron gate' carbon preservation mechanism exist in organic–rich wetlands?. Soil Biology and Biochemistry, 2019, 135, 48-50.	4.2	19
286	Morphological Biosignatures in Volcanic Rocks – Applications for Life Detection on Mars. Frontiers in Earth Science, 2019, 7, .	0.8	7
287	Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields. Science of the Total Environment, 2019, 676, 378-386.	3.9	20
288	Preferential molecular fractionation of dissolved organic matter by iron minerals with different oxidation states. Chemical Geology, 2019, 520, 69-76.	1.4	44
289	Tracking Open Versus Closed anopy Boreal Forest Using the Geochemistry of Lake Sediment Deposits. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1278-1289.	1.3	0
290	Iron oxides selectively stabilize plantâ€derived polysaccharides and aliphatic compounds in agricultural soils. European Journal of Soil Science, 2019, 70, 1153-1163.	1.8	51
291	Selective chemical degradation of silica sinters of the Taupo Volcanic Zone (New Zealand). Implications for early Earth and Astrobiology. Geobiology, 2019, 17, 449-464.	1.1	2
292	Iron plays an important role in molecular fractionation of dissolved organic matter at soil-water interface. Science of the Total Environment, 2019, 670, 300-307.	3.9	30

#	Article	IF	CITATIONS
293	Microbial Fe(II) oxidation by <i>Sideroxydans lithotrophicus</i> ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids. FEMS Microbiology Ecology, 2019, 95, .	1.3	25
294	Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction. Science of the Total Environment, 2019, 668, 216-223.	3.9	11
295	Dissolved Organic Matter Sorption and Molecular Fractionation by Naturally Occurring Bacteriogenic Iron (Oxyhydr)oxides. Environmental Science & Technology, 2019, 53, 4295-4304.	4.6	85
296	Effects of iron(III) reduction on organic carbon decomposition in two paddy soils under flooding conditions. Environmental Science and Pollution Research, 2019, 26, 12481-12490.	2.7	13
297	Extensive dark production of hydroxyl radicals from oxygenation of polluted river sediments. Chemical Engineering Journal, 2019, 368, 700-709.	6.6	60
298	The role of tephra in enhancing organic carbon preservation in marine sediments. Earth-Science Reviews, 2019, 192, 480-490.	4.0	47
299	Ligands representing important functional groups of natural organic matter facilitate Fe redox transformations and resulting binding environments. Geochimica Et Cosmochimica Acta, 2019, 251, 157-175.	1.6	28
300	Factors Controlling Storage, Sources, and Diagenetic State of Organic Carbon in a Prograding Subaerial Delta: Wax Lake Delta, Louisiana. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1115-1131.	1.3	12
301	Nutrient and iron cycling in a modern analogue for the redoxcline of a Proterozoic ocean shelf. Chemical Geology, 2019, 511, 42-50.	1.4	10
302	Temperature sensitivity of microbial Fe(III) reduction kinetics in subalpine wetland soils. Biogeochemistry, 2019, 142, 19-35.	1.7	15
303	Vertical stratification of bacteria and archaea in sediments of a small boreal humic lake. FEMS Microbiology Letters, 2019, 366, .	0.7	30
304	Organic Matter Complexation Promotes Fe(II) Oxidation by the Photoautotrophic Fe(II)-Oxidizer <i>Rhodopseudomonas palustris</i> TIE-1. ACS Earth and Space Chemistry, 2019, 3, 531-536.	1.2	22
305	Pedoclimate monitoring in the periglacial high mountain soils of the Atacama Desert, northern Chile. Permafrost and Periglacial Processes, 2019, 30, 310-329.	1.5	5
306	The architecture of organic matter and its pores in highly mature gas shales of the lower Silurian Longmaxi Formation in the upper Yangtze platform, south China. AAPG Bulletin, 2019, 103, 2909-2942.	0.7	56
307	Nitrogen fertilization modifies organic transformations and coatings on soil biogeochemical interfaces through microbial polysaccharides synthesis. Scientific Reports, 2019, 9, 18684.	1.6	2
308	Reduction in throughfall reduces soil aggregate stability in two subtropical plantations. European Journal of Soil Science, 2019, 70, 301-310.	1.8	19
309	Reactive Iron and Ironâ€Bound Organic Carbon in Surface Sediments of the Riverâ€Dominated Bohai Sea (China) Versus the Southern Yellow Sea. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 79-98.	1.3	21
310	The Influence of Sedimentâ€Derived Dissolved Organic Matter in the Vistula River Estuary/Gulf of Gdansk. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 115-126.	1.3	16

#	Article	IF	CITATIONS
311	Al/Fe Mineral Controls on Soil Organic Carbon Stock Across Tibetan Alpine Grasslands. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 247-259.	1.3	48
312	The role of Fe(III) in soil organic matter stabilization in two size fractions having opposite features. Science of the Total Environment, 2019, 653, 667-674.	3.9	30
313	Nano-pyrite as a Reductant to Remove Chromium in Groundwater. KSCE Journal of Civil Engineering, 2019, 23, 992-999.	0.9	8
314	Non-point source-driven carbon and nutrient loading to Ganga River (India). Chemistry and Ecology, 2019, 35, 344-360.	0.6	10
315	Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: Implications for soil C sequestration. Science of the Total Environment, 2019, 651, 591-600.	3.9	56
316	Different chemical composition and storage mechanism of soil organic matter between active and permafrost layers on the Qinghai–Tibetan Plateau. Journal of Soils and Sediments, 2020, 20, 653-664.	1.5	4
317	Effects of humic acid and fulvic acid on the sequestration of copper and carbon during the iron oxide transformation. Chemical Engineering Journal, 2020, 383, 123194.	6.6	41
318	Rhizosphere modifications of iron-rich minerals and forms of heavy metals encapsulated in sulfidic tailings hardpan. Journal of Hazardous Materials, 2020, 384, 121444.	6.5	18
319	Comparison of sedimentary organic carbon loading in the Yap Trench and other marine environments. Journal of Oceanology and Limnology, 2020, 38, 619-633.	0.6	3
320	Changes in groundwater dissolved organic matter character in a coastal sand aquifer due to rainfall recharge. Water Research, 2020, 169, 115201.	5.3	60
321	Highly reactive nanomineral assembly in soil colloids: Implications for paddy soil carbon storage. Science of the Total Environment, 2020, 703, 134728.	3.9	19
322	A Biotemplating Route for the Synthesis of Hierarchical Fe ₂ O ₃ with Highly Dispersed Carbon as Electronâ€Transfer Channel. ChemPlusChem, 2020, 85, 258-263.	1.3	3
323	Pathway for the Production of Hydroxyl Radicals during the Microbially Mediated Redox Transformation of Iron (Oxyhydr)oxides. Environmental Science & Technology, 2020, 54, 902-910.	4.6	69
324	Kinetics of As(V) and carbon sequestration during Fe(II)-induced transformation of ferrihydrite-As(V)-fulvic acid coprecipitates. Geochimica Et Cosmochimica Acta, 2020, 272, 160-176.	1.6	63
325	Assessment of organic matter preservation and coastal constraints (SE Algarve, Portugal). Regional Studies in Marine Science, 2020, 34, 101009.	0.4	1
326	Fate of Organic Carbon Burial in Modern Sediment Within Yangtze River Estuary. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005379.	1.3	8
327	Water extractable organic matter and iron in relation to land use and seasonal changes. Science of the Total Environment, 2020, 707, 136070.	3.9	16
328	The Labile Nature of Ice Nucleation by Arizona Test Dust. ACS Earth and Space Chemistry, 2020, 4, 133-141.	1.2	30

#	Article	IF	CITATIONS
329	Efficient sequestration of terrigenous organic carbon in the New Britain Trench. Chemical Geology, 2020, 533, 119446.	1.4	19
330	Impacts of agricultural land use change on soil aggregate stability and physical protection of organic C. Science of the Total Environment, 2020, 707, 136049.	3.9	37
331	Effects of Fe oxides on organic carbon variation in the evolution of clayey aquitard and environmental significance. Science of the Total Environment, 2020, 701, 134776.	3.9	18
332	Illuminating microbial speciesâ€specific effects on organic matter remineralization in marine sediments. Environmental Microbiology, 2020, 22, 1734-1747.	1.8	11
333	Preservation of organic carbon promoted by iron redox transformation in a rice-wheat cropping system. Applied Soil Ecology, 2020, 147, 103425.	2.1	10
334	Leaching of organic carbon from grassland soils under anaerobiosis. Soil Biology and Biochemistry, 2020, 141, 107684.	4.2	17
335	Organic Carbon Stabilization Mechanisms in Mangrove Soils: A Review. Forests, 2020, 11, 981.	0.9	39
336	Rhizobactin B is the preferred siderophore by a novel Pseudomonas isolate to obtain iron from dissolved organic matter in peatlands. BioMetals, 2020, 33, 415-433.	1.8	13
337	Spatial distribution and factors influencing the different forms of ammonium in sediments and pore water of the aquitard along the Tongshun River, China. Environmental Pollution, 2020, 266, 115212.	3.7	7
338	Arctic Continental Margin Sediments as Possible Fe and Mn Sources to Seawater as Sea Ice Retreats: Insights From the Eurasian Margin. Global Biogeochemical Cycles, 2020, 34, e2020CB006581.	1.9	5
339	Biopolymer Stabilization/Solidification of Soils: A Rapid, Micro-Macro, Cross-Disciplinary Approach. Environmental Science & Technology, 2020, 54, 13963-13972.	4.6	18
340	Soil Organic Carbon Stabilization: Influence of Tillage on Mineralogical and Chemical Parameters. Soil Systems, 2020, 4, 58.	1.0	6
341	Organic matter influences transformation products of ferrihydrite exposed to sulfide. Environmental Science: Nano, 2020, 7, 3405-3418.	2.2	23
342	Viability of greenhouse gas removal via artificial addition of volcanic ash to the ocean. Anthropocene, 2020, 32, 100264.	1.6	11
343	Depth and intensity of the sulfate-methane transition zone control sedimentary molybdenum and uranium sequestration in a eutrophic low-salinity setting. Applied Geochemistry, 2020, 122, 104767.	1.4	11
344	The Oceans. , 2020, , 361-429.		0
345	Assessment of heavy metal pollution in K¶yceÄŸiz-Dalyan coastal lagoon watershed (MuÄŸla) SW Turkey. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	8
346	Oxidation of soil organic carbon during an anoxic-oxic transition. Geoderma, 2020, 377, 114584.	2.3	15

#	Article	IF	CITATIONS
347	Direct evidence for thickening nanoscale organic films at soil biogeochemical interfaces and its relevance to organic matter preservation. Environmental Science: Nano, 2020, 7, 2747-2758.	2.2	9
348	Climate and hydrologic controls on late Holocene sediment supply to an Amazon floodplain lake. Journal of Paleolimnology, 2020, 64, 389-403.	0.8	3
349	Chemical fractionation of organic matter and organic phosphorus extractions from freshwater lake sediment. Analytica Chimica Acta, 2020, 1130, 29-38.	2.6	17
350	Fe(II)-catalyzed transformation of Fe (oxyhydr)oxides across organic matter fractions in organically amended soils. Science of the Total Environment, 2020, 748, 141125.	3.9	15
351	Mineralogical associations with soil carbon in managed wetland soils. Global Change Biology, 2020, 26, 6555-6567.	4.2	20
352	Desiccation of the Extreme Thermoacidophile Metallosphaera sedula Grown on Terrestrial and Extraterrestrial Materials. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	3
353	Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands. Soil Biology and Biochemistry, 2020, 149, 107949.	4.2	35
354	Experimental evaluation of the extractability of iron bound organic carbon in sediments as a function of carboxyl content. Chemical Geology, 2020, 556, 119853.	1.4	17
355	Assessing the Reactive Surface Area of Soils and the Association of Soil Organic Carbon with Natural Oxide Nanoparticles Using Ferrihydrite as Proxy. Environmental Science & Technology, 2020, 54, 11990-12000.	4.6	27
356	Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190364.	1.6	17
357	Diagenesis and Origination of Carbonate Cements in Deeply Buried Sandstones of the Eocene Es3 Member, Raoyang Sag, Bohai Bay Basin, China. Geofluids, 2020, 2020, 1-18.	0.3	0
358	Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications, 2020, 11, 6329.	5.8	96
359	Organic iron complexes enhance iron transport capacity along estuarine salinity gradients of Baltic estuaries. Biogeosciences, 2020, 17, 331-344.	1.3	19
360	Rusty sink of rhizodeposits and associated keystone microbiomes. Soil Biology and Biochemistry, 2020, 147, 107840.	4.2	73
361	Iron-mediated organic matter decomposition in humid soils can counteract protection. Nature Communications, 2020, 11, 2255.	5.8	181
362	A new terrestrial trace fossil <i>Feoichnus martini</i> n. isp. from the Upper Cretaceous Two Medicine Formation (USA). Journal of Paleontology, 2020, 94, 922-930.	0.5	5
363	Effect of lignosulfonate on the adsorption performance of hematite for Cd(II). Science of the Total Environment, 2020, 738, 139952.	3.9	20
365	Mechanistic study on laccase-mediated formation of Fe-OM associations in peatlands. Geoderma, 2020, 375, 114502.	2.3	13

#	Article	IF	CITATIONS
366	Changes in Sedimentary Phosphorus Burial Following Artificial Eutrophication of Lake 227, Experimental Lakes Area, Ontario, Canada. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005713.	1.3	23
367	Ecological risks of heavy metals as influenced by water-level fluctuations in a polluted plateau wetland, southwest China. Science of the Total Environment, 2020, 742, 140319.	3.9	19
368	Facet-Dependent Adsorption and Fractionation of Natural Organic Matter on Crystalline Metal Oxide Nanoparticles. Environmental Science & Technology, 2020, 54, 8622-8631.	4.6	54
369	Light inhibition of carbon mineralization associated with iron redox processes in calcareous paddy soil. Journal of Soils and Sediments, 2020, 20, 3171-3180.	1.5	1
370	Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El'gygytgyn sediments. Climate of the Past, 2020, 16, 799-818.	1.3	14
371	Reduction of Internal Phosphorus Load in New Lakes by Pretreatment of the Former Agricultural Soil—Methods, Ecological Results and Costs. Sustainability, 2020, 12, 3575.	1.6	1
372	The use of operationally-defined sequential Fe extraction methods for mineralogical applications: A cautionary tale from Mössbauer spectroscopy. Chemical Geology, 2020, 543, 119584.	1.4	20
373	Reactivity, fate and functional roles of dissolved organic matter in anoxic inland waters. Biology Letters, 2020, 16, 20190694.	1.0	27
374	Iron Speciation in Organic Matter Fractions Isolated from Soils Amended with Biochar and Organic Fertilizers. Environmental Science & Technology, 2020, 54, 5093-5101.	4.6	24
375	The fate of organic carbon burial in the river-dominated East China Sea: Evidence from sediment geochemical records of the last 70†years. Organic Geochemistry, 2020, 143, 103999.	0.9	21
376	Fjords as Aquatic Critical Zones (ACZs). Earth-Science Reviews, 2020, 203, 103145.	4.0	104
377	Iron(III) fate after complexation with soil organic matter in fine silt and clay fractions: An EXAFS spectroscopic approach. Soil and Tillage Research, 2020, 200, 104617.	2.6	21
378	Effect of Microbial Biomass and Humic Acids on Abiotic and Biotic Magnetite Formation. Environmental Science & Technology, 2020, 54, 4121-4130.	4.6	32
379	The age distribution of global soil carbon inferred from radiocarbon measurements. Nature Geoscience, 2020, 13, 555-559.	5.4	123
380	Mineral–nutrient relationships in African soils assessed using cluster analysis of X-ray powder diffraction patterns and compositional methods. Geoderma, 2020, 375, 114474.	2.3	26
381	Examining bulk and iron-associated organic carbon through depth in margin sea sediments (China) under contrasting depositional settings: Chemical and NEXAFS spectral characterization. Journal of Marine Systems, 2020, 207, 103344.	0.9	9
382	Effect of Natural Organic Matter on the Fate of Cadmium During Microbial Ferrihydrite Reduction. Environmental Science & Technology, 2020, 54, 9445-9453.	4.6	39
383	Impact of monsoon, vegetation, and landscape on pedogenesis: A case study using organic and inorganic tracers from the Himalayan foreland sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 556, 109854.	1.0	7

#	Article	IF	CITATIONS
384	The fate of organic carbon in marine sediments - New insights from recent data and analysis. Earth-Science Reviews, 2020, 204, 103146.	4.0	118
385	Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale. Energy, 2020, 197, 117256.	4.5	75
386	Spatially Resolved Organomineral Interactions across a Permafrost Chronosequence. Environmental Science & Technology, 2020, 54, 2951-2960.	4.6	19
387	Coagulation of organo-mineral colloids and formation of low molecular weight organic and metal complexes in boreal humic river water under UV-irradiation. Chemosphere, 2020, 250, 126216.	4.2	25
388	Single-molecule determination of the phase- and facet-dependent adsorption of alginate on iron oxides. Environmental Science: Nano, 2020, 7, 954-962.	2.2	9
389	Sorption and molecular fractionation of biochar-derived dissolved organic matter on ferrihydrite. Journal of Hazardous Materials, 2020, 392, 122260.	6.5	54
390	Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary. Science of the Total Environment, 2020, 717, 137047.	3.9	40
391	Shale as a Source of Organic Carbon in Floodplain Sediments of a Mountainous Watershed. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005419.	1.3	14
392	Hydrothermal and Cold Spring Water and Primary Productivity Effects on Magnesium Isotopes: Lake Myvatn, Iceland. Frontiers in Earth Science, 2020, 8, .	0.8	4
393	Nano scale visualization of enhanced adsorption and distribution of humic acid on hematite: Effect of Pb(II) ions. Chemical Geology, 2020, 541, 119573.	1.4	7
394	Temperature-induced iron (III) reduction results in decreased dissolved organic carbon export in subalpine wetland soils, Colorado, USA. Geochimica Et Cosmochimica Acta, 2020, 280, 148-160.	1.6	13
395	Strong mineralogic control of soil organic matter composition in response to nutrient addition across diverse grassland sites. Science of the Total Environment, 2020, 736, 137839.	3.9	29
396	Soil phosphorus forms and storage in stormwater treatment areas of the Everglades: Influence of vegetation and nutrient loading. Science of the Total Environment, 2020, 725, 138442.	3.9	21
397	Structural and microbial evidence for different soil carbon sequestration after four-year successive biochar application in two different paddy soils. Chemosphere, 2020, 254, 126881.	4.2	21
398	Spatial distribution characteristics and influencing factors of organic carbon in sediments of Tongshun River riparian zone. Chemosphere, 2020, 252, 126322.	4.2	15
399	Longâ€Term Storage and Ageâ€Biased Export of Fluvial Organic Carbon: Field Evidence From West Iceland. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008632.	1.0	14
400	A golden period for environmental soil chemistry. Geochemical Transactions, 2020, 21, 5.	1.8	5
401	Distribution and Geochemical Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India. International Journal of Environmental Research and Public Health, 2020, 17,	1.2	36

#	Article	IF	CITATIONS
402	Transfer and transformation mechanisms of Fe bound-organic carbon in the aquitard of a lake-wetland system during reclamation. Environmental Pollution, 2020, 263, 114441.	3.7	7
403	Experimental evaluation of oxidation sensitivity in organic-rich shale reservoir. Journal of Petroleum Science and Engineering, 2020, 192, 107230.	2.1	12
404	Tillage activates iron to prevent soil organic carbon loss following forest conversion to cornfields in tropical acidic red soils. Science of the Total Environment, 2021, 761, 143253.	3.9	16
405	The stoichiometric C-Fe ratio regulates glucose mineralization and stabilization via microbial processes. Geoderma, 2021, 383, 114769.	2.3	20
406	Contribution of the Fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions. Science of the Total Environment, 2021, 760, 143397.	3.9	16
407	Crystalline iron oxides stimulate methanogenic benzoate degradation in marine sediment-derived enrichment cultures. ISME Journal, 2021, 15, 965-980.	4.4	25
408	Natural organic matter inhibits Ni stabilization during Fe(II)-catalyzed ferrihydrite transformation. Science of the Total Environment, 2021, 755, 142612.	3.9	11
409	Effects of Ferrous Iron and Hydrogen Sulfide on Nitrate Reduction in the Sediments of an Estuary Experiencing Hypoxia. Estuaries and Coasts, 2021, 44, 1-12.	1.0	5
410	The role of interfacial reactions in controlling the distribution of Cd within goethiteâ^'humic acidâ^'bacteria composites. Journal of Hazardous Materials, 2021, 405, 124081.	6.5	20
411	Effects of elevation and slope aspect on the distribution of the soil organic carbon associated with Al and Fe mineral phases in alpine shrub–meadow soil. Science of the Total Environment, 2021, 753, 141933.	3.9	20
412	Competition between Al(III) and Fe(III) for binding onto natural organic matter: In situ monitoring by UV–Vis absorbance spectroscopy. Chemosphere, 2021, 270, 128655.	4.2	10
413	Spatial changes in molecular composition of dissolved organic matter in the Yangtze River Estuary: Implications for the seaward transport of estuarine DOM. Science of the Total Environment, 2021, 759, 143531.	3.9	42
414	Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biology and Biochemistry, 2021, 153, 108106.	4.2	49
415	Comprehensive insights into arsenic- and iron-redox genes, their taxonomy and associated environmental drivers deciphered by a meta-analysis. Environment International, 2021, 146, 106234.	4.8	10
416	Synergistic/antagonistic effects and mechanisms of Cr(VI) adsorption and reduction by Fe(III)-HA coprecipitates. Journal of Hazardous Materials, 2021, 409, 124529.	6.5	17
417	High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide. Water Research, 2021, 190, 116711.	5.3	61
418	Dissolved organic carbon sorption dynamics in tidal marsh soils. Limnology and Oceanography, 2021, 66, 214-225.	1.6	11
419	Variations of sedimentary Fe and Mn fractions under changing lake mixing regimes, oxygenation and land surface processes during Late-glacial and Holocene times. Science of the Total Environment, 2021, 755, 143418.	3.9	24

#	Article	IF	CITATIONS
420	Rhizosphere priming regulates soil organic carbon and nitrogen mineralization: The significance of abiotic mechanisms. Geoderma, 2021, 385, 114877.	2.3	43
421	Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nature Communications, 2021, 12, 275.	5.8	41
422	Role of NOM–hematite nanoparticle complexes and organic and inorganic cations in the coherence of silica and clay particles: evaluation based on nanoscale forces and molecular self-assembly. Environmental Science: Nano, 2021, 8, 822-836.	2.2	2
423	Role of Fe- and Mn-(oxy)hydroxides on carbon and nutrient dynamics in agricultural soils: A chemical sequential extraction approach. Chemical Geology, 2021, 561, 120035.	1.4	8
424	Artificial Maturation of Iron- and Sulfur-Rich Mars Analogues: Implications for the Diagenetic Stability of Biopolymers and Their Detection with Pyrolysis–Gas Chromatography–Mass Spectrometry. Astrobiology, 2021, 21, 199-218.	1.5	5
425	Water- and Base-Extractable Organic Matter in Sediments From Lower Yangtze River–Estuary–East China Sea Continuum: Insight Into Accumulation of Organic Carbon in the River-Dominated Margin. Frontiers in Marine Science, 2021, 8, .	1.2	7
426	Molecular Traits of Dissolved Organic Matter in the Subterranean Estuary of a High-Energy Beach: Indications of Sources and Sinks. Frontiers in Marine Science, 2021, 8, .	1.2	15
427	An evolving view on biogeochemical cycling of iron. Nature Reviews Microbiology, 2021, 19, 360-374.	13.6	299
428	Morphometry-Driven Divergence in Decadal Changes of Sediment Property in Floodplain Water Bodies. Water (Switzerland), 2021, 13, 469.	1.2	3
429	Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 2021, 24, 1018-1028.	3.0	96
430	Redox-driven changes in water-dispersible colloids and their role in carbon cycling in hydromorphic soils. Geoderma, 2021, 385, 114894.	2.3	10
431	Iron colloids dominate sedimentary supply to the ocean interior. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
432	Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology, 2021, 27, 2478-2490.	4.2	130
433	Iron-bound carbon increases along a freshwaterâ^'oligohaline gradient in a subtropical tidal wetland. Soil Biology and Biochemistry, 2021, 154, 108128.	4.2	31
434	The mid-Tournaisian (Early Carboniferous) anoxic event in the Laurussian shelf basin (Poland): An integrative approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 566, 110236.	1.0	6
435	Influence of Hydraulic Connectivity on Carbon Burial Efficiency in Mackenzie Delta Lake Sediments. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006054.	1.3	2
436	Coprecipitation of Fe/Cr Hydroxides with Organics: Roles of Organic Properties in Composition and Stability of the Coprecipitates. Environmental Science & amp; Technology, 2021, 55, 4638-4647.	4.6	46
437	Selective retention of extracellular polymeric substances induced by adsorption to and coprecipitation with ferrihydrite. Geochimica Et Cosmochimica Acta, 2021, 299, 15-34.	1.6	27

#	Article	IF	CITATIONS
438	Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF-SIMS Analysis. Environmental Science & Technology, 2021, 55, 7123-7134.	4.6	8
439	Changes in organic carbon fractions and sources in deltaic topsoil and subsoil layers: autochthonous and allochthonous inputs. European Journal of Soil Science, 2021, 72, 2276-2291.	1.8	4
440	Ironâ€Mediated Organic Matter Preservation in the Mississippi Riverâ€Influenced Shelf Sediments. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006089.	1.3	9
441	Accumulation of organic compounds in paddy soils after biochar application is controlled by iron hydroxides. Science of the Total Environment, 2021, 764, 144300.	3.9	18
442	Porewater Lead Concentrations Limited by Particulate Organic Matter Coupled With Ephemeral Iron(III) and Sulfide Phases during Redox Cycles Within Contaminated Floodplain Soils. Environmental Science & Technology, 2021, 55, 5878-5886.	4.6	13
443	Controls on Organic Carbon Burial in the Eastern China Marginal Seas: A Regional Synthesis. Global Biogeochemical Cycles, 2021, 35, e2020GB006608.	1.9	41
444	Delineating the Role of Calcium in the Largeâ€5cale Distribution of Metalâ€Bound Organic Carbon in Soils. Geophysical Research Letters, 2021, 48, e2021GL092391.	1.5	22
445	A nature-based negative emissions technology able to remove atmospheric methane and other greenhouse gases. Atmospheric Pollution Research, 2021, 12, 101035.	1.8	23
446	Hematite facet-mediated microbial dissimilatory iron reduction and production of reactive oxygen species during aerobic oxidation. Water Research, 2021, 195, 116988.	5.3	16
447	Quantifying Preservation Potential: Lipid Degradation in a Mars-Analog Circumneutral Iron Deposit. Astrobiology, 2021, 21, 638-654.	1.5	4
448	Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars. Astrobiology, 2021, 21, 673-691.	1.5	5
449	Tracing Fe Sources in Suspended Particulate Matter (SPM) in the Mun River: Application of Fe-Stable Isotopes Based on a Binary Mixing Model. ACS Earth and Space Chemistry, 2021, 5, 1613-1621.	1.2	12
450	Iron-bound organic carbon and their determinants in peatlands of China. Geoderma, 2021, 391, 114974.	2.3	27
451	Mechanisms of photochemical release of dissolved organic matter and iron from resuspended sediments. Journal of Environmental Sciences, 2021, 104, 288-295.	3.2	8
452	Technical note: Uncovering the influence of methodological variations on the extractability of iron-bound organic carbon. Biogeosciences, 2021, 18, 3409-3419.	1.3	10
453	Effect of nitrogen and phosphorus addition on soil aggregation and its associated organic carbon. Chemistry and Ecology, 2021, 37, 603-615.	0.6	3
454	Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. Environmental Science & Technology, 2021, 55, 9637-9656.	4.6	88
455	Hydrological management affected dissolved organic matter chemistry and organic carbon burial in the Three Gorges Reservoir. Water Research, 2021, 199, 117195.	5.3	32

#	Article	IF	Citations
456	Seasonal patterns of methylmercury production, release, and degradation in profundal sediment of a hypereutrophic reservoir. Lake and Reservoir Management, 0, , 1-18.	0.4	2
457	Iron amendments minimize the first-flush release of pathogens from stormwater biofilters. Environmental Pollution, 2021, 281, 116989.	3.7	12
458	Biogeochemical cycling of iron (hydr-)oxides and its impact on organic carbon turnover in coastal wetlands: A global synthesis and perspective. Earth-Science Reviews, 2021, 218, 103658.	4.0	47
459	Iron Redistribution Upon Thermokarst Processes in the Yedoma Domain. Frontiers in Earth Science, 2021, 9, .	0.8	10
460	Conversion from double-rice to maize-rice increases iron-bound organic carbon by "iron gate―and "enzyme latch―mechanisms. Soil and Tillage Research, 2021, 211, 105014.	2.6	8
461	Ionic Strength and Species Drive Iron–Carbon Adsorption Dynamics: Implications for Carbon Cycling in Future Coastal Environments. Environmental Science and Technology Letters, 2021, 8, 719-724.	3.9	7
462	The adsorption characteristics of Cu(II) and Zn(II) on the sediments at the mouth of a typical urban polluted river in Dianchi Lake: taking Xinhe as an example. Scientific Reports, 2021, 11, 17067.	1.6	3
463	Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. Science Advances, 2021, 7, .	4.7	46
464	Phosphorus rather than nitrogen regulates ecosystem carbon dynamics after permafrost thaw. Global Change Biology, 2021, 27, 5818-5830.	4.2	31
465	Coupling of dissolved organic carbon, sulfur and iron cycling in Black Sea sediments over the Holocene and the late Pleistocene: Insights from an empirical dynamic model. Geochimica Et Cosmochimica Acta, 2021, 307, 302-318.	1.6	2
466	Soil organic carbon stabilization in permafrost peatlands. Saudi Journal of Biological Sciences, 2021, 28, 7037-7045.	1.8	12
467	Long term natural and anthropogenic forcing on aquatic system - evidence based on biogeochemical and pollen proxies from lake sediments in Kashmir Himalaya, India. Applied Geochemistry, 2021, 131, 105046.	1.4	10
468	Co-existing siderite alleviates the Fe(II) oxidation-induced inactivation of Fe(III)-reducing bacteria. Science of the Total Environment, 2021, 781, 146489.	3.9	6
469	Hydrologic heterogeneity induced variability of dissolved organic matter chemistry among tributaries of the Three Gorges Reservoir. Water Research, 2021, 201, 117358.	5.3	24
470	Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions. Astrobiology, 2021, 21, 1363-1386.	1.5	2
471	"Triple locks―on soil organic carbon exerted by sphagnum acid in wetlands. Geochimica Et Cosmochimica Acta, 2021, 315, 24-37.	1.6	6
472	A chemical weathering control on the delivery of particulate iron to the continental shelf. Geochimica Et Cosmochimica Acta, 2021, 308, 204-216.	1.6	15
473	A Critical Review on the Multiple Roles of Manganese in Stabilizing and Destabilizing Soil Organic Matter. Environmental Science & amp; Technology, 2021, 55, 12136-12152.	4.6	91

#	Article	IF	CITATIONS
474	Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients. Soil Biology and Biochemistry, 2021, 160, 108312.	4.2	36
475	Photogeochemistry of particulate organic matter in aquatic systems: A review. Science of the Total Environment, 2022, 806, 150467.	3.9	13
476	Redox Heterogeneity Entangles Soil and Climate Interactions. Sustainability, 2021, 13, 10084.	1.6	6
477	Particle size primarily shifts chemical composition of organic matter under longâ€ŧerm fertilization in paddy soil. European Journal of Soil Science, 2022, 73, .	1.8	9
478	Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 4016-4037.	6.6	68
479	Distinct storage mechanisms of soil organic carbon in coniferous forest and evergreen broadleaf forest in tropical China. Journal of Environmental Management, 2021, 295, 113142.	3.8	21
480	The woods Protophyllocladoxylon and Metapodocarpoxylon within the Cretaceous terrestrial biota of northern Africa. Cretaceous Research, 2021, 126, 104901.	0.6	0
481	Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology and Biochemistry, 2021, 161, 108375.	4.2	42
482	Soil potassium regulation by changes in potassium balance and iron and aluminum oxides in paddy soils subjected to long-term fertilization regimes. Soil and Tillage Research, 2021, 214, 105168.	2.6	12
483	Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biology and Biochemistry, 2021, 162, 108417.	4.2	31
484	Carbon burial in the mid-latitude fjords of Scotland. Marine Geology, 2021, 441, 106618.	0.9	5
485	Humic acids promote hydroxyl radical production during transformation of biogenic and abiogenic goethite under redox fluctuation. Chemical Engineering Journal, 2021, 424, 130359.	6.6	22
486	Microorganisms maintain C:N stoichiometric balance by regulating the priming effect in long-term fertilized soils. Applied Soil Ecology, 2021, 167, 104033.	2.1	43
487	The lithium isotope response to the variable weathering of soils in Iceland. Geochimica Et Cosmochimica Acta, 2021, 313, 55-73.	1.6	11
488	Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions. Science of the Total Environment, 2021, 801, 149637.	3.9	3
489	The lake as an iron sink - new insights on the role of iron speciation. Chemical Geology, 2021, 584, 120529.	1.4	6
490	Risk assessments of emerging contaminants in various waters and changes of microbial diversity in sediments from Yangtze River chemical contiguous zone, Eastern China. Science of the Total Environment, 2022, 803, 149982.	3.9	15
491	Warming and humidification mediated changes of DOM composition in an Alfisol. Science of the Total Environment, 2022, 805, 150198.	3.9	11

#	Article	IF	CITATIONS
492	Iron in boreal river catchments: Biogeochemical, ecological and management implications. Science of the Total Environment, 2022, 805, 150256.	3.9	8
493	Dynamics of organic matter molecular composition under aerobic decomposition and their response to the nitrogen addition in grassland soils. Science of the Total Environment, 2022, 806, 150514.	3.9	9
494	Changing Biogeochemical Cycles of Organic Carbon, Nitrogen, Phosphorus, and Trace Elements in Arctic Rivers. , 2021, , 315-348.		9
495	Cyanobacterial-algal crusts from Late Ediacaran paleosols of the East European Craton. Precambrian Research, 2018, 305, 236-246.	1.2	23
496	Impact of Organic Matter on Microbially-Mediated Reduction and Mobilization of Arsenic and Iron in Arsenic(V)-Bearing Ferrihydrite. Environmental Science & Technology, 2021, 55, 1319-1328.	4.6	39
497	Particles and Aeration at Mire‣tream Interfaces Cause Selective Removal and Modification of Dissolved Organic Matter. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005654.	1.3	6
498	FeS colloids – formation and mobilization pathways in natural waters. Environmental Science: Nano, 2020, 7, 2102-2116.	2.2	13
499	Tepidibacillus decaturensis sp. nov., a microaerophilic, moderately thermophilic iron-reducing bacterium isolated from 1.7 km depth groundwater. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3964-3971.	0.8	16
501	Iron, manganese and aluminium oxides and oxyhydroxides. , 0, , 297-336.		21
502	Browning of Boreal Freshwaters Coupled to Carbon-Iron Interactions along the Aquatic Continuum. PLoS ONE, 2014, 9, e88104.	1.1	134
503	Importance of Boreal Rivers in Providing Iron to Marine Waters. PLoS ONE, 2014, 9, e107500.	1.1	55
504	A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust. PLoS ONE, 2015, 10, e0140106.	1.1	37
505	Sedimentary Sulphur:Iron Ratio Indicates Vivianite Occurrence: A Study from Two Contrasting Freshwater Systems. PLoS ONE, 2015, 10, e0143737.	1.1	48
506	Spectroscopic Evidence of the Improvement of Reactive Iron Mineral Content in Red Soil by Long-Term Application of Swine Manure. PLoS ONE, 2016, 11, e0146364.	1.1	19
507	Photochemical degradation of the algae-derived dissolved organic matter in Lake Taihu. Hupo Kexue/Journal of Lake Sciences, 2018, 30, 91-101.	0.3	6
508	Rates and Microbial Players of Iron-Driven Anaerobic Oxidation of Methane in Methanic Marine Sediments. Frontiers in Microbiology, 2019, 10, 3041.	1.5	51
509	Biogas Emission from an Anaerobic Reactor. Aerosol and Air Quality Research, 2018, 18, 1493-1502.	0.9	6
510	Sediment release of dissolved organic matter to the oxygen minimum zone off Peru. Biogeosciences, 2020, 17, 4663-4679.	1.3	9

			-
#	ARTICLE	IF	CITATIONS
512	Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis. Soil, 2020, 6, 597-627.	2.2	54
513	Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil. Environmental Science & amp; Technology, 2021, 55, 14281-14293.	4.6	48
514	Lithium isotope evidence for enhanced weathering and erosion during the Paleocene-Eocene Thermal Maximum. Science Advances, 2021, 7, eabh4224.	4.7	44
515	Tephra Deposition and Bonding With Reactive Oxides Enhances Burial of Organic Carbon in the Bering Sea. Global Biogeochemical Cycles, 2021, 35, .	1.9	13
518	La vida temprana en la Tierra y los primeros ecosistemas terrestres. Boletin De La Sociedad Geologica Mexicana, 2014, 66, 65-83.	0.1	1
519	Effect of Combined Application of Subsurface Drainage and Mineral Fertilization on Iron-Reducing Bacterial Populations' Developments and Fe ²⁺ Uptake by Two Rice Varieties in an Iron Toxic Paddy Soil of Burkina Faso (West Africa). Agricultural Sciences, 2016, 07, 783-804.	0.2	3
520	Carbon Sink Capacity: Soil Profile Characteristics. , 2017, , 315-318.		0
521	Geochemistry. Encyclopedia of Earth Sciences Series, 2017, , 1-10.	0.1	1
524	Geochemistry. Encyclopedia of Earth Sciences Series, 2018, , 561-571.	0.1	10
525	Influence of Land Use on the Structural Feature of Sedimentary Humic Acids in Rivers in Northwest Hokkaido, Japan. Analytical Sciences, 2019, 35, 665-670.	0.8	3
528	Anthropogenic Inputs of Terrestrial Organic Matter Influence Carbon Loading and Methanogenesis in Coastal Baltic Sea Sediments. Frontiers in Earth Science, 2021, 9, .	0.8	3
529	Fluvial organic carbon cycling regulated by sediment transit time and mineral protection. Nature Geoscience, 2021, 14, 842-848.	5.4	39
530	Redox-driven changes in organic C stabilization and Fe mineral transformations in temperate hydromorphic soils. Geoderma, 2022, 406, 115532.	2.3	17
531	Towards a mechanistic understanding of microbial and nonmicrobial mediated topsoil organic carbon sequestration efficiency in a rice-wheat cropping system. Applied Soil Ecology, 2022, 170, 104259.	2.1	8
533	Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment. Communications Earth & Environment, 2021, 2, .	2.6	39
534	Depthâ€dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Global Change Biology, 2022, 28, 936-949.	4.2	51
535	Coprecipitation of humic acid and phosphate with Fe(III) enhances the sequestration of carbon and phosphorus in sediments. Chemical Geology, 2022, 588, 120645.	1.4	19
536	Interaction between Se(IV) and fulvic acid and its impact on Se(IV) immobility in ferrihydrite-Se(IV) coprecipitates during aging. Environmental Pollution, 2022, 293, 118552.	3.7	5

#	Article	IF	CITATIONS
537	Unraveling the impact of iron oxides-organic matter complexes on iodine mobilization in alluvial-lacustrine aquifers from central Yangtze River Basin. Science of the Total Environment, 2022, 814, 151930.	3.9	11
538	Hydroxyl radicals induced mineralization of organic carbon during oxygenation of ferrous mineral-organic matter associations: Adsorption versus coprecipitation. Science of the Total Environment, 2022, 816, 151667.	3.9	6
539	Adsorption of small organic acids and polyphenols on hematite surfaces: Density Functional TheoryÂ+Âthermodynamics analysis. Journal of Colloid and Interface Science, 2022, 609, 469-481.	5.0	11
540	Variation characteristics of ocean sediment Fe levels and their relationship with grain sizes in culture areas over a long period. Helgoland Marine Research, 2021, 75, .	1.3	0
541	Anaerobic primed CO2 and CH4 in paddy soil are driven by Fe reduction and stimulated by biochar. Science of the Total Environment, 2022, 808, 151911.	3.9	15
542	Spruce forest afforestation leading to increased Fe mobilization from soils. Biogeochemistry, 2022, 157, 273-290.	1.7	10
543	Microhabitat drive microbial anabolism to promote carbon sequestration during composting. Bioresource Technology, 2022, 346, 126577.	4.8	51
544	Characterization of colored dissolved organic matter along the western continental shelf of India during the seasonal hypoxia. Estuarine, Coastal and Shelf Science, 2022, 265, 107714.	0.9	4
545	Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy. Geoderma, 2022, 409, 115646.	2.3	3
546	Fe oxides and fulvic acids together promoted the migration of Cd(II) to the root surface of Phragmites australis. Journal of Hazardous Materials, 2022, 425, 127998.	6.5	4
547	An iron-reduction-mediated cascade mechanism increases the risk of carbon loss from mineral-rich peatlands. Applied Soil Ecology, 2022, 172, 104361.	2.1	5
548	Rational modulation of N and O binding in Fe(III) complex formation derived from hydroxychloroquine: Synthesis, spectroscopic, computational, and docking simulation with human thrombin plasma. Journal of Molecular Structure, 2022, 1254, 132268.	1.8	5
549	Soil Clay Content, Biochar Production Temperature and Aging Affected Biochar Stability and its Priming Effect on Soil Organic Carbon Mineralization. SSRN Electronic Journal, 0, , .	0.4	0
550	Carbon Materials Advancing Microorganisms in Driving Soil Organic Carbon Regulation. Research, 2022, 9857374.	2.8	14
551	Fast redox switches lead to rapid transformation of goethite in humid tropical soils: A Mössbauer spectroscopy study. Soil Science Society of America Journal, 2022, 86, 264-274.	1.2	4
552	Soil Moisture and Aromatic-Containing Compounds Control Soil Organic Carbon Associated with Iron Oxides in Permafrost Wetland Soils Along the Yarlung Tsangbo River, Tibet. Journal of Soil Science and Plant Nutrition, 2022, 22, 1315-1325.	1.7	5
553	Organic carbon remineralization rate in global marine sediments: A review. Regional Studies in Marine Science, 2022, 49, 102112.	0.4	5
554	Localized alteration of ferrihydrite natural organic matter coprecipitates following reaction with Fe(II). Soil Science Society of America Journal, 2022, 86, 253-263.	1.2	8

#	Article	IF	CITATIONS
555	Acoustic Detection and Mapping of Submerged Stone Age Sites with Knapped Flint. , 2022, , 901-933.		1
556	Divergent roles of iron and aluminum in sediment organic matter association at the terrestrial–aquatic interface. Biogeochemistry, 2022, 157, 355-378.	1.7	6
557	Sodium hypochlorite as an oxidizing agent for removal of soil organic matter before microplastics analyses. Journal of Environmental Quality, 2022, 51, 112-122.	1.0	5
558	Association of Organic Carbon With Reactive Iron Oxides Driven by Soil pH at the Global Scale. Global Biogeochemical Cycles, 2022, 36, .	1.9	21
559	Iron Exports From Catchments Are Constrained by Redox Status and Topography. Global Biogeochemical Cycles, 2022, 36, .	1.9	6
560	Factors that influence the toxicity levels of metals in water and soils: a case study of Lake Nike, Enugu, Nigeria. Aquatic Sciences, 2022, 84, 1.	0.6	1
561	The Dissolution of Olivine Added to Soil at 4°C: Implications for Enhanced Weathering in Cold Regions. Frontiers in Climate, 2022, 4, .	1.3	12
562	Investigation of the Interactions Occurring Between Cr(VI) and Citric Acid-Schwertmannite Composites: A Macroscopic and In Situ ATR-FTIR Study. ACS Earth and Space Chemistry, 2022, 6, 391-402.	1.2	5
563	Stability of mineralâ€organic matter associations under varying biogeochemical conditions. Soil Science Society of America Journal, 0, , .	1.2	0
564	Ferrihydrite Enhanced Electrogenic Hydrocarbon DegradationÂIn Soil Microbial Electrochemical Remediation. SSRN Electronic Journal, 0, , .	0.4	0
565	Uncovering the Geochemical Fractionation of Newly Deposited Hg in Paddy Soil Using A Stable Isotope Tracer. SSRN Electronic Journal, 0, , .	0.4	0
566	Quantification of potential methane emissions associated with organic matter amendments following oxic-soil inundation. Biogeosciences, 2022, 19, 1151-1164.	1.3	3
567	Increased interactions between iron oxides and organic carbon under acid deposition drive large increases in soil organic carbon in a tropical forest in southern China. Biogeochemistry, 2022, 158, 287-301.	1.7	7
568	Mediation of arsenic mobility by organic matter in mining-impacted sediment from subâ€Arctic lakes: implications for environmental monitoring in a warming climate. Environmental Earth Sciences, 2022, 81, 137.	1.3	4
569	Sustainable biopolymer soil stabilization in saline rich, arid conditions: a â€~micro to macro' approach. Scientific Reports, 2022, 12, 2880.	1.6	17
570	Effect of Clay Mineralogy and Soil Organic Carbon in Aggregates under Straw Incorporation. Agronomy, 2022, 12, 534.	1.3	23
571	Mineral Matrix Effects on Pyrolysis Products of Kerogens Infer Difficulties in Determining Biological Provenance of Macromolecular Organic Matter at Mars. Astrobiology, 2022, 22, 520-540.	1.5	6
572	Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant and Soil, 2022, 474, 233-249.	1.8	30

#	Article	IF	CITATIONS
573	Seasonal Fluctuations in Iron Cycling in Thawing Permafrost Peatlands. Environmental Science & Technology, 2022, 56, 4620-4631.	4.6	17
574	Oxidative metabolisms catalyzed Earth's oxygenation. Nature Communications, 2022, 13, 1328.	5.8	17
576	Organic Matter Inhibits Redox Activity and Impacts Heterogeneous Growth of Iron (Oxyhydr)oxides on Nano-Hematite. ACS Earth and Space Chemistry, 2022, 6, 847-860.	1.2	2
578	Organic matter character as a critical factor determining the fate and stability of its association with iron in sediments. Journal of Soils and Sediments, 2022, 22, 1865-1875.	1.5	3
579	Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment, 2022, 3, .	2.6	11
580	Stability and molecular fractionation of ferrihydrite-bound organic carbon during iron reduction by dissolved sulfide. Chemical Geology, 2022, 594, 120774.	1.4	15
581	Reusing Fe water treatment residual as a soil amendment to improve physical function and flood resilience. Soil, 2022, 8, 283-295.	2.2	4
583	Calcium isotopes tracing secondary mineral formation in the high-relief Yalong River Basin, Southeast Tibetan Plateau. Science of the Total Environment, 2022, 827, 154315.	3.9	10
584	Dithionite extractable iron responsible for the production of hydroxyl radicals in soils under fluctuating redox conditions. Geoderma, 2022, 415, 115784.	2.3	4
585	Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biology and Biochemistry, 2022, 169, 108657.	4.2	60
586	Adsorption of humic acids to lake sediments: Compositional fractionation, inhibitory effect of phosphate, and implications for lake eutrophication. Journal of Hazardous Materials, 2022, 433, 128791.	6.5	33
587	Uncovering geochemical fractionation of the newly deposited Hg in paddy soil using a stable isotope tracer. Journal of Hazardous Materials, 2022, 433, 128752.	6.5	7
588	Mineral and Climatic Controls Over Soil Organic Matter Stability Across the Tibetan Alpine Permafrost Region. Global Biogeochemical Cycles, 2021, 35, .	1.9	12
589	Enhanced Microbial Ferrihydrite Reduction by Pyrogenic Carbon: Impact of Graphitic Structures. Environmental Science & Technology, 2022, 56, 239-250.	4.6	31
590	Microbial iron reduction does not release microplastics from organoâ€metallic aggregates. Limnology and Oceanography Letters, 2022, 7, 244-250.	1.6	0
591	Synergistic effects of Cd-loving Bacillus sp. N3 and iron oxides on immobilizing Cd and reducing wheat uptake of Cd. Environmental Pollution, 2022, 305, 119303.	3.7	14
595	Persistence of Dissolved Organic Matter (Dom) and Âlts Driving Factors in ÂA ÂTypical Plateau Eutrophic Lake. SSRN Electronic Journal, 0, , .	0.4	0
596	EffectÂofÂNaturalÂOrganicÂMatterÂonÂCr(VI)ÂReductionÂbyÂReducedÂNontronite. SSRN Electronic Journal, 0, ,	.0.4	0

#	Article	IF	CITATIONS
597	Hybrid three-dimensional modelling for reservoir fluorescent dissolved organic matter risk assessment. Inland Waters, 2022, 12, 463-476.	1.1	0
598	Quantification of Organic Carbon Sequestered by Biogenic Iron Sulfide Minerals in Long-Term Anoxic Laboratory Incubations. Frontiers in Microbiology, 2022, 13, 662219.	1.5	7
599	Sediment-Derived Dissolved Organic Matter Stimulates Heterotrophic Prokaryotes Metabolic Activity in Overlying Deep Sea in the Ulleung Basin, East Sea. Frontiers in Marine Science, 2022, 9, .	1.2	3
600	The C–S–Fe system evolution reveals organic matter preservation in lacustrine shales of Yanchang Formation, Ordos Basin, China. Marine and Petroleum Geology, 2022, 142, 105734.	1.5	2
602	Lithium isotope behaviour during basalt weathering experiments amended with organic acids. Geochimica Et Cosmochimica Acta, 2022, 328, 37-57.	1.6	11
603	Ferrihydrite enhanced the electrogenic hydrocarbon degradation in soil microbial electrochemical remediation. Chemical Engineering Journal, 2022, 446, 136901.	6.6	6
604	Water depth determines spatial and temporal phosphorus retention by controlling ecosystem transition and P-binding metal elements. Water Research, 2022, 219, 118550.	5.3	5
605	Near-infrared spectroscopy for prediction of potentially toxic elements in soil and sediments from a semiarid and coastal humid tropical transitional river basin. Microchemical Journal, 2022, 179, 107544.	2.3	3
606	Adsorption of soil organic matter by gel-like ferrihydrite and dense ferrihydrite. Science of the Total Environment, 2022, 835, 155507.	3.9	3
607	Disentangling carbon stabilization in a Calcisol subsoil amended with iron oxyhydroxides: A dual-13C isotope approach. Soil Biology and Biochemistry, 2022, , 108711.	4.2	2
608	Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biology and Biochemistry, 2022, 170, 108697.	4.2	57
609	Mineralogical control on methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface sediment. Nature Communications, 2022, 13, 2722.	5.8	8
610	Rejuvenation of iron oxides enhances carbon sequestration by the â€~iron gate' and â€~enzyme latch' mechanisms in a rice-wheat cropping system. Science of the Total Environment, 2022, 839, 156209.	3.9	5
611	Characteristics of soil carbon emissions and bacterial community composition in peatlands at different stages of vegetation succession. Science of the Total Environment, 2022, 839, 156242.	3.9	13
612	The interactions between Alâ€ / Feâ€ (hydr)oxides and soil organic carbon mediate the aggregation of yellow soils. Soil Use and Management, 2022, 38, 1644-1655.	2.6	3
613	Coupled variations of dissolved organic matter distribution and iron (oxyhydr)oxides transformation: Effects on the kinetics of uranium adsorption and desorption. Journal of Hazardous Materials, 2022, 436, 129298.	6.5	15
614	Microbial community mediates hydroxyl radical production in soil slurries by iron redox transformation. Water Research, 2022, 220, 118689.	5.3	16
615	Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review. Chemosphere, 2022, 303, 135172.	4.2	21

#	Article	IF	CITATIONS
616	Effects of Micronutrient Fertilization on Soil Carbon Pools and Microbial Community Functioning. SSRN Electronic Journal, 0, , .	0.4	0
617	Environmental tracers and groundwater residence time indicators reveal controls of arsenic accumulation rates beneath a rapidly developing urban area in Patna, India. Journal of Contaminant Hydrology, 2022, 249, 104043.	1.6	10
618	Towards a better understanding of the role of Fe cycling in soil for carbon stabilization and degradation. , 2022, 1, .		51
619	Phosphorus sorption capacity of various iron-organic matter associations in peat soils. Environmental Science and Pollution Research, 2022, 29, 77580-77592.	2.7	4
620	Advances in the use of recycled non-ferrous slag as a resource for non-ferrous metal mine site remediation. Environmental Research, 2022, 213, 113533.	3.7	13
621	Cr(Vi) Adsorption and Reduction by Magnetite-Humic Acid Adsorption Complexes: Synergistic/Antagonistic Mechanism and Multi-Step Reaction Model. SSRN Electronic Journal, 0, , .	0.4	0
622	Soil Respiration of Paddy Soils Were Stimulated by Semiconductor Minerals. Frontiers in Plant Science, 0, 13, .	1.7	1
623	Anthropogenic perturbations to the fate of terrestrial organic matter in a river-dominated marginal sea. Geochimica Et Cosmochimica Acta, 2022, 333, 242-262.	1.6	9
624	The role and fate of organic carbon during aging of ferrihydrite. Geochimica Et Cosmochimica Acta, 2022, 335, 339-355.	1.6	20
625	Potential effects of laccase on the formation and accumulation of Fe-OM complexes in coastal saline paddy soil under straw and nitrogen fertilization. Archives of Agronomy and Soil Science, 2023, 69, 1470-1481.	1.3	0
626	A millimeter-scale insight into formation mechanism of lacustrine black shale in tephra deposition background. Scientific Reports, 2022, 12, .	1.6	0
627	Rapid conversion of alkaline bauxite residue through co-pyrolysis with waste biomass and its revegetation potential. Journal of Environmental Sciences, 2023, 127, 102-113.	3.2	3
628	Thermokarst processes increase the supply of stabilizing surfaces and elements (Fe, Mn, Al, and Ca) for mineral–organic carbon interactions. Permafrost and Periglacial Processes, 0, , .	1.5	4
629	Evidence for metabolic diversity in Meso-Neoproterozoic stromatolites (Vazante Group, Brazil). Frontiers in Earth Science, 0, 10, .	0.8	3
630	Insights into phenanthrene attenuation by hydroxyl radicals from reduced iron-bearing mineral oxygenation. Journal of Hazardous Materials, 2022, 439, 129658.	6.5	5
631	Retention of soil organic matter by occlusion within soil minerals. Reviews in Environmental Science and Biotechnology, 2022, 21, 727-746.	3.9	20
632	Visualization and quantification of carbon "rusty sink―by rice root iron plaque: Mechanisms, functions, and global implications. Global Change Biology, 2022, 28, 6711-6727.	4.2	22
633	Spatial distribution of soil iron across different plant communities along a hydrological gradient in the Yellow River Estuary wetland. Frontiers in Ecology and Evolution, 0, 10, .	1.1	2

#	Article	IF	CITATIONS
634	Responses of dissolved organic matter (DOM) characteristics in eutrophic lake to water diversion from external watershed. Environmental Pollution, 2022, 312, 119992.	3.7	9
635	Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. International Journal of Coal Geology, 2022, 261, 104079.	1.9	39
636	Pedogenic ferromanganese nodules and their impacts on nutrient cycles and heavy metal sequestration. Earth-Science Reviews, 2022, 232, 104147.	4.0	5
637	Nitrogen availability and mineral particles contributed fungal necromass to the newly formed stable carbon pool in the alpine areas of Southwest China. Soil Biology and Biochemistry, 2022, 173, 108788.	4.2	20
638	Synchronous sequestration of cadmium and fulvic acid by secondary minerals from Fe(II)-catalyzed ferrihydrite transformation. Geochimica Et Cosmochimica Acta, 2022, 334, 83-98.	1.6	31
639	Coupled dynamics of aqueous biogeochemistry in contrasting floodplain environments: Implications for Critical Zone carbon sequestration along redox gradients. Applied Geochemistry, 2022, 145, 105413.	1.4	7
640	Archaeal lipids in soils and sediments: Water impact and consequences for microbial carbon sequestration. Soil Biology and Biochemistry, 2022, 173, 108801.	4.2	4
641	Microbe-iron interactions control lignin decomposition in soil. Soil Biology and Biochemistry, 2022, 173, 108803.	4.2	9
642	Influence of biocurrent self-generated by indigenous microorganisms on soil quality. Chemosphere, 2022, 307, 135864.	4.2	6
643	Cr(VI) adsorption and reduction by magnetite-humic acid adsorption complexes under mildly acidic conditions: Synergistic/antagonistic mechanism and multi-step reaction model. Chemical Engineering Journal, 2023, 451, 138648.	6.6	14
644	Towards the identification of humic ligands associated with iron transport through a salinity gradient. Scientific Reports, 2022, 12, .	1.6	3
645	Simultaneous denitrification and iron-phosphorus precipitation driven by plant biomass coupled with iron scraps in subsurface flow constructed wetlands. Journal of Environmental Management, 2022, 322, 116104.	3.8	11
646	Role of organic nanoparticles on transport and fate of various dyes in aqueous solution. Environmental Research, 2022, 215, 114179.	3.7	1
647	Elevational pattern of soil organic carbon release in a Tibetan alpine grassland: Consequence of quality but not quantity of initial soil organic carbon. Geoderma, 2022, 428, 116148.	2.3	6
648	Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: The Meghna river, Bangladesh. Chemosphere, 2022, 308, 136289.	4.2	8
649	Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. Science of the Total Environment, 2023, 855, 158710.	3.9	21
650	Effects of micronutrient fertilization on soil carbon pools and microbial community functioning. Applied Soil Ecology, 2023, 181, 104664.	2.1	3
651	Heteroaggregation of PS microplastic with ferrihydrite leads to rapid removal of microplastic particles from the water column. Environmental Sciences: Processes and Impacts, 2022, 24, 1782-1789.	1.7	6

#	Article	IF	CITATIONS
652	Modelling the strength of mineral–organic binding: organic molecules on the α-Al ₂ O ₃ (0001) surface. RSC Advances, 2022, 12, 27604-27615.	1.7	4
653	Iron (hydr)oxides mediated immobilization and interaction of dissolved organic matter and inorganic phosphate: A review. Hupo Kexue/Journal of Lake Sciences, 2022, 34, 1428-1440.	0.3	0
654	Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw. Nature Communications, 2022, 13, .	5.8	22
655	Geochemical cycling of phosphorus and iron in a typical reservoir in the area of Xiaoxing'an mountains, northeastern China. Frontiers in Environmental Science, 0, 10, .	1.5	0
656	Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and ironAoxidation. Global Change Biology, 2022, 28, 7410-7427.	4.2	38
657	Disentangling the size-dependent redox reactivity of iron oxides using thermodynamic relationships. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
658	Fe-Bound Organic Carbon and Sorption of Aromatic Dissolved Organic Carbon in Surface Soil: Comparing a Forest, a Cropland, and a Pasture Soil in the Central Appalachian Region, West Virginia, U.S.A. Environments - MDPI, 2022, 9, 113.	1.5	0
659	Sedimentary carbon on the continental shelf: Emerging capabilities and research priorities for Blue Carbon. Frontiers in Marine Science, 0, 9, .	1.2	3
660	Iron oxides impact sulfate-driven anaerobic oxidation of methane in diffusion-dominated marine sediments. Frontiers in Marine Science, 0, 9, .	1.2	2
662	Minerals limit the deep soil respiration response to warming in a tropical Andisol. Biogeochemistry, 2022, 161, 85-99.	1.7	2
663	Secondary Mineral Formation and Carbon Dynamics during FeS Oxidation in the Presence of Dissolved Organic Matter. Environmental Science & amp; Technology, 2022, 56, 14120-14132.	4.6	12
664	Root exudates contribute to belowground ecosystem hotspots: A review. Frontiers in Microbiology, 0, 13, .	1.5	46
665	Preferential sorption of polysaccharides on mackinawite: A chemometrics approach. Geochimica Et Cosmochimica Acta, 2022, 337, 61-72.	1.6	6
666	The crucial interactions between climate and soil. Science of the Total Environment, 2023, 856, 159169.	3.9	13
667	Environmental implications of agricultural abandonment on Fe cycling: Insight from iron forms and stable isotope composition in karst soil, southwest China. Environmental Research, 2022, 215, 114377.	3.7	2
668	Soil organic carbon associated with iron oxides in terrestrial ecosystems: Content, distribution and control. Chinese Science Bulletin, 2023, 68, 695-704.	0.4	3
669	Iron speciation changes and mobilization of colloids during redox cycling in Fe-rich, Icelandic peat soils. Geoderma, 2022, 428, 116217.	2.3	6
670	Preservation of soil organic carbon in coastal wetlands promoted by glomalin–iron–organic carbon ternary system. Limnology and Oceanography, 2022, 67, .	1.6	4

#	Article	IF	CITATIONS
671	Iron-bound organic carbon dynamics in peatland profiles: The preservation equivalence of deep and surface soil. Fundamental Research, 2023, 3, 852-860.	1.6	2
672	The dynamics of mercury around an artisanal and small-scale gold mining area, Camarines Norte, Philippines. Environmental Science and Pollution Research, 2023, 30, 20052-20064.	2.7	1
673	Saltâ€Induced Flocculation of Dissolved Organic Matter and Iron Is Controlled by Their Concentration and Ratio in Boreal Coastal Systems. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	6
674	Evaluating wetland soil carbon stability related to iron transformation during redox oscillations. Geoderma, 2022, 428, 116222.	2.3	6
675	How does soil water status influence the fate of soil organic matter? A review of processes across scales. Earth-Science Reviews, 2022, 234, 104214.	4.0	6
676	Nano and sub-nano scale distribution of organic carbon species on soil particles revealed by Cs-STEM EELS. Chemical Geology, 2022, 613, 121168.	1.4	4
677	Effect of natural organic matter on Cr(VI) reduction by reduced nontronite. Chemical Geology, 2023, 615, 121198.	1.4	0
678	The Fate of Sedimentary Reactive Iron at the Landâ€Ocean Interface: A Case Study From the Amazon Shelf. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	6
679	Organic Carbon Burial With Reactive Iron Across Global Environments. Global Biogeochemical Cycles, 2022, 36, .	1.9	8
680	Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions. Science Advances, 2022, 8, .	4.7	19
681	Effects of dissolved organic matter molecules on the sequestration and stability of uranium during the transformation of Fe (oxyhydr)oxides. Water Research, 2023, 229, 119387.	5.3	3
682	Ontology of the complex rare-earth elements mineral system. , 2023, , .		Ο
683	Early diagenetic processes in an iron-dominated marine depositional system. Geochimica Et Cosmochimica Acta, 2023, 341, 183-199.	1.6	1
684	Amorphous iron oxides protect aggregate-associated organic carbon from microbial utilization and decomposition evidenced from the natural abundance of 13C. Soil and Tillage Research, 2023, 227, 105623.	2.6	3
685	Hydrodynamic and geochemical controls on soil carbon mineralization upon entry into aquatic systems. Water Research, 2023, 229, 119499.	5.3	2
686	Agricultural land use regulates the fate of soil phosphorus fractions following the reclamation of wetlands. Science of the Total Environment, 2023, 863, 160891.	3.9	5
687	Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: a review. Journal of Soils and Sediments, 2023, 23, 1485-1500.	1.5	11
688	The effects of longâ€ŧerm drainage and shortâ€ŧerm restoration on <scp>dissolved organic C</scp> concentrations and optical properties in the Baijianghe Peatland. Hydrological Processes, 2022, 36, .	1.1	1

#	Article	IF	CITATIONS
689	New evidence for preservation of contemporary marine organic carbon by iron in Arctic shelf sediments. Environmental Research Letters, 2023, 18, 014006.	2.2	5
690	Sunlight-Driven Production of Reactive Oxygen Species from Natural Iron Minerals: Quantum Yield and Wavelength Dependence. Environmental Science & amp; Technology, 2023, 57, 1177-1185.	4.6	12
691	Arsenic Contamination in Karst Regions. Environmental Science and Engineering, 2023, , 85-98.	0.1	0
692	Dissimilatory iron reduction contributes to anaerobic mineralization of sediment in a shallow transboundary lake. Fundamental Research, 2022, , .	1.6	3
693	Varied response of carbon dioxide emissions to warming in oxic, anoxic and transitional soil layers in a drained peatland. Communications Earth & Environment, 2022, 3, .	2.6	3
694	Neogene burial of organic carbon in the global ocean. Nature, 2023, 613, 90-95.	13.7	19
695	Effects of Hypoxia on Coupled Carbon and Iron Cycling Differ Between Weekly and Multiannual Timescales in Two Freshwater Reservoirs. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	2
696	Riverine Particulate Matter Enhances the Growth and Viability of the Marine Diatom Thalassiosira weissflogii. Minerals (Basel, Switzerland), 2023, 13, 183.	0.8	0
697	Iron plaque crystallinity, heavy metal toxicity, and metal translocation in Kandelia obovata seedlings as altered by an iron-reducing bacterium under different flooding regimes. Plant and Soil, 2023, 487, 267-282.	1.8	1
698	Classification of sedimentary environments and evaluation of carbon burial rates in the coastal area of Lianyungang, China, since the Late Pleistocene. Environmental Earth Sciences, 2023, 82, .	1.3	0
700	lron–organic carbon associations stimulate carbon accumulation in paddy soils by decreasing soil organic carbon priming. Soil Biology and Biochemistry, 2023, 179, 108972.	4.2	8
701	Release of adsorbed copper and carbon during Fe(â¡) catalytic conversion of ferrihydrite-humic acid coprecipitation under acidic condition: Mechanism and properties. Journal of Environmental Chemical Engineering, 2023, 11, 109519.	3.3	0
702	Factors affecting the soil organic carbon pool in marshes along the Yarlung Zangbo River, Tibet, China. Land Degradation and Development, 0, , .	1.8	1
703	Iron geochemistry in surface sediments of the subtropical northern South China Sea and a comparison with the temperate East China Sea. Journal of Marine Systems, 2023, 240, 103878.	0.9	0
704	Shifting relationships between SOC and molecular diversity in soils of varied carbon concentrations: Evidence from drained wetlands. Geoderma, 2023, 433, 116459.	2.3	2
705	Contrasting controls of particulate organic carbon composition and age from riverine to coastal sediments of Eastern China Marginal Seas. Chemical Geology, 2023, 624, 121429.	1.4	2
706	Interannual variation in precipitation predominantly controls mineral-associated organic carbon dynamics in a Tibetan alpine meadow. Geoderma, 2023, 433, 116432.	2.3	2
707	Evidence for preservation of organic carbon interacting with iron in material displaced from retrogressive thaw slumps: Case study in Peel Plateau, western Canadian Arctic. Geoderma, 2023, 433, 116443.	2.3	3

#	Article	IF	CITATIONS
708	Stable oxic-anoxic transitional interface is beneficial to retard soil carbon loss in drained peatland. Soil Biology and Biochemistry, 2023, 181, 109024.	4.2	0
709	Coupled effects of sedimentary iron oxides and organic matter on geogenic phosphorus mobilization in alluvial-lacustrine aquifers. Science of the Total Environment, 2023, 878, 163216.	3.9	1
710	The coupling between iron and carbon and iron reducing bacteria control carbon sequestration in paddy soils. Catena, 2023, 223, 106937.	2.2	2
711	Preferential preservation of pre-aged terrestrial organic carbon by reactive iron in estuarine particles and coastal sediments of a large river-dominated estuary. Geochimica Et Cosmochimica Acta, 2023, 345, 34-49.	1.6	7
712	Contrasting Effects of Nitrogen and Organic Fertilizers on Iron Dynamics in Soil after 38–Year Fertilization Practice. Agronomy, 2023, 13, 371.	1.3	0
713	Interfacial geochemistry of iron applied to atmospheric and oceanic environments. Applied Geochemistry, 2023, 150, 105595.	1.4	3
714	Experimentally simulated sea level rise destabilizes carbon-mineral associations in temperate tidal marsh soil. Biogeochemistry, 2023, 163, 103-120.	1.7	3
715	Nitrate as an alternative electron acceptor destabilizes the mineral associated organic carbon in moisturized deep soil depths. Frontiers in Microbiology, 0, 14, .	1.5	1
716	The dispersal of fluvially discharged and marine, shelf-produced particulate organic matter in the northern Gulf of Mexico. Biogeosciences, 2023, 20, 663-686.	1.3	1
717	Composition of organic matterâ€'ironâ€'phosphorus associations in sediments of algae- and macrophyte-dominated zones in Lake Taihu. Chemical Geology, 2023, 622, 121375.	1.4	2
718	Stability of organic matter-iron-phosphate associations during abiotic reduction of iron. Journal of Hazardous Materials, 2023, 449, 131016.	6.5	5
719	Aqueous Fe(II)-catalyzed iron oxide recrystallization: Fe redox cycling and atom exchange, mineralogical recrystallization and contributing factor. Reviews in Environmental Science and Biotechnology, 2023, 22, 55-78.	3.9	6
720	Transformation of algal-dissolved organic matter via sunlight-induced photochemical and microbial processes: interactions between two processes. Environmental Science and Pollution Research, 2023, 30, 52969-52981.	2.7	2
721	Climate warming has direct and indirect effects on microbes associated with carbon cycling in northern lakes. Global Change Biology, 2023, 29, 3039-3053.	4.2	3
722	Manganese oxides, Earth surface oxygenation, and the rise of oxygenic photosynthesis. Earth-Science Reviews, 2023, 239, 104368.	4.0	3
723	Oxygenation of the Earth aided by mineral–organic carbon preservation. Nature Geoscience, 2023, 16, 262-267.	5.4	11
724	An Overview of Lipid Biomarkers in Terrestrial Extreme Environments with Relevance for Mars Exploration. Astrobiology, 2023, 23, 563-604.	1.5	7
725	The Root Tip of Submerged Plants: An Efficient Engine for Carbon Mineralization. Environmental Science and Technology Letters, 2023, 10, 385-390.	3.9	3

#	Article	IF	CITATIONS
726	Multiple spectral comparison of dissolved organic matter in the drainage basin of a reservoir in Northeast China: Implication for the interaction among organic matter, iron, and phosphorus. Heliyon, 2023, 9, e14797.	1.4	0
727	Isolation of dissolved organic matter from aqueous solution by precipitation with FeCl3: mechanisms and significance in environmental perspectives. Scientific Reports, 2023, 13, .	1.6	0
728	Low content of highly reactive iron in sediments from Prydz Bay and the adjacent Southern Ocean: Controlling factors and implications for sedimentary organic carbon preservation. Frontiers in Marine Science, 0, 10, .	1.2	0
729	Soil Carbon, Nitrogen, and Phosphorus Stoichiometry and Fractions in Blue Carbon Ecosystems: Implications for Carbon Accumulation in Allochthonous-Dominated Habitats. Environmental Science & Technology, 2023, 57, 5913-5923.	4.6	9
730	SOPHIA: A mineralogical simulant for phyllosilicate terrains at the Rosalind Franklin landing site, Oxia Planum, Mars. Icarus, 2023, 400, 115568.	1.1	0
731	Stabilization of mineral-associated organic carbon in Pleistocene permafrost. Nature Communications, 2023, 14, .	5.8	7
732	Laccase Promotes the Formation of Fe-OM Complexes by Catalyzing the Polymerization of OM in Coastal Saline-Alkaline Soil. Journal of Soil Science and Plant Nutrition, 2023, 23, 3438-3446.	1.7	2
733	Vertical distribution of Fe, P and correlation with organic carbon in coastal sediments of Yellow Sea, Eastern China. Frontiers in Marine Science, 0, 10, .	1.2	0
744	Enhancing the Water and Biodegradation Resistance of Biopolymer Stabilised Soils – Design Concepts. RILEM Bookseries, 2023, , 293-302.	0.2	0
775	Coupled iron cycling and organic matter transformation across redox interfaces. Nature Reviews Earth & Environment, 2023, 4, 659-673.	12.2	27
780	Organic Carbon Cycling and Transformation. , 2023, , .		1
786	The effect of iron on the preservation of organic carbon in marine sediments and its implications for carbon sequestration. Science China Earth Sciences, 2023, 66, 1946-1959.	2.3	0
789	Other Important Elements. , 2024, , 427-461.		0
816	Dynamics of particulate organic carbon mobilization, storage, and export across river sedimentary systems. , 2023, , .		0
820	Practical Guide to Measuring Wetland Carbon Pools and Fluxes. Wetlands, 2023, 43, .	0.7	2
856	Characteristics, origins, and significance of pyrites in deep-water shales. Science China Earth Sciences, 2024, 67, 313-342.	2.3	0