Degradation of Polyamide Nanofiltration and Reverse C

Environmental Science & amp; Technology 46, 852-859 DOI: 10.1021/es203090y

Citation Report

#	Article	IF	CITATIONS
1	Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes. Water Research, 2012, 46, 5217-5223.	5.3	74
2	Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane. Water Research, 2012, 46, 5389-5400.	5.3	76
3	Effects of Chlorine Exposure Conditions on Physiochemical Properties and Performance of a Polyamide Membrane—Mechanisms and Implications. Environmental Science & Technology, 2012, 46, 13184-13192.	4.6	164
4	Mass transfer properties of chlorinated aromatic polyamide reverse osmosis membranes. Separation and Purification Technology, 2012, 101, 60-67.	3.9	9
5	The chlorination process of crosslinked aromatic polyamide reverse osmosis membrane: New insights from the study of self-made membrane. Desalination, 2013, 313, 145-155.	4.0	61
6	Surface Modification of Commercial Aromatic Polyamide Reverse Osmosis Membranes by Crosslinking Treatments. Chinese Journal of Chemical Engineering, 2013, 21, 473-484.	1.7	15
7	Pilot scale study of chlorination-induced transport property changes of a seawater reverse osmosis membrane. Desalination, 2013, 311, 24-30.	4.0	17
8	Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes. Journal of Membrane Science, 2013, 433, 72-79.	4.1	56
9	Preparation of polyamide membranes with improved chlorine resistance by bis-2,6-N,N-(2-hydroxyethyl) diaminotoluene and trimesoyl chloride. Desalination, 2013, 331, 16-25.	4.0	32
10	Polyamide nanofilm composite membranes (NCMs) supported by chitosan coated electrospun nanofibrous membranes: Preparation and separation performance research. Desalination, 2013, 328, 31-41.	4.0	31
11	Energy recovery from concentrated seawater brine by thin-film nanofiber composite pressure retarded osmosis membranes with high power density. Energy and Environmental Science, 2013, 6, 1199.	15.6	179
12	Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations. Desalination, 2013, 328, 83-100.	4.0	227
13	Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites. Journal of Materials Chemistry A, 2013, 1, 11343.	5.2	108
14	Layer-by-Layer Assembly of Graphene Oxide Nanosheets on Polyamide Membranes for Durable Reverse-Osmosis Applications. ACS Applied Materials & Interfaces, 2013, 5, 12510-12519.	4.0	471
15	A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. Journal of Membrane Science, 2013, 435, 80-91.	4.1	135
16	Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. Desalination, 2013, 309, 97-105.	4.0	73
18	Structure and dynamics of water confined in a polyamide reverse-osmosis membrane: A molecular-simulation study. Journal of Membrane Science, 2014, 458, 236-244.	4.1	118
19	Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of Membrane Science, 2014, 451, 205-215.	4.1	154

#	Article	IF	CITATIONS
20	Degradation of Poly(Ether Sulfone)/Polyvinylpyrrolidone Membranes by Sodium Hypochlorite: Insight from Advanced Electrokinetic Characterizations. Environmental Science & Technology, 2014, 48, 13419-13426.	4.6	52
21	Fabrication and characterization of a novel poly(amide-urethane@imide) TFC reverse osmosis membrane with chlorine-tolerant property. Journal of Membrane Science, 2014, 469, 397-409.	4.1	66
22	Bulk Chlorine Uptake by Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine—Kinetics, Mechanisms, and Modeling. Environmental Science & Technology, 2014, 48, 2741-2749.	4.6	64
23	Fouling of nanofiltration membranes in full- and bench-scale systems treating groundwater containing silica. Journal of Membrane Science, 2014, 468, 349-359.	4.1	34
24	Electroconductive Feed Spacer as a Tool for Biofouling Control in a Membrane System for Water Treatment. Environmental Science and Technology Letters, 2014, 1, 179-184.	3.9	37
25	Molecular Dynamics Simulations of Polyamide Membrane, Calcium Alginate Gel, and Their Interactions in Aqueous Solution. Langmuir, 2014, 30, 9098-9106.	1.6	82
26	Molecular simulations of polyamide reverse osmosis membranes. Desalination, 2014, 343, 48-53.	4.0	63
27	Optimisation and performance of NaClO-assisted maintenance cleaning for fouling control in membrane bioreactors. Water Research, 2014, 53, 1-11.	5.3	65
28	Desalting and recovering naphthalenesulfonic acid from wastewater with concentrated bivalent salt by nanofiltration process. Journal of Membrane Science, 2014, 468, 242-249.	4.1	16
29	Novel diamine-modified composite nanofiltration membranes with chlorine resistance using monomers of 1,2,4,5-benzene tetracarbonyl chloride and m-phenylenediamine. Journal of Materials Chemistry A, 2015, 3, 8816-8824.	5.2	54
30	Enhancement in membrane performances of a commercial polyamide reverse osmosis membrane via surface coating of polydopamine followed by the grafting of polyethylenimine. RSC Advances, 2015, 5, 98566-98575.	1.7	34
31	Changes in Physicochemical and Transport Properties of a Reverse Osmosis Membrane Exposed to Chloraminated Seawater. Environmental Science & amp; Technology, 2015, 49, 2301-2309.	4.6	26
32	Reverse osmosis performance of layered-hybrid membranes consisting of an organosilica separation layer on polymer supports. Journal of Membrane Science, 2015, 494, 104-112.	4.1	19
33	Fine-Tuning the Surface of Forward Osmosis Membranes via Grafting Graphene Oxide: Performance Patterns and Biofouling Propensity. ACS Applied Materials & Interfaces, 2015, 7, 18004-18016.	4.0	101
34	Long term physical and chemical stability of polyelectrolyte multilayer membranes. Journal of Membrane Science, 2015, 489, 153-159.	4.1	80
35	Metal–organic framework-based porous matrix membranes for improving mass transfer in forward osmosis membranes. Journal of Membrane Science, 2015, 492, 392-399.	4.1	80
36	Effects of chlorine exposure on nanofiltration performance of polyamide membranes. Journal of Membrane Science, 2015, 487, 256-270.	4.1	40
37	Hydrophilic, Bactericidal Nanoheater-Enabled Reverse Osmosis Membranes to Improve Fouling Resistance. ACS Applied Materials & Interfaces, 2015, 7, 11117-11126.	4.0	67

#	Article	IF	CITATIONS
38	Novel chlorine resistant low-fouling ultrafiltration membrane based on a hydrophilic polyaniline derivative. Journal of Materials Chemistry A, 2015, 3, 8725-8733.	5.2	35
39	Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination, 2015, 367, 11-20.	4.0	153
40	Role of Reverse Divalent Cation Diffusion in Forward Osmosis Biofouling. Environmental Science & Technology, 2015, 49, 13222-13229.	4.6	50
41	Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms. Environmental Science & Technology, 2015, 49, 12136-12144.	4.6	51
42	Preparation of Silver-Deposited Aromatic Polysulfonamide Fibers with Excellent Performance via Electroless Nanoplating Using a Chlorine-Aided Silver Activation System. Industrial & Engineering Chemistry Research, 2015, 54, 11302-11311.	1.8	21
43	Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property. Journal of Membrane Science, 2015, 495, 1-13.	4.1	68
44	Transformation of end-of-life RO membranes into NF and UF membranes: Evaluation of membrane performance. Journal of Membrane Science, 2015, 495, 305-315.	4.1	83
45	Polypiperazine-amide nanofiltration membrane incorporated with poly(ethylene glycol) derivative for electrodialysis concentrate treatment. Separation and Purification Technology, 2015, 153, 43-50.	3.9	12
46	Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance. Applied Surface Science, 2015, 356, 659-667.	3.1	38
47	A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning. Desalination and Water Treatment, 2015, 55, 870-891.	1.0	78
48	The chlorination and chlorine resistance modification of composite polyamide membrane. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
49	Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356, 226-254.	4.0	1,432
50	Application of robust MFI-type zeolite membrane for desalination of saline wastewater. Journal of Membrane Science, 2015, 475, 167-174.	4.1	72
51	Relating Water/Solute Permeability Coefficients to the Performance of Thin-Film Nanofiber Composite Forward Osmosis Membrane. Journal of Membrane Science & Technology, 2016, 06, .	0.5	8
52	Multi-drug delivery of tuberculosis drugs by π-back bonded gold nanoparticles with multiblock copolyesters. Materials Research Express, 2016, 3, 065401.	0.8	5
53	Gold acid mine drainage treatment by membrane separation processes: An evaluation of the main operational conditions. Separation and Purification Technology, 2016, 170, 360-369.	3.9	83
54	Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties. Water Research, 2016, 100, 326-336.	5.3	31
55	Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination, 2016, 394, 162-175.	4.0	105

ARTICLE IF CITATIONS # Recent advances in polymer and polymer composite membranes for reverse and forward osmosis 11.8 345 56 processes. Progress in Polymer Science, 2016, 61, 104-155. Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for 1.2 anti-biofouling. Journal of Polymer Research, 2016, 23, 1. Molecular Dynamics Simulations of a Poly(ethylene glycol)-Grafted Polyamide Membrane and Its 58 1.6 41 Interaction with a Calcium Alginate Gel. Langmuir, 2016, 32, 4424-4433. Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine. Journal of Membrane 59 147 Science, 2016, 513, 108-116. Irradiation effects on RO membranes: Comparison of aerobic and anaerobic conditions. Polymer 60 2.7 5 Degradation and Stability, 2016, 134, 126-135. Using <i>Pseudomonas aeruginosa </i>PAO1 to evaluate hydrogen peroxide as a biofouling control agent in membrane treatment systems. Letters in Applied Microbiology, 2016, 63, 488-494. 1.0 Improved chlorine tolerance of a polyvinyl pyrrolidone-polysulfone membrane enabled by 62 5.3 27 carboxylated carbon nanotubes. Water Research, 2016, 104, 497-506. Gypsum scaling in forward osmosis: Role of membrane surface chemistry. Journal of Membrane 4.1 78 Science, 2016, 513, 250-259. Single-Step Assembly of Multifunctional Poly(tannic acid)â€"Graphene Oxide Coating To Reduce 4.0 64 66 Biofouling of Forward Osmosis Membranes. ACS Applied Materials & amp; Interfaces, 2016, 8, 17519-17528. Virus removal and integrity in aged RO membranes. Water Research, 2016, 90, 167-175. 5.3 Polyamide nanofilm composite membranes (NCMs) supported by chitosan-coated polyvinyldenefluoride (PVDF) nanofibrous mats and their separation properties. Desalination and Water Treatment, 2016, 57, 7 66 1.0 23522-23535. Electrokinetic analysis of PES/PVP membranes aged by sodium hypochlorite solutions at different pH. 4.1 Journal of Membrane Science, 2016, 501, 24-32 A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis. RSC 68 1.7 107 Advances, 2016, 6, 8134-8163. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA). Journal of Membrane Science, 2016, 501, 209-219. 4.1 Ageing of membranes for water treatment: Linking changes to performance. Journal of Membrane 70 4.1 81 Science, 2016, 503, 177-187. Potential applications of abandoned aromatic polyamide reverse osmosis membrane by hypochlorite degradation. RSC Advances, 2016, 6, 12263-12271. Effect of coexisting metal ions on the degradation of polyamide reverse osmosis membrane by 72 4.0 19 hypochlorite treatment. Desalination, 2016, 381, 126-134. Hydration of a polyamide reverse-osmosis membrane. Journal of Membrane Science, 2016, 501, 248-253. 4.1

#	Article	IF	CITATIONS
74	Effective in-situ chemical surface modification of forward osmosis membranes with polydopamine-induced graphene oxide for biofouling mitigation. Desalination, 2016, 385, 126-137.	4.0	91
75	An Integrated approach for characterization of polyamide reverse osmosis membrane degradation due to exposure to free chlorine. Journal of Membrane Science, 2016, 510, 164-173.	4.1	56
76	Aquaporin-based biomimetic reverse osmosis membranes: Stability and long term performance. Journal of Membrane Science, 2016, 508, 94-103.	4.1	115
77	Improved chlorine resistance of polyamide thin-film composite membranes with a terpolymer coating. Separation and Purification Technology, 2016, 157, 112-119.	3.9	37
78	Thin film composite nanofiltration membranes fabricated from quaternized poly(ether ether ketone) with crosslinkable moiety using a benign solvent. Journal of Colloid and Interface Science, 2016, 463, 332-341.	5.0	10
79	Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. Journal of Membrane Science, 2016, 499, 80-91.	4.1	144
80	A chlorine-tolerant nanofiltration membrane prepared by the mixed diamine monomers of PIP and BHTTM. Journal of Membrane Science, 2016, 498, 374-384.	4.1	104
81	Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization. Journal of Membrane Science, 2017, 527, 121-128.	4.1	117
82	Fouling in membrane bioreactors: An updated review. Water Research, 2017, 114, 151-180.	5.3	773
83	Chlorine-Resistant Polyamide Reverse Osmosis Membrane with Monitorable and Regenerative Sacrificial Layers. ACS Applied Materials & amp; Interfaces, 2017, 9, 10214-10223.	4.0	62
84	Nanofiltration Membrane with a Mussel-Inspired Interlayer for Improved Permeation Performance. Langmuir, 2017, 33, 2318-2324.	1.6	136
85	A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes. Journal of Membrane Science, 2017, 534, 100-108.	4.1	86
86	Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment. Journal of Membrane Science, 2017, 534, 46-58.	4.1	91
87	Layered double hydroxide nanoparticle modified forward osmosis membranes via polydopamine immobilization with significantly enhanced chlorine and fouling resistance. Desalination, 2017, 421, 99-109.	4.0	40
88	Tris(2-aminoethyl)amine in-situ modified thin-film composite membranes for forward osmosis applications. Journal of Membrane Science, 2017, 537, 186-201.	4.1	71
89	Acyl-chloride quenching following interfacial polymerization to modulate the water permeability, selectivity, and surface charge of desalination membranes. Journal of Membrane Science, 2017, 535, 357-364.	4.1	58
90	Tuning separation behavior of tailor-made thin film poly(piperazine-amide) composite membranes for pesticides and salts from water. Desalination, 2017, 404, 280-290.	4.0	26
91	Ultra-thin, multi-layered polyamide membranes: Synthesis and characterization. Journal of Membrane Science, 2017, 540, 10-18.	4.1	66

#	Article	IF	CITATIONS
92	Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation. Water Science and Technology, 2017, 76, 605-622.	1.2	33
93	Improving the chlorine-tolerant ability of polypiperazine-amide nanofiltration membrane by adding NH 2 -PEG-NH 2 in the aqueous phase. Journal of Membrane Science, 2017, 538, 9-17.	4.1	39
94	Reagent-Free Quantification of Aqueous Free Chlorine via Electrical Readout of Colorimetrically Functionalized Pencil Lines. ACS Applied Materials & Interfaces, 2017, 9, 20748-20761.	4.0	27
95	Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination, 2017, 420, 330-383.	4.0	214
96	Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Progress in Polymer Science, 2017, 72, 1-15.	11.8	229
97	Improving Permeation and Antifouling Performance of Polyamide Nanofiltration Membranes through the Incorporation of Arginine. ACS Applied Materials & amp; Interfaces, 2017, 9, 13577-13586.	4.0	97
98	Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration. Water Research, 2017, 116, 116-125.	5.3	82
99	Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance. Journal of Membrane Science, 2017, 525, 9-17.	4.1	111
100	A One-Step Rapid Assembly of Thin Film Coating Using Green Coordination Complexes for Enhanced Removal of Trace Organic Contaminants by Membranes. Environmental Science & Technology, 2017, 51, 12638-12643.	4.6	110
101	Layer-by-layer self-assembly TiO 2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability. Desalination, 2017, 423, 21-29.	4.0	62
102	Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation. Desalination, 2017, 420, 208-215.	4.0	79
103	Membrane fouling, chemical cleaning and separation performance assessment of a chlorine-resistant nanofiltration membrane for water recycling applications. Separation and Purification Technology, 2017, 189, 170-175.	3.9	61
104	Codeposition of catechol–polyethyleneimine followed by interfacial polymerization for nanofiltration membranes with enhanced stability. Journal of Applied Polymer Science, 2017, 134, 45422.	1.3	31
105	Charge-Gated Ion Transport through Polyelectrolyte Intercalated Amine Reduced Graphene Oxide Membranes. ACS Applied Materials & Interfaces, 2017, 9, 41482-41495.	4.0	63
106	Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies. Journal of Membrane Science, 2017, 541, 108-126.	4.1	144
107	Parameters for Seawater Reverse Osmosis Product Water: A Review. Exposure and Health, 2017, 9, 157-168.	2.8	7
108	Elemental composition of membrane foulant layers using EDS, XPS, and RBS. Journal of Membrane Science, 2017, 522, 31-44.	4.1	79
109	Relative contributions of organic and inorganic fouling during nanofiltration of inland brackish surface water. Journal of Membrane Science, 2017, 523, 68-76.	4.1	49

#	Article	IF	CITATIONS
110	High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane. Separation and Purification Technology, 2017, 173, 135-143.	3.9	200
111	Fabrication of nanofiltration membranes via stepwise assembly of oligoamide on alumina supports: Effect of number of reaction cycles on membrane properties. Journal of Membrane Science, 2017, 543, 269-276.	4.1	10
112	Triclosan-immobilized polyamide thin film composite membranes with enhanced biofouling resistance. Applied Surface Science, 2018, 443, 458-466.	3.1	38
113	Lab-scale and pilot-scale fabrication of amine-functional reverse osmosis membrane with improved chlorine resistance and antimicrobial property. Journal of Membrane Science, 2018, 554, 221-231.	4.1	41
114	Facile and Scalable Flow-Induced Deposition of Organosilica on Porous Polymer Supports for Reverse Osmosis Desalination. ACS Applied Materials & Interfaces, 2018, 10, 14070-14078.	4.0	17
115	Influence of operating conditions on the removal of metals and sulfate from copper acid mine drainage by nanofiltration. Chemical Engineering Journal, 2018, 345, 114-125.	6.6	64
116	Reactable substrate participating interfacial polymerization for thin film composite membranes with enhanced salt rejection performance. Desalination, 2018, 436, 1-7.	4.0	39
117	Robust water desalination membranes against degradation using high loads of carbon nanotubes. Scientific Reports, 2018, 8, 2748.	1.6	41
118	Efficient surface modification of thin-film composite membranes with self-catalyzed tris(2-aminoethyl)amine for forward osmosis separation. Chemical Engineering Science, 2018, 178, 82-92.	1.9	34
119	Catalytic effect of iron on the tolerance of thin-film composite polyamide reverse osmosis membranes to hydrogen peroxide. Journal of Membrane Science, 2018, 548, 91-98.	4.1	18
120	Modification of microfiltration membranes by alkoxysilane polycondensation induced quaternary ammonium compounds grafting for biofouling mitigation. Journal of Membrane Science, 2018, 549, 165-172.	4.1	64
121	Application of nanofiltration for acidic waters containing rare earth elements: Influence of transition elements, acidity and membrane stability. Desalination, 2018, 430, 33-44.	4.0	59
122	Reinvestigation of membrane cleaning mechanisms using NaOCl: Role of reagent diffusion. Journal of Membrane Science, 2018, 550, 278-285.	4.1	30
123	Polyamide thin-film composite membrane modified with persulfate for improvement of perm-selectivity and chlorine-resistance. Journal of Membrane Science, 2018, 555, 318-326.	4.1	37
124	Real-scale chlorination at pH4 of BW30 TFC membranes and their physicochemical characterization. Journal of Membrane Science, 2018, 551, 123-135.	4.1	24
125	Chlorophenolic Compounds Degradation Based on Electrolyte-Free Electrochemical Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 4516-4520.	3.2	1
126	Physicochemical characterization of tight nanofiltration membranes for dairy wastewater treatment. Journal of Membrane Science, 2018, 547, 51-63.	4.1	74
127	Chlorine resistant TFN nanofiltration membrane incorporated with octadecylamine-grafted GO and fluorine-containing monomer. Journal of Membrane Science, 2018, 545, 185-195.	4.1	112

#	Article	IF	CITATIONS
128	Depositing sericin on partially degraded polyamide reverse osmosis membrane for restored salt rejection and simultaneously enhanced resistance to both fouling and chlorine. Journal of Membrane Science, 2018, 545, 196-203.	4.1	23
129	In situ modification of membrane elements for improved boron rejection in RO desalination. Desalination, 2018, 431, 66-72.	4.0	29
130	Acid mine drainage treatment by nanofiltration: A study of membrane fouling, chemical cleaning, and membrane ageing. Separation and Purification Technology, 2018, 192, 185-195.	3.9	74
131	Chemical cleaning of ultrafiltration membranes for polymer-flooding wastewater treatment: Efficiency and molecular mechanisms. Journal of Membrane Science, 2018, 545, 348-357.	4.1	32
132	Effects of hypochlorite exposure on the structure and electrochemical performance of ion exchange membranes in reverse electrodialysis. Journal of Membrane Science, 2018, 549, 295-305.	4.1	20
133	Modification of poly(amide-urethane-imide) (PAUI) thin film composite reverse osmosis membrane with nano-silver particles. RSC Advances, 2018, 8, 37817-37827.	1.7	4
134	Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance. RSC Advances, 2018, 8, 36430-36440.	1.7	17
135	Fabrication of eco-friendly nanofibrous membranes functionalized with carboxymethyl-β-cyclodextrin for efficient removal of methylene blue with good recyclability. RSC Advances, 2018, 8, 37715-37723.	1.7	7
136	Facile Fabrication of Unimpeded and Stable Graphene Oxide Coating on Reverse Osmosis Membrane for Dualâ€Functional Protection. ChemistrySelect, 2018, 3, 12122-12130.	0.7	2
137	Assessment and Modeling of Nanofiltration of Acid Mine Drainage. Industrial & Engineering Chemistry Research, 2018, 57, 14727-14739.	1.8	20
138	Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. Environment International, 2018, 121, 1039-1057.	4.8	94
139	Improved permselectivity of forward osmosis membranes for efficient concentration of pretreated rice straw and bioethanol production. Journal of Membrane Science, 2018, 566, 15-24.	4.1	21
140	PFOA and PFOS Are Generated from Zwitterionic and Cationic Precursor Compounds During Water Disinfection with Chlorine or Ozone. Environmental Science and Technology Letters, 2018, 5, 382-388.	3.9	71
141	Graphene Oxideâ€Based Polymeric Membranes for Water Treatment. Advanced Materials Interfaces, 2018, 5, 1701427.	1.9	70
142	Polyamide–surfactant interaction: Exploration of new avenues for reverse osmosis separation applications. Advances in Polymer Technology, 2018, 37, 3106-3114.	0.8	11
143	Novel CA/PVDF nanofiber supports strategically designed via coaxial electrospinning for high performance thin-film composite forward osmosis membranes for desalination. Desalination, 2018, 445, 63-74.	4.0	61
144	Preparation and characterization of thin-film-composite reverse-osmosis polyamide membrane with enhanced chlorine resistance by introducing thioether units into polyamide layer. Journal of Membrane Science, 2018, 564, 473-482.	4.1	27
145	Highâ€performance composite nanofiltration membranes fabricated via ternary mixture: Complementary preponderance of the fluorineâ€containing monomer 2,2′â€bis(1â€hydroxylâ€1â€trifluoromethylâ€2,2,2â€triflutoethyl)â€4,4′â€methylene dianiline and the rigid bisphenol F. lournal of Applied Polvmer Science. 2018. 135. 46482.	1.3 monomei	r ⁵

#	Article	IF	CITATIONS
146	Graphene oxide incorporated thin film nanocomposite membrane at low concentration monomers. Journal of Membrane Science, 2018, 565, 380-389.	4.1	127
147	High-performance thin-film composite membranes with surface functionalization by organic phosphonic acids. Journal of Membrane Science, 2018, 563, 284-297.	4.1	56
148	Improved separation performance and durability of polyamide reverse osmosis membrane in tertiary treatment of textile effluent through grafting monomethoxy-poly(ethylene glycol) brushes. Separation and Purification Technology, 2019, 209, 443-451.	3.9	22
149	Progress and outlook for capacitive deionization technology. Current Opinion in Chemical Engineering, 2019, 25, 1-8.	3.8	34
150	Elemental Depth Profiling of Chlorinated Polyamide-Based Thin-Film Composite Membranes with Elastic Recoil Detection. Environmental Science & Technology, 2019, 53, 8640-8648.	4.6	11
151	Deterioration Mechanism of a Tertiary Polyamide Reverse Osmosis Membrane by Hypochlorite. Environmental Science & Technology, 2019, 53, 9109-9117.	4.6	31
152	Molecular dynamics simulation studies of the structure and antifouling performance of a gradient polyamide membrane. Physical Chemistry Chemical Physics, 2019, 21, 19995-20002.	1.3	16
153	Behaviours and mechanisms of nanofiltration membrane fouling by anionic polyacrylamide with different molecular weights in brackish wastewater desalination. Desalination, 2019, 468, 114058.	4.0	19
154	Next-Generation Asymmetric Membranes Using Thin-Film Liftoff. Nano Letters, 2019, 19, 5036-5043.	4.5	28
155	Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination, 2019, 467, 245-256.	4.0	73
156	The upper bound of thin-film composite (TFC) polyamide membranes for desalination. Journal of Membrane Science, 2019, 590, 117297.	4.1	381
157	Quantitative assessment of the iron-catalyzed degradation of a polyamide nanofiltration membrane by hydrogen peroxide. Journal of Membrane Science, 2019, 588, 117154.	4.1	16
158	Chlorination Treatment of Meta-Aramid Fibrids and Its Effects on Mechanical Properties of Polytetramethylene Ether Glycol/Toluene Diisocyanate (PTMEG/TDI)-Based Polyurethane Composites. Polymers, 2019, 11, 1794.	2.0	5
159	Tailoring Surface Characteristics of Polyamide Thinâ€Film Composite Membranes toward Pronounced Switchable Wettability. Advanced Materials Interfaces, 2019, 6, 1801408.	1.9	7
160	Degradation of Polyamide Membranes Exposed to Chlorine: An Impedance Spectroscopy Study. Environmental Science & Technology, 2019, 53, 2618-2625.	4.6	65
161	Highly permeable and highly selective ultrathin film composite polyamide membranes reinforced by reactable polymer chains. Journal of Colloid and Interface Science, 2019, 552, 418-425.	5.0	24
162	Polyamide Nanofiltration Membranes Incorporated with Cellulose Nanocrystals for Enhanced Water Flux and Chlorine Resistance. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	12
163	Reactivity of the Polyamide Membrane Monomer with Free Chlorine: Reaction Kinetics, Mechanisms, and the Role of Chloride. Environmental Science & Technology, 2019, 53, 8167-8176.	4.6	30

#	Article	IF	CITATIONS
164	Water vapor transport properties of interfacially polymerized thin film nanocomposite membranes modified with graphene oxide and GO-TiO2 nanofillers. Chemical Engineering Journal, 2019, 373, 1190-1202.	6.6	92
165	End-of-life RO membranes recycling: Reuse as NF membranes by polyelectrolyte layer-by-layer deposition. Journal of Membrane Science, 2019, 584, 300-308.	4.1	47
166	Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability Chemosphere, 2019, 231, 103-112.	4.2	27
167	Performance evaluation of interfacial polymerisation-fabricated aquaporin-based biomimetic membranes in forward osmosis. RSC Advances, 2019, 9, 10715-10726.	1.7	15
168	Assessing potential of nanofiltration for sulfuric acid plant effluent reclamation: Operational and economic aspects. Separation and Purification Technology, 2019, 222, 369-380.	3.9	18
169	Graphene oxide (GO)-interlayered thin-film nanocomposite (TFN) membranes with high solvent resistance for organic solvent nanofiltration (OSN). Journal of Materials Chemistry A, 2019, 7, 13315-13330.	5.2	86
170	Performance of Acacia Gum as a Novel Additive in Thin Film Composite Polyamide RO Membranes. Membranes, 2019, 9, 30.	1.4	7
171	Water Softening Using a Light-Responsive, Spiropyran-Modified Nanofiltration Membrane. Polymers, 2019, 11, 344.	2.0	18
172	C2 and N3 substituted imidazolium functionalized poly(arylene ether ketone) anion exchange membrane for water electrolysis with improved chemical stability. Journal of Membrane Science, 2019, 581, 139-149.	4.1	57
173	Degradation of full aromatic polyamide NF membrane by sulfuric acid and hydrogen halides: Change of the surface/permeability properties. Polymer Degradation and Stability, 2019, 162, 1-11.	2.7	33
174	Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. Npj Clean Water, 2019, 2, .	3.1	71
175	Iron catalyzed degradation of an aromatic polyamide reverse osmosis membrane by free chlorine. Journal of Membrane Science, 2019, 577, 205-211.	4.1	27
176	Free chlorine exposure dose (ppm·h) and its impact on RO membranes ageing and recycling potential. Desalination, 2019, 457, 133-143.	4.0	44
177	Graphene oxide surface modification of polyamide reverse osmosis membranes for improved N-nitrosodimethylamine (NDMA) removal. Separation and Purification Technology, 2019, 210, 973-980.	3.9	30
178	Developing high-performance thin-film composite forward osmosis membranes by various tertiary amine catalysts for desalination. Advanced Composites and Hybrid Materials, 2019, 2, 51-69.	9.9	37
179	Surface immobilization of chlorhexidine on a reverse osmosis membrane for in-situ biofouling control. Journal of Membrane Science, 2019, 576, 17-25.	4.1	30
180	Toward Enhancing the Chlorine Resistance of Reverse Osmosis Membranes: An Effective Strategy via an End-capping Technology. Environmental Science & Technology, 2019, 53, 1296-1304.	4.6	41
181	Efficiencies and mechanisms of chemical cleaning agents for nanofiltration membranes used in produced wastewater desalination. Science of the Total Environment, 2019, 652, 256-266.	3.9	28

#	Article	IF	Citations
182	Combining co-solvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection. Journal of Membrane Science, 2019, 572, 61-72.	4.1	52
183	Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane. Journal of Membrane Science, 2019, 573, 36-45.	4.1	41
184	Cerium oxide doped nanocomposite membranes for reverse osmosis desalination. Chemosphere, 2019, 218, 974-983.	4.2	46
185	Fast polydopamine coating on reverse osmosis membrane: Process investigation and membrane performance study. Journal of Colloid and Interface Science, 2019, 535, 239-244.	5.0	48
186	Bench and pilot scale performance assessment of recycled membrane converted from old nanofiltration membranes. Environmental Technology (United Kingdom), 2020, 41, 1232-1244.	1.2	7
187	Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. Journal of Membrane Science, 2020, 593, 117398.	4.1	85
188	Tailoring the surface properties of carbon nitride incorporated thin film nanocomposite membrane for forward osmosis desalination. Journal of Water Process Engineering, 2020, 33, 101005.	2.6	36
189	Fabrication of thin-film nanocomposite nanofiltration membranes incorporated with aromatic amine-functionalized multiwalled carbon nanotubes. Rejection performance of inorganic pollutants from groundwater with improved acid and chlorine resistance. Chemical Engineering Journal, 2020, 384, 123348.	6.6	56
190	In-situ covalently bonded supramolecular-based protective layer for improving chlorine resistance of thin-film composite nanofiltration membranes. Desalination, 2020, 474, 114197.	4.0	57
191	Evaluation of a novel polyamide-polyethylenimine nanofiltration membrane for wastewater treatment: Removal of Cu2+ ions. Chemical Engineering Journal, 2020, 392, 123769.	6.6	36
192	Electrokinetic leakage as a tool to probe internal fouling in MF and UF membranes. Journal of Membrane Science, 2020, 599, 117707.	4.1	8
193	New Method toward a Robust Covalently Attached Cross-Linked Nanofiltration Membrane. ACS Applied Materials & Interfaces, 2020, 12, 47948-47956.	4.0	11
194	Intrinsic kinetics of interfacial polycondensation reactions– the reaction of mPDA with TMC. Polymer, 2020, 210, 122982.	1.8	3
195	Tailoring Charged Nanofiltration Membrane Based on Non-Aromatic Tris(3-aminopropyl)amine for Effective Water Softening. Membranes, 2020, 10, 251.	1.4	15
196	Custom-tailoring metal-organic framework in thin-film nanocomposite nanofiltration membrane with enhanced internal polarity and amplified surface crosslinking for elevated separation property. Desalination, 2020, 493, 114649.	4.0	35
197	Study on the Concentration of Acrylic Acid and Acetic Acid by Reverse Osmosis. Membranes, 2020, 10, 142.	1.4	5
198	Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling. Water Research, 2020, 185, 116203.	5.3	50
199	Surface Grafting of Reverse Osmosis Membrane with Chlorhexidine Using Biopolymer Alginate Dialdehyde as a Facile Green Platform for In Situ Biofouling Control. ACS Applied Materials & amp; Interfaces 2020, 12, 37515-37526	4.0	17

#	Article	IF	CITATIONS
200	Modification of used commercial reverse osmosis membranes to nanofiltration modules for the production of mineral-rich packaged drinking water. Applied Water Science, 2020, 10, 1.	2.8	18
201	Degradation of secondary polyamide reverse osmosis membrane by hypochlorite in the presence of calcium ions. Polymer Degradation and Stability, 2020, 181, 109351.	2.7	7
202	Lignin-Based Nanocapsules with Tunable Size for Cu(II) Ion Absorption. ACS Applied Nano Materials, 2020, 3, 10835-10843.	2.4	13
203	How Do Chemical Cleaning Agents Act on Polyamide Nanofiltration Membrane and Fouling Layer?. Industrial & Engineering Chemistry Research, 2020, 59, 17653-17670.	1.8	59
204	Enhancing the Chlorine Stability and Antifouling Properties of Thin-Film Composite Reverse Osmosis Membranes via Surface Grafting <i>L</i> -Arginine-Functionalized Polyvinyl Alcohol. Industrial & Engineering Chemistry Research, 2020, 59, 10882-10893.	1.8	19
205	Antibacterial Thin Film Composite Polyamide Membranes Prepared by Sequential Interfacial Polymerization. Macromolecular Materials and Engineering, 2020, 305, 2000114.	1.7	13
206	Resilient hollow fiber nanofiltration membranes fabricated from crosslinkable phase-separated copolymers. Molecular Systems Design and Engineering, 2020, 5, 943-953.	1.7	8
207	Controlled chlorination of polyamide reverse osmosis membranes at real scale for enhanced desalination performance. Journal of Membrane Science, 2020, 611, 118400.	4.1	18
208	Intrinsic Nanoscale Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure–Property Correlation. Environmental Science & Technology, 2020, 54, 3559-3569.	4.6	135
209	Improved anti-biofouling performance of pressure retarded osmosis (PRO) by dosing with chlorhexidine gluconate. Desalination, 2020, 481, 114376.	4.0	16
210	Custom-Tailoring Loose Nanofiltration Membrane for Precise Biomolecule Fractionation: New Insight into Post-Treatment Mechanisms. ACS Applied Materials & amp; Interfaces, 2020, 12, 13327-13337.	4.0	79
211	Morphological, chemical and electrical characterization of a family of commercial nanofiltration polyvinyl alcohol coated polypiperazineamide membranes. European Polymer Journal, 2020, 126, 109544.	2.6	12
212	Controllable synthesis of a chemically stable molecular sieving nanofilm for highly efficient organic solvent nanofiltration. Chemical Science, 2020, 11, 4263-4271.	3.7	21
213	Antibacterial effect of silver nanoparticles synthesised on a polycarbonate membrane. Materials Today: Proceedings, 2021, 36, 336-342.	0.9	8
214	High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nature Sustainability, 2021, 4, 138-146.	11.5	185
215	Effect of hydrophilic polymer modification of reverse osmosis membrane surfaces on organic adsorption and biofouling behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125680.	2.3	19
216	The impact of gamma-irradiation from radioactive liquid wastewater on polymeric structures of nanofiltration (NF) membranes. Journal of Hazardous Materials, 2021, 403, 123578.	6.5	7
217	Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneimine followed by zwitterionic modification. Journal of Membrane Science, 2021, 619, 118564	4.1	88

#	Article	IF	CITATIONS
218	New insights into tailoring polyamide structure for fabricating highly permeable reverse osmosis membranes. Desalination, 2021, 499, 114840.	4.0	18
219	Efficient and rapid multiscale approach of polymer membrane degradation and stability: Application to formulation of harmless non-oxidative biocide for polyamide and PES/PVP membranes. Separation and Purification Technology, 2021, 259, 118054.	3.9	8
220	Composite reverse osmosis membrane with a selective separation layer of double-layer structure for enhanced desalination, anti-fouling and durability properties. Desalination, 2021, 499, 114838.	4.0	30
221	Synergistic control of membrane biofouling using linoleic acid and sodium hypochlorite. Chemosphere, 2021, 268, 128802.	4.2	8
222	Highly permeable thin film composite hollow fiber membranes for brackish water desalination by incorporating amino functionalized carbon quantum dots and hypochlorite treatment. Journal of Membrane Science, 2021, 620, 118952.	4.1	27
223	Template-etched sodium alginate hydrogel as the sublayer to improve the FO performance with double barriers for high metal ion rejection. Chemical Engineering Journal, 2021, 413, 127425.	6.6	15
224	Nanomembranes for ultrapurification and water treatment. , 2021, , 657-691.		4
225	Polymer nanocomposite membranes for wastewater treatment. , 2021, , 605-672.		0
226	Degradation of Polyamide Nanofiltration Membranes by Bromine: Changes of Physiochemical Properties and Filtration Performance. Environmental Science & Technology, 2021, 55, 6329-6339.	4.6	16
227	Chemical cleaning reagent of sodium hypochlorite eroding polyvinylidene fluoride ultrafiltration membranes: Aging pathway, performance decay and molecular mechanism. Journal of Membrane Science, 2021, 625, 119141.	4.1	17
228	Rapid and eco-friendly technique for surface modification of TFC RO membrane for improved filtration performance. Journal of Environmental Chemical Engineering, 2021, 9, 105227.	3.3	25
229	Preparation of polysilsesquioxane reverse osmosis membranes for water desalination from tris[(ethoxysilyl)alkyl]amines by sol–gel process and interfacial polymerization. Applied Organometallic Chemistry, 2021, 35, e6374.	1.7	5
230	Molecular design of chlorine-resistant polymer for pervaporation desalination. Separation and Purification Technology, 2021, 268, 118671.	3.9	9
231	Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chemical Engineering Journal, 2021, 418, 129481.	6.6	217
232	Mechanism of permeance enhancement in mixed-matrix reverse osmosis membranes incorporated with graphene and its oxides. Separation and Purification Technology, 2021, 270, 118818.	3.9	10
233	Extending the life of water reuse reverse osmosis membranes using chlorination. Journal of Membrane Science, 2022, 642, 119897.	4.1	18
234	Nanofiltration membrane combining environmental-friendly polycarboxylic interlayer prepared from catechol for enhanced desalination performance. Desalination, 2021, 512, 115118.	4.0	22
235	Probing and relating the morphology, structure and performance evolution of low pressure RO membranes under chlorine exposure. Journal of Environmental Chemical Engineering, 2021, 9, 106223.	3.3	5

#	Article	IF	CITATIONS
236	Control of the antagonistic effects of heat-assisted chlorine oxidative degradation on pressure retarded osmosis thin film composite membrane surface. Journal of Membrane Science, 2021, 636, 119567.	4.1	5
237	Electrospun nanofiber based forward osmosis membrane using graphene oxide as substrate modifier for enhanced water flux and rejection performance. Desalination, 2021, 518, 115283.	4.0	23
238	Research on the mechanism of nanofiltration membrane fouling in zero discharge process of high salty wastewater from coal chemical industry. Chemical Engineering Science, 2021, 245, 116810.	1.9	30
239	Effect of halides on polyamide-based membrane flux and monomer degradation during chloramination. Journal of Membrane Science, 2021, 639, 119717.	4.1	7
240	Current status of hypochlorite technology on the wastewater treatment and sludge disposal: Performance, principals and prospects. Science of the Total Environment, 2022, 803, 150085.	3.9	35
241	Effects of peracetic acid on aromatic polyamide nanofiltration membranes: a comparative study with chlorine. Environmental Science: Water Research and Technology, 2021, 7, 306-320.	1.2	6
242	Reactivity of the Polyamide Membrane Monomer with Free Chlorine: Role of Bromide. Environmental Science & Technology, 2021, 55, 2575-2584.	4.6	8
243	Performance of thin film composite membranes for ammonium removal and reuse of ammonium-enriched solution for plant growth. Water Science and Technology: Water Supply, 2021, 21, 318-330.	1.0	5
244	Dopamine Incorporated Forward Osmosis Membranes with High Structural Stability and Chlorine Resistance. Processes, 2018, 6, 151.	1.3	16
245	N-chlorination and Orton Rearrangement of Aromatic Polyamides, Revisited. Journal of Membrane Science & Technology, 2012, 02, .	0.5	26
246	Enhancing chlorine resistance in polyamide membranes with surface & structure modification strategies. Water Science and Technology: Water Supply, 2022, 22, 1199-1215.	1.0	3
247	A review of zeolite materials used in membranes for water purification: history, applications, challenges and future trends. Journal of Chemical Technology and Biotechnology, 2022, 97, 575-596.	1.6	24
248	Remediating Free Chlorine from Aqueous Solution Using Hydrous Zirconium Oxide Impregnated Carbons. Journal of Chemical Engineering & Process Technology, 2016, 07, .	0.1	0
249	Research on the influence of polyaluminum chloride and benzotriazole on membrane fouling and membrane desalination performance. Journal of Environmental Chemical Engineering, 2021, 9, 106676.	3.3	2
250	Fabrication of a novel composite nanofiltration membrane with excellent acid resistance and water flux via the selective bond dissociation method. Journal of Membrane Science, 2022, 643, 120012.	4.1	13
251	Membrane Scaling in Forward Osmosis for the Treatment of Electroplating Wastewater. Water Pollution and Treatment, 2020, 08, 14-23.	0.0	0
252	Magnesium-Induced Variation of Polyamide Membrane Behavior for the Treatment of Haloacetic Acids in Swimming Pool Waters. ACS ES&T Water, 2021, 1, 346-355.	2.3	7
253	Tuning pore size and surface charge of poly(piperazinamide) nanofiltration membrane by enhanced chemical cleaning treatment. Journal of Membrane Science, 2022, 643, 120054.	4.1	24

			_
#	ARTICLE	IF	CITATIONS
254	Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	11
255	Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes. Frontiers of Chemical Science and Engineering, 2022, 16, 564-591.	2.3	6
256	Development of PSQ-RO membranes with high water permeability by copolymerization of bis[3-(triethoxysilyl)propyl]amine and triethoxy(3-glycidyloxypropyl)silane. Journal of Membrane Science, 2022, 644, 120162.	4.1	8
257	Impact of Polymer Membrane Properties on the Removal of Pharmaceuticals. Membranes, 2022, 12, 150.	1.4	8
258	Conductive reverse osmosis membrane for electrochemical chlorine reduction and sustainable brackish water treatment. Chemical Engineering Journal, 2022, 435, 134858.	6.6	7
259	Hybrid forward/reverse osmosis (HFRO): an approach for optimized operation and sustainable resource recovery. , 2022, , 69-94.		1
260	A method to quantify composition, purity, and cross-link density of the active polyamide layer in reverse osmosis composite membranes using 13C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy. Journal of Membrane Science, 2022, 648, 120346.	4.1	7
261	Rejection of Perfluorooctanoic Acid (Pfoa) and Perfluorooctane Sulfonate (Pfos) by Severely Chlorine Damaged Ro Membranes with Different Salt Rejection Ratios. SSRN Electronic Journal, 0, , .	0.4	0
262	The Role of Iron Present in Water Environment in Degradation of Polyamide Membranes by Free Chlorine. SSRN Electronic Journal, 0, , .	0.4	0
263	Polymer-based nanofiltration membranes. , 2022, , 159-196.		2
264	Chemoenzymatic Cascade Reaction for Green Cleaning of Polyamide Nanofiltration Membrane. ACS Applied Materials & Interfaces, 2022, 14, 12204-12213.	4.0	7
265	Fouling- and Chlorine-Resistant Nanofiltration Membranes Fabricated from Charged Zwitterionic Amphiphilic Copolymers. ACS Applied Polymer Materials, 2022, 4, 7998-8008.	2.0	8
266	The role of iron present in water environment in degradation of polyamide membranes by free chlorine. Journal of Membrane Science, 2022, 651, 120458.	4.1	8
267	CNTs Intercalated LDH Composite Membrane for Water Purification with High Permeance. Nanomaterials, 2022, 12, 59.	1.9	10
268	Degradation impact of low pH mineral acids and long exposure period on the active layer of semi-aromatic polyamine-based nanofiltration membrane. Polymer Degradation and Stability, 2022, 200, 109941.	2.7	3
269	Forward-Looking Roadmaps for Long-Term Continuous Water Quality Monitoring: Bottlenecks, Innovations, and Prospects in a Critical Review. Environmental Science & Technology, 2022, 56, 5334-5354.	4.6	26
270	Amino-embedded carbon quantum dots incorporated thin-film nanocomposite membrane for desalination by pervaporation. Desalination, 2022, 533, 115742.	4.0	11
271	Rejection of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by severely chlorine damaged RO membranes with different salt rejection ratios. Chemical Engineering Journal, 2022, 446, 137398.	6.6	12

#	Article	IF	CITATIONS
272	Recent Progress on the Development and Application of Polymeric Nanofiltration Membranes: A Mini-Review. Mini-Reviews in Organic Chemistry, 2024, 21, 3-21.	0.6	1
273	Tailored nanofiltration membranes with enhanced permeability and antifouling performance towards leachate treatment. Journal of Membrane Science, 2022, 658, 120730.	4.1	6
274	Recycling of aged RO membranes as NF/UF membranes: Biosafety evaluation and aging process. Desalination, 2022, 538, 115845.	4.0	6
275	Alkaline responsive self-healing nanocontainer composite reverse osmosis membrane by layer self-assembly: Enhanced permeable and chlorine resistance properties. Journal of Industrial and Engineering Chemistry, 2022, 113, 530-539.	2.9	3
276	Modification and characterization of TFC membranes with Ag nanoparticles: application in seawater desalination. Polymer Bulletin, 0, , .	1.7	2
277	Efficient and selective adsorption of Au(III) and Pd(II) by trimesoyl chloride-crosslinked polyethyleneimine. Reactive and Functional Polymers, 2022, 178, 105360.	2.0	12
278	Improvement the performance of TFC membranes by deposition a cationic/anionic polyelectrolyte onto their partially hypochlorite-degraded surfaces. Reactive and Functional Polymers, 2022, 180, 105388.	2.0	1
279	Complexation of tannic acid/silver nanoparticles on polyamide thin film composite reverse osmosis membrane for enhanced chlorine resistance and anti-biofouling properties. Desalination, 2022, 543, 116107.	4.0	13
280	Reactivity of Brcl, Brocl, Br2o, Br2, and Hobr Toward Polyamide Nanofiltration Membranes. SSRN Electronic Journal, O, , .	0.4	0
281	"Assessment of Xylem Discs from Fruiting and Shading Plants in Tap-water Desalination". Current Green Chemistry, 2022, 10, .	0.7	0
282	Positively charged modification of commercial nanofiltration membrane to enhance the separation of monoâ^'/divalent cation. Journal of Applied Polymer Science, 0, , .	1.3	0
283	Fabrication of high boron removal reverse osmosis membrane with broad industrial application prospect by introducing sulfonate groups through a polyvinyl alcohol coating. Journal of Membrane Science, 2022, 664, 121079.	4.1	9
284	Reactivity of various brominating agents toward polyamide nanofiltration membranes. Separation and Purification Technology, 2023, 305, 122490.	3.9	1
285	Oxidation resistances of polyamide nanofiltration membranes to hydroxyl and sulfate radicals. Journal of Membrane Science, 2023, 666, 121156.	4.1	3
286	Preparation of chlorine resistant thinâ€filmâ€composite reverseâ€osmosis polyamide membranes with triâ€acyl chloride containing thioether units. Journal of Applied Polymer Science, 0, , .	1.3	1
287	A review on the polyamide thin film composite (TFC) membrane used for desalination: Improvement methods, current alternatives, and challenges. Chemical Engineering Research and Design, 2023, 191, 472-492.	2.7	10
288	Construction and Chlorine Resistance of Thiophene-Poly(ethyleneimine)-Based Dual-Functional Nanofiltration Membranes. ACS Applied Materials & Interfaces, 2023, 15, 10018-10029.	4.0	5
289	Application of Radial Type Multifiber Media Filtration Process for Combined Sewer Overflow Treatment. Applied Sciences (Switzerland), 2023, 13, 3647.	1.3	1

#	Article	IF	CITATIONS
290	Preparation and Desalination of Semi-Aromatic Polyamide Reverse Osmosis Membranes (ROMs). Polymers, 2023, 15, 1683.	2.0	1
291	A mechanistic model for salt and water transport in leaky membranes: Implications for low-salt-rejection reverse osmosis membranes. Journal of Membrane Science, 2023, 678, 121642.	4.1	3
292	Antifouling Nano Filtration Membrane. , 2023, , 238-270.		0
308	Nanofiltration Membrane Techniques for Heavy Metal Separation. , 2023, , 301-327.		0

Composite membrane based systems. , 2024, , 1-46.

CITATION REPORT

0