An absence of neutrinos associated with cosmic-ray acc

Nature 484, 351-354 DOI: 10.1038/nature11068

Citation Report

#	Article	IF	CITATIONS
1	Temporal Evolution of GRB Spectra: Leptonic and Hadronic. Proceedings of the International Astronomical Union, 2011, 7, 319-320.	0.0	0
2	Gamma-ray bursts and their links with supernovae and cosmology. Research in Astronomy and Astrophysics, 2012, 12, 1139-1161.	0.7	16
3	Implications of the pseudo-Dirac scenario for ultra high energy neutrinos from GRBs. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 014-014.	1.9	34
4	High energy neutrinos from dissipative photospheric models of gamma ray bursts. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 058-058.	1.9	43
5	The latest nus from IceCube. , 2012, , .		0
6	Neutrino decays over cosmological distances and the implications for neutrino telescopes. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 020-020.	1.9	96
7	Neutrino Emission from Gamma-Ray Burst Fireballs, Revised. Physical Review Letters, 2012, 108, 231101.	2.9	145
8	Testing violations of Lorentz invariance with cosmic rays. Physical Review D, 2012, 86, .	1.6	14
9	Probing the structure of jet-driven core-collapse supernova and long gamma-ray burst progenitors with high-energy neutrinos. Physical Review D, 2012, 86, .	1.6	24
10	GRAVITATIONAL SHOCKS AS A KEY INGREDIENT OF GAMMA-RAY BURSTS. International Journal of Modern Physics A, 2012, 27, 1250110.	0.5	0
12	DETECTION OF NEUTRINOS FROM MICRO-QUASARS II. International Journal of Modern Physics E, 2012, 21, 1250086.	0.4	0
13	DETECTION OF NEUTRINOS FROM MICRO-QUASARS I. International Journal of Modern Physics E, 2012, 21, 1250085.	0.4	0
14	Neutrino Astronomy: An Update. Proceedings of the International Astronomical Union, 2012, 8, 84-97.	0.0	0
15	The IceCube Neutrino Telescope. Proceedings of the International Astronomical Union, 2012, 8, 105-114.	0.0	0
16	Towards a model of population of astrophysical sources of ultrahigh-energy cosmic rays. Physical Review D, 2012, 86, .	1.6	10
17	Neutrinos and cosmic rays. Astroparticle Physics, 2012, 39-40, 120-128.	1.9	5
18	A REVIEW OF PARTICLE ASTROPHYSICS WITH ICECUBE. Modern Physics Letters A, 2012, 27, 1230042.	0.5	2
19	First test of Lorentz violation with a reactor-based antineutrino experiment. Physical Review D, 2012, 86	1.6	41

ARTICLE IF CITATIONS # Neutrinos from decaying muons, pions, neutrons and kaons in gamma ray bursts. Astroparticle 20 1.9 3 Physics, 2012, 36, 195-203. Towards high-energy neutrino astronomy. European Physical Journal H, 2012, 37, 515-565. 29 A reduction in the UHE neutrino flux due to neutrino spin precession. Physics Letters, Section B: 22 1.5 9 Nuclear, Elementary Particle and High-Energy Physics, 2012, 718, 26-29. DELAYED ONSET OF HIGH-ENERGY EMISSIONS IN LEPTONIC AND HADRONIC MODELS OF GAMMA-RAY BURSTS. Astrophysical Journal, 2012, 757, 115. Towards High-Energy Neutrino Astronomy., 2012, , 231-263. 24 1 Extensive air showers and ultra high-energy cosmic rays: a historical review. European Physical Journal H, 2012, 37, 359-412. Neutrino astronomy: An update. Frontiers of Physics, 2013, 8, 759-770. 26 2.4 1 Gamma-ray bursts in the swift-Fermi era. Frontiers of Physics, 2013, 8, 661-678. 2.4 57 Gamma-ray bursts and the relevance of rotation-induced neutrino sterilization. Physics Letters, 28 1.5 2 Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 719, 218-219. Demystifying the PeV cascades in IceCube: Less (energy) is more (events). Physical Review D, 2013, 88, . 1.6 Long-lived PeV–EeV neutrinos from gamma-ray burst blastwave. Physical Review D, 2013, 88, . 30 39 1.6 <i>Colloquium</i>: Multimessenger astronomy with gravitational waves and high-energy neutrinos. 16.4 Reviews of Modern Physics, 2013, 85, 1401-1420. TeV–PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars. Physical Review Letters, 2013, 32 2.9 223 111, 121102. Detection Prospects for GeV Neutrinos from Collisionally Heated Gamma-ray Bursts with IceCube/DeepCore. Physical Review Letters, 2013, 110, 241101. On the origin of IceCube's PeV neutrinos. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 34 1.9 72 030-030. KM3NeT and galactic point-like sources. Nuclear Physics, Section B, Proceedings Supplements, 2013, 237-238, 246-249. Neutrino Astronomy with the IceCube Observatory. Journal of Physics: Conference Series, 2013, 409, 36 0.3 2 012014. Charged Cosmic Rays and Neutrinos. Nuclear Physics, Section B, Proceedings Supplements, 2013, 237-238, 218-223.

#	Article	IF	CITATIONS
38	Implications of the Penetration Depth of Ultrahigh-Energy Cosmic Rays on Physics at 100ÂTeV. Physical Review Letters, 2013, 110, 021101.	2.9	6
39	Results from the IceCube Experiment. Nuclear Physics, Section B, Proceedings Supplements, 2013, 235-236, 346-351.	0.5	2
40	Neutrino spin oscillations in matter under the influence of gravitational and electromagnetic fields. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 015-015.	1.9	19
41	How gravitational-wave observations can shape the gamma-ray burst paradigm. Classical and Quantum Gravity, 2013, 30, 123001.	1.5	91
42	The Astrophysical Multimessenger Observatory Network (AMON). Astroparticle Physics, 2013, 45, 56-70.	1.9	83
43	Gamma-ray burst science in the era of the Cherenkov Telescope Array. Astroparticle Physics, 2013, 43, 252-275.	1.9	58
44	First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 006-006.	1.9	13
45	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
46	A search for correlation of ultra-high energy cosmic rays with IRAS-PSCz and 2MASS-6dF galaxies. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 015-015.	1.9	8
47	The cosmic triad: Cosmic rays, gamma-rays and neutrinos. , 2013, , .		Ο
48	Hadronic models for Large Area Telescope prompt emission observed in Fermi gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3238-3251.	1.6	14
49	Clinical effects of surgical and Gamma Knife treatments on hippocampal sclerosis-induced intractable epilepsy of children below age 10 years. Pakistan Journal of Medical Sciences, 2013, 29, 943-6.	0.3	2
50	DIFFUSE PeV NEUTRINOS FROM GAMMA-RAY BURSTS. Astrophysical Journal, 2013, 766, 73.	1.6	60
51	Effects of large extra dimensions on cosmogenic neutrino fluxes. Journal of Physics G: Nuclear and Particle Physics, 2013, 40, 055202.	1.4	7
52	The transient gravitational-wave sky. Classical and Quantum Gravity, 2013, 30, 193002.	1.5	40
53	UHECR ESCAPE MECHANISMS FOR PROTONS AND NEUTRONS FROM GAMMA-RAY BURSTS, AND THE COSMIC-RAY-NEUTRINO CONNECTION. Astrophysical Journal, 2013, 768, 186.	1.6	46
54	<i>Fermi</i> and <i>Swift</i> Observations of Short GRBs. EAS Publications Series, 2013, 61, 39-43.	0.3	0
55	Wide-Band Spectra of Prompt Emission. EAS Publications Series, 2013, 61, 115-122.	0.3	0

#	Article	IF	CITATIONS
56	FermiGBM Capabilities for Multi-Messenger Time-Domain Astronomy. EAS Publications Series, 2013, 61, 657-662.	0.3	3
57	Model-Dependent High-Energy Neutrino Flux from Gamma-Ray Bursts. Physical Review Letters, 2013, 110, 121101.	2.9	76
58	Explanation for the Low Flux of High-Energy Astrophysical Muon Neutrinos. Physical Review Letters, 2013, 110, 171802.	2.9	43
59	IceCube PeV cascade events initiated by electron-antineutrinos at Glashow resonance. Physical Review D, 2013, 87, .	1.6	23
60	Possible high-energy neutrino and photon signals from gravitational wave bursts due to double neutron star mergers. Physical Review D, 2013, 88, .	1.6	19
61	Testing the hadronuclear origin of PeV neutrinos observed with IceCube. Physical Review D, 2013, 88, .	1.6	269
62	Neutron-Proton-Converter Acceleration Mechanism at Subphotospheres of Relativistic Outflows. Physical Review Letters, 2013, 111, 131103.	2.9	18
63	Subphotospheric Neutrinos from Gamma-Ray Bursts: The Role of Neutrons. Physical Review Letters, 2013, 111, 131102.	2.9	52
64	MUON ACCELERATION IN COSMIC-RAY SOURCES. Astrophysical Journal, 2013, 779, 106.	1.6	24
65	<i>FERMI</i> LIMIT ON THE NEUTRINO FLUX FROM GAMMA-RAY BURSTS. Astrophysical Journal Letters, 2013, 770, L40.	3.0	8
66	NEUTRINO ASTRONOMY AT THE SOUTH POLE. Modern Physics Letters A, 2013, 28, 1340004.	0.5	0
67	VAST: An ASKAP Survey for Variables and Slow Transients. Publications of the Astronomical Society of Australia, 2013, 30, .	1.3	88
68	ON THE NEUTRINO NON-DETECTION OF GRB 130427A. Astrophysical Journal Letters, 2013, 772, L4.	3.0	31
69	Modeling cosmic ray proton induced terrestrial neutron flux: A lookâ€up table. Journal of Geophysical Research: Space Physics, 2013, 118, 2765-2770.	0.8	12
70	Sources of UHECRs in view of the TUS and JEM-EUSO experiments. Journal of Physics: Conference Series, 2013, 409, 012100.	0.3	1
71	Acceleration and propagation of ultrahigh energy cosmic rays. Journal of Physics: Conference Series, 2013, 409, 012007.	0.3	11
72	Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data. Astronomy and Astrophysics, 2013, 559, A9.	2.1	57
73	Active galactic nuclei jets and multiple oblique shock acceleration: starved spectra. Astronomy and Astrophysics, 2013, 556, A88.	2.1	17

#	Article	IF	CITATIONS
74	The KM3NeT project: status and perspectives. Geoscientific Instrumentation, Methods and Data Systems, 2013, 2, 35-40.	0.6	0
75	Invisible decays of ultra-high energy neutrinos. Frontiers in Physics, 2013, 1, .	1.0	22
77	Very high energy photons and neutrinos: Implications for UHECR. EPJ Web of Conferences, 2013, 53, 01012.	0.1	4
78	Interpretation of ultra-high energy multi-messenger data. EPJ Web of Conferences, 2013, 53, 01013.	0.1	2
79	TANAMI blazars in the IceCube PeV-neutrino fields. Astronomy and Astrophysics, 2014, 566, L7.	2.1	46
80	Cosmic PeV neutrinos and the sources of ultrahigh energy protons. Physical Review D, 2014, 90, .	1.6	33
81	PROPAGATION AND NEUTRINO OSCILLATIONS IN THE BASE OF A HIGHLY MAGNETIZED GAMMA-RAY BURST FIREBALL FLOW. Astrophysical Journal, 2014, 787, 140.	1.6	16
82	CONSTRAINTS ON THE HADRONIC CONTENT OF GAMMA RAY BURSTS. Astrophysical Journal, 2014, 793, 48.	1.6	15
83	Implications of a PeV neutrino spectral cut-off in gamma-ray burst models. Monthly Notices of the Royal Astronomical Society, 2014, 445, 570-580.	1.6	38
84	GeV-PeV neutrino production and oscillation in hidden jets from gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2187-2200.	1.6	43
85	The role of hadronic cascades in GRB models of efficient neutrino production. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3026-3036.	1.6	17
86	Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?. Monthly Notices of the Royal Astronomical Society, 2014, 443, 474-484.	1.6	103
87	Hadronic supercriticality as a trigger for Î ³ -ray burst emission. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2186-2199.	1.6	11
88	Quantum-Spacetime Scenarios and Soft Spectral Lags of the Remarkable GRB130427A. Advances in High Energy Physics, 2014, 2014, 1-16.	0.5	12
89	UHE neutrino and cosmic ray emission from GRBs: Revising the models and clarifying the cosmic ray-neutrino connection. , 2014, , .		0
90	Implications of <i>Fermi</i> -LAT observations on the origin of IceCube neutrinos. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 028-028.	1.9	16
91	Diffuse neutrino intensity from the inner jets of active galactic nuclei: Impacts of external photon fields and the blazar sequence. Physical Review D, 2014, 90, .	1.6	202
92	Pinpointing extragalactic neutrino sources in light of recent IceCube observations. Physical Review D, 2014, 90, .	1.6	85

#	Article	IF	CITATIONS
93	Pseudo-Dirac neutrinos via a mirror world and depletion of ultrahigh energy neutrinos. Physical Review D, 2014, 89, .	1.6	20
94	Diffuse PeV neutrinos from EeV cosmic ray sources: Semirelativistic hypernova remnants in star-forming galaxies. Physical Review D, 2014, 89, .	1.6	62
95	Can a single high-energy neutrino from gamma-ray bursts be a discovery?. Physical Review D, 2014, 90, .	1.6	5
96	Ultra-high Energy Cosmic Rays and Neutrinos from Gamma-Ray Bursts, Hypernovae and Galactic Shocks. Nuclear Physics, Section B, Proceedings Supplements, 2014, 256-257, 241-251.	0.5	19
97	Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration. Physical Review D, 2014, 89, .	1.6	74
98	Search for neutrino-induced particle showers with IceCube-40. Physical Review D, 2014, 89, .	1.6	23
99	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
100	NEUTRINO AND COSMIC-RAY RELEASE FROM GAMMA-RAY BURSTS: TIME-DEPENDENT SIMULATIONS. Astrophysical Journal, 2014, 785, 54.	1.6	25
101	ULTRA HIGH-ENERGY NEUTRINOS VIA HEAVY-MESON SYNCHROTRON EMISSION IN STRONG MAGNETIC FIELDS. Astrophysical Journal, 2014, 782, 70.	1.6	1
102	High-energy neutrino astronomy: a glimpse of the promised land. Physics-Uspekhi, 2014, 57, 470-481.	0.8	8
103	Explanation for the Low Flux of High Energy Astrophysical Muon Neutrinos. Nuclear Physics, Section B, Proceedings Supplements, 2014, 246-247, 85-89.	0.5	2
104	Transient point source analyses in the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 195-198.	0.7	1
105	Origin of the High Energy Cosmic Neutrino Background. Physical Review Letters, 2014, 113, 191102.	2.9	14
106	GAMMA-RAY BURST PROMPT EMISSION. International Journal of Modern Physics D, 2014, 23, 1430002.	0.9	40
107	Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Physical Review Letters, 2014, 113, 101101.	2.9	873
108	Detection of ultra-high-energy neutrinos by IceCube: sterile neutrino scenario. European Physical Journal C, 2014, 74, 1.	1.4	10
109	IceCube Neutrinos: From GeV to PeV. Nuclear Physics, Section B, Proceedings Supplements, 2014, 246-247, 3-17.	0.5	1
110	Recent results from the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 63-70.	0.7	6

#	Article	IF	Citations
111	Recent Highlights from IceCube. Brazilian Journal of Physics, 2014, 44, 540-549.	0.7	2
112	The latest IceCube results. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 766, 43-47.	0.7	1
113	Neutrino astronomy: An update. Astroparticle Physics, 2014, 53, 166-174.	1.9	1
114	IceCube. Annual Review of Nuclear and Particle Science, 2014, 64, 101-123.	3.5	28
115	Cosmic neutrino pevatrons: A brand new pathway to astronomy, astrophysics, and particle physics. Journal of High Energy Astrophysics, 2014, 1-2, 1-30.	2.4	136
116	Gamma–ray bursts: Recent results and connections to very high energy cosmic rays and neutrinos. Journal of Physics: Conference Series, 2014, 485, 012001.	0.3	3
117	Neutrino flavor ratios modified by cosmic-ray secondary acceleration. Physical Review D, 2015, 92, .	1.6	8
118	Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. Physical Review Letters, 2015, 115, 081102.	2.9	247
119	NEUTRINOS FROM GAMMA-RAY BURSTS: PROPAGATION OF COSMIC RAYS IN THEIR HOST GALAXIES. Astrophysical Journal Letters, 2015, 803, L5.	3.0	3
120	Decaying leptophilic dark matter at IceCube. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 055-055.	1.9	56
121	Einstein's Triumph. , 0, , 1-9.		0
122	Relativistic Astrophysics. , 0, , 97-161.		0
123	SEARCH FOR PROMPT NEUTRINO EMISSION FROM GAMMA-RAY BURSTS WITH ICECUBE. Astrophysical Journal Letters, 2015, 805, L5.	3.0	124
124	On the origin of high-energy cosmic neutrinos. AIP Conference Proceedings, 2015, , .	0.3	41
125	Status of High-Energy Neutrino Astronomy. Journal of Physics: Conference Series, 2015, 632, 012039.	0.3	25
126	Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 036-036.	1.9	17
127	Recent results from ANTARES. EPJ Web of Conferences, 2015, 99, 06003.	0.1	0
128	Astrophysical origin of high-energy cosmic neutrinos. EPJ Web of Conferences, 2015, 99, 05001.	0.1	0

		ITATION REPC	ORT	
#	Article	I	F	CITATIONS
129	Gamma-Ray Bursts as Multienergy Neutrino Sources. Advances in Astronomy, 2015, 2015, 1-10.	(0.5	6
130	UHECR acceleration at GRB internal shocks. Monthly Notices of the Royal Astronomical Society, 201 451, 751-790.	5, 1	L.6	79
131	High-energy cosmic neutrino puzzle: a review. Reports on Progress in Physics, 2015, 78, 126901.	٤	3.1	51
132	COSMIC TRANSIENTS TEST EINSTEIN'S EQUIVALENCE PRINCIPLE OUT TO GeV ENERGIES. Astrop Journal, 2015, 810, 121.	hysical 1	L.6	57
133	Swift discoveries of new populations of extremely long duration high energy transient. Journal of High Energy Astrophysics, 2015, 7, 44-55.	2	2.4	17
134	High Energy Neutrino Astronomy and Neutrino Mass Hierarchy with KM3NeT: Status and perspective Nuclear and Particle Physics Proceedings, 2015, 265-266, 221-226.	es. o	0.2	1
135	Neutrinos from gamma ray bursts in the IceCube and ARA era. Journal of High Energy Astrophysics, 2015, 7, 90-94.	2	2.4	5
136	Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 744, 55-58.		L.5	16
137	ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION. Astrophysical Journal, 2015, 806, 269	'. 1	L.6	31
138	Limit on the ultrahigh-energy neutrino flux from lunar observations with the Parkes radio telescope. Physical Review D, 2015, 91, .		L.6	13
139	SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012 Astrophysical Journal, 2015, 807, 46.	. 1	L.6	56
140	PeV-EeV neutrinos from GRB blast waves in IceCube and future neutrino telescopes. Physical Review 2015, 91, .	D, 1	L.6	13
141	Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts. Nature Communications, 2015, 6, 6783.	Ę	5.8	63
142	Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2210-2223.	1	L.6	22
143	RELATIVISTIC MHD SIMULATIONS OF COLLISION-INDUCED MAGNETIC DISSIPATION IN POYNTING-FLUX-DOMINATED JETS/OUTFLOWS. Astrophysical Journal, 2015, 805, 163.	1	L.6	48
144	On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 016-016.	1	L.9	37
145	Results from the ANTARES Neutrino Telescope with Six Years of Data. Physics Procedia, 2015, 61, 450-458.	1	1.2	2
146	The physics of gamma-ray bursts & relativistic jets. Physics Reports, 2015, 561, 1-109.	1	10.3	682

#	ARTICLE	IF	Citations
147	66-91.	1.9	53
148	Neutrinos from Gamma Ray Bursts in the IceCube and ARA Era. EPJ Web of Conferences, 2016, 121, 05001.	0.1	0
149	GRB Observational Properties. Space Science Reviews, 2016, 202, 3-32.	3.7	14
150	The weak bound state with the non-zero charge density as the LHC 126.5 GeV state. Physics of Particles and Nuclei, 2016, 47, 838-862.	0.2	Ο
151	SEARCH FOR BLAZAR FLUX-CORRELATED TEV NEUTRINOS IN ICECUBE 40-STRING DATA. Astrophysical Journal, 2016, 833, 117.	1.6	16
152	Low energy IceCube data and a possible Dark Matter related excess. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 757, 251-256.	1.5	43
153	THE ANATOMY OF A LONG GAMMA-RAY BURST: A SIMPLE CLASSIFICATION SCHEME FOR THE EMISSION MECHANISM(S). Astrophysical Journal, 2016, 820, 68.	1.6	5
154	Exploring the Universe with Very High Energy Neutrinos. Nuclear and Particle Physics Proceedings, 2016, 273-275, 125-134.	0.2	1
155	A case for radio galaxies as the sources of IceCube's astrophysical neutrino flux. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 002-002.	1.9	39
156	Limits on the neutrino velocity, Lorentz invariance, and the weak equivalence principle with TeV neutrinos from gamma-ray bursts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 031-031.	1.9	30
157	Inspecting the supernova–gamma-ray-burst connection with high-energy neutrinos. Physical Review D, 2016, 93, .	1.6	60
158	Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Physical Review D, 2016, 93, .	1.6	131
159	Infinite efficiency of the collisional Penrose process: Can a overspinning Kerr geometry be the source of ultrahigh-energy cosmic rays and neutrinos?. Physical Review D, 2016, 93, .	1.6	24
160	AN ALL-SKY SEARCH FOR THREE FLAVORS OF NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE ICECUBE NEUTRINO OBSERVATORY. Astrophysical Journal, 2016, 824, 115.	1.6	109
161	Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos. Physical Review D, 2016, 94, .	1.6	5
162	Ultrahigh-energy cosmic ray production by turbulence in gamma-ray burst jets and cosmogenic neutrinos. Physical Review D, 2016, 94, .	1.6	26
163	Could a multi-PeV neutrino event have as origin the internal shocks inside the GRB progenitor star?. Journal of High Energy Astrophysics, 2016, 9-10, 25-34.	2.4	9
164	Photodisintegrated gamma rays and neutrinos from heavy nuclei in the gamma-ray burst jet of GRB 130427A. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 458, L79-L83.	1.2	2

#	Article	IF	CITATIONS
165	Constraints on the ultra-high-energy neutrino flux from Gamma-Ray bursts from a prototype station of the Askaryan radio array. Astroparticle Physics, 2017, 88, 7-16.	1.9	6
166	Astrophysical neutrino production diagnostics with the Glashow resonance. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 033-033.	1.9	26
167	Multi-messenger Light Curves from Gamma-Ray Bursts in the Internal Shock Model. Astrophysical Journal, 2017, 837, 33.	1.6	32
168	Summary of Parallel Session: "Relativistic and Particle Astrophysicsâ€: , 2017, , .		0
169	On the non-thermal electron-to-proton ratio at cosmic ray acceleration sites. Astroparticle Physics, 2017, 90, 75-84.	1.9	18
170	Star-forming galaxies significantly contribute to the isotropic gamma-ray background. Physical Review D, 2017, 96, .	1.6	31
171	Neutrinos from Core-Collapse Supernovae. , 2017, , 141-153.		0
172	The Theory of Gamma-Ray Bursts. Space Science Reviews, 2017, 212, 409-427.	3.7	16
173	Prospects of establishing the origin of cosmic neutrinos using source catalogs. Physical Review D, 2017, 96, .	1.6	11
174	Astrophysical Sources of High-Energy Neutrinos in the IceCube Era. Annual Review of Nuclear and Particle Science, 2017, 67, 45-67.	3.5	58
175	A Search for Neutrinos from Fast Radio Bursts with IceCube. Astrophysical Journal, 2017, 845, 14.	1.6	11
176	Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. Astrophysical Journal, 2017, 843, 112.	1.6	116
177	On the Direct Correlation between Gamma-Rays and PeV Neutrinos from Blazars. Astrophysical Journal, 2017, 843, 109.	1.6	60
178	Gamma-Ray Bursts and Fast Transients. Space Science Reviews, 2017, 207, 63-86.	3.7	21
179	Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope. European Physical Journal C, 2017, 77, 1.	1.4	8
180	Prompt Neutrino Emission of Gamma-ray Bursts in the Dissipative Photospheric Scenario Revisited: Possible Contributions from Cocoons. Astrophysical Journal, 2017, 843, 17.	1.6	6
181	High energy neutrinos from the tidal disruption of stars. Physical Review D, 2017, 95, .	1.6	61
182	Ultrahigh energy neutrino afterglows of nearby long duration gamma-ray bursts. Physical Review D, 2017, 96, .	1.6	7

		ITATION REPORT	
#	Article	IF	CITATIONS
183	KM3NeT highlights. Nuclear and Particle Physics Proceedings, 2017, 291-293, 183-188.	0.2	1
184	High-energy gamma rays and neutrinos from nearby radio galaxies. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 017-017.	1.9	11
185	Neutrino Interactions with Nuclei and Dark Matter. , 2017, , .		0
186	Gamma-Ray Bursts as Neutrino Sources. , 2017, , 1-14.		6
187	On the non-detection of Glashow resonance in IceCube. Journal of High Energy Astrophysics, 2018, 1-4.	18, 2.4	6
188	Astrophysical neutrinos and cosmic rays observed by IceCube. Advances in Space Research, 2018, 6. 2902-2930.	2, 1.2	20
189	Solving the missing GRB neutrino and GRB-SN puzzles. Nuclear and Particle Physics Proceedings, 20 297-299, 249-258.	18, 0.2	2
190	Multi-Messenger Signatures of PeV-ZeV Cosmic Ray Sources. Nuclear and Particle Physics Proceedin 2018, 297-299, 217-225.	gs, 0.2	0
191	A Few Selected Topics in Extreme Astrophysical Phenomena: Gamma-ray Burst as a Source of Multi-messenger Astrophysics and Cosmic Particles as a Would-be Messenger. Journal of the Korean Physical Society, 2018, 73, 736-746.	0.3	0
192	Constraining high-energy neutrinos from choked-jet supernovae with IceCube high-energy starting events. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 008-008.	1.9	21
193	Observations and physics of prompt emission of gamma ray bursts. Journal of Astrophysics and Astronomy, 2018, 39, 1.	0.4	7
194	Transejecta high-energy neutrino emission from binary neutron star mergers. Physical Review D, 201 98, .	8, 1.6	46
195	Supernova explosions of massive stars and cosmic rays. Advances in Space Research, 2018, 62, 277	3-2816. 1.2	15
196	The THESEUS space mission concept: science case, design and expected performances. Advances in Research, 2018, 62, 191-244.	Space 1.2	133
197	THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Resear 2018, 62, 662-682.	rch, 1.2	56
198	Cosmic ray and neutrino emission from gamma-ray bursts with a nuclear cascade. Astronomy and Astrophysics, 2018, 611, A101.	2.1	54
199	A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data. Astrophysical Journal, 2018, 857, 117.	1.6	22
200	Commutative or noncommutative spacetime? Two length scales of noncommutativity. Physical Revi D, 2019, 99, .	ew 1.6	4

#	Article	IF	CITATIONS
201	High-Energy Multimessenger Transient Astrophysics. Annual Review of Nuclear and Particle Science, 2019, 69, 477-506.	3.5	40
202	Neutrino-dark matter scattering and coincident detections of UHE neutrinos with EM sources. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 013-013.	1.9	13
203	Multi-messenger astrophysics. Nature Reviews Physics, 2019, 1, 585-599.	11.9	79
204	The Origin of the Most Energetic Galactic Cosmic Rays: Supernova Explosions into Massive Star Plasma Winds. Galaxies, 2019, 7, 48.	1.1	4
205	Unbiased Long-Term Monitoring at TeV Energies. Galaxies, 2019, 7, 51.	1.1	2
206	On the Common Origin of Cosmic Rays across the Ankle and Diffuse Neutrinos at the Highest Energies from Low-luminosity Gamma-Ray Bursts. Astrophysical Journal, 2019, 872, 110.	1.6	36
207	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
208	Active galactic nuclei and the origin of IceCube's diffuse neutrino flux. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 012-012.	1.9	32
209	Synchrotron Self-Compton as a Likely Mechanism of Photons beyond the Synchrotron Limit in GRB 190114C. Astrophysical Journal, 2019, 883, 162.	1.6	46
210	Neutrino fluence from gamma-ray bursts: off-axis view of structured jets. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4935-4943.	1.6	8
211	Constraining photohadronic scenarios for the unified origin of IceCube neutrinos and ultrahigh-energy cosmic rays. Physical Review D, 2020, 102, .	1.6	11
212	Systematic parameter space study for the UHECR origin from GRBs in models with multiple internal shocks. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5990-6004.	1.6	22
213	Host Galaxies of Type Ic and Broad-lined Type Ic Supernovae from the Palomar Transient Factory: Implications for Jet Production. Astrophysical Journal, 2020, 892, 153.	1.6	40
214	A quark nova in the wake of a core-collapse supernova: a unifying model for long duration gamma-ray bursts and fast radio bursts. Research in Astronomy and Astrophysics, 2020, 20, 027.	0.7	7
215	High energy neutrino astronomy with KM3NeT. Journal of Physics: Conference Series, 2020, 1342, 012019.	0.3	1
216	Neutrino Telescopes and High-Energy Cosmic Neutrinos. Universe, 2020, 6, 30.	0.9	14
217	Gravitational slingshots around black holes in a binary. European Physical Journal Plus, 2020, 135, 1.	1.2	1
218	Impact of the Collision Model on the Multi-messenger Emission from Gamma-Ray Burst Internal Shocks. Astrophysical Iournal. 2020. 893. 72.	1.6	8

#	Article	IF	CITATIONS
219	Physics of radiation mediated shocks and its applications to GRBs, supernovae, and neutron star mergers. Physics Reports, 2020, 866, 1-46.	10.3	38
220	The Application of Electromagnetic Sensors for Determination of Cherenkov Cone Inside and in the Vicinity of the Detector Volume in Any Environment Known. Sensors, 2021, 21, 992.	2.1	0
221	Starburst galaxies strike back: a multi-messenger analysis with Fermi-LAT and IceCube data. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4032-4049.	1.6	32
222	Revisiting AGN as the source of IceCube's diffuse neutrino flux. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 031.	1.9	20
223	High-energy Neutrinos from Choked Gamma-Ray Bursts in Active Galactic Nucleus Accretion Disks. Astrophysical Journal Letters, 2021, 911, L19.	3.0	18
224	Search for high-energy neutrino emission from radio-bright AGN. Physical Review D, 2021, 103, .	1.6	30
225	Impact of secondary acceleration on the neutrino spectra in gamma-ray bursts. Astronomy and Astrophysics, 2014, 569, A58.	2.1	21
226	Multiwavelength follow-up of a rare IceCube neutrino multiplet. Astronomy and Astrophysics, 2017, 607, A115.	2.1	33
228	Planckian Energy-Mass Source and the Dynamics of the Universe: Phenomenology. International Journal of Astrophysics and Space Science, 2014, 2, 33.	0.5	6
229	Cosmic ray transport and anisotropies to high energies. ASTRA Proceedings, 0, 2, 39-44.	0.0	4
231	Neutrinos from GRBs, and the connection to gamma-ray observations. , 2012, , .		0
232	A Decade of Bursts with the SPI-ACS. , 2013, , .		0
234	High-Energy Neutrino Astrophysics. Astronomy and Astrophysics Library, 2015, , 321-357.	0.2	0
235	A Possible Alternative to the Accelerating Universe II. Journal of Modern Physics, 2015, 06, 1360-1370.	0.3	7
236	GRB Observational Properties. Space Sciences Series of ISSI, 2016, , 5-34.	0.0	0
237	Search for high-energy neutrinos from dust obscured Blazars. , 2016, , .		0
238	Neutrinos and the origin of the cosmic rays. , 2016, , .		0
239	A Possible Alternative to the Accelerating Universe IV. Journal of Modern Physics, 2017, 08, 622-635.	0.3	4

#	Article	IF	CITATIONS
240	Gamma-Ray Bursts and their Relation to Astroparticle Physics and Cosmology. , 2017, , .		0
241	Gamma-Ray Bursts and Fast Transients. Space Sciences Series of ISSI, 2017, , 63-86.	0.0	0
242	High-Energy Neutrino Astrophysics. Astronomy and Astrophysics Library, 2018, , 355-399.	0.2	0
243	Gravitational Physics: From Quantum to Waves. , 2018, , 357-488.		0
244	Speed of Gravitation and Electromagnetic Waves through the Dark Energy of Intergalactic Space and Its Implications of a Unified Theory. Journal of Modern Physics, 2018, 09, 573-583.	0.3	2
245	A Possible Solution to the Disagreement about the Hubble Constant. Journal of Modern Physics, 2018, 09, 1827-1837.	0.3	1
246	The IceCube Pie Chart: Relative Source Contributions to the Cosmic Neutrino Flux. Astrophysical Journal, 2021, 921, 45.	1.6	15
247	Prospective Annual Detection Rate of High-energy Gamma-Ray Bursts with LHAASO-WCDA. Astrophysical Journal, 2020, 900, 67.	1.6	3
248	Multiwavelength radiation models for low-luminosity GRBs and the implications for UHECRs. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5823-5842.	1.6	6
249	Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data. Astrophysical Journal, 2022, 928, 50.	1.6	67
250	Contribution from TeV halos to the isotropic gamma-ray background. Physical Review D, 2022, 106, .	1.6	1
251	High-Energy Extragalactic Neutrino Astrophysics. Annual Review of Nuclear and Particle Science, 2022, 72, 365-387.	3.5	11
252	Synchrotron Self-Compton Afterglow Closure Relations and Fermi-LAT-detected Gamma-Ray Bursts. Astrophysical Journal, 2022, 934, 188.	1.6	10
253	Constraints on the Very High Energy Gamma-Ray Emission from Short GRBs with HAWC. Astrophysical Journal, 2022, 936, 126.	1.6	2
254	Flavour specific neutrino self-interaction: H ₀ tension and IceCube. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 011.	1.9	6
255	Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory. Astrophysical Journal, 2022, 939, 116.	1.6	18
256	Neutrinos from the Brightest Gamma-Ray Burst?. Astrophysical Journal Letters, 2022, 941, L10.	3.0	20
257	Constraints on Gamma-Ray Burst Models from GRB 221009A: GeV Gamma Rays versus High-energy Neutrinos. Astrophysical Journal Letters, 2023, 943, L2.	3.0	17

#	Article	IF	CITATIONS
258	Star-forming galaxies provide a larger contribution to the isotropic gamma-ray background than misaligned active galactic nuclei. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 003.	1.9	0
259	Energy-dependent flavor ratios, cascade/track spectrum tension and high-energy neutrinos from magnetospheres of supermassive black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2023, 839, 137758.	1.5	2
260	Neutrino search from <i>γ</i> -ray bursts during the prompt and X-ray afterglow phases using 10 years of IceCube public data. Astronomy and Astrophysics, 2023, 672, A102.	2.1	2
261	Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory. Astrophysical Journal Letters, 2023, 946, L26.	3.0	13