Planet-Disk Interaction and Orbital Evolution

Annual Review of Astronomy and Astrophysics 50, 211-249 DOI: 10.1146/annurev-astro-081811-125523

Citation Report

#	Article	IF	CITATIONS
2	Shaping of the Inner Solar System by the Gas-Driven Migration of Jupiter. Proceedings of the International Astronomical Union, 2012, 8, 204-211.	0.0	0
3	A SEARCH FOR GIANT PLANET COMPANIONS TO T TAURI STARS. Astrophysical Journal, 2012, 761, 164.	1.6	76
4	Populating the asteroid belt from two parent source regions due to the migration of giant planets—"The Grand Tack― Meteoritics and Planetary Science, 2012, 47, 1941-1947.	0.7	118
5	The circumstellar disk of ABÂAurigae: evidence for envelope accretion at late stages of star formation?. Astronomy and Astrophysics, 2012, 547, A84.	2.1	98
6	The Science of Exoplanets and Their Systems. Astrobiology, 2013, 13, 793-813.	1.5	10
7	ORBITAL MIGRATION OF PROTOPLANETS IN A MARGINALLY GRAVITATIONALLY UNSTABLE DISK. Astrophysical Journal, 2013, 764, 194.	1.6	35
8	The formation of systems with closely spaced low-mass planets and the application to Kepler-36. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3018-3029.	1.6	50
9	The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3444-3455.	1.6	393
10	Trapping of giant-planet cores – I. Vortex aided trapping at the outer dead zone edge. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2626-2646.	1.6	32
11	Essential Astrophysics. Undergraduate Lecture Notes in Physics, 2013, , .	0.1	18
12	TERRESTRIAL PLANET FORMATION AROUND THE CIRCUMBINARY HABITABLE ZONE: INWARD MIGRATION IN THE PLANETESIMAL SWARM. Astrophysical Journal Letters, 2013, 763, L8.	3.0	8
13	MAGNETIC AND GRAVITATIONAL DISK-STAR INTERACTIONS: AN INTERDEPENDENCE OF PMS STELLAR ROTATION RATES AND SPIN-ORBIT MISALIGNMENTS. Astrophysical Journal, 2013, 778, 169.	1.6	104
14	DO GIANT PLANETS SURVIVE TYPE II MIGRATION?. Astrophysical Journal, 2013, 774, 146.	1.6	56
15	STELLAR ROTATION PERIODS OF THE <i>KEPLER</i> OBJECTS OF INTEREST: A DEARTH OF CLOSE-IN PLANETS AROUND FAST ROTATORS. Astrophysical Journal Letters, 2013, 775, L11.	3.0	210
16	STEADY STATE DUST DISTRIBUTIONS IN DISK VORTICES: OBSERVATIONAL PREDICTIONS AND APPLICATIONS TO TRANSITIONAL DISKS. Astrophysical Journal, 2013, 775, 17.	1.6	137
17	THE EFFECT OF PLANET-PLANET SCATTERING ON THE SURVIVAL OF EXOMOONS. Astrophysical Journal Letters, 2013, 769, L14.	3.0	53
18	VLT-CRIRES SURVEY OF ROVIBRATIONAL CO EMISSION FROM PROTOPLANETARY DISKS. Astrophysical Journal, 2013, 770, 94.	1.6	82
19	GAP OPENING BY EXTREMELY LOW-MASS PLANETS IN A VISCOUS DISK. Astrophysical Journal, 2013, 769, 41.	1.6	146

#	Article	IF	Citations
20	Orbital migration of giant planets induced by gravitationally unstable gaps: the effect of planet mass. Monthly Notices of the Royal Astronomical Society, 2013, 434, 621-632.	1.6	30
21	Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3168-3185.	1.6	117
22	COMPLETENESS OF IMAGING SURVEYS FOR ECCENTRIC EXOPLANETS. Astrophysical Journal, 2013, 766, 10.	1.6	18
23	LOW-MASS PLANETS IN PROTOPLANETARY DISKS WITH NET VERTICAL MAGNETIC FIELDS: THE PLANETARY WAKE AND GAP OPENING. Astrophysical Journal, 2013, 768, 143.	1.6	71
24	Interaction between massive planets on inclined orbits and circumstellar discs. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1320-1336.	1.6	72
25	Formation of (exo–)planets. Astronomische Nachrichten, 2013, 334, 589-594.	0.6	3
26	A survey of young, nearby, and dusty stars conducted to understand the formation of wide-orbit giant planets. Astronomy and Astrophysics, 2013, 553, A60.	2.1	79
27	Radio Interferometry Observations of the Hallmarks of Planet Formation. Proceedings of the International Astronomical Union, 2013, 8, 80-89.	0.0	0
28	Planet formation in evolving protoplanetary discs. Proceedings of the International Astronomical Union, 2013, 8, 179-189.	0.0	1
29	Disk Inhomogeneities and the Origins of Planetary System Architectures and Observational Properties. Proceedings of the International Astronomical Union, 2013, 8, 190-193.	0.0	0
30	CHARACTERIZING THE COOL KOIs. IV. KEPLER-32 AS A PROTOTYPE FOR THE FORMATION OF COMPACT PLANETARY SYSTEMS THROUGHOUT THE GALAXY. Astrophysical Journal, 2013, 764, 105.	1.6	132
31	AA Tauri's sudden and long-lasting deepening: enhanced extinction by its circumstellar disk. Astronomy and Astrophysics, 2013, 557, A77.	2.1	84
32	Planetary Environments and Origins of Life. BIO Web of Conferences, 2014, 2, 00001.	0.1	0
33	Modeling circumbinary planets: The case of Kepler-38. Astronomy and Astrophysics, 2014, 564, A72.	2.1	77
34	SOPHIE velocimetry of <i>Kepler</i> transit candidates. Astronomy and Astrophysics, 2014, 561, L1.	2.1	25
35	A dynamical study on the habitability of terrestrial exoplanets – II The super-Earth HD 40307Âg. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3685-3700.	1.6	35
36	Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130072.	1.6	9
37	On the corotation torque for low-mass eccentric planets. Monthly Notices of the Royal Astronomical Society, 2014, 437, 96-107.	1.6	79

#	Article	IF	CITATIONS
38	MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND. Astrophysical Journal, 2014, 797, 95.	1.6	208
39	MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. I. CONVERGENCE OF EMBRYOS IN PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 797, 20.	1.6	38
40	TERRESTRIAL PLANET FORMATION IN THE PRESENCE OF MIGRATING SUPER-EARTHS. Astrophysical Journal, 2014, 794, 11.	1.6	63
41	TWO-COMPONENT SECULAR GRAVITATIONAL INSTABILITY IN A PROTOPLANETARY DISK: A POSSIBLE MECHANISM FOR CREATING RING-LIKE STRUCTURES. Astrophysical Journal, 2014, 794, 55.	1.6	151
42	INSIDE-OUT PLANET FORMATION. Astrophysical Journal, 2014, 780, 53.	1.6	175
43	ALMA HINTS AT THE PRESENCE OF TWO COMPANIONS IN THE DISK AROUND HD 100546. Astrophysical Journal Letters, 2014, 791, L6.	3.0	114
44	Architectures of planetary systems and implications for their formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12616-12621.	3.3	47
45	The Grand Tack model: a critical review. Proceedings of the International Astronomical Union, 2014, 9, 194-203.	0.0	26
46	Setting the Stage for Habitable Planets. Life, 2014, 4, 35-65.	1.1	3
47	HOW EMPTY ARE DISK GAPS OPENED BY GIANT PLANETS?. Astrophysical Journal, 2014, 782, 88.	1.6	215
48	Earth-like habitats in planetary systems. Planetary and Space Science, 2014, 98, 254-267.	0.9	32
49	DUST TRAPPING BY VORTICES IN TRANSITIONAL DISKS: EVIDENCE FOR NON-IDEAL MAGNETOHYDRODYNAMIC EFFECTS IN PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 795, 53.	1.6	126
50	AN ANALYTIC MODEL FOR BUOYANCY RESONANCES IN PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 785, 32.	1.6	8
51	Understanding the assembly of Kepler's compact planetary systems. Monthly Notices of the Royal Astronomical Society, 2014, 445, 749-760.	1.6	53
52	THE FORMATION OF URANUS AND NEPTUNE: CHALLENGES AND IMPLICATIONS FOR INTERMEDIATE-MASS EXOPLANETS. Astrophysical Journal, 2014, 789, 69.	1.6	75
53	HALL-EFFECT-CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. I. WIND SOLUTIONS AT THE INNER DISK. Astrophysical Journal, 2014, 791, 137.	1.6	127
54	PARTICLE CONCENTRATION AT PLANET-INDUCED GAP EDGES AND VORTICES. I. INVISCID THREE-DIMENSIONAL HYDRO DISKS. Astrophysical Journal, 2014, 785, 122.	1.6	130
55	TESTS OF IN SITU FORMATION SCENARIOS FOR COMPACT MULTIPLANET SYSTEMS. Astrophysical Journal, 2014, 790, 91.	1.6	50

#	Article	IF	CITATIONS
56	PLANET TRAPS AND FIRST PLANETS: THE CRITICAL METALLICITY FOR GAS GIANT FORMATION. Astrophysical Journal, 2014, 788, 62.	1.6	26
57	AN ENIGMATIC POINT-LIKE FEATURE WITHIN THE HD 169142 TRANSITIONAL DISK,. Astrophysical Journal Letters, 2014, 792, L22.	3.0	119
58	A critical analysis of shock models for chondrule formation. Icarus, 2014, 242, 1-10.	1.1	15
59	SCATTERING OUTCOMES OF CLOSE-IN PLANETS: CONSTRAINTS ON PLANET MIGRATION. Astrophysical Journal, 2014, 786, 101.	1.6	93
60	CIRCUMBINARY PLANET FORMATION IN THE KEPLER-16 SYSTEM. II. A TOY MODEL FOR IN SITU PLANET FORMATION WITHIN A DEBRIS BELT. Astrophysical Journal, 2014, 790, 41.	1.6	49
61	THE MIGRATION OF GAP-OPENING PLANETS IS NOT LOCKED TO VISCOUS DISK EVOLUTION. Astrophysical Journal Letters, 2014, 792, L10.	3.0	148
62	Water delivery and giant impacts in the â€~Grand Tack' scenario. Icarus, 2014, 239, 74-84.	1.1	209
63	Planet-vortex interaction: How a vortex can shepherd a planetary embryo. Astronomy and Astrophysics, 2014, 572, A61.	2.1	13
64	Characterization of the gaseous companion <i>κ</i> Andromedae b. Astronomy and Astrophysics, 2014, 562, A111.	2.1	44
65	Constraining the structure of the transition disk HD 135344B (SAO 206462) by simultaneous modeling of multiwavelength gas and dust observations. Astronomy and Astrophysics, 2014, 567, A51.	2.1	46
66	Characterization of the planetary system Kepler-101 with HARPS-N. Astronomy and Astrophysics, 2014, 572, A2.	2.1	35
67	Early evolution of clumps formed via gravitational instability in protoplanetary discs: precursors of Hot Jupiters?. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2909-2921.	1.6	44
68	MIGRATION OF TWO MASSIVE PLANETS INTO (AND OUT OF) FIRST ORDER MEAN MOTION RESONANCES. Astrophysical Journal, 2015, 810, 119.	1.6	82
69	MAGNETIC ORIGINS OF THE STELLAR MASS-OBLIQUITY CORRELATION IN PLANETARY SYSTEMS. Astrophysical Journal, 2015, 811, 82.	1.6	52
70	OBSERVATIONAL SIGNATURES OF PLANETS IN PROTOPLANETARY DISKS. I. GAPS OPENED BY SINGLE AND MULTIPLE YOUNG PLANETS IN DISKS. Astrophysical Journal, 2015, 809, 93.	1.6	225
71	BUILDING MASSIVE COMPACT PLANETESIMAL DISKS FROM THE ACCRETION OF PEBBLES. Astrophysical Journal, 2015, 809, 94.	1.6	36
72	OBSERVATIONAL SIGNATURES OF PLANETS IN PROTOPLANETARY DISKS: SPIRAL ARMS OBSERVED IN SCATTERED LIGHT IMAGING CAN BE INDUCED BY PLANETS. Astrophysical Journal Letters, 2015, 809, L5.	3.0	198
73	WEAK TURBULENCE IN THE HD 163296 PROTOPLANETARY DISK REVEALED BY ALMA CO OBSERVATIONS. Astrophysical Journal, 2015, 813, 99.	1.6	208

	CITATION R	EPORT	
#	Article	IF	CITATIONS
74	Migration of massive planets in accreting disks. Astronomy and Astrophysics, 2015, 574, A52.	2.1	134
75	EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA. II. EFFECTS ON DISK STRUCTURE AND EVOLUTION WITH NON-UNIFORM TURBULENT VISCOSITY DUE TO THE MAGNETOROTATIONAL INSTABILITY. Astrophysical Journal, 2015, 815, 112.	1.6	17
76	The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. Astronomy and Astrophysics, 2015, 573, A127.	2.1	83
77	A metallicity recipe for rocky planets. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1471-1483.	1.6	82
78	Evolutionary stages and disk properties of young stellar objects in the Perseus cloud. Research in Astronomy and Astrophysics, 2015, 15, 1294-1324.	0.7	3
79	Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA. Astronomy and Astrophysics, 2015, 579, A106.	2.1	139
80	Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astronomy and Astrophysics, 2015, 582, A99.	2.1	63
81	An Overview of Inside-Out Planet Formation. Proceedings of the International Astronomical Union, 2015, 11, 6-13.	0.0	4
82	Protoplanetary disk lifetimes vs. stellar mass and possible implications for giant planet populations. Astronomy and Astrophysics, 2015, 576, A52.	2.1	178
83	Asymmetric features in the protoplanetary disk MWC 758. Astronomy and Astrophysics, 2015, 578, L6.	2.1	230
84	FRIENDS OF HOT JUPITERS. III. AN INFRARED SPECTROSCOPIC SEARCH FOR LOW-MASS STELLAR COMPANIONS. Astrophysical Journal, 2015, 814, 148.	1.6	53
85	Jupiter's role in sculpting the early Solar System. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4189-4190.	3.3	2
86	The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres. Experimental Astronomy, 2015, 40, 501-522.	1.6	20
87	The search for signs of life on exoplanets at the interface of chemistry and planetary science. Science Advances, 2015, 1, e1500047.	4.7	65
88	AN EMPIRICAL SEQUENCE OF DISK GAP OPENING REVEALED BY ROVIBRATIONAL CO. Astrophysical Journal, 2015, 809, 167.	1.6	57
89	ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES. Astrophysical Journal, 2015, 799, 16.	1.6	120
90	Secular effects of tidal damping in compact planetary systems. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1044-1059.	1.6	48
91	MODELING GIANT EXTRASOLAR RING SYSTEMS IN ECLIPSE AND THE CASE OF J1407B: SCULPTING BY EXOMOONS?. Astrophysical Journal, 2015, 800, 126.	1.6	89

#	Article	IF	CITATIONS
92	AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS. Astrophysical Journal, 2015, 799, 170.	1.6	164
93	MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. II. EMERGENCE OF PROTO-GAS-GIANT CORES VERSUS SUPER EARTH PROGENITORS. Astrophysical Journal, 2015, 798, 62.	1.6	20
94	VULCAN PLANETS: INSIDE-OUT FORMATION OF THE INNERMOST SUPER-EARTHS. Astrophysical Journal Letters, 2015, 798, L32.	3.0	59
95	<i>S</i> -TYPE AND <i>P</i> -TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS. Astrophysical Journal, 2015, 798, 101.	1.6	43
96	THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 [,] . Astrophysical Journal, 2015, 799, 43.	1.6	65
97	Global models of planet formation and evolution. International Journal of Astrobiology, 2015, 14, 201-232.	0.9	135
98	Exoplanetary Geophysics: An Emerging Discipline. , 2015, , 673-694.		14
99	DYNAMICAL EVOLUTION OF MULTI-RESONANT SYSTEMS: THE CASE OF GJ 876. Astronomical Journal, 2015, 149, 167.	1.9	58
100	HALTING MIGRATION: NUMERICAL CALCULATIONS OF COROTATION TORQUES IN THE WEAKLY NONLINEAR REGIME. Astrophysical Journal, 2015, 806, 182.	1.6	33
101	Three body resonances in close orbiting planetary systems: tidal dissipation and orbital evolution. International Journal of Astrobiology, 2015, 14, 291-304.	0.9	47
102	Jupiter's decisive role in the inner Solar System's early evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4214-4217.	3.3	101
103	SCATTERED LIGHT FROM DUST IN THE CAVITY OF THE V4046 Sgr TRANSITION DISK. Astrophysical Journal Letters, 2015, 803, L10.	3.0	34
104	Planet heating prevents inward migration of planetary cores. Nature, 2015, 520, 63-65.	13.7	127
105	ON THE GAP-OPENING CRITERION OF MIGRATING PLANETS IN PROTOPLANETARY DISKS. Astrophysical Journal, 2015, 802, 56.	1.6	79
106	TYPE I PLANET MIGRATION IN A MAGNETIZED DISK. II. EFFECT OF VERTICAL ANGULAR MOMENTUM TRANSPORT. Astrophysical Journal, 2015, 802, 55.	1.6	2
107	TYPE I PLANET MIGRATION IN A MAGNETIZED DISK. I. EFFECT OF LARGE-SCALE VERTICAL AND AZIMUTHAL FIELD COMPONENTS. Astrophysical Journal, 2015, 802, 54.	1.6	9
108	ON SHOCKS DRIVEN BY HIGH-MASS PLANETS IN RADIATIVELY INEFFICIENT DISKS. I. TWO-DIMENSIONAL GLOBAL DISK SIMULATIONS. Astrophysical Journal, 2015, 804, 95.	1.6	38
109	INDIRECT DETECTION OF FORMING PROTOPLANETS VIA CHEMICAL ASYMMETRIES IN DISKS. Astrophysical Journal, 2015, 807, 2.	1.6	40

#	Article	IF	CITATIONS
110	Capture of planets into mean-motion resonances and the origins of extrasolar orbital architectures. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2589-2609.	1.6	91
111	Photodynamical mass determination of the multiplanetary system K2-19. Monthly Notices of the Royal Astronomical Society, 2015, 454, 4267-4276.	1.6	64
112	HOT JUPITERS FROM COPLANAR HIGH-ECCENTRICITY MIGRATION. Astrophysical Journal, 2015, 805, 75.	1.6	124
113	Observations of Solids in Protoplanetary Disks. Publications of the Astronomical Society of the Pacific, 2015, 127, 961-993.	1.0	80
114	GAP OPENING IN 3D: SINGLE-PLANET GAPS. Astrophysical Journal, 2016, 832, 105.	1.6	107
115	HOW SPIRALS AND GAPS DRIVEN BY COMPANIONS IN PROTOPLANETARY DISKS APPEAR IN SCATTERED LIGHT AT ARBITRARY VIEWING ANGLES. Astrophysical Journal, 2016, 826, 75.	1.6	81
116	INSIDE-OUT PLANET FORMATION. III. PLANET–DISK INTERACTION AT THE DEAD ZONE INNER BOUNDARY. Astrophysical Journal, 2016, 816, 19.	1.6	49
117	COLLISIONS OF CO ₂ ICE GRAINS IN PLANET FORMATION. Astrophysical Journal, 2016, 818, 16.	1.6	80
118	THE ECCENTRICITY DISTRIBUTION OF SHORT-PERIOD PLANET CANDIDATES DETECTED BY KEPLER IN OCCULTATION. Astrophysical Journal, 2016, 820, 93.	1.6	55
119	An alternative model for the origin of gaps in circumstellar disks. Astronomy and Astrophysics, 2016, 587, A146.	2.1	5
120	Multiple Stellar Populations and Their Evolution in Globular Clusters: A Nucleosynthesis Perspective. EAS Publications Series, 2016, 80-81, 177-226.	0.3	25
121	Planet filtering at the inner edges of dead zones in protoplanetary disks. Astronomy and Astrophysics, 2016, 586, A105.	2.1	9
122	VORTICES AND SPIRALS IN THE HD 135344B TRANSITION DISK. Astrophysical Journal, 2016, 832, 178.	1.6	82
123	ALMA OBSERVATIONS OF A GAP AND A RING IN THE PROTOPLANETARY DISK AROUND TW HYA. Astrophysical Journal Letters, 2016, 819, L7.	3.0	105
124	PROMPT PLANETESIMAL FORMATION BEYOND THE SNOW LINE. Astrophysical Journal Letters, 2016, 828, L2.	3.0	53
125	HIGH-CONTRAST IMAGING OF INTERMEDIATE-MASS GIANTS WITH LONG-TERM RADIAL VELOCITY TRENDS. Astrophysical Journal, 2016, 825, 127.	1.6	28
126	K2-98b: A 32 M _⊕ NEPTUNE-SIZE PLANET IN A 10 DAY ORBIT TRANSITING AN F8 STAR. Astronomical Journal, 2016, 152, 193.	1.9	43
127	IN SITU FORMATION AND DYNAMICAL EVOLUTION OF HOT JUPITER SYSTEMS. Astrophysical Journal, 2016, 829, 114.	1.6	215

#	Article	IF	CITATIONS
128	Formation, Orbital and Internal Evolutions of Young Planetary Systems. Space Science Reviews, 2016, 205, 77-124.	3.7	74
129	A â€~Rosetta Stone' for Protoplanetary Disks: The Synergy of Multi-Wavelength Observations. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	43
130	DISCO: A 3D MOVING-MESH MAGNETOHYDRODYNAMICS CODE DESIGNED FOR THE STUDY OF ASTROPHYSICAL DISKS. Astrophysical Journal, Supplement Series, 2016, 226, 2.	3.0	37
131	SHOCK-DRIVEN ACCRETION IN CIRCUMPLANETARY DISKS: OBSERVABLES AND SATELLITE FORMATION. Astrophysical Journal, 2016, 832, 193.	1.6	57
132	Near-infrared imaging polarimetry of LkCa 15: A possible warped inner disk. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	19
133	A transition in circumbinary accretion discs at a binary mass ratio of 1:25. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2379-2393.	1.6	79
134	Physical properties of the planetary systems WASP-45 and WASP-46 from simultaneous multiband photometry. Monthly Notices of the Royal Astronomical Society, 2016, 456, 990-1002.	1.6	37
135	Disruption of planetary orbits through evection resonance with an external companion: circumbinary planets and multiplanet systems. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2925-2939.	1.6	39
136	ON THE DETECTION OF NON-TRANSITING HOT JUPITERS IN MULTIPLE-PLANET SYSTEMS. Astrophysical Journal Letters, 2016, 823, L7.	3.0	33
137	Six Decades of Spiral Density Wave Theory. Annual Review of Astronomy and Astrophysics, 2016, 54, 667-724.	8.1	83
138	SPIN–ORBIT MISALIGNMENT AS A DRIVER OF THE KEPLER DICHOTOMY. Astrophysical Journal, 2016, 830, 5.	1.6	69
139	IN SITU AND EX SITU FORMATION MODELS OF KEPLER 11 PLANETS. Astrophysical Journal, 2016, 828, 33.	1.6	33
140	Lithium in Stellar Atmospheres: Observations and Theory. Astrophysics, 2016, 59, 411-437.	0.1	19
141	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.	1.5	133
142	THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE FORMATION OF CLOSE-IN EXOPLANETS. Astrophysical Journal Letters, 2016, 827, L37.	3.0	24
143	Accretion onto Pre-Main-Sequence Stars. Annual Review of Astronomy and Astrophysics, 2016, 54, 135-180.	8.1	391
144	Modelling the Gas Dynamics of Protoplanetary Disks by the SPH Method. Astrophysics, 2016, 59, 449-460.	0.1	6
145	SUPER-EARTHS AS FAILED CORES IN ORBITAL MIGRATION TRAPS. Astrophysical Journal, 2016, 832, 83.	1.6	13

#	Article	IF	CITATIONS
146	The effects of different forms of viscosities on the formation of (pre-)transitional discs. Monthly Notices of the Royal Astronomical Society, 2016, 462, 323-330.	1.6	4
147	MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. III. MASS AND METALLICITY DEPENDENCE FOR FGKM MAIN-SEQUENCE STARS. Astrophysical Journal, 2016, 823, 162.	1.6	15
148	The effects of a magnetic field on planetary migration in laminar and turbulent discs. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3482-3497.	1.6	26
149	A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star. Nature, 2016, 534, 658-661.	13.7	157
150	RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 820, L40.	3.0	418
151	RESONANT REMOVAL OF EXOMOONS DURING PLANETARY MIGRATION. Astrophysical Journal, 2016, 817, 18.	1.6	66
152	PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI. Astrophysical Journal, 2016, 818, 158.	1.6	58
153	DETECTION AND CHARACTERIZATION OF EXTRASOLAR PLANETS THROUGH MEAN-MOTION RESONANCES. I. SIMULATIONS OF HYPOTHETICAL DEBRIS DISKS. Astrophysical Journal, 2016, 818, 159.	1.6	39
154	CHONDRULE FORMATION VIA IMPACT JETTING TRIGGERED BY PLANETARY ACCRETION. Astrophysical Journal, 2016, 816, 8.	1.6	16
155	THE DEPLETION OF WATER DURING DISPERSAL OF PLANET-FORMING DISK REGIONS. Astrophysical Journal, 2017, 834, 152.	1.6	48
156	A Surface Density Perturbation in the TW Hydrae Disk at 95 au Traced by Molecular Emission. Astrophysical Journal, 2017, 835, 228.	1.6	35
157	An Analytic Criterion for Turbulent Disruption of Planetary Resonances. Astronomical Journal, 2017, 153, 120.	1.9	53
158	Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science, 2017, 355, 623-627.	6.0	147
159	Dynamical rearrangement of super-Earths during disk dispersal. Astronomy and Astrophysics, 2017, 601, A15.	2.1	52
160	Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short-period and Ultra-short-period Planets. Astrophysical Journal, 2017, 842, 40.	1.6	95
161	Two massive rocky planets transiting a K-dwarf 6.5 parsecs away. Nature Astronomy, 2017, 1, .	4.2	84
162	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 602, A107.	2.1	185
163	Changes in orientation and shape of protoplanetary discs moving through an ambient medium. Astronomy and Astrophysics, 2017, 604, A88.	2.1	12

#	Article	IF	CITATIONS
164	The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. Astronomy and Astrophysics, 2017, 603, A3.	2.1	97
165	A deeper view of the CoRoT-9 planetary system. Astronomy and Astrophysics, 2017, 603, A43.	2.1	9
166	Identifying and analysing protostellar disc fragments in smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2517-2538.	1.6	38
167	The Sizes and Depletions of the Dust and Gas Cavities in the Transitional Disk J160421.7-213028. Astrophysical Journal, 2017, 836, 201.	1.6	50
168	K2-110 b: a massive mini-Neptune exoplanet. Astronomy and Astrophysics, 2017, 604, A19.	2.1	24
169	Planet-disc interaction in laminar and turbulent discs. Astronomy and Astrophysics, 2017, 604, A28.	2.1	10
170	Formation of TRAPPIST-1 and other compact systems. Astronomy and Astrophysics, 2017, 604, A1.	2.1	128
171	Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1750-1770.	1.6	244
172	Photoevaporating transitional discs and molecular cloud cores. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1205-1212.	1.6	4
173	A pebbles accretion model with chemistry and implications for the Solar system. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4282-4298.	1.6	21
174	The role of gap edge instabilities in setting the depth of planet gaps in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3813-3823.	1.6	13
175	The origin of the occurrence rate profile of gas giants inside 100Âd. Monthly Notices of the Royal Astronomical Society, 2017, 469, 5016-5022.	1.6	28
176	Disentangling hot Jupiters formation location from their chemical composition. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2845-2854.	1.6	45
177	Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar. Astronomical Journal, 2017, 154, 230.	1.9	36
178	Save the Planet, Feed the Star: How Super-Earths Survive Migration and Drive Disk Accretion. Astrophysical Journal, 2017, 839, 100.	1.6	57
179	Low mass planet migration in magnetically torqued dead zones – I. Static migration torque. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1565-1575.	1.6	33
180	A Secular Resonant Origin for the Loneliness of Hot Jupiters. Astronomical Journal, 2017, 154, 93.	1.9	36
181	On the Origin of Banded Structure in Dusty Protoplanetary Disks: HL Tau and TW Hya. Astrophysical Journal, 2017, 850, 103.	1.6	30

#	Article	IF	CITATIONS
182	The magnetic field inside a protoplanetary disc gap opened by planets of different masses. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3277-3287.	1.6	25
183	Hydrodynamics of embedded planets' first atmospheres – III. The role of radiation transport for super-Earth planets. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4662-4676.	1.6	79
184	Gap formation by inclined massive planets in locally isothermal three-dimensional discs. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4610-4624.	1.6	29
185	Migration of planets into and out of mean motion resonances in protoplanetary discs: analytical theory of second-order resonances. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3223-3238.	1.6	37
186	An opening criterion for dust gaps in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1932-1948.	1.6	91
187	<i>N</i> -body simulations of planet formation via pebble accretion. Astronomy and Astrophysics, 2017, 607, A67.	2.1	31
188	The accretion of migrating giant planets. Astronomy and Astrophysics, 2017, 598, A80.	2.1	38
189	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	3.7	76
190	Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales. Astrophysical Journal, 2018, 857, 20.	1.6	37
	Journal, 2010, 037, 20.		
191	Turbulence in the TW Hya Disk. Astrophysical Journal, 2018, 856, 117.	1.6	149
191 192		1.6 1.6	149 71
	Turbulence in the TW Hya Disk. Astrophysical Journal, 2018, 856, 117. The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity.		
192	Turbulence in the TW Hya Disk. Astrophysical Journal, 2018, 856, 117. The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity. Astrophysical Journal, 2018, 853, 162. Transiting Exoplanet Monitoring Project (TEMP). III. On the Relocation of the Kepler-9 b Transit.	1.6	71
192 193	 Turbulence in the TW Hya Disk. Astrophysical Journal, 2018, 856, 117. The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity. Astrophysical Journal, 2018, 853, 162. Transiting Exoplanet Monitoring Project (TEMP). III. On the Relocation of the Kepler-9 b Transit. Astronomical Journal, 2018, 155, 73. Stellar Spinâ€"Orbit Alignment for Kepler-9, a Multi-transiting Planetary System with Two Outer 	1.6 1.9	71 34
192 193 194	Turbulence in the TW Hya Disk. Astrophysical Journal, 2018, 856, 117. The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity. Astrophysical Journal, 2018, 853, 162. Transiting Exoplanet Monitoring Project (TEMP). III. On the Relocation of the Kepler-9 b Transit. Astronomical Journal, 2018, 155, 73. Stellar Spin–Orbit Alignment for Kepler-9, a Multi-transiting Planetary System with Two Outer Planets Near 2:1 Resonance. Astronomical Journal, 2018, 155, 70.	1.6 1.9 1.9	71 34 52
192 193 194 195	Turbulence in the TW Hya Disk. Astrophysical Journal, 2018, 856, 117. The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity. Astrophysical Journal, 2018, 853, 162. Transiting Exoplanet Monitoring Project (TEMP). III. On the Relocation of the Kepler-9 b Transit. Astronomical Journal, 2018, 155, 73. Stellar Spin–Orbit Alignment for Kepler-9, a Multi-transiting Planetary System with Two Outer Planets Near 2:1 Resonance. Astronomical Journal, 2018, 155, 70. Mars' growth stunted by an early giant planet instability. Icarus, 2018, 311, 340-356. Trapping of low-mass planets outside the truncated inner edges of protoplanetary discs. Monthly	1.6 1.9 1.9 1.1	71 34 52 108
192 193 194 195 196	Turbulence in the TW Hya Disk. Astrophysical Journal, 2018, 856, 117. The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity. Astrophysical Journal, 2018, 853, 162. Transiting Exoplanet Monitoring Project (TEMP). III. On the Relocation of the Kepler-9 b Transit. Astronomical Journal, 2018, 155, 73. Stellar Spin〓Orbit Alignment for Kepler-9, a Multi-transiting Planetary System with Two Outer Planets Near 2:1 Resonance. Astronomical Journal, 2018, 155, 70. Mars' growth stunted by an early giant planet instability. Icarus, 2018, 311, 340-356. Trapping of low-mass planets outside the truncated inner edges of protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5267-5274. Rings and gaps in the disc around Elias 24 revealed by ALMA. Monthly Notices of the Royal	1.6 1.9 1.9 1.1 1.6	71 34 52 108 11

#	Article	IF	CITATIONS
200	New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region. Astrophysical Journal, 2018, 854, 177.	1.6	88
201	From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction. Space Science Reviews, 2018, 214, 1.	3.7	8
202	Spiral Arms in Disks: Planets or Gravitational Instability?. Astrophysical Journal, 2018, 862, 103.	1.6	64
203	The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4131-4141.	1.6	24
204	Deep and wide gaps by super Earths in low-viscosity discs. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1986-1996.	1.6	19
205	The Disk Substructures at High Angular Resolution Project (DSHARP). VII. The Planet–Disk Interactions Interpretation. Astrophysical Journal Letters, 2018, 869, L47.	3.0	289
206	Long-lived Protoplanetary Disks in Multiple Systems: The VLA View of HD 98800. Astrophysical Journal, 2018, 865, 77.	1.6	12
207	Forming Cliese 876 through Smooth Disk Migration. Astrophysical Journal, 2018, 867, 75.	1.6	3
208	CO destruction in protoplanetary disk midplanes: Inside versus outside the CO snow surface. Astronomy and Astrophysics, 2018, 618, A182.	2.1	94
209	ALMA Reveals a Misaligned Inner Gas Disk inside the Large Cavity of a Transitional Disk. Astrophysical Journal Letters, 2018, 868, L3.	3.0	25
210	Microlensing Searches for Exoplanets. Geosciences (Switzerland), 2018, 8, 365.	1.0	29
211	A candidate super-Earth planet orbiting near the snow line of Barnard's star. Nature, 2018, 563, 365-368.	13.7	109
212	Planetary Migration in Protoplanetary Disks. , 2018, , 2287-2317.		10
213	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
214	Planetary Population Synthesis. , 2018, , 2425-2474.		46
215	Connecting Planetary Composition with Formation. , 2018, , 2475-2521.		4
216	Planet Formation, Migration, and Habitability. , 2018, , 2879-2895.		0
217	The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview. Astrophysical Journal Letters, 2018, 869, L41.	3.0	732

#	Article	IF	CITATIONS
218	Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold. Astrophysical Journal, 2018, 859, 126.	1.6	24
219	Warping a protoplanetary disc with a planet on an inclined orbit. Monthly Notices of the Royal Astronomical Society, 2018, 481, 20-35.	1.6	39
220	Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. III. A High Mass and Low Envelope Fraction for the Warm Neptune K2-55b*. Astronomical Journal, 2018, 156, 70.	1.9	8
221	Inside-out Planet Formation. V. Structure of the Inner Disk as Implied by the MRI. Astrophysical Journal, 2018, 861, 144.	1.6	16
222	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	1.6	249
223	The Hot Jupiter Period–Mass Distribution as a Signature of in situ Formation. Astrophysical Journal Letters, 2018, 866, L2.	3.0	29
224	The Origin of the Heavy-element Content Trend in Giant Planets via Core Accretion. Astrophysical Journal, 2018, 865, 32.	1.6	18
225	A balanced budget view on forming giant planets by pebble accretion. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4338-4354.	1.6	32
226	Rings and Gaps in Protoplanetary Disks: Planets or Snowlines?. Astrophysical Journal Letters, 2018, 867, L14.	3.0	48
227	The Solar System as a Benchmark for Exoplanet Systems Interpretation. , 2018, , 421-444.		0
228	High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au. Astrophysical Journal Letters, 2018, 866, L6.	3.0	69
229	Formation of a planetary Laplace resonance through migration in an eccentric disk. Astronomy and Astrophysics, 2018, 618, A169.	2.1	11
230	Particle accretion onto planets in discs with hydrodynamic turbulence. Astronomy and Astrophysics, 2018, 616, A116.	2.1	26
231	Planet formation in discs with inclined binary companions: can primordial spin–orbit misalignment be produced?. Monthly Notices of the Royal Astronomical Society, 2018, 478, 835-851.	1.6	35
232	Excitation of a Primordial Cold Asteroid Belt as an Outcome of Planetary Instability. Astrophysical Journal, 2018, 864, 50.	1.6	39
233	Magellan Adaptive Optics Imaging of PDS 70: Measuring the Mass Accretion Rate of a Young Giant Planet within a Gapped Disk. Astrophysical Journal Letters, 2018, 863, L8.	3.0	107
234	High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). Astronomy and Astrophysics, 2018, 610, A20.	2.1	19
235	Efficient radiative transfer techniques in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3478-3493.	1.6	12

#	Article	IF	CITATIONS
236	Eccentricity evolution during planet–disc interaction. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4460-4476.	1.6	48
237	Connecting Planetary Composition with Formation. , 2018, , 1-47.		1
238	Formation of Terrestrial Planets. , 2018, , 1-59.		0
239	K2-139 b: a low-mass warm Jupiter on a 29-d orbit transiting an active KOÂV star. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1765-1776.	1.6	35
240	Photoevaporation Does Not Create a Pileup of Giant Planets at 1 au. Astrophysical Journal, 2018, 855, 145.	1.6	7
241	Signatures of Young Planets in the Continuum Emission from Protostellar Disks. Astrophysical Journal, 2018, 860, 27.	1.6	24
242	Torques Induced by Scattered Pebble-flow in Protoplanetary Disks. Astrophysical Journal Letters, 2018, 855, L28.	3.0	26
243	Observing the linked depletion of dust and CO gas at 0.1–10 au in disks of intermediate-mass stars. Astronomy and Astrophysics, 2018, 609, L2.	2.1	29
244	Planetary Population Synthesis. , 2018, , 1-50.		7
245	A Decade of MWC 758 Disk Images: Where Are the Spiral-arm-driving Planets?. Astrophysical Journal Letters, 2018, 857, L9.	3.0	22
246	Chemical fingerprints of hot Jupiter planet formation. Astronomy and Astrophysics, 2018, 612, A93.	2.1	21
247	Survival function analysis of planet size distribution with Gaia Data Release 2 updates. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5567-5576.	1.6	12
248	Breaking mean-motion resonances during Type I planet migration. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3998-4009.	1.6	10
249	Dynamical Evolution of the Early Solar System. Annual Review of Astronomy and Astrophysics, 2018, 56, 137-174.	8.1	173
250	Vortex instabilities triggered by low-mass planets in pebble-rich, inviscid protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2019, 488, 645-659.	1.6	10
251	Spontaneous ring formation in wind-emitting accretion discs. Astronomy and Astrophysics, 2019, 625, A108.	2.1	45
252	SOPHIE velocimetry of <i>Kepler</i> transit candidates. Astronomy and Astrophysics, 2019, 623, A104.	2.1	5
253	Adapting a solid accretion scenario for migrating planets in fargo3d. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2336-2346.	1.6	О

#	Article	IF	CITATIONS
254	Self-gravitating planetary envelopes and the core-nucleated instability. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3144-3157.	1.6	7
255	The Properties of Planetesimal Collisions under Jupiter's Perturbation and the Application to Chondrule Formation via Impact Jetting. Astrophysical Journal, 2019, 884, 37.	1.6	1
256	A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau. Astronomical Journal, 2019, 158, 79.	1.9	61
257	The Heavy-element Content Trend of Planets: A Tracer of Their Formation Sites. Astrophysical Journal Letters, 2019, 876, L32.	3.0	7
258	PDS 70: A Transition Disk Sculpted by a Single Planet. Astrophysical Journal Letters, 2019, 879, L2.	3.0	32
259	Termination of Inward Migration for a Gap-opening Planet through Dust Feedback. Astrophysical Journal Letters, 2019, 879, L19.	3.0	9
260	An Excess of Jupiter Analogs in Super-Earth Systems. Astronomical Journal, 2019, 157, 52.	1.9	112
261	Experimental confirmation of the standard magnetorotational instability mechanism with a spring-mass analogue. Communications Physics, 2019, 2, .	2.0	12
262	Envelopes of embedded super-Earths – I. Two-dimensional simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2319-2334.	1.6	12
263	Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution. Astronomy and Astrophysics, 2019, 624, A109.	2.1	62
264	Modeling the Protoplanetary Disks of Two Brown Dwarfs in the Taurus Molecular Cloud. Astrophysical Journal, 2019, 878, 103.	1.6	9
265	Two accreting protoplanets around the young star PDS 70. Nature Astronomy, 2019, 3, 749-754.	4.2	283
266	A Tight Relation between Spiral Arm Pitch Angle and Protoplanetary Disk Mass. Astrophysical Journal, 2019, 877, 100.	1.6	14
267	Instabilities in multiplanet circumbinary systems. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3288-3304.	1.6	25
268	Pebble accretion in self-gravitating protostellar discs. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4465-4473.	1.6	5
269	Secular Transport during Disk Dispersal: The Case of Kepler-419. Astronomical Journal, 2019, 157, 5.	1.9	20
270	The Temporal Requirements of Directly Observing Self-gravitating Spiral Waves in Protoplanetary Disks with ALMA. Astrophysical Journal, 2019, 871, 228.	1.6	24
271	S-type and P-type Habitability in Stellar Binary Systems: A Comprehensive Approach. III. Results for Mars, Earth, and Super-Earth Planets. Astrophysical Journal, 2019, 873, 113.	1.6	12

#	Article	IF	Citations
272	Formation of hot Jupiters through secular chaos and dynamical tides. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2265-2280.	1.6	33
273	The imprint of X-ray photoevaporation of planet-forming discs on the orbital distribution of giant planets. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3448-3458.	1.6	21
274	Inclined massive planets in a protoplanetary disc: gap opening, disc breaking, and observational signatures. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4221-4241.	1.6	64
275	Growth model interpretation of planet size distribution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9723-9728.	3.3	311
276	Growth after the streaming instability. Astronomy and Astrophysics, 2019, 624, A114.	2.1	44
277	Close-in Super-Earths: The first and the last stages of planet formation in an MRI-accreting disc. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2296-2308.	1.6	15
278	Migrating super-Earths in low-viscosity discs: unveiling the roles of feedback, vortices, and laminar accretion flows. Monthly Notices of the Royal Astronomical Society, 2019, 484, 728-748.	1.6	39
279	Pebble accretion in Class 0/I YSOs as a possible pathway for early planet formation. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1574-1588.	1.6	11
280	The PDS 110 observing campaign – photometric and spectroscopic observations reveal eclipses are aperiodic. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1614-1625.	1.6	7
281	3D simulations of planet trapping at disc–cavity boundaries. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2666-2680.	1.6	20
282	A Model-independent Mass and Moderate Eccentricity for β Pic b. Astrophysical Journal Letters, 2019, 871, L4.	3.0	62
283	Precise radial velocities of giant stars. Astronomy and Astrophysics, 2019, 624, A18.	2.1	13
284	Is the ring inside or outside the planet?: the effect of planet migration on dust rings. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3678-3695.	1.6	36
285	Physical Processes in Protoplanetary Disks. Saas-Fee Advanced Course, 2019, , 1-150.	1.1	24
286	Planet Formation and Disk-Planet Interactions. Saas-Fee Advanced Course, 2019, , 151-260.	1.1	4
287	Predicting the Observational Signature of Migrating Neptune-sized Planets in Low-viscosity Disks. Astrophysical Journal, 2019, 884, 178.	1.6	34
288	Influence of general-relativity effects, dynamical tides, and collisions on planet–planet scattering close to the star. Astronomy and Astrophysics, 2019, 625, A121.	2.1	6
289	Close-in giant-planet formation via in-situ gas accretion and their natal disk properties. Astronomy and Astrophysics, 2019, 629, L1.	2.1	6

#	Article	IF	CITATIONS
290	Formation of hot Jupiters through disk migration and evolving stellar tides. Astronomy and Astrophysics, 2019, 628, A42.	2.1	18
291	Super-Earth masses sculpted by pebble isolation around stars of different masses. Astronomy and Astrophysics, 2019, 632, A7.	2.1	59
292	Catastrophic Events in Protoplanetary Disks and Their Observational Manifestations. Astrophysical Journal Letters, 2019, 887, L15.	3.0	3
293	Adapting a gas accretion scenario for migrating planets infargo3d. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1599-1608.	1.6	1
294	In situ scattering of warm Jupiters and implications for dynamical histories. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1369-1383.	1.6	34
295	Influence of migration models and thermal torque on planetary growth in the pebble accretion scenario. Astronomy and Astrophysics, 2020, 637, A11.	2.1	16
296	Observations of Protoplanetary Disk Structures. Annual Review of Astronomy and Astrophysics, 2020, 58, 483-528.	8.1	220
297	Promoted mass growth of multiple, distant giant planets through pebble accretion and planet–planet collision. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3314-3325.	1.6	9
298	Heavy-metal Jupiters by major mergers: metallicity versus mass for giant planets. Monthly Notices of the Royal Astronomical Society, 2020, 498, 680-688.	1.6	21
299	Sub-Neptune formation: the view from resonant planets. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4192-4209.	1.6	20
300	How consumption and repulsion set planetary gap depths and the final masses of gas giants. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2054-2067.	1.6	21
301	frankenstein: protoplanetary disc brightness profile reconstruction at sub-beam resolution with a rapid Gaussian process. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3209-3232.	1.6	38
302	ALMA and NACO observations towards the young exoring transit system J1407 (V1400 Cen). Astronomy and Astrophysics, 2020, 633, A115.	2.1	2
303	Possible evidence of ongoing planet formation in AB Aurigae. Astronomy and Astrophysics, 2020, 637, L5.	2.1	45
304	The effects of disc self-gravity and radiative cooling on the formation of gaps and spirals by young planets. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2287-2305.	1.6	30
305	Requirements for Gravitational Collapse in Planetesimal Formation—The Impact of Scales Set by Kelvin–Helmholtz and Nonlinear Streaming Instability. Astrophysical Journal, 2020, 895, 91.	1.6	43
306	Effect of wind-driven accretion on planetary migration. Astronomy and Astrophysics, 2020, 633, A4.	2.1	24
307	A planet within the debris disk around the pre-main-sequence star AU Microscopii. Nature, 2020, 582, 497-500.	13.7	145

#	Article	IF	CITATIONS
308	Type II migration strikes back – an old paradigm for planet migration in discs. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1318-1328.	1.6	8
309	Formation of the polar debris disc around 99 Herculis. Monthly Notices of the Royal Astronomical Society, 2020, 494, 487-499.	1.6	21
310	The efficiency of dust trapping in ringed protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 495, 173-181.	1.6	49
311	The role of disc torques in forming resonant planetary systems. Astronomy and Astrophysics, 2020, 635, A204.	2.1	9
312	Capture and migration of Jupiter and Saturn in mean motion resonance in a gaseous protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6007-6018.	1.6	7
313	A <i>Swift</i> view of X-ray and UV radiation in the planet-forming TÂTauri system PDSÂ70. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 491, L56-L60.	1.2	6
314	The impact of planet wakes on the location and shape of the water ice line in a protoplanetary disk. Astronomy and Astrophysics, 2020, 633, A29.	2.1	22
315	A model of angular momentum transport between a planet and accretion disk. Journal of King Saud University - Science, 2020, 32, 1856-1860.	1.6	0
316	Observations of Planetary Systems. , 2020, , 1-48.		0
317	Terrestrial Planet Formation. , 2020, , 181-219.		0
319	Protoplanetary Disk Structure. , 2020, , 49-85.		0
320	Protoplanetary Disk Evolution. , 2020, , 86-140.		0
321	Planetesimal Formation. , 2020, , 141-180.		0
322	Giant Planet Formation. , 2020, , 220-246.		0
323	Early Evolution of Planetary Systems. , 2020, , 247-300.		0
328	A multiplicity study of transiting exoplanet host stars. Astronomy and Astrophysics, 2020, 635, A73.	2.1	22
329	A HARPS RV search for planets around young nearby stars. Astronomy and Astrophysics, 2020, 633, A44.	2.1	27
330	Parking planets in circumbinary discs. Astronomy and Astrophysics, 2021, 645, A68.	2.1	28

#	Article	IF	CITATIONS
331	Spiral Arm Pattern Motion in the SAO 206462 Protoplanetary Disk. Astrophysical Journal Letters, 2021, 906, L9.	3.0	16
332	A Two-moment Radiation Hydrodynamics Scheme Applicable to Simulations of Planet Formation in Circumstellar Disks. Astrophysical Journal, 2021, 906, 78.	1.6	9
333	ALMA Observations of the Inner Cavity in the Protoplanetary Disk around Sz 84. Astrophysical Journal, 2021, 908, 250.	1.6	3
334	Formation of Multiple-planet Systems in Resonant Chains around M Dwarfs. Astrophysical Journal, 2021, 907, 81.	1.6	5
335	Giant planet migration during the disc dispersal phase. Astronomy and Astrophysics, 2021, 646, A169.	2.1	6
336	Modeling the nonaxisymmetric structure in the HD 163296 disk with planet-disk interaction. Astronomy and Astrophysics, 2021, 647, A174.	2.1	15
337	Rapid formation of super-Earths around low-mass stars. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1390-1406.	1.6	9
338	Distinguishing between different mechanisms of FU-Orionis-type luminosity outbursts. Astronomy and Astrophysics, 2021, 647, A44.	2.1	21
339	Influence of grain size and composition on the contraction rates of planetary envelopes and on planetary migration. Astronomy and Astrophysics, 2021, 647, A96.	2.1	11
340	TESS Hunt for Young and Maturing Exoplanets (THYME). V. A Sub-Neptune Transiting a Young Star in a Newly Discovered 250 Myr Association. Astronomical Journal, 2021, 161, 171.	1.9	35
341	The Epoch of Giant Planet Migration Planet Search Program. I. Near-infrared Radial Velocity Jitter of Young Sun-like Stars. Astronomical Journal, 2021, 161, 173.	1.9	11
342	Pushing planets into an inner cavity by a resonant chain. Astronomy and Astrophysics, 2021, 648, A69.	2.1	19
343	ALMA Observations of the Asymmetric Dust Disk around DM Tau. Astrophysical Journal, 2021, 911, 5.	1.6	14
344	The water-ice line as a birthplace of planets: implications of a species-dependent dust fragmentation threshold. Astronomy and Astrophysics, 2021, 650, A185.	2.1	13
345	<i>In situ</i> formation of hot Jupiters with companion super-Earths. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2500-2516.	1.6	13
346	An upper limit for the growth of inner planets?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 869-888.	1.6	3
347	A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS) – IV. Candidate exoplanets around stars in open clusters: frequency and age–planetary radius distribution. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3767-3784.	1.6	18
348	Understanding planet formation using microgravity experiments. Nature Reviews Physics, 2021, 3, 405-421.	11.9	22

#	Article	IF	CITATIONS
349	A SOPHIE RV search for giant planets around young nearby stars (YNS). Astronomy and Astrophysics, 2021, 650, A39.	2.1	9
350	A New Window into Planet Formation and Migration: Refractory-to-Volatile Elemental Ratios in Ultra-hot Jupiters. Astrophysical Journal, 2021, 914, 12.	1.6	43
351	A Stellar Mass Dependence of Structured Disks: A Possible Link with Exoplanet Demographics. Astronomical Journal, 2021, 162, 28.	1.9	55
352	On a Possible Solution to the Tidal Realignment Problem for Hot Jupiters. Astrophysical Journal, 2021, 914, 56.	1.6	14
353	First 3D grid-based gas-dust simulations of circumstellar discs with an embedded planet. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5969-5988.	1.6	19
354	The distribution of mutual inclinations arising from the stellar quadrupole moment. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2999-3009.	1.6	7
355	The Architecture of Multiplanet Systems as a Tracer of Their Formation Mechanisms. Astrophysical Journal Letters, 2021, 915, L21.	3.0	2
356	The SPHERE infrared survey for exoplanets (SHINE). Astronomy and Astrophysics, 2021, 651, A72.	2.1	117
357	Ice lines as the origin for the gap/ring structure in protoplanetary disks: the issue of the assumed temperature profile. Research in Astronomy and Astrophysics, 2021, 21, 164.	0.7	0
358	GRAVITY <i>K</i> -band spectroscopy of HD 206893 B. Astronomy and Astrophysics, 2021, 652, A57.	2.1	12
359	Global three-dimensional simulations of outer protoplanetary discs with ambipolar diffusion. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1106-1126.	1.6	34
360	Dust growth, fragmentation, and self-induced dust traps in <scp>phantom</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 507, 2318-2338.	1.6	9
361	How drifting and evaporating pebbles shape giant planets. Astronomy and Astrophysics, 2021, 654, A71.	2.1	51
362	Exoplanet Statistics and Theoretical Implications. Annual Review of Astronomy and Astrophysics, 2021, 59, 291-336.	8.1	89
363	Outward Migration of Super-Jupiters. Astrophysical Journal Letters, 2021, 918, L36.	3.0	15
364	Departure from the Exact Location of Mean Motion Resonances Induced by the Gas Disk in Systems Observed by Kepler. Astronomical Journal, 2021, 161, 77.	1.9	10
365	Constraints from Planets in Binaries. Astrophysics and Space Science Library, 2017, , 315-337.	1.0	3
366	Particle Trapping in Protoplanetary Disks: Models vs. Observations. Astrophysics and Space Science Library, 2017, , 91-142.	1.0	11

	CHATION	REPORT	
#	Article	IF	CITATIONS
367	Recent Developments in Planet Migration Theory. Lecture Notes in Physics, 2013, , 201-253.	0.3	32
369	Formation of giant planets and brown dwarfs on wide orbits. Astronomy and Astrophysics, 2013, 552, A129.	2.1	99
370	Superbubble dynamics in globular cluster infancy. Astronomy and Astrophysics, 2013, 552, A121.	2.1	102
371	Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432. Astronomy and Astrophysics, 2016, 586, A54.	2.1	2
372	Gas and dust structures in protoplanetary disks hosting multiple planets. Astronomy and Astrophysics, 2015, 573, A9.	2.1	75
373	Stability of resonant configurations during the migration of planets and constraints on disk-planet interactions. Astronomy and Astrophysics, 2015, 579, A128.	2.1	23
374	The <i>Gaia</i> -ESO Survey: chemical signatures of rocky accretion in a young solar-type star. Astronomy and Astrophysics, 2015, 582, L6.	2.1	26
375	Imaging the disc rim and a moving close-in companion candidate in the pre-transitional disc of V1247 Orionis. Astronomy and Astrophysics, 2019, 621, A7.	2.1	8
376	Dynamical rearrangement of super-Earths during disk dispersal. Astronomy and Astrophysics, 2017, 606, A66.	2.1	8
377	Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates. Astronomy and Astrophysics, 2018, 619, A157.	2.1	10
378	The origin of tail-like structures around protoplanetary disks. Astronomy and Astrophysics, 2020, 635, A196.	2.1	14
379	Pebble-driven planet formation around very low-mass stars and brown dwarfs. Astronomy and Astrophysics, 2020, 638, A88.	2.1	42
380	Photoevaporation of the Jovian circumplanetary disk. Astronomy and Astrophysics, 2020, 638, A135.	2.1	7
381	Searching for proto-planets with MUSE. Astronomy and Astrophysics, 2020, 644, A149.	2.1	18
382	Influence of planetary gas accretion on the shape and depth of gaps in protoplanetary discs. Astronomy and Astrophysics, 2020, 643, A133.	2.1	29
383	Ejection of close-in super-Earths around low-mass stars in the giant impact stage. Astronomy and Astrophysics, 2020, 642, A23.	2.1	9
384	Transmission spectroscopy and Rossiter-McLaughlin measurements of the young Neptune orbiting AU Mic. Astronomy and Astrophysics, 2020, 643, A25.	2.1	34
385	A tale of planet formation: from dust to planets. Research in Astronomy and Astrophysics, 2020, 20, 164.	0.7	37

#	Article	IF	CITATIONS
386	Evolution of gas disc–embedded intermediate mass ratio inspirals in the <i>LISA</i> band. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3540-3557.	1.6	38
387	The Dynamical Evolution of the Asteroid Belt. , 2015, , .		23
388	K2-19b and c are in a 3:2 Commensurability but out of Resonance: A Challenge to Planet Assembly by Convergent Migration. Astronomical Journal, 2020, 159, 2.	1.9	12
389	Transit Duration Variations in Multiplanet Systems. Astronomical Journal, 2020, 159, 207.	1.9	7
390	The Habitable Zone Planet Finder Reveals a High Mass and Low Obliquity for the Young Neptune K2-25b. Astronomical Journal, 2020, 160, 192.	1.9	35
391	Pileups and Migration Rates for Planets in Low-mass Disks. Astrophysical Journal, 2020, 891, 108.	1.6	23
392	Tidal Interaction between the UX Tauri A/C Disk System Revealed by ALMA. Astrophysical Journal, 2020, 896, 132.	1.6	16
393	The Preservation of Super-Earths and the Emergence of Gas Giants after Their Progenitor Cores Have Entered the Pebble-isolation Phase. Astrophysical Journal, 2020, 896, 135.	1.6	23
394	Thermal and Orbital Evolution of Low-mass Exoplanets. Astrophysical Journal, 2020, 900, 24.	1.6	8
395	Retention of Long-period Gas Giant Planets: Type II Migration Revisited. Astrophysical Journal, 2020, 900, 44.	1.6	14
396	Local Simulations of Heating Torques on a Luminous Body in an Accretion Disk. Astrophysical Journal, 2020, 902, 50.	1.6	18
397	Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes. II. Spins and Incoming Objects. Astrophysical Journal, 2020, 903, 133.	1.6	53
398	Can Large-scale Migration Explain the Giant Planet Occurrence Rate?. Astrophysical Journal, 2020, 904, 134.	1.6	6
399	Imaging the Dusty Substructures due to Terrestrial Planets in Planet-forming Disks with ALMA and the Next-generation Very Large Array. Astrophysical Journal, 2020, 905, 24.	1.6	5
400	Dynamical Evidence of a Spiral Arm–driving Planet in the MWC 758 Protoplanetary Disk. Astrophysical Journal Letters, 2020, 898, L38.	3.0	24
401	Limits on the Spin–Orbit Angle and Atmospheric Escape for the 22 Myr Old Planet AU Mic b*. Astrophysical Journal Letters, 2020, 899, L13.	3.0	49
402	The formation of wide <i>exoKuiper</i> belts from migrating dust traps. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5638-5656.	1.6	9
403	Survival of planet-induced vortices in 2D disks. Astronomy and Astrophysics, 2021, 656, A130.	2.1	14

#	Article	IF	CITATIONS
406	CHAPTER 10. The Roles of Dust in the Formation of Stars and Planets. , 2015, , 239-257.		0
407	Formation, Orbital and Internal Evolutions of Young Planetary Systems. Space Sciences Series of ISSI, 2016, , 117-164.	0.0	0
408	Observational Signatures of Planet Formation in Recent Resolved Observations of Protoplanetary Disks. Astrophysics and Space Science Library, 2017, , 253-294.	1.0	0
409	Planet Formation, Migration, and Habitability. , 2018, , 1-17.		0
410	The Solar System as a Benchmark for Exoplanet Systems Interpretation. , 2018, , 1-24.		0
411	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 2018, , 291-314.	0.0	0
412	From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction. Space Sciences Series of ISSI, 2018, , 5-39.	0.0	0
413	Disentangling Planets from Photoelectric Instability in Gas-rich Optically Thin Dusty Disks. Astrophysical Journal, 2019, 887, 6.	1.6	0
414	Modeling Radial Velocity Data of Resonant Planets to Infer Migration Histories. Astronomical Journal, 2020, 160, 106.	1.9	11
415	The New Generation Planetary Population Synthesis (NGPPS). Astronomy and Astrophysics, 2021, 656, A70.	2.1	59
416	K2 discovery of a circumsecondary disk transiting EPIC 220208795. Astronomy and Astrophysics, 2022, 658, A38.	2.1	0
417	Exploring the origin and evolution of the Kepler 36 system. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4255-4265.	1.6	1
418	Kepler-223 resonance holds information about turbulence during the gas-disk phase. Astronomy and Astrophysics, 2021, 656, A115.	2.1	10
419	Turbulent disc viscosity and the bifurcation of planet formation histories. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6059-6084.	1.6	5
420	Dust distribution around low-mass planets on converging orbits. Astronomy and Astrophysics, 2020, 641, A125.	2.1	3
421	An Asymmetric Eclipse Seen toward the Pre-main-sequence Binary System V928 Tau. Astronomical Journal, 2020, 160, 285.	1.9	4
422	HD 207897 b: A dense sub-Neptune transiting a nearby and bright K-type star. Astronomy and Astrophysics, 2022, 658, A176.	2.1	5
423	Secular evolution of MHD wind-driven discs: analytical solutions in the expanded α-framework. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2290-2309.	1.6	35

#	Article	IF	CITATIONS
424	Model of Angular Momentum Transport at the Protoplane-tary Disk Evolution and Disk Surface Density. Ukrainian Journal of Physics, 2021, 66, 921.	0.1	0
425	On the Importance of Wave–Planet Interactions for the Migration of Two Super-Earths Embedded in a Protoplanetary Disk. Astrophysical Journal, 2021, 921, 142.	1.6	4
426	GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star. Science, 2021, 374, 1271-1275.	6.0	30
427	A highly mutually inclined compact warm-Jupiter system KOI-984?. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4604-4617.	1.6	3
428	Taxonomy of protoplanetary discs observed with ALMA. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2453-2490.	1.6	1
429	Rapid-then-slow migration reproduces mass distribution of TRAPPIST-1 system. Astronomy and Astrophysics, 2022, 658, A184.	2.1	4
430	The dynamics of the TRAPPIST-1 system in the context of its formation. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3814-3831.	1.6	15
431	A Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*. Astronomical Journal, 2021, 162, 283.	1.9	13
432	Origin and Dynamical Evolution of the Asteroid Belt. , 2022, , 227-249.		9
433	Sculpting the circumbinary planet size distribution through resonant interactions with companion planets. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5023-5036.	1.6	10
434	Presolar grain dynamics: Creating nucleosynthetic variations through a combination of drag and viscous evolution. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5874-5894.	1.6	4
435	Investigating the Future Potential of an Upgraded ALMA to Image Planet-forming Disks at Sub-astronomical-unit Scales. Astrophysical Journal, 2022, 928, 40.	1.6	3
436	Dust accumulation near the magnetospheric truncation of protoplanetary discs around TÂTauri stars. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5246-5265.	1.6	6
437	Inside–out planet formation: VI. oligarchic coagulation of planetesimals from a pebble ring?. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5486-5499.	1.6	6
438	The terrestrial planet formation around M dwarfs: <i>insitu</i> , inward migration, or reversed migration. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4134-4145.	1.6	5
439	Search for Stellar Flybys in the Sco-Cen OB Association with the Gaia DR2. Astronomical Journal, 2022, 163, 219.	1.9	5
440	TOI-1670 b and c: An Inner Sub-Neptune with an Outer Warm Jupiter Unlikely to Have Originated from High-eccentricity Migration. Astronomical Journal, 2022, 163, 225.	1.9	8
441	Natural separation of two primordial planetary reservoirs in an expanding solar protoplanetary disk. Science Advances, 2022, 8, eabm3045.	4.7	20

#	Article	IF	CITATIONS
443	Mathematical encoding within multiresonant planetary systems as SETI beacons. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4945-4950.	1.6	3
444	Modeling the arc and ring structures in the HD 143006 disk. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	2
445	A Search for Exoplanets in Open Clusters and Young Associations based on TESS Objects of Interest. Research in Astronomy and Astrophysics, 2022, 22, 075008.	0.7	4
446	Growth after the streaming instability: The radial distance dependence of the planetary growth. Astronomy and Astrophysics, 2022, 664, A86.	2.1	8
447	The Effects of Disk-induced Apsidal Precession on Planets Captured into Mean Motion Resonance. Astrophysical Journal, 2022, 931, 66.	1.6	2
448	Calibrated gas accretion and orbital migration of protoplanets in 1D disc models. Astronomy and Astrophysics, 0, , .	2.1	1
449	The Possible Formation of Jupiter from Supersolar Gas. Planetary Science Journal, 2022, 3, 141.	1.5	7
450	How Binaries Accrete: Hydrodynamic Simulations with Passive Tracer Particles. Astrophysical Journal, 2022, 932, 24.	1.6	8
451	Inward and outward migration of massive planets: moving towards a stalling radius. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5478-5492.	1.6	2
452	Gap opening by planets in discs with magnetized winds. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3113-3125.	1.6	5
453	Combined effects of disc windsÂand turbulence-driven accretion on planet populations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2548-2577.	1.6	3
454	Superresolution trends in the ALMA Taurus survey: structured inner discs and compact discs. Monthly Notices of the Royal Astronomical Society, 2022, 514, 6053-6073.	1.6	7
455	Evidence for the Late Arrival of Hot Jupiters in Systems with High Host-star Obliquities. Astronomical Journal, 2022, 164, 26.	1.9	9
456	A VLA View of the Flared, Asymmetric Disk around the Class 0 Protostar L1527 IRS. Astrophysical Journal, 2022, 934, 95.	1.6	14
457	MOA-2019-BLG-008Lb: A New Microlensing Detection of an Object at the Planet/Brown Dwarf Boundary. Astronomical Journal, 2022, 164, 75.	1.9	0
458	The California Legacy Survey. III. On the Shoulders of (Some) Giants: The Relationship between Inner Small Planets and Outer Massive Planets. Astrophysical Journal, Supplement Series, 2022, 262, 1.	3.0	26
459	Migration Traps as the Root Cause of the Kepler Dichotomy. Astrophysical Journal, 2022, 937, 53.	1.6	3
460	HARPS radial velocity search for planets in the Scorpius-Centaurus association. Astronomy and Astrophysics, 2023, 669, A12.	2.1	3

#	Article	IF	CITATIONS
461	Constraining the origin of giant exoplanets via elemental abundance measurements. Astronomy and Astrophysics, 2022, 665, L5.	2.1	11
462	Primordial dusty rings and episodic outbursts in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2022, 516, 4448-4468.	1.6	2
463	ALMA Detection of Dust Trapping around Lagrangian Points in the LkCa 15 Disk. Astrophysical Journal Letters, 2022, 937, L1.	3.0	16
464	Establishing Dust Rings and Forming Planets within Them. Astrophysical Journal, 2022, 937, 95.	1.6	3
465	Millimeter gap contrast as a probe for turbulence level in protoplanetary disks. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	11
466	Underestimation of the dust mass in protoplanetary disks: Effects of disk structure and dust properties. Astronomy and Astrophysics, 2022, 668, A175.	2.1	9
467	The external photoevaporation of planet-forming discs. European Physical Journal Plus, 2022, 137, .	1.2	28
468	Continuing to hide signatures of gravitational instability in protoplanetary discs with planets. Monthly Notices of the Royal Astronomical Society, 2022, 518, 763-773.	1.6	2
469	Effects of Radiative Diffusion on Dynamical Corotation Torque in Three-dimensional Protoplanetary Disks. Astrophysical Journal, 2022, 938, 102.	1.6	2
470	Solar System/Exoplanet Science Synergies in a multidecadal perspective. , 2023, , 17-64.		0
471	Circumbinary planets: migration, trapping in mean-motion resonances, and ejection. Astronomy and Astrophysics, 2023, 669, A123.	2.1	4
472	Rapid formation of massive planetary cores in a pressure bump. Astronomy and Astrophysics, 2022, 668, A170.	2.1	11
473	Efficient planet formation by pebble accretion in ALMA rings. Monthly Notices of the Royal Astronomical Society, 2022, 518, 3877-3900.	1.6	22
474	Observing circumplanetary disks with METIS. Astronomy and Astrophysics, 2023, 670, A74.	2.1	1
475	Hydrodynamic turbulence in disks with embedded planets. Astronomy and Astrophysics, 2023, 670, A135.	2.1	3
476	Has the dust clump in the debris disc of BetaÂPictoris moved?. Monthly Notices of the Royal Astronomical Society, 2023, 519, 3257-3270.	1.6	4
477	Formation of pebbles in (gravito-)viscous protoplanetary disks with various turbulent strengths. Astronomy and Astrophysics, 2023, 670, A81.	2.1	3
478	TOI-1136 is a Young, Coplanar, Aligned Planetary System in a Pristine Resonant Chain. Astronomical Journal, 2023, 165, 33.	1.9	16

#	Article	IF	CITATIONS
479	Herbig Stars. Space Science Reviews, 2023, 219, .	3.7	8
480	Effects of Planetesimal Scattering: Explaining the Observed Offsets from Period Ratios 3:2 and 2:1. Astrophysical Journal, 2023, 943, 8.	1.6	5
481	Orbital Migration of Protoplanets in a Marginally Gravitationally Unstable Disk. II. Migration, Merging, and Ejection. Astrophysical Journal, 2023, 943, 101.	1.6	2
482	Accretion-modified stellar-mass black hole distribution and milli-Hz gravitational wave backgrounds from galaxy centre. Monthly Notices of the Royal Astronomical Society, 2023, 520, 4502-4516.	1.6	5
483	The Hydrodynamic Evolution of Binary Black Holes Embedded within the Vertically Stratified Disks of Active Galactic Nuclei. Astrophysical Journal, 2023, 944, 44.	1.6	9
484	TOI-5205b: A Short-period Jovian Planet Transiting a Mid-M Dwarf. Astronomical Journal, 2023, 165, 120.	1.9	14
485	Exciting the transit timing variation phases of resonant sub-Neptunes. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1914-1929.	1.6	4
486	Observations of circumstellar disks in scattered light with SPHERE at the VLT. Comptes Rendus Physique, 2023, 24, 1-19.	0.3	3
487	Three-dimensional Global Simulations of Type-II Planet–Disk Interaction with a Magnetized Disk Wind. I. Magnetic Flux Concentration and Gap Properties. Astrophysical Journal, 2023, 946, 5.	1.6	10
488	Dynamical Evolution of Closely Packed Multiple Planetary Systems Subject to Atmospheric Mass Loss. Astronomical Journal, 2023, 165, 174.	1.9	1
489	TOI-2525 b and c: A Pair of Massive Warm Giant Planets with Strong Transit Timing Variations Revealed by TESS*. Astronomical Journal, 2023, 165, 179.	1.9	6
490	A 2:1 Mean-motion Resonance Super-Jovian Pair Revealed by TESS, FEROS, and HARPS*. Astrophysical Journal Letters, 2023, 946, L36.	3.0	2
491	Revisiting K2-233 spectroscopic time-series with multidimensional Gaussian processes. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3458-3471.	1.6	4