Gaseous Galaxy Halos

Annual Review of Astronomy and Astrophysics 50, 491-529

DOI: 10.1146/annurev-astro-081811-125612

Citation Report

#	Article	IF	CITATIONS
1	Gas in galactic halos. Proceedings of the International Astronomical Union, 2012, 10, 596-597.	0.0	0
2	A Zoo of Galaxies. Proceedings of the International Astronomical Union, 2012, 10, 1-15.	0.0	O
3	THE FORMATION OF LARGE GALACTIC DISKS THROUGH THE HIERARCHICAL SCENARIO: FURTHER CONSEQUENCES. Modern Physics Letters A, 2012, 27, 1230034.	0.5	6
4	GAS ACCRETION IS DOMINATED BY WARM IONIZED GAS IN MILKY WAY MASS GALAXIES AT < i> z < /i > $\hat{a}^{-1}/4$ 0. Astrophysical Journal, 2012, 759, 137.	1.6	54
5	MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD. Astrophysical Journal, 2013, 777, 55.	1.6	32
6	A PILOT FOR A VERY LARGE ARRAY H I DEEP FIELD. Astrophysical Journal Letters, 2013, 770, L29.	3.0	53
7	Galactic spiral patterns and dynamo action – I. A new twist on magnetic arms. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3569-3589.	1.6	53
8	A dynamical model of supernova feedback: gas outflows from the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1787-1817.	1.6	68
9	The supernova-regulated ISM – I. The multiphase structure. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1396-1423.	1.6	86
10	A high molecular fraction in a subdamped absorber at zÂ= 0.56a~ Monthly Notices of the Royal Astronomical Society, 2013, 433, 178-193.	1.6	22
11	Galactic winds $\hat{a} \in ``how to launch galactic outflows in typical Lyman-break galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1151-1170.$	1.6	16
12	VERY METAL-POOR OUTER-HALO STARS WITH ROUND ORBITS. Astrophysical Journal Letters, 2013, 763, L17.	3.0	38
13	THE PLATEAU DE BURE + 30Âm ARCSECOND WHIRLPOOL SURVEY REVEALS A THICK DISK OF DIFFUSE MOLECULAR GAS IN THE M51 GALAXY. Astrophysical Journal, 2013, 779, 43.	1.6	135
14	THE GALEX ARECIBO SDSS SURVEY. VII. THE BIVARIATE NEUTRAL HYDROGEN-STELLAR MASS FUNCTION FOR MASSIVE GALAXIES. Astrophysical Journal, 2013, 776, 74.	1.6	16
15	FOSSIL IMPRINT OF A POWERFUL FLARE AT THE GALACTIC CENTER ALONG THE MAGELLANIC STREAM. Astrophysical Journal, 2013, 778, 58.	1.6	65
16	THE COS/UVES ABSORPTION SURVEY OF THE MAGELLANIC STREAM. I. ONE-TENTH SOLAR ABUNDANCES ALONG THE BODY OF THE STREAM. Astrophysical Journal, 2013, 772, 110.	1.6	71
17	ULTRA-COMPACT HIGH VELOCITY CLOUDS AS MINIHALOS AND DWARF GALAXIES. Astrophysical Journal, 2013, 777, 119.	1.6	37
18	IONIZED ABSORBERS AS EVIDENCE FOR SUPERNOVA-DRIVEN COOLING OF THE LOWER GALACTIC CORONA. Astrophysical Journal Letters, 2013, 764, L21.	3.0	44

#	ARTICLE	IF	CITATIONS
19	XMM–Newton/Reflection Grating Spectrometer detection of the missing interstellar O vii Kα absorption line in the spectrum of CygÂX-2. Monthly Notices of the Royal Astronomical Society, 2013, 431, 511-519.	1.6	7
20	Constraints on hydrodynamical subgrid models from quasar absorption line studies of the simulated circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1548-1565.	1.6	114
21	THE SMOOTH Mg II GAS DISTRIBUTION THROUGH THE INTERSTELLAR/EXTRA-PLANAR/HALO INTERFACE. Astrophysical Journal Letters, 2013, 777, L11.	3.0	20
22	THE FIRST REPORTED INFRARED EMISSION FROM THE SN 1006 REMNANT. Astrophysical Journal, 2013, 764, 156.	1.6	21
23	How can star formation be sustained?. Proceedings of the International Astronomical Union, 2013, 9, 228-239.	0.0	9
24	EXTENDED HOT HALOS AROUND ISOLATED GALAXIES OBSERVED IN THE <i>ROSAT</i> ALL-SKY SURVEY. Astrophysical Journal, 2013, 762, 106.	1.6	85
25	CHARACTERIZING THE CIRCUMGALACTIC MEDIUM OF NEARBY GALAXIES WITH <i>HST </i> /I>/STIS ABSORPTION-LINE SPECTROSCOPY. Astrophysical Journal, 2013, 763, 148.	1.6	219
26	The evolving interstellar medium. , 0, , 459-490.		0
27	THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME. Astrophysical Journal, 2013, 774, 100.	1.6	340
28	HALOGAS: Extraplanar gas in NGC 3198. Astronomy and Astrophysics, 2013, 554, A125.	2.1	59
29	A low H I column density filament in NGC 2403: signature of interaction or accretion. Astronomy and Astrophysics, 2014, 569, A68.	2.1	26
30	CATALOG OF NARROW C IV ABSORPTION LINES IN BOSS. II. FOR QUASARS WITH <i>Z</i> _{em} > 2.4. Astrophysical Journal, Supplement Series, 2014, 215, 12.	3.0	11
31	A genetic approach to the history of the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1759-1774.	1.6	38
32	The distribution of gas in the Local Group from constrained cosmological simulations: the case for Andromeda and the Milky Way galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2593-2612.	1.6	53
33	The Wsrt Halogas Survey. Proceedings of the International Astronomical Union, 2014, 10, 69-72.	0.0	2
34	THE COS/UVES ABSORPTION SURVEY OF THE MAGELLANIC STREAM. III. IONIZATION, TOTAL MASS, AND INFLOW RATE ONTO THE MILKY WAY. Astrophysical Journal, 2014, 787, 147.	1.6	130
35	SHRINKING GALAXY DISKS WITH FOUNTAIN-DRIVEN ACCRETION FROM THE HALO. Astrophysical Journal, 2014, 796, 110.	1.6	21
36	THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS): ENVIRONMENTAL DEPENDENCE OF GIANT MOLECULAR CLOUD PROPERTIES IN M51. Astrophysical Journal, 2014, 784, 3.	1.6	198

#	Article	IF	CITATIONS
37	CANNIBALIZATION AND REBIRTH IN THE NGC 5387 SYSTEM. I. THE STELLAR STREAM AND STAR-FORMING REGION. Astrophysical Journal, 2014, 790, 117.	1.6	10
38	MIXING BETWEEN HIGH VELOCITY CLOUDS AND THE GALACTIC HALO. Astrophysical Journal, 2014, 795, 99.	1.6	21
39	An H i study of NGCÂ3521 – a galaxy with a slow-rotating halo. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3736-3749.	1.6	5
40	The Smith Cloud and its dark matter halo: survival of a Galactic disc passage. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2883-2891.	1.6	28
41	Dust-to-gas ratios of the GALFA-H I Compact Cloud Catalog. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2266-2272.	1.6	9
42	DETECTION OF ULTRAVIOLET HALOS AROUND HIGHLY INCLINED GALAXIES. Astrophysical Journal, 2014, 789, 131.	1.6	41
43	Interaction of a galactic wind with halo gas and the origin of multiphase extraplanar material. Monthly Notices of the Royal Astronomical Society, 2014, 441, 431-441.	1.6	10
44	A BUDGET AND ACCOUNTING OF METALS AT <i>z</i> $\hat{a}^1/4$ 0: RESULTS FROM THE COS-HALOS SURVEY. Astrophysical Journal, 2014, 786, 54.	1.6	256
45	Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars. Annual Review of Astronomy and Astrophysics, 2014, 52, 487-528.	8.1	712
46	A dynamical transition from atomic to molecular intermediate-velocity clouds. Astronomy and Astrophysics, 2014, 564, A71.	2.1	14
47	Biases and systematics in the observational derivation of galaxy properties: comparing different techniques on synthetic observations of simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2381-2400.	1.6	22
48	GHIGLS: H I MAPPING AT INTERMEDIATE GALACTIC LATITUDE USING THE GREEN BANK TELESCOPE. Astrophysical Journal, 2015, 809, 153.	1.6	70
49	Si iv COLUMN DENSITIES PREDICTED FROM NON-EQUILIBRIUM IONIZATION SIMULATIONS OF TURBULENT MIXING LAYERS AND HIGH-VELOCITY CLOUDS. Astrophysical Journal, 2015, 812, 111.	1.6	18
50	Atomic and Molecular Phases of the Interstellar Medium. Proceedings of the International Astronomical Union, 2015, 11, 1-8.	0.0	0
51	Accretion Onto the Milky Way: The Smith Cloud. Proceedings of the International Astronomical Union, 2015, 11, 9-12.	0.0	0
52	RAM PRESSURE STRIPPING OF THE LARGE MAGELLANIC CLOUD'S DISK AS A PROBE OF THE MILKY WAY'S CIRCUMGALACTIC MEDIUM. Astrophysical Journal, 2015, 815, 77.	1.6	117
53	Molecular hydrogen abundances of galaxies in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3815-3837.	1.6	182
54	Probing the gaseous halo of galaxies through non-thermal emission from AGN-driven outflows. Monthly Notices of the Royal Astronomical Society, 2015, 453, 837-848.	1.6	11

#	ARTICLE	IF	CITATIONS
55	An H i view of galaxy conformity: H i-rich environment around H i-excess galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2400-2412.	f 1.6	13
56	NIHAO III: the constant disc gas mass conspiracy. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1105-1116.	1.6	27
57	Galaxy interactions in compact groups $\hat{a} \in \mathbb{N}$ II. Abundance and kinematic anomalies in HCG 91c. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2593-2614.	1.6	26
58	Galactic magnetic fields and hierarchical galaxy formation. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3472-3489.	1.6	18
59	Calcium H& K and sodium D absorption induced by the interstellar and circumgalactic media of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2015, 452, 511-519.	1.6	28
60	Far-infrared excess emission as a tracer of disk-halo interaction. Astronomy and Astrophysics, 2015, 573, A83.	2.1	8
61	The neutral gas content of post-merger galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 448, 221-236.	1.6	41
62	Metal-enriched, subkiloparsec gas clumps in the circumgalactic medium of a faint zÂ=Â2.5 galaxyâ~ Monthly Notices of the Royal Astronomical Society, 2015, 446, 18-37.	1.6	104
63	H i observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3935-3951.	1.6	40
64	Misalignment between cold gas and stellar components in early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3311-3321.	1.6	7
65	CMB distortion from circumgalactic gas. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2384-2396.	1.6	8
66	INVESTIGATING DISK-HALO FLOWS AND ACCRETION: A KINEMATIC AND MORPHOLOGICAL ANALYSIS OF EXTRAPLANAR H I IN NGC 3044 AND NGC 4302. Astrophysical Journal, 2015, 799, 61.	1.6	33
67	PROBING THE FERMI BUBBLES IN ULTRAVIOLET ABSORPTION: A SPECTROSCOPIC SIGNATURE OF THE MILKY WAY'S BICONICAL NUCLEAR OUTFLOW. Astrophysical Journal Letters, 2015, 799, L7.	3.0	100
68	EVIDENCE FOR A MASSIVE, EXTENDED CIRCUMGALACTIC MEDIUM AROUND THE ANDROMEDA GALAXY. Astrophysical Journal, 2015, 804, 79.	1.6	100
69	A search for star formation in the Smith Cloud. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1855-1863.	1.6	14
70	Mapping stellar content to dark matter haloes using galaxy clustering and galaxy–galaxy lensing in the SDSS DR7. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1161-1191.	1.6	145
71	THE CIRCUMGALACTIC MEDIUM OF THE MILKY WAY IS HALF HIDDEN. Astrophysical Journal, 2015, 807, 103.	1.6	40
72	THE \${m{H}};{sc{I}}\$ KINEMATICS OF NGC 4013: A STEEP AND RADIALLY SHALLOWING EXTRA-PLANAR ROTATIONAL LAG. Astrophysical Journal, 2015, 808, 153.	1.6	20

#	Article	IF	CITATIONS
73	THE FIRST DISTANCE CONSTRAINT ON THE RENEGADE HIGH-VELOCITY CLOUD COMPLEX WD. Astrophysical Journal Letters, 2016, 828, L20.	3.0	7
74	Dust in a compact, cold, high-velocity cloud: A new approach to removing foreground emission. Astronomy and Astrophysics, 2016, 586, A121.	2.1	9
75	HI4PI: a full-sky H i survey based on EBHIS and GASS. Astronomy and Astrophysics, 2016, 594, A116.	2.1	813
76	All-sky census of Galactic high-latitude molecular intermediate-velocity clouds. Astronomy and Astrophysics, 2016, 596, A94.	2.1	18
77	High-resolution HI and CO observations of high-latitude intermediate-velocity clouds. Astronomy and Astrophysics, 2016, 592, A142.	2.1	7
78	Large-scale latitude distortions of the inner Milky Way disk from the <i>Herschel </i> /Hi-GAL Survey. Astronomy and Astrophysics, 2016, 588, A75.	2.1	5
79	An HST/COS legacy survey of intervening Si III absorption in the extended gaseous halos of low-redshift galaxies. Astronomy and Astrophysics, 2016, 590, A68.	2.1	24
80	Fermi bubbles around the M31 galaxy. EPJ Web of Conferences, 2016, 125, 03010.	0.1	1
81	STATISTICAL TESTS OF GALACTIC DYNAMO THEORY. Astrophysical Journal, 2016, 833, 43.	1.6	13
82	HYDROGEN EMISSION FROM THE IONIZED GASEOUS HALOS OF LOW-REDSHIFT GALAXIES. Astrophysical Journal, 2016, 833, 276.	1.6	24
83	Nitrogen and oxygen abundances in the Local Universe. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3466-3477.	1.6	91
84	THE CONNECTION BETWEEN REDDENING, GAS COVERING FRACTION, AND THE ESCAPE OF IONIZING RADIATION AT HIGH REDSHIFT (sup > â^— < /sup > . Astrophysical Journal, 2016, 828, 108.	1.6	95
85	Neutral hydrogen and magnetic fields in M83 observed with the SKA Pathfinder KAT-7. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1238-1255.	1.6	28
86	The Magellanic Stream: Circumnavigating the Galaxy. Annual Review of Astronomy and Astrophysics, 2016, 54, 363-400.	8.1	122
87	Three-dimensional orientation of compact high velocity clouds. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 462, L46-L50.	1.2	3
88	SENSITIVE 21 cm OBSERVATIONS OF NEUTRAL HYDROGEN IN THE LOCAL GROUP NEAR M31. Astrophysical Journal, 2016, 816, 81.	1.6	24
89	EMPIRICALLY CONSTRAINED PREDICTIONS FOR METAL-LINE EMISSION FROM THE CIRCUMGALACTIC MEDIUM. Astrophysical Journal, 2016, 827, 148.	1.6	26
90	Efficiency of gas cooling and accretion at the disc–corona interface. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4157-4170.	1.6	87

#	Article	IF	CITATIONS
91	PREDOMINANTLY LOW METALLICITIES MEASURED IN A STRATIFIED SAMPLE OF LYMAN LIMIT SYSTEMS AT ZÂ=Â3.7. Astrophysical Journal, 2016, 833, 270.	1.6	16
92	A HIGH-VELOCITY CLOUD IMPACT FORMING A SUPERSHELL IN THE MILKY WAY. Astrophysical Journal Letters, 2016, 827, L27.	3.0	11
93	Neutral Gas Outside the Disks of Local Group Galaxies. Proceedings of the International Astronomical Union, 2016, 11, 223-225.	0.0	0
94	Zooming in on accretion $\hat{a} \in \mathbb{C}$ I. The structure of halo gas. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2881-2904.	1.6	80
95	Probing the circumgalactic baryons through cross-correlations. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1495-1507.	1.6	7
96	The history of stellar metallicity in a simulated disc galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3119-3141.	1.6	15
97	Decoding X-ray observations from centres of galaxy clusters using MCMC. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2625-2647.	1.6	10
98	Local Volume TiNy Titans: gaseous dwarf–dwarf interactions in the Local Universe. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1827-1846.	1.6	59
99	GALAXIES PROBING GALAXIES AT HIGH RESOLUTION: CO-ROTATING GAS ASSOCIATED WITH A MILKY WAY ANALOG AT $z=0.4$. Astrophysical Journal, 2016, 824, 24.	1.6	36
100	ON THE METALLICITY AND ORIGIN OF THE SMITH HIGH-VELOCITY CLOUD*. Astrophysical Journal Letters, 2016, 816, L11.	3.0	46
101	ADVANCED DATA VISUALIZATION IN ASTROPHYSICS: THE X3D PATHWAY. Astrophysical Journal, 2016, 818, 115.	1.6	18
102	THE MILKY WAY'S HOT GAS KINEMATICS: SIGNATURES IN CURRENT AND FUTURE O vii ABSORPTION LINE OBSERVATIONS. Astrophysical Journal, 2016, 818, 112.	1.6	27
103	DIFFUSE CORONAE IN COSMOLOGICAL SIMULATIONS OF MILKY WAY-SIZED GALAXIES. Astrophysical Journal, 2016, 819, 21.	1.6	26
104	COLLISIONS BETWEEN DARK MATTER CONFINED HIGH VELOCITY CLOUDS AND MAGNETIZED GALACTIC DISKS: THE SMITH CLOUD. Astrophysical Journal Letters, 2016, 816, L18.	3.0	23
105	Quasars Probing Galaxies. I. Signatures of Gas Accretion at Redshift z â‰^ 0.2â^— â€. Astrophysical Journal, 2017, 835, 267.	1.6	81
106	TRACING DENSE AND DIFFUSE NEUTRAL HYDROGEN IN THE HALO OF THE MILKY WAY. Astrophysical Journal, 2017, 834, 155.	1.6	5
107	The Effect of Mixing on the Observed Metallicity of the Smith Cloud. Astrophysical Journal, 2017, 837, 82.	1.6	13
108	HALOGAS Observations of NGC 4559: Anomalous and Extraplanar H i and its Relation to Star Formation. Astrophysical Journal, 2017, 839, 118.	1.6	11

#	Article	IF	CITATIONS
109	The Galaxy's veil of excited hydrogen. Nature Astronomy, 2017, 1, .	4.2	4
110	The Discovery and Origin of a Very High-velocity Cloud Toward M33. Astrophysical Journal, 2017, 840, 65.	1.6	2
111	Condensation of Halo, Circumgalactic, and Intergalactic Gas onto Massive High-velocity Clouds. Astrophysical Journal, 2017, 842, 102.	1.6	18
112	SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra. Astronomy and Astrophysics, 2017, 599, A141.	2.1	24
113	The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium ^{â^—} . Astrophysical Journal, 2017, 837, 169.	1.6	203
114	A dynamics-free lower bound on the mass of our Galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3724-3728.	1.6	18
115	Structure formation in a colliding flow: The <i>Herschel </i> view of the Draco nebula. Astronomy and Astrophysics, 2017, 599, A109.	2.1	16
116	KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK. Astrophysical Journal, 2017, 834, 181.	1.6	24
117	The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4698-4719.	1.6	289
118	A Global Model for Circumgalactic and Cluster-core Precipitation. Astrophysical Journal, 2017, 845, 80.	1.6	149
119	Magnetized High Velocity Clouds in the Galactic Halo: A New Distance Constraint. Astrophysical Journal, 2017, 845, 69.	1.6	25
120	The Circumgalactic Medium. Annual Review of Astronomy and Astrophysics, 2017, 55, 389-432.	8.1	635
121	HST/COS OBSERVATIONS OF IONIZED GAS ACCRETION AT THE DISKâ \in "HALO INTERFACE OF M33. Astrophysical Journal, 2017, 834, 179.	1.6	34
122	Polarization Gradient Study of Interstellar Medium Turbulence Using the Canadian Galactic Plane Survey. Astrophysical Journal, 2017, 835, 210.	1.6	4
123	SDSS IV MaNGAâ€"Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies. Astrophysical Journal, 2017, 839, 87.	1.6	26
124	High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM. Astrophysical Journal, 2017, 843, 47.	1.6	74
125	¹² CO(JÂ=Â1 0) On-the-fly Mapping Survey of the Virgo Cluster Spirals. II. Molecular Gas Properties in Different Density Environments. Astrophysical Journal, 2017, 843, 50.	1.6	12
126	H i in group interactions: HCG 44. Monthly Notices of the Royal Astronomical Society, 2017, 464, 957-967.	1.6	19

#	Article	IF	CITATIONS
127	On the radial profile of gas-phase Fe/ $\hat{l}\pm$ ratio around distant galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1071-1081.	1.6	15
128	The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 114-125.	1.6	110
129	A New, Large-scale Map of Interstellar Reddening Derived from H i Emission. Astrophysical Journal, 2017, 846, 38.	1.6	84
130	Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk. Astrophysical Journal, 2017, 849, 22.	1.6	1
131	HST Detection of Extended Neutral Hydrogen in a Massive Elliptical at zÂ=Â0.4. Astrophysical Journal Letters, 2017, 846, L29.	3.0	8
132	Revealing the Ionization Properties of the Magellanic Stream Using Optical Emission. Astrophysical Journal, 2017, 851, 110.	1.6	20
133	An HST/COS legacy survey of high-velocity ultraviolet absorption in the Milky Way's circumgalactic medium and the Local Group. Astronomy and Astrophysics, 2017, 607, A48.	2.1	81
134	Constraining the X-ray AGN halo occupation distribution: implications for <i>eROSITA </i> Notices of the Royal Astronomical Society, 2017, 466, 3961-3972.	1.6	4
135	How does the stellar disk of the Milky Way get its gas?. Proceedings of the International Astronomical Union, 2017, 13, 219-222.	0.0	1
136	Simulating galaxy formation with the IllustrisTNG model. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4077-4106.	1.6	1,144
137	Probing the Baryon Cycle of Galaxies with <i>SPICA</i> Mid- and Far-Infrared Observations. Publications of the Astronomical Society of Australia, 2018, 35, .	1.3	11
138	XMM-Newton Survey of Local O vii Absorption Lines in the Spectra of Galactic X-Ray Sources. Astrophysical Journal, Supplement Series, 2018, 235, 28.	3.0	3
139	Galactic Disk Winds Driven by Cosmic Ray Pressure. Astrophysical Journal, 2018, 854, 89.	1.6	53
140	Chemical Abundances in the Leading Arm of the Magellanic Stream ^{â^—} . Astrophysical Journal, 2018, 854, 142.	1.6	22
141	Magnetic Fields in the Galactic Halo Restrict Fountain-driven Recycling and Accretion. Astrophysical Journal, 2018, 865, 64.	1.6	45
142	Probing the Southern Fermi Bubble in Ultraviolet Absorption Using Distant AGNs. Astrophysical Journal, 2018, 860, 98.	1.6	23
143	Fast winds drive slow shells: a model for the circumgalactic medium as galactic wind-driven bubbles. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1873-1896.	1.6	36
144	Galaxy mergers moulding the circum-galactic medium – I. The impact of a major merger. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1160-1176.	1.6	44

#	ARTICLE	IF	CITATIONS
145	New Constraints on the Nature and Origin of the Leading Arm of the Magellanic Stream. Astrophysical Journal, 2018, 865, 145.	1.6	14
146	A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). Astronomy and Astrophysics, 2018, 614, A56.	2.1	70
147	The Complementary Roles of Feedback and Mergers in Building the Gaseous Halo and the X-Ray Corona of Milky-Way-sized Galaxies. Astrophysical Journal, 2018, 867, 73.	1.6	16
148	Ultra-Compact High Velocity Clouds as Minihalos and Dwarf Galaxies. Proceedings of the International Astronomical Union, 2018, 14, 483-487.	0.0	0
149	Angular Momentum Accretion onto Disc Galaxies. Proceedings of the International Astronomical Union, 2018, 14, 228-232.	0.0	0
150	Models of rotating coronae. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3370-3381.	1.6	13
151	Deviations from hydrostatic equilibrium in the circumgalactic medium: spinning hot haloes and accelerating flows. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2963-2975.	1.6	54
152	Comparison of the Extraplanar $H\hat{l}\pm$ and UV Emissions in the Halos of Nearby Edge-on Spiral Galaxies. Astrophysical Journal, 2018, 862, 25.	1.6	15
153	Candidate List of Edge-on Galaxies with Substantial Extraplanar Dust. Astrophysical Journal, Supplement Series, 2018, 239, 21.	3.0	7
154	Dynamic Equilibrium Sets of the Atomic Content of Galaxies across Cosmic Time. Astrophysical Journal, 2018, 868, 93.	1.6	8
155	Interstellar magnetic cannon targeting the Galactic halo. Astronomy and Astrophysics, 2018, 617, A101.	2.1	9
156	The H ix galaxy survey – II. H i kinematics of H i eXtreme galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3744-3780.	1.6	33
157	Kinematics of the atomic ISM in M33 on 80Âpc scales. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2505-2533.	1.6	40
158	Properties of the circumgalactic medium in simulations compared to observations. Astronomy and Astrophysics, 2018, 609, A66.	2.1	6
159	IMAGINE: a comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 049-049.	1.9	49
160	The Extended Distribution of Baryons around Galaxies. Astrophysical Journal, 2018, 862, 3.	1.6	97
161	The COS-AGN survey: revealing the nature of circumgalactic gas around hosts of active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3890-3934.	1.6	18
162	GASP. VII. Signs of Gas Inflow onto a Lopsided Galaxy. Astrophysical Journal, 2018, 852, 94.	1.6	19

#	Article	IF	CITATIONS
163	Quasars Probing Quasars. X. The Quasar Pair Spectral Database. Astrophysical Journal, Supplement Series, 2018, 236, 44.	3.0	14
164	Shattering of Cosmic Sheets due to Thermal Instabilities: A Formation Channel for Metal-free Lyman Limit Systems. Astrophysical Journal Letters, 2019, 881, L20.	3.0	22
165	The Magellanic System: the puzzle of the leading gas stream. Monthly Notices of the Royal Astronomical Society, 2019, 488, 918-938.	1.6	28
166	The origins of the circumgalactic medium in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1248-1272.	1.6	132
167	The diversity of the circumgalactic medium around $z=0$ Milky Way-mass galaxies from the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 135-152.	1.6	16
168	Multiverse Predictions for Habitability: Fraction of Life That Develops Intelligence. Universe, 2019, 5, 175.	0.9	7
169	WALLABY early science – III. An H i study of the spiral galaxy NGC 1566. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2797-2817.	1.6	33
170	HALOGAS: the properties of extraplanar HI in disc galaxies. Astronomy and Astrophysics, 2019, 631, A50.	2.1	40
171	Estimating the Fuel Supply Rate on the Galactic Disk from High-velocity Cloud (HVC) Infall. Astrophysical Journal, 2019, 881, 4.	1.6	0
172	Not So Heavy Metals: Black Hole Feedback Enriches the Circumgalactic Medium. Astrophysical Journal, 2019, 882, 8.	1.6	23
173	The Mass Inflow and Outflow Rates of the Milky Way. Astrophysical Journal, 2019, 884, 53.	1.6	33
174	Simulating the interstellar medium and stellar feedback on a moving mesh: implementation and isolated galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4233-4260.	1.6	72
175	Tentative detection of the circumgalactic medium of the isolated low-mass dwarf galaxy WLM. Monthly Notices of the Royal Astronomical Society, 2019, 490, 467-477.	1.6	9
176	Ambient Column Densities of Highly Ionized Oxygen in Precipitation-limited Circumgalactic Media. Astrophysical Journal, 2019, 880, 139.	1.6	40
177	HST/COS Observations of the Warm Ionized Gaseous Halo of NGC 891. Astrophysical Journal, 2019, 876, 101.	1.6	12
178	The Warm Gaseous Disk and the Anisotropic Circumgalactic Medium of the Milky Way. Astrophysical Journal, 2019, 880, 89.	1.6	15
179	Towards a complete understanding of the Magellanic Stream Formation. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5907-5916.	1.6	38
180	Figuring Out Gas & Calaxies in Enzo (FOGGIE). I. Resolving Simulated Circumgalactic Absorption at 2A≤zÂ≤2.5. Astrophysical Journal, 2019, 873, 129.	1.6	166

#	Article	IF	CITATIONS
181	The effect of rotation on the thermal instability of stratified galactic atmospheres – I. Local analysis. Monthly Notices of the Royal Astronomical Society, 2019, 486, 205-214.	1.6	9
182	The morphology and kinematics of the gaseous circumgalactic medium of Milky Way mass galaxies – II. Comparison of IllustrisTNG and Illustris simulation results. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4686-4700.	1.6	20
183	The effect of rotation on the thermal instability of stratified galactic atmospheres $\hat{a} \in \mathbb{N}$ II. The formation of high-velocity clouds. Monthly Notices of the Royal Astronomical Society, 2019, 486, 215-226.	1.6	10
184	Revealing the Milky Way's Hidden Circumgalactic Medium with the Cosmic Origins Spectrograph Quasar Database for Galactic Absorption Lines. Astrophysical Journal, 2019, 871, 35.	1.6	27
185	Simulating Gas Inflow at the Disk–Halo Interface. Astrophysical Journal, 2019, 872, 47.	1.6	14
186	How Gas Accretion Feeds Galactic Disks. Astrophysical Journal, 2019, 875, 54.	1.6	32
187	Characterizing circumgalactic gas around massive ellipticals at <i>>z</i> and elemental abundances. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2257-2280.	1.6	111
188	CHILES: HÂ <scp>i</scp> morphology and galaxy environment at <i>z</i> Å= 0.12 and <i>z</i> Å= 0.17. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2234-2256.	1.6	23
189	Lopsided gas discs arising from mass inflow in barred spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2020-2031.	1.6	1
190	SCOPE: SCUBA-2 Continuum Observations of Pre-protostellar Evolution – survey description and compact source catalogue. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2895-2908.	1.6	22
191	Cosmological simulations of the circumgalactic medium with 1 kpc resolution: enhanced H <scp>i</scp> column densities. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 482, L85-L89.	1.2	149
192	Radio wave scattering by circumgalactic cool gas clumps. Monthly Notices of the Royal Astronomical Society, 2019, 483, 971-984.	1.6	23
193	Anomalously Low-metallicity Regions in MaNGA Star-forming Galaxies: Accretion Caught in Action?. Astrophysical Journal, 2019, 872, 144.	1.6	35
194	Constraining the Magnetic Field of the Smith High-velocity Cloud Using Faraday Rotation. Astrophysical Journal, 2019, 871, 215.	1.6	20
195	Large-scale Maps of the Cosmic Infrared Background from Planck. Astrophysical Journal, 2019, 883, 75.	1.6	37
196	Galactic Gas Flows from Halo to Disk: Tomography and Kinematics at the Milky Way's Disk–Halo Interface. Astrophysical Journal, 2019, 882, 76.	1.6	17
197	Probing gaseous halos of galaxies with radio jets. Astronomy and Astrophysics, 2019, 627, A113.	2.1	7
198	Multiple Temperature Components of the Hot Circumgalactic Medium of the Milky Way. Astrophysical Journal, 2019, 887, 257.	1.6	27

#	Article	IF	CITATIONS
199	Cool circumgalactic gas of passive galaxies from cosmological inflow. Astronomy and Astrophysics, 2019, 625, A11.	2.1	23
200	Spectroscopy of the Young Stellar Association Price-Whelan 1: Origin in the Magellanic Leading Arm and Constraints on the Milky Way Hot Halo. Astrophysical Journal, 2019, 887, 115.	1.6	17
201	Mapping the Magnetic Interstellar Medium in Three Dimensions over the Full Sky with Neutral Hydrogen. Astrophysical Journal, 2019, 887, 136.	1.6	58
202	The SAMI Galaxy Survey: stellar and gas misalignments and the origin of gas in nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 458-479.	1.6	49
203	The isothermal evolution of a shock-filament interaction. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4783-4801.	1.6	5
204	How cold gas continuously entrains mass and momentum from a hot wind. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1970-1990.	1.6	101
205	A disk-dominated and clumpy circumgalactic medium of the Milky Way seen in X-ray emission. Nature Astronomy, 2020, 4, 1072-1077.	4.2	42
206	WALLABY – an SKA Pathfinder H i survey. Astrophysics and Space Science, 2020, 365, 1.	0.5	128
207	The Cosmic Ultraviolet Baryon Survey (CUBS) – I. Overview and the diverse environments of Lyman limit systems at <i>z</i> < 1. Monthly Notices of the Royal Astronomical Society, 2020, 497, 498-520.	1.6	37
208	Positive feedback at the disc–halo interface. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1140-1158.	1.6	4
209	The physical drivers of the atomic hydrogen–halo mass relation. Monthly Notices of the Royal Astronomical Society, 2020, 498, 44-67.	1.6	18
210	Massive Warm/Hot Galaxy Coronae. II. Isentropic Model. Astrophysical Journal, 2020, 893, 82.	1.6	44
211	The haloes and environments of nearby galaxies (HERON) – II. The outer structure of edge-on galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1751-1770.	1.6	13
212	The fates of the circumgalactic medium in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3581-3595.	1.6	46
213	Charge-exchange emission and cold clumps in multiphase galactic outflows. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5621-5635.	1.6	5
214	Solar-metallicity gas in the extended halo of a galaxy at $z\hat{A}\hat{a}^1/4\hat{A}0.12$. Monthly Notices of the Royal Astronomical Society, 2020, 493, 250-266.	1.6	4
215	Entropy-driven winds: Outflows and fountains lifted gently by buoyancy. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2149-2170.	1.6	20
216	Slicing the cool circumgalactic medium along the major axis of a star-forming galaxy at $\langle i \rangle z \langle i \rangle \hat{A} = 0.7$. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4442-4461.	1.6	28

#	ARTICLE	IF	CITATIONS
217	Efficiency of thermal conduction in a magnetized circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1263-1278.	1.6	13
218	CHANG-ES XXIII: influence of a galactic wind in NGCÂ5775. Monthly Notices of the Royal Astronomical Society, 2021, 509, 658-684.	1.6	13
219	Distant probes of rotation measure structure: where is the Faraday rotation towards the Magellanic Leading Arm?. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3921-3935.	1.6	1
220	The origin of X-ray coronae around simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2934-2951.	1.6	13
221	The Galactic center chimneys: the base of the multiphase outflow of the Milky Way. Astronomy and Astrophysics, 2021, 646, A66.	2.1	21
222	MIGHTEE-HI: The H‹I emission project of the MeerKAT MIGHTEE survey. Astronomy and Astrophysics, 2021, 646, A35.	2.1	45
223	MAGNUM survey: Compact jets causing large turmoil in galaxies. Astronomy and Astrophysics, 2021, 648, A17.	2.1	70
224	The QuaStar Survey: Detecting Hidden Low-velocity Gas in the Milky Way's Circumgalactic Medium. Astrophysical Journal, 2021, 912, 8.	1.6	8
225	One–Two Quench: A Double Minor Merger Scenario. Astrophysical Journal, 2021, 911, 116.	1.6	9
226	Molecular Gas Distribution Perpendicular to the Galactic Plane. Astrophysical Journal, 2021, 910, 131.	1.6	13
227	The Gas Content and Stripping of Local Group Dwarf Galaxies. Astrophysical Journal, 2021, 913, 53.	1.6	72
228	Thermal instability in the CGM of <i>L</i> à،† galaxies: testing †precipitation†models with the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1841-1862.	1.6	19
229	H2 molecular gas absorption-selected systems trace CO molecular gas-rich galaxy overdensities. Monthly Notices of the Royal Astronomical Society, 2021, 506, 514-522.	1.6	4
230	WALLABY Pilot Survey: The Diversity of Ram Pressure Stripping of the Galactic H i Gas in the Hydra Cluster. Astrophysical Journal, 2021, 915, 70.	1.6	31
231	Probing the Halo Gas Distribution in the Inner Galaxy with Fermi Bubble Observations. Astrophysical Journal, 2021, 915, 85.	1.6	5
232	Telltale signs of metal recycling in the circumgalactic medium of a $\langle i \rangle z \langle i \rangle$ $\hat{a}^1/4$ 0.77 galaxy. Monthly Notices of the Royal Astronomical Society, 2021, 507, 663-679.	1.6	20
233	The Discovery of the Largest Gas Filament in Our Galaxy, or a New Spiral Arm?. Astrophysical Journal Letters, 2021, 918, L2.	3.0	9
234	The episodic and multiscale Galactic Centre. New Astronomy Reviews, 2021, 93, 101630.	5.2	5

#	Article	IF	Citations
235	The Hot Circumgalactic Medium of the Milky Way: Evidence for Supervirial, Virial, and Subvirial Temperatures; Nonsolar Chemical Composition; and Nonthermal Line Broadening. Astrophysical Journal, 2021, 918, 83.	1.6	20
236	Large metallicity variations in the Galactic interstellar medium. Nature, 2021, 597, 206-208.	13.7	41
237	The effect of magnetic fields on properties of the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4888-4902.	1.6	62
239	An Introduction to Gas Accretion onto Galaxies. Astrophysics and Space Science Library, 2017, , 1-13.	1.0	14
240	Gas Accretion via Condensation and Fountains. Astrophysics and Space Science Library, 2017, , 323-353.	1.0	66
241	Gas Accretion onto the Milky Way. Astrophysics and Space Science Library, 2017, , 15-47.	1.0	25
242	Neutral Gas Accretion onto Nearby Galaxies. Astrophysics and Space Science Library, 2017, , 49-65.	1.0	3
243	Future Prospects: Deep Imaging of Galaxy Outskirts Using Telescopes Large and Small. Astrophysics and Space Science Library, 2017, , 333-358.	1.0	2
244	Outskirts of Distant Galaxies in Absorption. Astrophysics and Space Science Library, 2017, , 291-331.	1.0	17
245	Near Field Cosmology: The Origin of the Galaxy and the Local Group. Saas-Fee Advanced Course, 2014, , 1-144.	1.1	4
246	Feedback by massive stars and the emergence of superbubbles. Astronomy and Astrophysics, 2014, 566, A94.	2.1	40
247	High-velocity gas toward the LMC resides in the Milky Way halo. Astronomy and Astrophysics, 2015, 584, L6.	2.1	12
248	New detections of embedded clusters in the Galactic halo. Astronomy and Astrophysics, 2016, 593, A95.	2.1	13
249	Evidence for supernova feedback sustaining gas turbulence in nearby star-forming galaxies. Astronomy and Astrophysics, 2020, 641, A70.	2.1	40
250	MeerKAT HI commissioning observations of MHONGOOSE galaxy ESO 302-G014. Astronomy and Astrophysics, 2020, 643, A147.	2.1	10
251	CALCIUM H & CALCIU	1.6	38
252	Empirical estimates of the Galactic halo contribution to the dispersion measures of extragalactic fast radio bursts using X-ray absorption. Monthly Notices of the Royal Astronomical Society, 2020, 500, 655-662.	1.6	7
253	DIRECT DETECTION OF LYMAN CONTINUUM ESCAPE FROM LOCAL STARBURST GALAXIES WITH THE COSMIC ORIGINS SPECTROGRAPH. Astrophysical Journal, 2016, 823, 64.	1.6	110

#	Article	IF	CITATIONS
254	Kinematics of the O vi Circumgalactic Medium: Halo Mass Dependence and Outflow Signatures. Astrophysical Journal, 2019, 886, 66.	1.6	12
255	The Nature of Ionized Gas in the Milky Way Galactic Fountain. Astrophysical Journal, 2019, 887, 89.	1.6	24
256	Resolving 3D Disk Orientation Using High-resolution Images: New Constraints on Circumgalactic Gas Inflows. Astrophysical Journal, 2020, 888, 14.	1.6	22
257	The Warm Gas in the MW: A Kinematical Model. Astrophysical Journal, 2020, 894, 142.	1.6	13
258	Figuring Out Gas & Calaxies in Enzo (FOGGIE). II. Emission from the zÂ=Â3 Circumgalactic Medium. Astrophysical Journal, 2020, 896, 125.	1.6	32
259	Figuring Out Gas & Description of the Milky Way: Investigating Biases in Observing the Milky Way's Circumgalactic Medium. Astrophysical Journal, 2020, 896, 143.	1.6	16
260	Detection of the Diffuse H i Emission in the Circumgalactic Medium of NGC 891 and NGC 4565. Astrophysical Journal, 2020, 898, 15.	1.6	12
261	Metal Enrichment in the Circumgalactic Medium and Lyl± Halos around Quasars at zÂâ^¼Â3. Astrophysical Journal, 2020, 898, 26.	1.6	25
262	Local Simulations of Spiral Galaxies with the TIGRESS Framework. I. Star Formation and Arm Spurs/Feathers. Astrophysical Journal, 2020, 898, 35.	1.6	37
263	How Do Supernovae Impact the Circumgalactic Medium? I. Large-scale Fountains around a Milky Way–like Galaxy. Astrophysical Journal, 2020, 898, 148.	1.6	31
264	Project AMIGA: The Circumgalactic Medium of Andromeda*. Astrophysical Journal, 2020, 900, 9.	1.6	48
265	Exploring Hydrodynamic Instabilities along the Infalling High-velocity Cloud Complex A. Astrophysical Journal, 2020, 902, 154.	1.6	8
266	The Evolution of the Baryons Associated with Galaxies Averaged over Cosmic Time and Space. Astrophysical Journal, 2020, 902, 111.	1.6	73
267	The Impact of Outflows Driven by Active Galactic Nuclei on Metals in and around Galaxies. Astrophysical Journal, 2020, 904, 8.	1.6	9
268	The Impact of Cosmic Rays on Thermal Instability in the Circumgalactic Medium. Astrophysical Journal, 2020, 903, 77.	1.6	66
269	Gamma-Ray and Radio Background Constraints on Cosmic Rays in Milky Way Circumgalactic Medium. Astrophysical Journal Letters, 2020, 903, L9.	3.0	5
270	Resolving the Formation of Cold H i Filaments in the High-velocity Cloud Complex C. Astrophysical Journal, 2021, 921, 11.	1.6	16
272	Lucky Star: Confirming the Distance to USNO-A0600-15865535 and High-velocity Cloud Complex WD. Research Notes of the AAS, 2018, 2, 59.	0.3	0

#	Article	IF	Citations
273	Characterizing the Circumgalactic Medium of the Lowest-mass Galaxies: A Case Study of IC 1613. Astrophysical Journal, 2020, 905, 133.	1.6	7
274	Galactopause Formation and Gas Precipitation during Strong Galactic Outflows. Astrophysical Journal, 2020, 903, 101.	1.6	2
275	Relativistic corrections for measuring Hubble's constant to 1% using stellar standard candles. Astronomy and Astrophysics, 2022, 658, A148.	2.1	7
276	Mass, morphing, metallicities: the evolution of infalling high velocity clouds. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4515-4531.	1.6	14
277	The role of the halo magnetic field on accretion through high-velocity clouds. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5756-5770.	1.6	9
278	Gas infall and radial transport in cosmological simulations of milky way-mass discs. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4149-4170.	1.6	30
279	DIISC-I: The Discovery of Kinematically Anomalous H i Clouds in M 100. Astrophysical Journal, 2021, 922, 69.	1.6	4
280	Gamma-rays from reaccelerated cosmic rays in high-velocity clouds colliding with the Galactic disc. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4448-4456.	1.6	0
281	Inflow of low-metallicity cool gas in the halo of the Andromeda galaxy. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4849-4864.	1.6	8
282	The high-velocity clouds above the disc of the outer Milky Way: misty precipitating gas in a region roiled by stellar streams. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1714-1749.	1.6	7
283	A Fast Radio Burst Progenitor Born in a Galaxy Merger. Astrophysical Journal Letters, 2022, 925, L20.	3.0	7
284	Hydrodynamics of Clustered Clouds: Drafting, Survival, Condensation, and Ablation. Astrophysical Journal, 2022, 926, 36.	1.6	1
285	The H i Column Density Distribution of the Galactic Disk and Halo. Astrophysical Journal, 2021, 923, 50.	1.6	10
286	GASKAP Pilot Survey Science. II. ASKAP Zoom Observations of Galactic 21 cm Absorption. Astrophysical Journal, 2022, 926, 186.	1.6	7
287	Spatially resolved gas flows around the Milky Way. Monthly Notices of the Royal Astronomical Society, 2022, 512, 811-836.	1.6	6
288	Exploring the Milky Way Circumgalactic Medium in a Cosmological Context with a Semianalytic Model. Astrophysical Journal, 2022, 928, 37.	1.6	11
289	Radial Motions and Radial Gas Flows in Local Spiral Galaxies. Astrophysical Journal, 2021, 923, 220.	1.6	25
290	Thermal Instabilities and Shattering in the High-redshift WHIM: Convergence Criteria and Implications for Low-metallicity Strong H i Absorbers. Astrophysical Journal, 2021, 923, 115.	1.6	16

#	Article	IF	CITATIONS
291	The Galactic dynamics revealed by the filamentary structure in atomic hydrogen emission. Astronomy and Astrophysics, 2022, 662, A96.	2.1	15
292	Baryon cycles in the biggest galaxies. Physics Reports, 2022, 973, 1-109.	10.3	44
293	A Detection of H ₂ in a High-velocity Cloud toward the Large Magellanic Cloud. Astrophysical Journal, 2022, 931, 78.	1.6	1
294	Constraints on Cosmic Rays in the Milky Way Circumgalactic Medium from O viii Observations. Astrophysical Journal, 2022, 931, 125.	1.6	0
295	SDSS-IV MaNGA – gas rotation velocity lags in the final sample of MaNGA galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1598-1609.	1.6	3
296	Radiative Turbulent Mixing Layers and the Survival of Magellanic Debris. Astrophysical Journal, 2022, 933, 120.	1.6	8
298	Cold-mode and hot-mode accretion in galaxy formation: An entropy approach. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	1
299	Absorption-based circumgalactic medium line emission estimates. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3049-3067.	1.6	3
300	The impact of cosmic rays on dynamical balance and disc–halo interaction in <i>L</i> â<† disc galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 517, 597-615.	1.6	18
301	The HaloSat and PolarLight CubeSat Missions for X-Ray Astrophysics. , 2022, , 1-22.		0
302	Widespread Detection of Two Components in the Hot Circumgalactic Medium of the Milky Way. Astrophysical Journal, 2022, 936, 72.	1.6	13
303	Cosmological gas accretion history onto the stellar discs of Milky Way-like galaxies in the Auriga simulations $\hat{a} \in \text{``(I)}$ Temporal dependency. Monthly Notices of the Royal Astronomical Society, 2022, 517, 832-852.	1.6	2
304	Observations of a Magellanic Corona. Nature, 2022, 609, 915-918.	13.7	6
305	Absorption Studies of the Most Diffuse Gas in the Large-Scale Structure., 2022,, 1-43.		0
306	The SAMI Galaxy Survey: physical drivers of stellar-gas kinematic misalignments in the nearby Universe. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2677-2696.	1.6	10
307	HALOGAS: Strong constraints on the neutral gas reservoir and accretion rate in nearby spiral galaxies. Astronomy and Astrophysics, 2022, 668, A182.	2.1	2
308	R-process Rain from Binary Neutron Star Mergers in the Galactic Halo. Astrophysical Journal, 2022, 939, 59.	1.6	4
309	Directly Tracing Cool Filamentary Accretion over $gt;100\ kpc$ into the Interstellar Medium of a Quasar Host at $z=1$. Astrophysical Journal Letters, 2022, 940, L40.	3.0	6

#	Article	IF	CITATIONS
310	The effect of saturated thermal conduction on clouds in a hot plasma. Monthly Notices of the Royal Astronomical Society, 2022, 519, 1313-1326.	1.6	0
311	The circumgalactic medium of Milky Way-like galaxies in the TNG50 simulation – I: halo gas properties and the role of SMBH feedback. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5754-5777.	1.6	18
312	Nature of the galaxies on top of quasars producing Mg <scp>ii</scp> absorption. Monthly Notices of the Royal Astronomical Society, 2023, 519, 3319-3337.	1.6	2
313	The physical nature of circumgalactic medium absorbers in <scp>Simba</scp> . Monthly Notices of the Royal Astronomical Society, 2023, 519, 5514-5535.	1.6	5
314	eDIG-CHANGES I: extended \hat{Hl} emission from the extraplanar diffuse ionized gas (eDIG) around CHANG-ES galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 519, 6098-6110.	1.6	4
315	A Component of the Smith High-velocity Cloud Now Crossing the Galactic Plane. Astrophysical Journal, 2023, 943, 55.	1.6	0
316	Cloudy with a chance of rain: accretion braking of cold clouds. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2571-2592.	1.6	8
317	Extended neutral hydrogen filamentary network in NGC 2403. Astronomy and Astrophysics, 2023, 672, A55.	2.1	1
318	Abundance and temperature of the outer hot circumgalactic medium. Astronomy and Astrophysics, 2023, 674, A195.	2.1	9
319	Asymmetric eROSITA bubbles as the evidence of a circumgalactic medium wind. Nature Communications, 2023, 14 , .	5.8	4
320	Atmospheric Pressure and Molecular Cloud Formation in Early-type Galaxies. Astrophysical Journal, 2023, 944, 69.	1.6	1
321	FEASTS: IGM Cooling Triggered by Tidal Interactions through the Diffuse H i Phase around NGC 4631. Astrophysical Journal, 2023, 944, 102.	1.6	3
322	BICEP/Keck. XVI. Characterizing Dust Polarization through Correlations with Neutral Hydrogen. Astrophysical Journal, 2023, 945, 72.	1.6	6
323	An FRB Sent Me a DM: Constraining the Electron Column of the Milky Way Halo with Fast Radio Burst Dispersion Measures from CHIME/FRB. Astrophysical Journal, 2023, 946, 58.	1.6	12
324	Streams of cold cosmic fuel for galaxies. Science, 2023, 379, 1303-1303.	6.0	0
325	Star Formation Variability as a Probe for the Baryon Cycle within Galaxies. Astrophysical Journal, 2023, 947, 61.	1.6	3
355	Absorption Studies of the Most Diffuse Gas in the Large-Scale Structure. , 2024, , 4851-4893.		0
356	The HaloSat and PolarLight CubeSat Missions for X-ray Astrophysics. , 2024, , 1149-1170.		0