The Provenances of Asteroids, and Their Contributions Terrestrial Planets

Science 337, 721-723 DOI: 10.1126/science.1223474

Citation Report

#	Article	IF	CITATIONS
1	Origin of water and mantle–crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth and Planetary Science Letters, 2012, 357-358, 119-129.	1.8	152
2	Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature, 2013, 499, 328-331.	13.7	201
3	The bulk composition of Mars. Chemie Der Erde, 2013, 73, 401-420.	0.8	196
4	The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions. Geochimica Et Cosmochimica Acta, 2013, 123, 244-260.	1.6	211
5	The near-Earth objects and their potential threat to our planet. Astronomy and Astrophysics Review, 2013, 21, 1.	9.1	46
6	Hydrogen Isotopes in Lunar Volcanic Glasses and Melt Inclusions Reveal a Carbonaceous Chondrite Heritage. Science, 2013, 340, 1317-1320.	6.0	218
7	The Science of Exoplanets and Their Systems. Astrobiology, 2013, 13, 793-813.	1.5	10
8	Late delivery of chondritic hydrogen into the lunar mantle: Insights from mare basalts. Earth and Planetary Science Letters, 2013, 361, 480-486.	1.8	67
9	Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science, 2013, 339, 780-785.	6.0	340
10	Hydrogen isotopic composition of the water in CR chondrites. Geochimica Et Cosmochimica Acta, 2013, 106, 111-133.	1.6	55
11	A hydrogen-based oxidation mechanism relevant to planetary formation. Earth and Planetary Science Letters, 2013, 380, 88-97.	1.8	115
12	In situ observation of D-rich carbonaceous globules embedded in NWA 801 CR2 chondrite. Geochimica Et Cosmochimica Acta, 2013, 122, 306-323.	1.6	19
13	Black rain: The burial of the Galilean satellites in irregular satellite debris. Icarus, 2013, 223, 775-795.	1.1	30
14	Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites. Icarus, 2013, 223, 722-732.	1.1	50
15	The abundance, distribution, and isotopic composition of Hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochimica Et Cosmochimica Acta, 2013, 122, 58-74.	1.6	127
16	Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochimica Et Cosmochimica Acta, 2013, 109, 90-112.	1.6	52
17	Highly sensitive tunable diode laser spectrometers for in situ planetary exploration. , 2013, , .		1
18	Primordial Origins of Earth's Carbon. Reviews in Mineralogy and Geochemistry, 2013, 75, 149-181.	2.2	69

#	Article	IF	CITATIONS
19	A <i>HERSCHEL</i> STUDY OF D/H IN WATER IN THE JUPITER-FAMILY COMET 45P/HONDA-MRKOS-PAJDUÅÃKOVÕAND PROSPECTS FOR D/H MEASUREMENTS WITH CCAT. Astrophysical Journal Letters, 2013, 774, L3.	3.0	73
20	What Makes a Habitable Planet?. Eos, 2013, 94, 149-150.	0.1	4
21	The D/H ratio in the atmospheres of Uranus and Neptune from <i>Herschel</i> -PACS observations. Astronomy and Astrophysics, 2013, 551, A126.	2.1	76
22	6. Primordial Origins of Earth's Carbon. , 2013, , 149-182.		1
23	Organic material in meteorites and the link to the origin of life. BIO Web of Conferences, 2014, 2, 03001.	0.1	6
24	OPTIMAL SURVEY STRATEGIES AND PREDICTED PLANET YIELDS FOR THE KOREAN MICROLENSING TELESCOPE NETWORK. Astrophysical Journal, 2014, 794, 52.	1.6	78
25	Isotopic diversity in interplanetary dust particles and preservation of extreme 16 O-depletion. Geochimica Et Cosmochimica Acta, 2014, 142, 115-131.	1.6	31
26	Understanding the origin and evolution of water in the Moon through lunar sample studies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130254.	1.6	35
27	Apatites in lunar KREEP basalts: The missing link to understanding the H isotope systematics of the Moon. Geology, 2014, 42, 363-366.	2.0	98
28	Elemental, isotopic, and structural changes in Tagish Lake insoluble organic matter produced by parent body processes. Meteoritics and Planetary Science, 2014, 49, 503-525.	0.7	75
29	Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science, 2014, 346, 626-629.	6.0	93
30	Water deuterium fractionation in the high-mass star-forming region G34.26+0.15 based on Herschel/HIFI data. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1299-1313.	1.6	28
31	The Grand Tack model: a critical review. Proceedings of the International Astronomical Union, 2014, 9, 194-203.	0.0	26
32	CHEMODYNAMICAL DEUTERIUM FRACTIONATION IN THE EARLY SOLAR NEBULA: THE ORIGIN OF WATER ON EARTH AND IN ASTEROIDS AND COMETS. Astrophysical Journal, 2014, 784, 39.	1.6	86
33	The secondary history of Sutter's Mill CM carbonaceous chondrite based on water abundance and the structure of its organic matter from two clasts. Meteoritics and Planetary Science, 2014, 49, 2064-2073.	0.7	21
34	H and Cl isotope systematics of apatite in brecciated lunar meteorites Northwest Africa 4472, Northwest Africa 773, Sayh al Uhaymir 169, and Kalahari 009. Meteoritics and Planetary Science, 2014, 49, 2266-2289.	0.7	62
35	Aqueous alteration on main belt primitive asteroids: Results from visible spectroscopy. Icarus, 2014, 233, 163-178.	1.1	75
36	Variations in the O-isotope composition of gas during the formation of chondrules from the CR chondrites. Geochimica Et Cosmochimica Acta, 2014, 132, 50-74.	1.6	55

#	ARTICLE Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble	IF 1.8	CITATIONS
38	Dynamics of the terrestrial planets from a large number of N-body simulations. Earth and Planetary Science Letters, 2014, 392, 28-38.	1.8	67
39	Origin of insoluble organic matter in type 1 and 2 chondrites: New clues, new questions. Geochimica Et Cosmochimica Acta, 2014, 136, 80-99.	1.6	68
40	Evolution of water reservoirs on Mars: Constraints from hydrogen isotopes in martian meteorites. Earth and Planetary Science Letters, 2014, 394, 179-185.	1.8	97
41	The Drive to Life on Wet and Icy Worlds. Astrobiology, 2014, 14, 308-343.	1.5	232
42	Forming Terrestrial Planets. Science, 2014, 344, 479-480.	6.0	7
43	Heterogeneous distribution of water in the Moon. Nature Geoscience, 2014, 7, 401-408.	5.4	79
44	Escape of the martian protoatmosphere and initial water inventory. Planetary and Space Science, 2014, 98, 106-119.	0.9	83
45	Early accretion of water in the inner solar system from a carbonaceous chondrite–like source. Science, 2014, 346, 623-626.	6.0	128
46	What caused terrestrial dust loading and climate downturns between A.D. 533 and 540?. , 2014, , .		4
47	Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345, 1593-1596.	6.0	2,260
48	A water–ice rich minor body from the early Solar System: The CR chondrite parent asteroid. Earth and Planetary Science Letters, 2014, 407, 48-60.	1.8	50
49	Hydrosphere genesis in the isotope record. Journal of Water Chemistry and Technology, 2014, 36, 11-18.	0.2	3
50	The ancient heritage of water ice in the solar system. Science, 2014, 345, 1590-1593.	6.0	229
51	THE EFFECT OF PLANETS BEYOND THE ICE LINE ON THE ACCRETION OF VOLATILES BY HABITABLE-ZONE ROCKY PLANETS. Astrophysical Journal, 2014, 786, 33.	1.6	49
52	The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth and Planetary Science Letters, 2014, 390, 244-252.	1.8	118
53	Corrigendum to "Late delivery of chondritic hydrogen into the lunar mantle: Insights from mare basalts―[Earth Planet. Sci. Lett. 361 (2013) 480–486]. Earth and Planetary Science Letters, 2014, 389, 105.	1.8	1
54	Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models. Comptes Rendus - Geoscience, 2014, 346, 3-12.	0.4	21

		CITATION REPORT		
#	Article		IF	Citations
55	Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential pr molecules for ancient coenzymes. Geochimica Et Cosmochimica Acta, 2014, 136, 1-12.	ecursor	1.6	47
56	Planetary laser spectrometer for sensitive in situ detection of water at 1881nm. Planeta Science, 2014, 92, 127-135.	ry and Space	0.9	0
57	Relationships between organics, water and early stages of aqueous alteration in the princhondrite MET 00426. Geochimica Et Cosmochimica Acta, 2014, 131, 344-367.	stine CR3.0	1.6	129
58	Transmission infrared spectra (2–25μm) of carbonaceous chondrites (CI, CM, CVâ€	"CK, CR, C2) Tj ETQq1 1 0).784314 ı 1.1	gBT /Overlo 114
59	Dynamical delivery of volatiles to the outer main belt. Icarus, 2014, 232, 13-21.		1.1	14
60	PROTOSOLAR AMMONIA AS THE UNIQUE SOURCE OF TITAN's NITROGEN. Astrophysic 2014, 788, L24.	al Journal Letters,	3.0	74
61	The abundance and stability of "water―in type 1 and 2 carbonaceous chondrites (Geochimica Et Cosmochimica Acta, 2014, 137, 93-112.	CI, CM and CR).	1.6	104
62	The cratering record, chronology and surface ages of (4) Vesta in comparison to smalle and the ages of HED meteorites. Planetary and Space Science, 2014, 103, 104-130.	rasteroids	0.9	80
63	Isotopic compositions of asteroidal liquid water trapped in fluid inclusions of chondrites Geochemical Journal, 2014, 48, 549-560.	S.	0.5	22
65	Sibelius and astronomy: beyond 'The Sky at Night'. Astronomy and Geophysics, 2015, 5	6, 2.27-2.31.	0.1	1
66	Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric ana infrared spectroscopy. Earth, Planets and Space, 2015, 67, .	lysis and	0.9	62
67	Carbonate abundances and isotopic compositions in chondrites. Meteoritics and Planet 2015, 50, 810-833.	ary Science,	0.7	108
68	Current Ideas about Prebiological Compartmentalization. Life, 2015, 5, 1239-1263.		1.1	125
69	Nebular dead zone effects on the D/H ratio in chondrites and comets. Astronomy and A 2015, 583, A58.	strophysics,	2.1	6
71	Internal sources of water on Earth. Proceedings of the International Astronomical Unior 407-410.	ι, 2015, 11,	0.0	0
72	The AMINO experiment: exposure of amino acids in the EXPOSE-R experiment on the In Station and in laboratory. International Journal of Astrobiology, 2015, 14, 89-97.	ternational Space	0.9	22
73	Cometary Isotopic Measurements. Space Science Reviews, 2015, 197, 47-83.		3.7	112
74	Comprehensive study of carbon and oxygen isotopic compositions, trace element abun cathodoluminescence intensities of calcite in the Murchison CM chondrite. Geochimica Cosmochimica Acta, 2015, 161, 101-117.	dances, and Et	1.6	31

#	Article	IF	CITATIONS
75	Evidence for primordial water in Earth's deep mantle. Science, 2015, 350, 795-797.	6.0	159
76	Micron-scale D/H heterogeneity in chondrite matrices: A signature of the pristine solar system water?. Earth and Planetary Science Letters, 2015, 415, 154-164.	1.8	53
77	DETECTIONS OF TRANS-NEPTUNIAN ICE IN PROTOPLANETARY DISKS. Astrophysical Journal, 2015, 799, 162.	1.6	40
78	Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan. Icarus, 2015, 250, 570-586.	1.1	41
79	Reactive ammonia in the solar protoplanetary disk and the origin of Earth's nitrogen. Nature Geoscience, 2015, 8, 97-101.	5.4	21
80	Nitrogen isotope variations in the Solar System. Nature Geoscience, 2015, 8, 515-522.	5.4	147
81	A global response roadmap to the asteroid impact threat: The NEOShield perspective. Planetary and Space Science, 2015, 118, 311-317.	0.9	7
82	Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochimica Et Cosmochimica Acta, 2015, 165, 148-160.	1.6	115
83	The molecular composition of impact-generated atmospheres on terrestrial planets during the post-accretion stage. Icarus, 2015, 257, 290-301.	1.1	19
84	Metabolic precursors in astrophysical ice analogs: implications for meteorites and comets. Chemical Communications, 2015, 51, 11787-11790.	2.2	6
85	Hydrogen and carbon isotopic ratios of polycyclic aromatic compounds in two CM2 carbonaceous chondrites and implications for prebiotic organic synthesis. Earth and Planetary Science Letters, 2015, 426, 101-108.	1.8	19
86	Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 2015, 6, 7444.	5.8	150
87	Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: Implications for alteration conditions and H2 degassing of asteroids. Earth and Planetary Science Letters, 2015, 420, 162-173.	1.8	107
88	VOLATILE DELIVERY TO PLANETS FROM WATER-RICH PLANETESIMALS AROUND LOW-MASS STARS. Astrophysical Journal, 2015, 804, 9.	1.6	84
89	The chlorine isotope fingerprint of the lunar magma ocean. Science Advances, 2015, 1, e1500380.	4.7	103
90	Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Science Advances, 2015, 1, e1500863.	4.7	115
91	Variations of Stable Isotope Ratios in Nature. , 2015, , 191-383.		0
92	Variable mass theories in relativistic quantum mechanics as an explanation for anomalous low energy nuclear phenomena. Journal of Physics: Conference Series, 2015, 615, 012016.	0.3	5

	CITATION R	EPORT	
#	Article	IF	Citations
93	Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: Abundances, distributions, processes, and reservoirs. American Mineralogist, 2015, 100, 1668-1707.	0.9	160
94	Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. Space Science Reviews, 2015, 197, 297-342.	3.7	25
95	Origin and Evolution of the Cometary Reservoirs. Space Science Reviews, 2015, 197, 191-269.	3.7	140
96	The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science, 2015, 347, 412-414.	6.0	113
97	Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments. Geochimica Et Cosmochimica Acta, 2015, 149, 206-222.	1.6	183
98	Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth and Planetary Science Letters, 2015, 410, 140-151.	1.8	83
99	67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science, 2015, 347, 1261952.	6.0	403
100	The Twin Sister Planets Venus and Earth. , 2015, , .		13
101	Water in the Moon's interior: Truth and consequences. Earth and Planetary Science Letters, 2015, 409, 252-264.	1.8	179
102	D-poor hydrogen in lunar mare basalts assimilated from lunar regolith. American Mineralogist, 2016, 101, 1596-1603.	0.9	21
103	The chlorine isotope composition of Martian meteorites 2. Implications for the early solar system and the formation of Mars. Meteoritics and Planetary Science, 2016, 51, 2111-2126.	0.7	38
104	Astrophysics with Extraterrestrial Materials. Annual Review of Astronomy and Astrophysics, 2016, 54, 53-93.	8.1	133
105	Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2016, 189, 296-311.	1.6	29
106	EXPERIMENTAL INVESTIGATION OF IRRADIATION-DRIVEN HYDROGEN ISOTOPE FRACTIONATION IN ANALOGS OF PROTOPLANETARY HYDROUS SILICATE DUST. Astrophysical Journal, 2016, 832, 55.	1.6	8
107	The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Scientific Reports, 2016, 6, 38888.	1.6	76
108	Mobility of iron and nickel at low temperatures: Implications for 60Fe–60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica Et Cosmochimica Acta, 2016, 178, 87-105.	1.6	25
109	Early degassing of lunar urKREEP by crust-breaching impact(s). Earth and Planetary Science Letters, 2016, 447, 84-94.	1.8	78
110	Isotopic constraints on the source of Pluto× ³ s nitrogen and the history of atmospheric escape. Planetary and Space Science, 2016, 130, 104-109.	0.9	4

	CITATION RE	PORT	
Article		IF	CITATIONS
Preservation of ancient impact ages on the R chondrite parent body: 40 Ar/ 39 Ar age o hornblendeâ€bearing R chondrite LAP 04840. Meteoritics and Planetary Science, 2016	of 5, 51, 1678-1684.	0.7	2
INWARD RADIAL MIXING OF INTERSTELLAR WATER ICES IN THE SOLAR PROTOPLANET Journal Letters, 2016, 827, L1.	ARY DISK. Astrophysical	3.0	41
The abundance and isotopic composition of water in eucrites. Meteoritics and Planeta 51, 1110-1124.	ry Science, 2016,	0.7	37
Hydrogen isotopic composition of the Martian mantle inferred from the newest Martia fall, Tissint. Meteoritics and Planetary Science, 2016, 51, 2073-2091.	an meteorite	0.7	29
The sustainability of habitability on terrestrial planets: Insights, questions, and needed from Mars for understanding the evolution of Earthâ€like worlds. Journal of Geophysic Planets, 2016, 121, 1927-1961.	measurements al Research E:	1.5	72
Reflectance spectroscopy of oxalate minerals and relevance to Solar System carbon in Icarus, 2016, 278, 7-30.	ventories.	1.1	9
An asteroidal origin for water in the Moon. Nature Communications, 2016, 7, 11684.		5.8	68
Elephant Moraine 96029, a very mildly aqueously altered and heated CM carbonaceou Implications for the drivers of parent body processing. Geochimica Et Cosmochimica A 237-259.	s chondrite: .cta, 2016, 187,	1.6	39
Water in evolved lunar rocks: Evidence for multiple reservoirs. Geochimica Et Cosmoch 2016, 188, 244-260.	nimica Acta,	1.6	45
Heterogeneous distribution of H ₂ O in the Martian interior: Implications for abundance of H ₂ O in depleted and enriched mantle sources. Meteoritics Science, 2016, 51, 2036-2060.	or the and Planetary	0.7	103
Genesis of volatile components at Saturn's regular satellites. Origin of Titan's a Geochemistry International, 2016, 54, 7-26.	atmosphere.	0.2	8
Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent the ROSETTA cometary mission. Earth and Planetary Science Letters, 2016, 441, 91-10	results from)2.	1.8	143
EXPLORING THE ORIGINS OF DEUTERIUM ENRICHMENTS IN SOLAR NEBULAR ORGANI Journal, 2016, 819, 13.	CS. Astrophysical	1.6	43
Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous c Proceedings of the National Academy of Sciences of the United States of America, 201	hondrites. 16, 113, 2011-2016.	3.3	152
The Atmosphere and Hydrosphere. , 2016, , 237-278.			4
GRASPING THE NATURE OF POTENTIALLY HAZARDOUS ASTEROIDS. Astronomical Jour	nal, 2016, 151, 11.	1.9	21

130	Constraints on the early delivery and fractionation of Earth's major volatiles from C/H, C/N, and C/S ratios. American Mineralogist, 2016, 101, 540-553.	0.9	85
131	Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition. Icarus, 2016, 264, 172-183.	1.1	38

#

#	Article	IF	CITATIONS
132	Astrobiology and the Possibility of Life on Earth and Elsewhere…. Space Science Reviews, 2017, 209, 1-42.	3.7	66
133	Hydrogen isotope fractionation in methane plasma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 870-874.	3.3	16
134	Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature, 2017, 541, 525-527.	13.7	147
135	The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth's C and N. Chemie Der Erde, 2017, 77, 227-256.	0.8	163
136	A divergent heritage for complex organics in Isheyevo lithic clasts. Geochimica Et Cosmochimica Acta, 2017, 205, 119-148.	1.6	14
138	Mineral Surface Rearrangement at High Temperatures: Implications for Extraterrestrial Mineral Grain Reactivity. ACS Earth and Space Chemistry, 2017, 1, 113-121.	1.2	7
139	Type 1 aqueous alteration in <scp>CM</scp> carbonaceous chondrites: Implications for the evolution of waterâ€rich asteroids. Meteoritics and Planetary Science, 2017, 52, 1197-1215.	0.7	62
140	Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160209.	1.6	51
141	The origin of inner Solar System water. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20150384.	1.6	46
142	DYNAMIC DEUTERIUM ENRICHMENT IN COMETARY WATER VIA ELEY–RIDEAL REACTIONS. Astrophysical Journal, 2017, 835, 67.	1.6	4
143	A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth and Planetary Science Letters, 2017, 473, 14-23.	1.8	36
144	The search for and analysis of direct samples of early Solar System aqueous fluids. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20150386.	1.6	15
145	Angrite meteorites record the onset and flux of water to the inner solar system. Geochimica Et Cosmochimica Acta, 2017, 212, 156-166.	1.6	33
146	The bulk valence state of Fe and the origin of water in chondrites. Geochimica Et Cosmochimica Acta, 2017, 211, 115-132.	1.6	42
147	Origin and Evolution of Water in the Moon's Interior. Annual Review of Earth and Planetary Sciences, 2017, 45, 89-111.	4.6	29
148	A whiff of nebular gas in Titan's atmosphere – Potential implications for the conditions and timing of Titan's formation. Icarus, 2017, 293, 231-242.	1.1	8
149	Pathways to Meteoritic Glycine and Methylamine. ACS Earth and Space Chemistry, 2017, 1, 3-13.	1.2	46
150	One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity. Science Advances, 2017, 3, e1602093.	4.7	69

#	Article	IF	Citations
151	How thick are Mercury's polar water ice deposits?. Icarus, 2017, 284, 407-415.	1.1	21
152	Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 2017, 355, 55-59.	6.0	169
153	Distribution of aliphatic amines in <scp>CO</scp> , <scp> CV</scp> , and <scp>CK</scp> carbonaceous chondrites and relation to mineralogy and processing history. Meteoritics and Planetary Science, 2017, 52, 2632-2646.	0.7	10
154	Solar Wind Sputtering Rates of Small Bodies and Ion Mass Spectrometry Detection of Secondary Ions. Journal of Geophysical Research E: Planets, 2017, 122, 1968-1983.	1.5	24
155	Carbon isotopic variation in ureilites: Evidence for an early, volatile-rich Inner Solar System. Earth and Planetary Science Letters, 2017, 478, 143-149.	1.8	22
156	Physical and dynamical properties of the anomalous comet 249P/LINEAR. Icarus, 2017, 295, 34-45.	1.1	12
157	Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology, 2017, 17, 471-510.	1.5	371
158	Water in the Earth's Interior: Distribution and Origin. Space Science Reviews, 2017, 212, 743-810.	3.7	139
159	Nitrogen-to-carbon atomic ratio measured by COSIMA in the particles of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S506-S516.	1.6	49
160	The production rate of cosmogenic deuterium at the Moon's surface. Earth and Planetary Science Letters, 2017, 474, 76-82.	1.8	30
161	Petrographic and C & O isotopic characteristics of the earliest stages of aqueous alteration of CM chondrites. Geochimica Et Cosmochimica Acta, 2017, 213, 271-290.	1.6	35
162	Interaction of organic compounds with chondritic silicate surfaces. Atomistic insights from quantum chemical periodic simulations. Physical Chemistry Chemical Physics, 2017, 19, 18217-18231.	1.3	7
163	Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion. Icarus, 2017, 297, 134-148.	1.1	197
164	Nebular ingassing as a source of volatiles to the Terrestrial planets. Chemical Geology, 2017, 448, 137-150.	1.4	53
165	Mass independent sulfur isotope signatures in CMs: Implications for sulfur chemistry in the early solar system. Geochimica Et Cosmochimica Acta, 2017, 196, 326-350.	1.6	34
166	Water in type I chondrules of Paris CM chondrite. Geochimica Et Cosmochimica Acta, 2017, 199, 75-90.	1.6	18
167	Water delivery from cores to disks: Deuteration as a probe of the prestellar inheritance of H ₂ O. Astronomy and Astrophysics, 2017, 599, A40.	2.1	38
168	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	3.7	76

#	Article	IF	CITATIONS
169	Isotopic Dichotomy among Meteorites and Its Bearing on the Protoplanetary Disk. Astrophysical Journal, 2018, 854, 164.	1.6	76
170	Availability and delta-v requirements for delivering water extracted from near-Earth objects to cis-lunar space. Planetary and Space Science, 2018, 159, 28-42.	0.9	21
171	Evaluation of hydrogen absorption cells for observations of the planetary coronas. Review of Scientific Instruments, 2018, 89, 023111.	0.6	1
172	d -Amino acids in molecular evolution in space – Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 743-758.	1.1	25
173	An Infrared Spectroscopic Study Toward the Formation of Alkylphosphonic Acids and Their Precursors in Extraterrestrial Environments. Astrophysical Journal, Supplement Series, 2018, 234, 6.	3.0	18
174	The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. Astrobiology, 2018, 18, 1-27.	1.5	64
175	Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. Space Science Reviews, 2018, 214, 1.	3.7	88
176	Organic matter in extraterrestrial water-bearing salt crystals. Science Advances, 2018, 4, eaao3521.	4.7	64
177	Cometary Dust. Space Science Reviews, 2018, 214, 1.	3.7	88
178	From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction. Space Science Reviews, 2018, 214, 1.	3.7	8
179	A dual origin for water in carbonaceous asteroids revealed by CM chondrites. Nature Astronomy, 2018, 2, 317-323.	4.2	43
180	A mutli-technique search for the most primitive CO chondrites. Geochimica Et Cosmochimica Acta, 2018, 221, 406-420.	1.6	62
181	New candidates for active asteroids: Main-belt (145) Adeona, (704) Interamnia, (779) Nina, (1474) Beira, and near-Earth (162,173) Ryugu. Icarus, 2018, 304, 83-94.	1.1	18
182	Low-temperature aqueous alteration on the CR chondrite parent body: Implications from in situ oxygen-isotope analyses. Geochimica Et Cosmochimica Acta, 2018, 222, 230-252.	1.6	35
183	Sulfide–oxide assemblages in Acfer 094—Clues to nebular metal–gas interactions. Meteoritics and Planetary Science, 2018, 53, 187-203.	0.7	7
184	Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics and Planetary Science, 2018, 53, 1793-1804.	0.7	65
185	A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents. Geochimica Et Cosmochimica Acta, 2018, 220, 19-35.	1.6	24
186	Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus, 2018, 307, 327-346.	1.1	43

#	Article	IF	CITATIONS
187	Oxygen isotopic ratios of primordial water in carbonaceous chondrites. Earth and Planetary Science Letters, 2018, 481, 264-272.	1.8	25
188	Carbide-metal assemblages in a sample returned from asteroid 25143 Itokawa: Evidence for methane-rich fluids during metamorphism. Geochimica Et Cosmochimica Acta, 2018, 222, 53-73.	1.6	28
189	Origin and abundance of water in carbonaceous asteroids. Earth and Planetary Science Letters, 2018, 482, 23-32.	1.8	59
190	Radial mixing and Ru–Mo isotope systematics under different accretion scenarios. Earth and Planetary Science Letters, 2018, 482, 105-114.	1.8	19
191	Gas–Solid Interactions on Venus and Other Solar System Bodies. Reviews in Mineralogy and Geochemistry, 2018, 84, 351-392.	2.2	42
192	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
193	The alteration history of the Jbilet Winselwan CM carbonaceous chondrite: An analog for Câ€ŧype asteroid sample return. Meteoritics and Planetary Science, 2019, 54, 521-543.	0.7	35
194	The Effect of Jupiter's Formation on the Distribution of Refractory Elements and Inclusions in Meteorites. Astrophysical Journal, Supplement Series, 2018, 238, 11.	3.0	158
195	Origin of Earth's Water: Chondritic Inheritance Plus Nebular Ingassing and Storage of Hydrogen in the Core. Journal of Geophysical Research E: Planets, 2018, 123, 2691-2712.	1.5	61
196	Investigating the history of volatiles in the solar system using synchrotron infrared micro-spectroscopy. Infrared Physics and Technology, 2018, 94, 244-249.	1.3	2
197	Exploring the Origins of Earth's Nitrogen: Astronomical Observations of Nitrogen-bearing Organics in Protostellar Environments. Astrophysical Journal, 2018, 866, 156.	1.6	8
198	Hydrogen isotopic composition of water in CV-type carbonaceous chondrites. Earth and Planetary Science Letters, 2018, 504, 64-71.	1.8	14
199	Presolar Isotopic Signatures in Meteorites and Comets: New Insights from the Rosetta Mission to Comet 67P/Churyumov–Gerasimenko. Space Science Reviews, 2018, 214, 1.	3.7	20
200	Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter. Geochimica Et Cosmochimica Acta, 2018, 241, 17-37.	1.6	86
201	What is controlling the reflectance spectra (0.35–150â€ [−] µm) of hydrated (and dehydrated) carbonaceous chondrites?. Icarus, 2018, 313, 124-138.	1.1	32
202	Formation of Terrestrial Planets. , 2018, , 1-59.		Ο
203	New Constraints on the Abundance and Composition of Organic Matter on Ceres. Geophysical Research Letters, 2018, 45, 5274-5282.	1.5	37
204	Redox-influenced trace element compositional differences among variably aqueously altered CM chondrites. Geochimica Et Cosmochimica Acta, 2018, 237, 1-17.	1.6	10

ARTICLE IF CITATIONS # Isotope record of mineralogical changes in a spectrum of aqueously altered CM chondrites. 205 1.6 19 Geochimica Et Cosmochimica Acta, 2018, 237, 79-102. Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life, 2018, 8, 18. 206 1.1 Physical, Chemical, and Petrological Characteristics of Chondritic Materials and Their Relationships 207 7 to Small Solar System Bodies. , 2018, , 59-204. Reflectance Spectroscopy of Chondrites., 2018,, 273-343. 208 Exploring the Possible Continuum Between Comets and Asteroids., 2018, , 409-438. 209 3 Water and Volatile Inventories of Mercury, Venus, the Moon, and Mars. Space Science Reviews, 2018, 3.7 214, 1. Variations of Stable Isotope Ratios in Nature. Springer Textbooks in Earth Sciences, Geography and 211 0.1 4 Environment, 2018, , 229-432. Atmosphere Impact Losses. Space Science Reviews, 2018, 214, 1. 3.7 Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astronomy and Astrophysics 213 9.1 124 Review, 2018, 26, 1. Terrestrial exposure of a fresh Martian meteorite causes rapid changes in hydrogen isotopes and 214 1.6 24 water concentrations. Scientific Reports, 2018, 8, 12385. Nitrogen abundance and isotope analysis of silicate glasses by secondary ionization mass 215 1.4 15 spectrometry. Chemical Geology, 2018, 493, 327-337. Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 2019, 318, 42-55. 1.1 34 The Effects of Carbon Concentration and Silicate Composition on the Metalâ€Silicate Partitioning of 217 1.5 12 Carbon in a Shallow Magma Ocean. Geophysical Research Letters, 2019, 46, 9422-9429. Selenium isotopes as tracers of a late volatile contribution to Earth from the outer Solar System. 5.4 Nature Geoscience, 2019, 12, 779-782. The Yamato-type (CY) carbonaceous chondrite group: Analogues for the surface of asteroid Ryugu?. 219 0.8 80 Chemie Der Erde, 2019, 79, 125531. Molecular and isotopic behavior of insoluble organic matter of the Orgueil meteorite upon heating. Geochimica Et Cosmochimica Acta, 2019, 263, 235-247. Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites. 221 4.2 40 Nature Astronomy, 2019, 3, 910-915. The diversity of CM carbonaceous chondrite parent bodies explored using Lewis Cliff 85311. Geochimica Et Cosmochimica Acta, 2019, 264, 224-244.

#	Article	IF	CITATIONS
223	Hydrogen isotopic evidence for early oxidation of silicate Earth. Earth and Planetary Science Letters, 2019, 526, 115770.	1.8	24
224	Alkaliâ€halogen metasomatism of the <scp>CM</scp> carbonaceous chondrites. Meteoritics and Planetary Science, 2019, 54, 3052-3063.	0.7	13
225	The Influence of Large Bolide Impacts on Earth's Carbon Cycle. Elements, 2019, 15, 313-318.	0.5	5
226	A unified model for hydrogen in the Earth and Moon: No one expects the Theia contribution. Chemie Der Erde, 2019, 79, 125546.	0.8	10
227	The iron record of asteroidal processes in carbonaceous chondrites. Meteoritics and Planetary Science, 2019, 54, 2652-2665.	0.7	9
228	Measurement of CH ₃ D on Titan at Submillimeter Wavelengths. Astronomical Journal, 2019, 157, 219.	1.9	8
229	Water abundance in the Tagish Lake meteorite from <scp>TGA</scp> and <scp>IR</scp> spectroscopy: Evaluation of aqueous alteration. Meteoritics and Planetary Science, 2019, 54, 1951-1972.	0.7	25
230	Interface Processes and Anomalous Oxygen Transport in Rapid Metal Oxidation and Magnetite Formation at Protoplanetary Conditions. ACS Earth and Space Chemistry, 2019, 3, 2207-2224.	1.2	3
231	Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids. Earth and Planetary Science Letters, 2019, 526, 115771.	1.8	59
232	Re-examining thermal metamorphism of the Renazzo-like (CR) carbonaceous chondrites: Insights from pristine Miller Range 090657 and shock-heated Graves Nunataks 06100. Geochimica Et Cosmochimica Acta, 2019, 267, 240-256.	1.6	16
233	Mineralogy and petrology of Dominion Range 08006: A very primitive CO3 carbonaceous chondrite. Geochimica Et Cosmochimica Acta, 2019, 265, 259-278.	1.6	42
234	Origin and Early Differentiation of Carbon and Associated Life-Essential Volatile Elements on Earth. , 2019, , 4-39.		20
235	H and Cl isotope characteristics of indigenous and late hydrothermal fluids on the differentiated asteroidal parent body of Grave Nunataks 06128. Geochimica Et Cosmochimica Acta, 2019, 266, 529-543.	1.6	14
236	Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Science Advances, 2019, 5, eaau3669.	4.7	74
237	Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets. Astronomy and Astrophysics, 2019, 625, L5.	2.1	78
238	Calcite and dolomite formation in the CM parent body: Insight from in situ C and O isotope analyses. Geochimica Et Cosmochimica Acta, 2019, 260, 275-291.	1.6	19
239	Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution. Astronomy and Astrophysics, 2019, 624, A109.	2.1	62
240	Investigating magmatic processes in the early Solar System using the Cl isotopic systematics of eucrites. Geochimica Et Cosmochimica Acta, 2019, 266, 582-597.	1.6	17

#	Article	IF	CITATIONS
241	Organometallic compounds as carriers of extraterrestrial cyanide in primitive meteorites. Nature Communications, 2019, 10, 2777.	5.8	28
242	Noble Gases: A Record of Earth's Evolution and Mantle Dynamics. Annual Review of Earth and Planetary Sciences, 2019, 47, 389-419.	4.6	56
243	Earth's volatile element depletion pattern inherited from a carbonaceous chondrite-like source. Nature Geoscience, 2019, 12, 564-568.	5.4	58
244	Comparison of <scp>FTâ€IR</scp> spectra of bulk and acid insoluble organic matter in chondritic meteorites: An implication for missing carbon during demineralization. Meteoritics and Planetary Science, 2019, 54, 1632-1641.	0.7	12
245	Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nature Astronomy, 2019, 3, 736-741.	4.2	120
246	Hypervelocity collision and water-rock interaction in space preserved in the Chelyabinsk ordinary chondrite. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 165-177.	1.6	7
247	New clues to ancient water on Itokawa. Science Advances, 2019, 5, eaav8106.	4.7	53
248	Assessing the risk of potentially hazardous asteroids through mean motion resonances analyses. Astrophysics and Space Science, 2019, 364, 1.	0.5	8
249	Determination of the water content and D/H ratio of the martian mantle by unraveling degassing and crystallization effects in nakhlites. Geochimica Et Cosmochimica Acta, 2019, 266, 382-415.	1.6	18
250	A cometary building block in a primitive asteroidal meteorite. Nature Astronomy, 2019, 3, 659-666.	4.2	73
251	The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias. Life, 2019, 9, 29.	1.1	30
252	Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile. Science, 2019, 364, 268-272.	6.0	410
253	Reflectance spectroscopy of insoluble organic matter (IOM) and carbonaceous meteorites. Meteoritics and Planetary Science, 2019, 54, 1051-1068.	0.7	22
254	Isotopic evidence for volatile replenishment of the Moon during the Late Accretion. National Science Review, 2019, 6, 1247-1254.	4.6	5
255	Quantitative models for the elemental and isotopic fractionations in the chondrites: The non-carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2019, 254, 246-276.	1.6	48
256	Quantitative models for the elemental and isotopic fractionations in chondrites: The carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2019, 254, 277-309.	1.6	79
257	A novel organic-rich meteoritic clast from the outer solar system. Scientific Reports, 2019, 9, 3169.	1.6	25
258	The fate of nitrogen during core-mantle separation on Earth. Geochimica Et Cosmochimica Acta, 2019, 251, 87-115.	1.6	34

	CITATION		
#	Article	IF	CITATIONS
259	Carbon depletion observed inside T Tauri inner rims. Astronomy and Astrophysics, 2019, 632, A32.	2.1	26
260	H/C elemental ratio of the refractory organic matter in cometary particles of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A27.	2.1	22
261	Upper limits on the water vapour content of the β Pictoris debris disk. Astronomy and Astrophysics, 2019, 628, A127.	2.1	4
262	Volatiles in Martian Magmas and the Interior. , 2019, , 13-33.		12
263	Hydrogen Reservoirs in Mars as Revealed by Martian Meteorites. , 2019, , 71-88.		4
264	Multiple reservoirs of volatiles in the Moon revealed by the isotopic composition of chlorine in lunar basalts. Geochimica Et Cosmochimica Acta, 2019, 266, 144-162.	1.6	41
265	UV luminescence characterisation of organics in Mars-analogue substrates. Icarus, 2019, 321, 929-937.	1.1	5
266	Molecular distribution, ¹³ Câ€isotope, and enantiomeric compositions of carbonaceous chondrite monocarboxylic acids. Meteoritics and Planetary Science, 2019, 54, 415-430.	0.7	15
267	Northwest Africa 11024—A heated and dehydrated unique carbonaceous (CM) chondrite. Meteoritics and Planetary Science, 2019, 54, 328-356.	0.7	15
268	Strange messenger: A new history of hydrogen on Earth, as told by Xenon. Geochimica Et Cosmochimica Acta, 2019, 244, 56-85.	1.6	109
269	An aqueously altered carbon-rich Ceres. Nature Astronomy, 2019, 3, 140-145.	4.2	62
270	Primordial heavy noble gases in the pristine Paris carbonaceous chondrite. Meteoritics and Planetary Science, 2019, 54, 395-414.	0.7	15
271	Isotopic ratios of Saturn's rings and satellites: Implications for the origin of water and Phoebe. Icarus, 2019, 321, 791-802.	1.1	29
272	The composition and structure of Ceres' interior. Icarus, 2020, 335, 113404.	1.1	19
273	Primordial water and dust of the Solar System: Insights from in situ oxygen measurements of CI chondrites. Geochimica Et Cosmochimica Acta, 2020, 269, 451-464.	1.6	21
274	Advances in Cosmochemistry Enabled by Antarctic Meteorites. Annual Review of Earth and Planetary Sciences, 2020, 48, 233-258.	4.6	5
275	Hydrogen isotopic composition of CI- and CM-like clasts from meteorite breccias – Sampling unknown sources of carbonaceous chondrite materials. Geochimica Et Cosmochimica Acta, 2020, 272, 177-197.	1.6	17
276	Primordial organic matter in the xenolithic clast in the Zag H chondrite: Possible relation to D/P asteroids. Geochimica Et Cosmochimica Acta, 2020, 271, 61-77.	1.6	12

	Cı	tation Report	
#	Article	IF	Citations
277	The great isotopic dichotomy of the early Solar System. Nature Astronomy, 2020, 4, 32-40.	4.2	117
279	Timing of thermal metamorphism in CM chondrites: Implications for Ryugu and Bennu future sample return. Icarus, 2020, 339, 113593.	1.1	22
280	Linking mineralogy and spectroscopy of highly aqueously altered <scp>CM</scp> and <scp>CI</scp> carbonaceous chondrites in preparation for primitive asteroid sample return. Meteoritics and Planetary Science, 2020, 55, 77-101.	0.7	37
281	An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: Geochemical and cosmochemical implications. Earth and Planetary Science Letters, 2020, 551, 116574.	1.8	38
282	Escape and evolution of Titan's N2 atmosphere constrained by 14N/15N isotope ratios. Monthly N of the Royal Astronomical Society, 2020, 500, 2020-2035.	lotices 1.6	8
283	The NC-CC Isotope Dichotomy: Implications for the Chemical and Isotopic Evolution of the Early Solar System. Space Science Reviews, 2020, 216, 1.	3.7	27
284	Astrochemistry During the Formation of Stars. Annual Review of Astronomy and Astrophysics, 2020, 58, 727-778.	8.1	143
285	Nitrogen Atmospheres of the Icy Bodies in the Solar System. Space Science Reviews, 2020, 216, 1.	3.7	11
286	The Piancaldoli meteorite: A forgotten primitive LL3.10 ordinary chondrite. Meteoritics and Planetary Science, 2020, 55, .	0.7	11
287	Earth's water may have been inherited from material similar to enstatite chondrite meteorites. Science, 2020, 369, 1110-1113.	6.0	164
288	Abundant extraterrestrial amino acids in the primitive CM carbonaceous chondrite Asuka 12236. Meteoritics and Planetary Science, 2020, 55, 1979-2006.	0.7	38
289	A Probabilistic Approach to Determination of Ceres' Average Surface Composition From Dawn Visibleâ€Infrared Mapping Spectrometer and Gamma Ray and Neutron Detector Data. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006606.	1.5	11
290	What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth "Sister―Planet. Space Science Reviews, 2020, 216, 1.	ậ€™s 3.7	9
291	The Non-carbonaceous–Carbonaceous Meteorite Dichotomy. Space Science Reviews, 2020, 216, 1.	3.7	94
292	Organic Matter in the Solar System—Implications for Future on-Site and Sample Return Missions. Space Science Reviews, 2020, 216, 1.	3.7	19
293	NanoSIMS isotopic investigation of xenolithic carbonaceous clasts from the kapoeta howardite. Geochimica Et Cosmochimica Acta, 2020, 283, 243-264.	1.6	6
294	Precometary organic matter: A hidden reservoir of water inside the snow line. Scientific Reports, 2020, 10, 7755.	1.6	16
295	Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres. Space Science Reviews, 2020, 216, 59.	3.7	6

#	Article	IF	CITATIONS
296	Hadean Earth. , 2020, , .		21
297	Ruthenium isotope vestige of Earth's pre-late-veneer mantle preserved in Archaean rocks. Nature, 2020, 579, 240-244.	13.7	67
298	Chemical and Isotope Composition of Comet 67P/Churyumovâ^'Gerasimenko: The Rosettaâ^'Philae Mission Results Reviewed in the Context of Cosmogony and Cosmochemistry. Solar System Research, 2020, 54, 96-120.	0.3	10
299	Hypothesis about Enrichment of Solar System. Physics, 2020, 2, 213-276.	0.5	2
300	The Importance of Phobos Sample Return for Understanding the Mars-Moon System. Space Science Reviews, 2020, 216, 1.	3.7	45
301	Preservation of primordial signatures of water in highly-shocked ancient lunar rocks. Earth and Planetary Science Letters, 2020, 544, 116364.	1.8	12
302	The composition of Mars. Geochimica Et Cosmochimica Acta, 2020, 273, 137-162.	1.6	116
303	D/H Ratio in the Interiors of Rocky Protoplanets Accreting in the Solar Nebula. Astrophysical Journal, 2020, 889, 40.	1.6	4
304	The effects of atmospheric entry heating on organic matter in interplanetary dust particles and micrometeorites. Earth and Planetary Science Letters, 2020, 540, 116266.	1.8	8
305	The isotopic composition of volatiles in the unique Bench Crater carbonaceous chondrite impactor found in the Apollo 12 regolith. Earth and Planetary Science Letters, 2020, 540, 116265.	1.8	14
306	The Renazzo-like carbonaceous chondrites as resources to understand the origin, evolution, and exploration of the solar system. Chemie Der Erde, 2020, 80, 125631.	0.8	8
307	The speciation of carbon, nitrogen, and water in magma oceans and its effect on volatile partitioning between major reservoirs of the Solar System rocky bodies. Geochimica Et Cosmochimica Acta, 2020, 280, 281-301.	1.6	37
308	Nanophase iron carbides in fineâ€grained rims in CM2 carbonaceous chondrites: Formation of organic material by Fischer–Tropsch catalysis in the solar nebula. Meteoritics and Planetary Science, 2021, 56, 108-126.	0.7	8
309	Subduction-Driven Volatile Recycling: A Global Mass Balance. Annual Review of Earth and Planetary Sciences, 2021, 49, 37-70.	4.6	65
310	Astrochemistry and compositions of planetary systems. Physics Reports, 2021, 893, 1-48.	10.3	128
311	Classification of CM chondrite breccias—Implications for the evaluation of samples from the OSIRISâ€REx and Hayabusa 2 missions. Meteoritics and Planetary Science, 2021, 56, 127-147.	0.7	34
312	The aqueous alteration of GEMS-like amorphous silicate in a chondritic micrometeorite by Antarctic water. Geochimica Et Cosmochimica Acta, 2021, 293, 399-421.	1.6	6
313	Hydration and Dehydration in Earth's Interior. Annual Review of Earth and Planetary Sciences, 2021, 49, 253-278.	4.6	33

		CITATION RE	PORT	
#	Article		IF	Citations
314	Formation of Venus, Earth and Mars: Constrained by Isotopes. Space Science Reviews, 2	2021, 217, 1.	3.7	22
315	The old, unique C1 chondrite Flensburg – Insight into the first processes of aqueous a brecciation, and the diversity of water-bearing parent bodies and lithologies. Geochimic Cosmochimica Acta, 2021, 293, 142-186.	alteration, a Et	1.6	28
316	Low-phase spectral reflectance and equivalent "geometric albedo―of meteorites p 2021, 354, 114066.	owders. Icarus,	1.1	14
317	A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. N Astronomy, 2021, 5, 356-364.	ature	4.2	34
318	Chromium Isotopic Evidence for Mixing of NC and CC Reservoirs in Polymict Ureilites: Ir Dynamical Models of the Early Solar System. Planetary Science Journal, 2021, 2, 13.	nplications for	1.5	11
319	Future missions. , 2021, , 207-222.			2
320	Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary Nature Communications, 2021, 12, 294.	r embryos.	5.8	16
321	Bubbles to Chondrites-II. Chemical fractionations in chondrites. Progress in Earth and Pl Science, 2021, 8, .	anetary	1.1	1
322	Aqueous alteration without initial water: possibility of organic-induced hydration of anh silicates in meteorite parent bodies. Earth, Planets and Space, 2021, 73, .	ydrous	0.9	2
323	The Diverse Planetary Ingassing/Outgassing Paths Produced over Billions of Years of Ma Activity. Space Science Reviews, 2021, 217, 1.	gmatic	3.7	32
324	Constraints on early Earth's water budget from the evolution of the lunar hydrogen cyc and Planetary Change, 2021, 197, 103393.	le. Global	1.6	3
325	A pebble accretion model for the formation of the terrestrial planets in the Solar Systen Advances, 2021, 7, .	n. Science	4.7	93
326	Hybrid Accretion of Carbonaceous Chondrites by Radial Transport across the Jupiter Bar Astrophysical Journal, 2021, 910, 70.	rier.	1.6	12
327	Organic matter and water from asteroid Itokawa. Scientific Reports, 2021, 11, 5125.		1.6	21
328	Apatite halogen and hydrogen isotope constraints on the conditions of hydrothermal a carbonaceous chondrites. Meteoritics and Planetary Science, 2021, 56, 809-828.	teration in	0.7	8
329	"Water―abundance at the surface of C-complex main-belt asteroids. Icarus, 2021,	357, 114125.	1.1	18
330	A deuterium-poor water reservoir in the asteroid 4 Vesta and the inner solar system. Ge Cosmochimica Acta, 2021, 297, 203-219.	ochimica Et	1.6	19
331	Thermal metamorphism of CM chondrites: A dehydroxylationâ€based peakâ€ŧemperatu implications for sample return from asteroids Ryugu and Bennu. Meteoritics and Planet 2021, 56, 546-585.	ire thermometer and ary Science,	0.7	9

#	ARTICLE Hydrogen isotopic exchange kinetics between organic matter and water: Implications for chemical evolution during meteorite parent body processing. Meteoritics and Planetary Science, 2021, 56.	IF 0.7	CITATIONS 3
333	440-454. Thermal alteration of CM carbonaceous chondrites: Mineralogical changes and metamorphic temperatures. Geochimica Et Cosmochimica Acta, 2021, 298, 167-190.	1.6	33
334	Calathus: A sample-return mission to Ceres. Acta Astronautica, 2021, 181, 112-129.	1.7	8
335	D/H in the refractory organics of comet 67P/Churyumov-Gerasimenko measured by <i>Rosetta</i> /COSIMA. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4940-4951.	1.6	11
336	Composition of terrestrial exoplanet atmospheres from meteorite outgassing experiments. Nature Astronomy, 2021, 5, 575-585.	4.2	18
337	Life as the Only Reason for the Existence of N2–O2-Dominated Atmospheres. Astronomy Reports, 2021, 65, 275-296.	0.2	12
338	The aqueous alteration of CM chondrites, a review. Geochimica Et Cosmochimica Acta, 2021, 299, 219-256.	1.6	39
339	The Tarda Meteorite: A Window into the Formation of D-type Asteroids. Astrophysical Journal Letters, 2021, 913, L9.	3.0	20
340	H and N systematics in thermally altered chondritic insoluble organic matter: An experimental study. Geochimica Et Cosmochimica Acta, 2021, 300, 44-64.	1.6	9
341	Earth and Mars – Distinct inner solar system products. Chemie Der Erde, 2021, 81, 125746.	0.8	13
342	Highly volatile element (H, C, F, Cl, S) abundances and H isotopic compositions in chondrules from carbonaceous and ordinary chondrites. Geochimica Et Cosmochimica Acta, 2021, 301, 230-258.	1.6	13
343	Hydrogen abundance estimation model and application to (162173) Ryugu. Astronomy and Astrophysics, 2021, 649, L16.	2.1	6
344	Exploring relationships between shock-induced microstructures and H2O and Cl in apatite grains from eucrite meteorites. Geochimica Et Cosmochimica Acta, 2021, 302, 120-140.	1.6	7
345	Strong isotope effect in the VUV photodissociation of HOD: A possible origin of D/H isotope heterogeneity in the solar nebula. Science Advances, 2021, 7, .	4.7	5
346	A Spectral Investigation of Aqueously and Thermally Altered CM, CMâ€An, and CY Chondrites Under Simulated Asteroid Conditions for Comparison With OSIRISâ€REx and Hayabusa2 Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006827.	1.5	15
347	Organic matter in carbonaceous chondrite lithologies of Almahata Sitta: Incorporation of previously unsampled carbonaceous chondrite lithologies into ureilitic regolith. Meteoritics and Planetary Science, 2021, 56, 1311-1327.	0.7	5
348	Hydrogen abundance estimation and distribution on (101955) Bennu. Icarus, 2021, 363, 114427.	1.1	19
349	Ammonia snow lines and ammonium salts desorption. Astronomy and Astrophysics, 2021, 652, A29.	2.1	14

#	Article	IF	CITATIONS
350	Tracing Earth's Volatile Delivery With Tin. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022026.	1.4	7
351	Origin of hydrogen isotopic variations in chondritic water and organics. Earth and Planetary Science Letters, 2021, 567, 117008.	1.8	26
352	Ice Inheritance in Dynamical Disk Models. Astrophysical Journal, 2021, 919, 45.	1.6	12
353	Composition of organics on asteroid (101955) Bennu. Astronomy and Astrophysics, 2021, 653, L1.	2.1	10
354	The pre-atmospheric hydrogen inventory of CM carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2021, 309, 31-44.	1.6	4
355	Origins of colors variability among C-cluster main-belt asteroids. Icarus, 2021, 365, 114494.	1.1	5
356	Tracing the earliest stages of hydrothermal alteration on the CM chondrite parent body. Meteoritics and Planetary Science, 2021, 56, 1708-1728.	0.7	6
357	Sulfur abundances and isotopic compositions in bulk carbonaceous chondrites and insoluble organic material: Clues to elemental and isotopic fractionations of volatile chalcophiles. Meteoritics and Planetary Science, 2022, 57, 334-351.	0.7	2
358	NORTHWEST AFRICA (NWA) 12563 and ungrouped C2 chondrites: Alteration styles and relationships to asteroids. Geochimica Et Cosmochimica Acta, 2021, 311, 238-273.	1.6	7
359	Noble gases in CM carbonaceous chondrites: Effect of parent body aqueous and thermal alteration and cosmic ray exposure ages. Geochimica Et Cosmochimica Acta, 2021, 310, 240-280.	1.6	24
360	Origin and timing of volatile delivery (N, H) to the angrite parent body: Constraints from in situ analyses of melt inclusions. Geochimica Et Cosmochimica Acta, 2021, 313, 243-256.	1.6	10
362	The atmosphere and hydrosphere. , 2022, , 229-268.		1
363	Bifurcation of planetary building blocks during Solar System formation. Science, 2021, 371, 365-370.	6.0	108
364	CM carbonaceous chondrite falls and their terrestrial alteration. Meteoritics and Planetary Science, 2021, 56, 34-48.	0.7	19
365	Dynamic Sources of Contemporary Hazard from Meteoroids and Small Asteroids. Thirty Years of Astronomical Discovery With UKIRT, 2017, , 11-32.	0.3	8
366	The Extreme Biology of Meteorites: Their Role in Understanding the Origin and Distribution of Life on Earth and in the Universe. , 2017, , 283-325.		9
367	Water in the Earth's Interior: Distribution and Origin. Space Sciences Series of ISSI, 2017, , 83-150.	0.0	2
368	Hydrogen in chondrites: Influence of parent body alteration and atmospheric contamination on primordial components. Geochimica Et Cosmochimica Acta, 2020, 281, 53-66.	1.6	58

	CITATION REF	PORT	
#	Article	IF	Citations
369	Ancient rock bears isotopic fingerprints of Earth's origins. Nature, 2020, 579, 195-196.	13.7	1
370	Comparing the reflectivity of ungrouped carbonaceous chondrites with those of short-period comets like 2P/Encke. Astronomy and Astrophysics, 2020, 641, A58.	2.1	7
371	D/H ratios of the inner Solar System. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20150390.	1.6	42
372	Measuring the level of interstellar inheritance in the solar protoplanetary disk. Meteoritics and Planetary Science, 2017, 52, 1797-1821.	0.7	39
373	Deuterium- and ¹⁵ N-signatures of organic globules in Murchison and Northwest Africa 801 meteorites. Geochemical Journal, 2015, 49, 377-391.	0.5	13
374	STXM-XANES analyses of Murchison meteorite samples captured by aerogel after hypervelocity impacts: A potential implication of organic matter degradation for micrometeoroid collection experiments. Geochemical Journal, 2019, 53, 53-67.	0.5	9
375	The Compositional Structure of the Asteroid Belt. , 2015, , .		249
376	The Dynamical Evolution of the Asteroid Belt. , 2015, , .		23
377	TESS Reveals a Short-period Sub-Neptune Sibling (HD 86226c) to a Known Long-period Giant Planet*. Astronomical Journal, 2020, 160, 96.	1.9	25
378	Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds. Astrophysical Journal, 2020, 893, 163.	1.6	22
379	Volatile-rich Asteroids in the Inner Solar System. Planetary Science Journal, 2020, 1, 82.	1.5	7
380	Variations of Stable Isotope Ratios in Nature. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 267-498.	0.1	1
381	Mineralogy, petrology, and oxygenâ€isotope compositions of magnetite ± fayalite assemblages in CO3 CV3, and LL3 chondrites. Meteoritics and Planetary Science, 2022, 57, 392-428.	' 0 . 7	3
382	Variations of Stable Isotope Ratios in Nature. , 2004, , 77-196.		2
384	Some Critical Interpretations and Misinterpretations of Lunar Features. , 2015, , 117-234.		0
385	Asteroids, Comets and Meteorite-Dropping Bolides Studied from The Montsec Astronomical Observatory. Thirty Years of Astronomical Discovery With UKIRT, 2017, , 243-256.	0.3	0
386	Cometary Isotopic Measurements. , 2017, , 47-83.		0
387	Origin and Evolution of the Cometary Reservoirs. , 2017, , 191-269.		0

#	Article	IF	CITATIONS
389	Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. Space Sciences Series of ISSI, 2018, , 35-81.	0.0	0
390	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 2018, , 291-314.	0.0	0
391	In the Beginning, There Was Fire: Cuatro Ciénegas Basin (CCB) and the Long History of Life on Earth. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2018, , 21-33.	0.4	8
392	From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction. Space Sciences Series of ISSI, 2018, , 5-39.	0.0	Ο
393	Water and Volatile Inventories of Mercury, Venus, the Moon, and Mars. Space Sciences Series of ISSI, 2018, , 151-189.	0.0	0
394	Atmosphere Impact Losses. Space Sciences Series of ISSI, 2018, , 397-427.	0.0	0
395	Introduction to the Delivery of Water to Proto-Planets, Planets and Satellites. Space Sciences Series of ISSI, 2019, , 1-9.	0.0	0
396	Could the Hadean Eon Have Been Habitable?. , 2020, , 217-248.		1
397	Specific heat and thermal history of the Sariçiçek howardite. Meteoritics and Planetary Science, 2021, 56, 2103.	0.7	2
399	Abundance and importance of petrological type 1 chondritic material. Meteoritics and Planetary Science, 2022, 57, 277-301.	0.7	5
400	Nanoscale Infrared Characterization of Dark Clasts and Fine-Grained Rims in CM2 Chondrites: Aguas Zarcas and Jbilet Winselwan. ACS Earth and Space Chemistry, 2021, 5, 3281-3296.	1.2	4
402	An exploration of whether Earth can be built from chondritic components, not bulk chondrites. Geochimica Et Cosmochimica Acta, 2022, 318, 428-451.	1.6	8
403	Distant Formation and Differentiation of Outer Main Belt Asteroids and Carbonaceous Chondrite Parent Bodies. AGU Advances, 2022, 3, .	2.3	11
404	Planet Formation: Key Mechanisms and Global Models. Astrophysics and Space Science Library, 2022, , 3-82.	1.0	16
405	Abnormal (Hydroxy)proline Deuterium Content Redefines Hydrogen Chemical Mass. Journal of the American Chemical Society, 2022, 144, 2484-2487.	6.6	9
406	An evolutionary system of mineralogy, Part VI: Earth's earliest Hadean crust (>4370 Ma). American Mineralogist, 2023, 108, 42-58.	0.9	7
407	Astrochemistry With the Orbiting Astronomical Satellite for Investigating Stellar Systems. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	5
408	The case for a Themis asteroid family spacecraft mission. Planetary and Space Science, 2022, 212, 105413.	0.9	3

ARTICLE IF CITATIONS # Noble gases in Dome C micrometeorites - An attempt to disentangle asteroidal and cometary sources. 409 1.1 1 Icarus, 2022, 376, 114884. Soft Robotic Perspective and Concept for Planetary Small Body Exploration. Soft Robotics, 2022, 9, 4.6 889-899. New Evidence for Wet Accretion of Inner Solar System Planetesimals from Meteorites Chelyabinsk and 411 9 1.5 Benenitra. Planetary Science Journal, 2021, 2, 244. Asteroid Capture Dynamics and Control Using a Large-Scale Flexible Net. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 4033-4043. Carbon and Organic Matter on Ceres., 2022, , 121-133. 413 0 High D/H ratios in water and alkanes in comet 67P/Churyumov-Gerasimenko measured with 2.1 Rosetta/ROSINA DFMS. Astronomy and Astrophysics, 2022, 662, A69. Presolar grain dynamics: Creating nucleosynthetic variations through a combination of drag and 415 1.6 4 viscous evolution. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5874-5894. The origin of nitrogen in Earth's mantle: Constraints from basalts 15N/14N and N2/3He ratios. Chemical 1.4 Geology, 2022, 597, 120780. 417 Meteoritic noble gas constraints on the origin of terrestrial volatiles. Icarus, 2022, 381, 115020. 9 1.1 The effects of bulk composition on planetesimal core sulfur content and size. Icarus, 2022, 380, 114976. 1.1 Feâ€Ni sulfides in Tagish Lake: Implications for nebular and parent body conditions of formation. 419 0 0.7 Meteoritics and Planetary Science, 2022, 57, 1267-1287. Distinguishing the Origin of Asteroid (16) Psyche. Space Science Reviews, 2022, 218, 17. 3.7 421 Water and organics in meteorites. , 2022, , 67-110. 4 On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2022, 98, 227-282. 1.6 Krypton in the Chassigny meteorite shows Mars accreted chondritic volatiles before nebular gases. 424 6.0 10 Science, 2022, 377, 320-324. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science, 425 2023, 379, . A dry ancient plume mantle from noble gas isotopes. Proceedings of the National Academy of Sciences 426 3.3 4 of the United States of America, 2022, 119, . CI Asteroid Regolith as an In Situ Plant Growth Medium for Space Crop Production. Planetary Science 1.5 Journal, 2022, 3, 155.

#	Article	IF	CITATIONS
428	Heterogeneous nature of the carbonaceous chondrite breccia Aguas Zarcas – Cosmochemical characterization and origin of new carbonaceous chondrite lithologies. Geochimica Et Cosmochimica Acta, 2022, 334, 155-186.	1.6	7
429	The Determination of the Water Content and Hydrogen Abundance of Two CK- and CV-type Carbonaceous Chondrites Using Thermogravimetric Analysis. International Journal of Thermophysics, 2022, 43, .	1.0	0
430	Multi-element constraints on the sources of volatiles to Earth. Geochimica Et Cosmochimica Acta, 2022, 333, 124-135.	1.6	2
431	Nucleosynthetic zinc isotope anomalies reveal a dual origin of terrestrial volatiles. Icarus, 2022, 386, 115171.	1.1	26
432	Solid Accretion onto Neptune-mass Planets. I. In Situ Accretion and Constraints from the Metallicity of Uranus and Neptune. Astrophysical Journal, 2022, 935, 101.	1.6	0
433	Impact induced atmosphere-mantle exchange sets the volatile elemental ratios on primitive Earths. Earth and Planetary Science Letters, 2022, 594, 117741.	1.8	9
435	Earth's Atmosphere, Origin and Evolution of. , 2022, , 1-5.		0
436	Origin of Nitrogen Isotopic Variations in the Rocky Bodies of the Solar System. Astrophysical Journal, 2022, 937, 123.	1.6	10
437	Internal or external magma oceans in the earliest protoplanets – Perspectives from nitrogen and carbon fractionation. Earth and Planetary Science Letters, 2022, 598, 117847.	1.8	8
438	Water-rich C-type asteroids as early solar system carbonate factories. Icarus, 2023, 391, 115300.	1.1	1
439	Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution. Science, 2023, 379, .	6.0	26
440	The H2O content of the ureilite parent body. Geochimica Et Cosmochimica Acta, 2023, 340, 141-157.	1.6	8
441	Adsorption behavior of molecular hydrogen in forsterite. Physics of the Earth and Planetary Interiors, 2022, , 106967.	0.7	0
442	The Winchcombe meteorite, a unique and pristine witness from the outer solar system. Science Advances, 2022, 8, .	4.7	21
443	Ryugu's nucleosynthetic heritage from the outskirts of the Solar System. Science Advances, 2022, 8, .	4.7	27
444	Origin of life-forming volatile elements in the inner Solar System. Nature, 2022, 611, 245-255.	13.7	12
445	Late delivery of exotic chromium to the crust of Mars by water-rich carbonaceous asteroids. Science Advances, 2022, 8, .	4.7	4
446	The EXCITING Experiment Exploring the Behavior of Nitrogen and Noble Gases in Interstellar Ice Analogs. Planetary Science Journal, 2022, 3, 252.	1.5	5

#	Article	IF	CITATIONS
447	The Quest For Water. Elements, 2022, 18, 149-153.	0.5	1
448	Recent Advances in our Understanding of Water and Aqueous Activity in Chondrites. Elements, 2022, 18, 175-180.	0.5	4
449	Shidian meteorite, a new fall analog of nearâ€Earth asteroid (101955) Bennu. Meteoritics and Planetary Science, 2022, 57, 2192-2215.	0.7	0
450	Mineralogical analysis of 14 PHAs from ViNOS data. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
451	Anatomy of planets formed by rapid pebble accretion. III. Partitioning of volatiles between planetary core, mantle, and atmosphere. Astronomy and Astrophysics, 0, , .	2.1	4
452	From whom Bells tolls: Reclassifying Bells among <scp>CR</scp> chondrites and implications for the formation conditions of <scp>CR</scp> parent bodies. Meteoritics and Planetary Science, 2023, 58, 195-206.	0.7	2
453	High abundance of solar wind-derived water in lunar soils from the middle latitude. Proceedings of the United States of America, 2022, 119, .	3.3	10
454	Solar/planetary formation and evolution. , 2023, , 1-54.		0
455	Liquid water lake under ice in Mars's southern hemisphere—Possibility of subsurface biosphere and life. , 2023, , 453-522.		0
456	Lunar explorations—Discovering water, minerals, and underground caves andÂtunnel complexes. , 2023, , 399-452.		0
457	Geological timeline of significant events on Earth. , 2023, , 55-114.		1
458	In-situ formation of halite in the Sidi El Habib 001 (H5) ordinary chondrite: Implications for hydrothermal alteration in ordinary chondrite parent bodies. Geochimica Et Cosmochimica Acta, 2023, 348, 85-106.	1.6	2
459	An inner solar system origin of volatile elements in Mars. Icarus, 2023, 397, 115519.	1.1	8
460	Hydrogen isotopic evidence for nebular pre-hydration and the limited role of parent-body processes in CM chondrites. Earth and Planetary Science Letters, 2023, 611, 118151.	1.8	3
461	Origin of the superchondritic carbon/nitrogen ratio of the bulk silicate Earth – an outlook from iron meteorites. Geochimica Et Cosmochimica Acta, 2023, 344, 146-159.	1.6	6
462	Origin of nitrogen on Mars: First in situ N isotope analyses of martian meteorites. Geochimica Et Cosmochimica Acta, 2023, 344, 134-145.	1.6	2
463	The noble gas and nitrogen relationship between Ryugu and carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2023, 345, 62-74.	1.6	5
464	Takeout and Delivery: Erasing the Dusty Signature of Late-stage Terrestrial Planet Formation. Astrophysical Journal, 2023, 944, 125.	1.6	2

#	Article	IF	CITATIONS
465	Early Stages of Galilean Moon Formation in a Water-depleted Environment. Astrophysical Journal Letters, 2023, 944, L37.	3.0	3
466	Macromolecular organic matter in samples of the asteroid (162173) Ryugu. Science, 2023, 379, .	6.0	37
467	Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science, 2023, 379, .	6.0	74
468	Degassing of early-formed planetesimals restricted water delivery to Earth. Nature, 2023, 615, 854-857.	13.7	9
469	A solar wind-derived water reservoir on the Moon hosted by impact glass beads. Nature Geoscience, 2023, 16, 294-300.	5.4	11
470	Spatial distribution of isotopes and compositional mixing in the inner protoplanetary disk. Astronomy and Astrophysics, 0, , .	2.1	0
471	Hydrogen Isotopic Composition of Hydrous Minerals in Asteroid Ryugu. Astrophysical Journal Letters, 2023, 946, L43.	3.0	5
472	Earth shaped by primordial H2 atmospheres. Nature, 2023, 616, 306-311.	13.7	16
476	A Comparison of Presolar Isotopic Signatures in Laboratory-Studied Primitive Solar System Materials and Comet 67P/Churyumov-Gerasimenko: New Insights from Light Elements, Halogens, and Noble Gases. Space Science Reviews, 2023, 219, .	3.7	0
480	Aqueous Alteration. , 2023, , 144-146.		0
481	Earth's Atmosphere, Origin and Evolution of. , 2023, , 859-863.		0
484	Imperfections in natural diamond: the key to understanding diamond genesis and the mantle. Rivista Del Nuovo Cimento, 2023, 46, 381-471.	2.0	1
487	Cosmic Connections. , 2023, , 31-42.		0
502	The Solar System's ices and their origin. , 2024, , xix-xxv		0
511	Origin and evolution of Earth's water inventory. , 2024, , .		0

ı y