Making the Moon from a Fast-Spinning Earth: A Giant I Despinning

Science 338, 1047-1052 DOI: 10.1126/science.1225542

Citation Report

#	Article	IF	CITATIONS
2	Brown dwarfs and free-floating planets. , 0, , 209-216.		0
3	Formation and evolution. , 0, , 217-254.		3
4	The Origin of the Moon. Science, 2012, 338, 1040-1041.	6.0	14
5	Forming a Moon with an Earth-like Composition via a Giant Impact. Science, 2012, 338, 1052-1055.	6.0	509
6	Moon-forming impact not so giant?. Nature, 2012, , .	13.7	0
7	Den Mond neu entdecken. , 2013, , .		3
8	Der Mondkörper. , 2013, , 65-94.		0
9	Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon. Earth and Planetary Science Letters, 2013, 380, 77-87.	1.8	74
10	Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus, 2013, 226, 671-681.	1.1	59
11	ON THE DYNAMICS AND ORIGIN OF HAUMEA'S MOONS. Astronomical Journal, 2013, 146, 89.	1.9	21
12	Forming the Moon from terrestrial silicate-rich material. Chemical Geology, 2013, 345, 40-49.	1.4	22
13	Shadows cast on Moon's origin. Nature, 2013, 504, 90-91.	13.7	4
14	Hydrogen Isotopes in Lunar Volcanic Glasses and Melt Inclusions Reveal a Carbonaceous Chondrite Heritage. Science, 2013, 340, 1317-1320.	6.0	218
15	The Crust of the Moon as Seen by GRAIL. Science, 2013, 339, 671-675.	6.0	726
17	A hydrogen-based oxidation mechanism relevant to planetary formation. Earth and Planetary Science Letters, 2013, 380, 88-97.	1.8	115
18	Dynamics of core merging after a mega-impact with applications to Mars' early dynamo. Icarus, 2013, 226, 20-32.	1.1	17
19	CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS. Astrophysical Journal Letters, 2013, 767, L12.	3.0	96
20	Small differences in sameness. Nature, 2013, 497, 43-45.	13.7	4

ATION REDO

#	Article	IF	CITATIONS
21	The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean. Geochemistry, Geophysics, Geosystems, 2013, 14, 1929-1939.	1.0	15
22	Why is the Moon synchronously rotating?. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 434, L21-L25.	1.2	31
23	Late origin of the Saturn system. Icarus, 2013, 223, 544-565.	1.1	86
24	Analyses on a relativistic hierarchical resonance with the Hamiltonian approach. Monthly Notices of the Royal Astronomical Society, 2013, 430, 558-570.	1.6	3
25	The Moon and the early Earth. Astronomy and Geophysics, 2013, 54, 1.31-1.34.	0.1	3
26	Der Mond ist aufgegangen. Physik in Unserer Zeit, 2013, 44, 116-122.	0.0	0
27	BIOLOGICAL EFFECTS ON THE SOURCE OF GEONEUTRINOS. International Journal of Modern Physics A, 2013, 28, 1330047.	0.5	9
28	Implications of a longâ€lived basal magma ocean in generating Earth's ancient magnetic field. Geochemistry, Geophysics, Geosystems, 2013, 14, 4735-4742.	1.0	53
29	The Story of Planets: Anchoring Numerics in Reality. Proceedings of the International Astronomical Union, 2013, 8, 123-130.	0.0	0
30	Preheated shock experiments in the molten CaAl ₂ Si ₂ O ₈ â€CaFeSi ₂ O ₆ â€CaMgSi _{2ternary: A test for linear mixing of liquid volumes at high pressure and temperature. Journal of Geophysical Research: Solid Earth. 2013. 118. 3354-3365.}	ub>Q <sut< td=""><td>)>6</td></sut<>)>6
31	Lifting the cover of the cauldron: Convection in hot planets. Geochemistry, Geophysics, Geosystems, 2014, 15, 4617-4630.	1.0	10
32	The Moon Rises from the Ashes. , 0, , 158-173.		0
33	CHAPTER 3. Application of Radiogenic Isotopes in Geosciences: Overview and Perspectives. RSC Detection Science, 2014, , 49-93.	0.0	0
34	Longevity of moons around habitable planets. International Journal of Astrobiology, 2014, 13, 324-336.	0.9	30
35	Geochemical and Planetary Dynamical Views on the Origin of Earth's Atmosphere and Oceans. , 2014, , 1-35.		23
36	Terrestrial aftermath of the Moon-forming impact. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130172.	1.6	40
37	On the origin and composition of Theia: Constraints from new models of the Giant Impact. Icarus, 2014, 242, 316-328.	1.1	49
38	The origin of the Moon. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20140289.	1.6	19

#	Article	IF	CITATIONS
39	Understanding the origin and evolution of water in the Moon through lunar sample studies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130254.	1.6	35
40	Lunar-Forming Ciant Impact Model Utilizing Modern Graphics Processing Units. Journal of Astrophysics and Astronomy, 2014, 35, 607-618.	0.4	1
41	The Moon's Surface, Structure, and Evolution. Astronomy and Astrophysics Library, 2014, , 197-230.	0.2	0
42	Setting the Stage for Habitable Planets. Life, 2014, 4, 35-65.	1.1	3
43	Lunar and terrestrial planet formation in the Grand Tack scenario. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130174.	1.6	92
44	Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth and Planetary Science Letters, 2014, 393, 254-265.	1.8	116
45	High temperature silicon isotope geochemistry. Lithos, 2014, 190-191, 500-519.	0.6	80
46	Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 2014, 508, 84-87.	13.7	191
47	Impact Origin of the Moon?. Annual Review of Earth and Planetary Sciences, 2014, 42, 551-578.	4.6	92
48	Fast spin of the young extrasolar planet β Pictoris b. Nature, 2014, 509, 63-65.	13.7	307
49	New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses. Icarus, 2014, 229, 109-120.	1.1	59
50	Effects of magma ocean crystallization and overturn on the development of 142Nd and 182W isotopic heterogeneities in the primordial mantle. Earth and Planetary Science Letters, 2014, 408, 319-330.	1.8	29
51	How Did Early Earth Become Our Modern World?. Annual Review of Earth and Planetary Sciences, 2014, 42, 151-178.	4.6	82
52	The giant impact hypothesis: past, present (and future?). Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130249.	1.6	19
53	A simplified approach to uncertainty quantification for orbits in impulsive deflection scenarios. Acta Astronautica, 2014, 104, 206-219.	1.7	0
54	Siderophile element constraints on the origin of the Moon. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130258.	1.6	15
55	Large impacts around a solar-analog star in the era of terrestrial planet formation. Science, 2014, 345, 1032-1035.	6.0	83
56	Isotopes as tracers of the sources of the lunar material and processes of lunar origin. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130257.	1.6	10

#	ARTICLE Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372,	IF 1.6	CITATIONS 94
58	20130259. Geochemical arguments for an Earth-like Moon-forming impactor. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130244.	1.6	115
59	New approaches to the Moon's isotopic crisis. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130168.	1.6	33
60	Redox control of the fractionation of niobium and tantalum during planetary accretion and core formation. Nature Geoscience, 2014, 7, 573-576.	5.4	40
61	Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth and Planetary Science Letters, 2014, 407, 96-108.	1.8	120
62	60Fe–60Ni chronology of core formation in Mars. Earth and Planetary Science Letters, 2014, 390, 264-274.	1.8	98
63	The Origin and Earliest History of the Earth. , 2014, , 149-211.		12
64	Lunar-forming impacts: processes and alternatives. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130175.	1.6	38
65	The Moon re-examined. Geochimica Et Cosmochimica Acta, 2014, 141, 670-676.	1.6	27
66	Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation. Earth and Planetary Science Letters, 2014, 391, 201-211.	1.8	125
67	Investigation of the initial state of the Moon-forming disk: Bridging SPH simulations and hydrostatic models. Icarus, 2014, 233, 259-267.	1.1	76
68	Identification of the giant impactor Theia in lunar rocks. Science, 2014, 344, 1146-1150.	6.0	156
69	Lunar core formation: New constraints from metal–silicate partitioning of siderophile elements. Earth and Planetary Science Letters, 2014, 388, 343-352.	1.8	70
70	Equations of state for mixtures: results from density-functional (DFT) simulations compared to high accuracy validation experiments on Z. Journal of Physics: Conference Series, 2014, 500, 162004.	0.3	10
71	Protracted core formation and rapid accretion of protoplanets. Science, 2014, 344, 1150-1154.	6.0	224
72	Water delivery and giant impacts in the â€~Grand Tack' scenario. Icarus, 2014, 239, 74-84.	1.1	209
73	Dust from collisions: A way to probe the composition of exo-planets?. Icarus, 2014, 239, 1-14.	1.1	15
74	Alternative models of the Moon's origin. Physics Today, 2014, 67, 8-9.	0.3	1

ARTICLE IF CITATIONS # Making the Moon. Physics Today, 2014, 67, 32-38. 0.3 4 75 Simulating the Phases of the Moon Shortly After Its Formation. Physics Teacher, 2014, 52, 239-240. 0.2 Asymmetric shock heating and the terrestrial magma ocean origin of the Moon. Proceedings of the 77 1.6 11 Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 97-103. The iodine–plutonium–xenon age of the Moon–Earth system revisited. Philosophical Transactions 44 Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130260. On the evolution of the protolunar disc. Philosophical Transactions Series A, Mathematical, Physical, 79 1.6 10 and Engineering Sciences, 2014, 372, 20130250. Accretion of the Moon from non-canonical discs. Philosophical Transactions Series A, Mathematical, 1.6 24 Physical, and Engineering Sciences, 2014, 372, 20130256. Erosive Hit-and-Run Impact Events: Debris Unbound. Proceedings of the International Astronomical 81 0.0 1 Union, 2015, 10, 9-15. Evolution of the protolunar disk: Dynamics, cooling timescale and implantation of volatiles onto the 1.1 44 Earth. Icarus, 2015, 260, 440-463. Shock Response and Phase Transitions of MgO at Planetary Impact Conditions. Physical Review Letters, 87 2.9 74 2015, 115, 198501. Alternative hypotheses for making the Moon. Physics Today, 2015, 68, 8-10. The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores. 89 1.1 191 Icarus, 2015, 258, 418-429. Effects of Earth's rotation on the early differentiation of a terrestrial magma ocean. Journal of 1.4 Geophysical Research: Solid Earth, 2015, 120, 7508-7525. Endogenous Dynamics of Multi-Agent Firms. SSRN Electronic Journal, 2015, , . 92 0.4 1 Paper Essentials., 2015, , 105-140. Water on the Moon. Proceedings of the International Astronomical Union, 2015, 11, 402-406. 94 0.0 2 Early evolution of the Earth–Moon system with a fast-spinning Earth. Icarus, 2015, 256, 138-146. 96 97 SPINâ€"SPIN COUPLING IN THE SOLAR SYSTEM. Astrophysical Journal, 2015, 810, 110. 20 1.6 The feeding zones of terrestrial planets and insights into Moon formation. Icarus, 2015, 252, 161-174. 1.1 74

#	ARTICLE	IF	CITATIONS
99	Excavation of the lunar mantle by basin-forming impact events on the Moon. Earth and Planetary Science Letters, 2015, 409, 243-251.	1.8	64
100	An intrinsic volatility scale relevant to the Earth and Moon and the status of water in the Moon. Meteoritics and Planetary Science, 2015, 50, 568-577.	0.7	62
101	Estimation of trace element concentrations in the lunar magma ocean using mineral―and metalâ€silicate melt partition coefficients. Meteoritics and Planetary Science, 2015, 50, 733-758.	0.7	12
102	The tethered Moon. Earth and Planetary Science Letters, 2015, 427, 74-82.	1.8	52
103	Brief follow-up on recent studies of Theia's accretion. Icarus, 2015, 258, 14-17.	1.1	7
104	Formation of Phobos and Deimos via a giant impact. Icarus, 2015, 252, 334-338.	1.1	120
105	Melting and mixing states of the Earth's mantle after the Moon-forming impact. Earth and Planetary Science Letters, 2015, 427, 286-295.	1.8	140
106	In search of late-stage planetary building blocks. Chemical Geology, 2015, 411, 125-142.	1.4	61
107	Connections between the bulk composition, geodynamics and habitability of Earth. Nature Geoscience, 2015, 8, 587-593.	5.4	54
108	The Origin of the Natural Satellites. , 2015, , 559-604.		20
109	Lunar tungsten isotopic evidence for the late veneer. Nature, 2015, 520, 534-537.	13.7	139
110	Dating the Moon-forming impact event with asteroidal meteorites. Science, 2015, 348, 321-323.	6.0	94
111	The formation of the solar system. Physica Scripta, 2015, 90, 068001.	1.2	51
112	Impact vaporization of planetesimal cores in the late stages of planet formation. Nature Geoscience, 2015, 8, 269-272.	5.4	62
113	Spin evolution of Earth-sized exoplanets, including atmospheric tides and core–mantle friction. International Journal of Astrobiology, 2015, 14, 233-254.	0.9	42
114	An incredible likeness of being. Nature, 2015, 520, 169-170.	13.7	1
115	Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature, 2015, 520, 530-533.	13.7	127
116	A primordial origin for the compositional similarity between the Earth and the Moon. Nature, 2015, 520, 212-215.	13.7	83

#	ARTICLE Planetary and meteoritic Mg/Si and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.gif"</mml:math>	IF	CITATIONS
117	overflow="scroll"> <mml:msup><mml:mrow><mml:mi>î'</mml:mi></mml:mrow><mml:mrow><mml:mn>30mathvariant="normal">Si</mml:mn></mml:mrow> variations inherited from solar nebula</mml:msup>	ml: mæ > <td>nml:norow></td>	nm l:no row>
118	chemistry. Earth and Planetary Science Letters, 2015, 427, 236-248. The disruption of multiplanet systems through resonance with a binary orbit. Nature, 2015, 524, 439-441.	13.7	14
119	PLANETARY COLLISIONS OUTSIDE THE SOLAR SYSTEM: TIME DOMAIN CHARACTERIZATION OF EXTREME DEBRIS DISKS. Astrophysical Journal, 2015, 805, 77.	1.6	67
120	The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes. Earth and Planetary Science Letters, 2015, 430, 202-208.	1.8	33
122	Collisionless encounters and the origin of the lunar inclination. Nature, 2015, 527, 492-494.	13.7	48
123	Lunar volatile depletion due to incomplete accretion within an impact-generated disk. Nature Geoscience, 2015, 8, 918-921.	5.4	84
124	Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus, 2015, 248, 89-108.	1.1	328
125	The Twin Sister Planets Venus and Earth. , 2015, , .		13
126	Dynamical evolution of the Earth–Moon progenitors – Whence Theia?. Icarus, 2015, 248, 318-339.	1.1	18
127	Water in the Moon's interior: Truth and consequences. Earth and Planetary Science Letters, 2015, 409, 252-264.	1.8	179
128	Bulk chemical and Hf–W isotopic consequences of incomplete accretion during planet formation. Icarus, 2015, 245, 145-152.	1.1	24
129	Constraining geologic properties and processes through the use of impact craters. Geomorphology, 2015, 240, 18-33.	1.1	14
130	Asteroid bombardment and the core of Theia as possible sources for the Earth's late veneer component. Geochemistry, Geophysics, Geosystems, 2016, 17, 2623-2642.	1.0	21
131	Hayek Enriched by Complexity Enriched by Hayek. Advances in Austrian Economics, 2016, , 63-121.	0.4	12
132	Speciation and dissolution of hydrogen in the proto-lunar disk. Earth and Planetary Science Letters, 2016, 445, 104-113.	1.8	18
133	Early degassing of lunar urKREEP by crust-breaching impact(s). Earth and Planetary Science Letters, 2016, 447, 84-94.	1.8	78
134	On the cooling of a deep terrestrial magma ocean. Earth and Planetary Science Letters, 2016, 448, 140-149.	1.8	81
135	Magneto-rotational instability in the protolunar disk. Icarus, 2016, 268, 89-101.	1.1	13

#	Article	IF	CITATIONS
136	Boundary conditions for the formation of the Moon. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2016, 95, 131-139.	0.6	3
137	The Chondritic Moon: a solution to the 142Nd conundrum and implications for terrestrial mantle evolution. Geological Magazine, 2016, 153, 548-555.	0.9	4
138	Atmospheric nitrogen evolution on Earth and Venus. Earth and Planetary Science Letters, 2016, 447, 103-111.	1.8	58
139	Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission. Advances in Space Research, 2016, 57, 2529-2547.	1.2	95
140	The oxidation state and mass of the Moon-forming impactor. Earth and Planetary Science Letters, 2016, 442, 186-193.	1.8	34
141	The giant impact simulations with density independent smoothed particle hydrodynamics. Icarus, 2016, 271, 131-157.	1.1	27
142	Tidal dissipation in the lunar magma ocean and its effect on the early evolution of the Earth–Moon system. Icarus, 2016, 275, 132-142.	1.1	55
143	A HOT BIG BANG THEORY: MAGNETIC FIELDS AND THE EARLY EVOLUTION OF THE PROTOLUNAR DISK. Astrophysical Journal, 2016, 828, 58.	1.6	17
144	On the origin of Earth's Moon. Journal of Geophysical Research E: Planets, 2016, 121, 1573-1601.	1.5	53
145	GRAIL, LLR, and LOLA constraints on the interior structure of the Moon. Geophysical Research Letters, 2016, 43, 8365-8375.	1.5	57
147	Zirconium isotope constraints on the composition of Theia and current Moon-forming theories. Earth and Planetary Science Letters, 2016, 449, 302-310.	1.8	55
148	Liquidâ€vapor phase relations in the Siâ€O system: A calorically constrained van der Waalsâ€ŧype model. Journal of Geophysical Research E: Planets, 2016, 121, 1641-1666.	1.5	10
150	Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon. Geochimica Et Cosmochimica Acta, 2016, 175, 208-221.	1.6	56
151	Core merging and stratification following giantÂimpact. Nature Geoscience, 2016, 9, 786-789.	5.4	54
152	Stratified by a sunken impactor. Nature Geoscience, 2016, 9, 734-735.	5.4	0
153	An early geodynamo driven by exsolution of mantle components from Earth's core. Nature, 2016, 536, 326-328.	13.7	128
154	THE FREQUENCY OF GIANT IMPACTS ON EARTH-LIKE WORLDS. Astrophysical Journal, 2016, 821, 126.	1.6	117
155	Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature, 2016, 539, 402-406.	13.7	102

#	Article	IF	CITATIONS
156	Major element composition of an Early Enriched Reservoir: constraints from 142Nd/144Nd isotope systematics in the early Earth and high-pressure melting experiments of a primitive peridotite. Progress in Earth and Planetary Science, 2016, 3, .	1.1	2
157	Formation of exomoons: a solar system perspective. The Astronomical Review, 2016, 12, 24-52.	4.0	16
158	Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies. Annual Review of Earth and Planetary Sciences, 2016, 44, 709-783.	4.6	190
160	Titanium stable isotope investigation of magmatic processes on the Earth and Moon. Earth and Planetary Science Letters, 2016, 449, 197-205.	1.8	99
161	Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 2016, 351, 493-496.	6.0	203
162	Powering Earth's dynamo with magnesium precipitation from the core. Nature, 2016, 529, 387-389.	13.7	173
163	RESONANT REMOVAL OF EXOMOONS DURING PLANETARY MIGRATION. Astrophysical Journal, 2016, 817, 18.	1.6	66
164	Impact-induced melting during accretion of the Earth. Progress in Earth and Planetary Science, 2016, 3,	1.1	31
165	Insights into Planet Formation from Debris Disks. Space Science Reviews, 2016, 205, 231-265.	3.7	43
166	Is lunar magma ocean (LMO) gone with the wind?. National Science Review, 2016, 3, 12-15.	4.6	2
167	DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN'S MOONS. Astrophysical Journal, 2016, 820, 97.	1.6	117
168	lsotopes in cosmochemistry: recipe for a Solar System. Journal of Analytical Atomic Spectrometry, 2016, 31, 841-862.	1.6	14
169	Highly siderophile element abundances in Eoarchean komatiite and basalt protoliths. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	9
170	A multiple-impact origin for the Moon. Nature Geoscience, 2017, 10, 89-94.	5.4	118
171	Punch combo or knock-out blow?. Nature Geoscience, 2017, 10, 72-73.	5.4	1
172	Evolution of a protolunar disk in vapor/melt equilibrium. Journal of Geophysical Research E: Planets, 2017, 122, 342-357.	1.5	5
173	Scaling in global tidal dissipation of the Earth-Moon system. New Astronomy, 2017, 54, 115-121.	0.8	5
174	Early formation of the Moon 4.51 billion years ago. Science Advances, 2017, 3, e1602365.	4.7	156

		CITATION REPORT		
#	Article		IF	CITATIONS
175	The isotopic nature of the Earthâ \in ${}^{\mathrm{M}}$ s accreting material through time. Nature, 2017, 5	541, 521-524.	13.7	304
176	Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Natur 525-527.	e, 2017, 541,	13.7	147
177	Phase equilibria of a low S and C lunar core: Implications for an early lunar dynamo and state of the current core. Earth and Planetary Science Letters, 2017, 463, 323-332.	1 physical	1.8	29
178	Chemical stratification in the post-magma ocean Earth inferred from coupled 146,147 systematics in ultramafic rocks of the Saglek block (3.25–3.9 Ga; northern Labrador and Planetary Science Letters, 2017, 463, 136-150.	Sm–142,143Nd , Canada). Earth	1.8	43
179	Possible origin of Theia, the Moonâ€forming impactor with Earth. Astronomische Nach 366-374.	ırichten, 2017, 338,	0.6	2
180	Formation of a solid inner core during the accretion of Earth. Journal of Geophysical Re Earth, 2017, 122, 3248-3285.	esearch: Solid	1.4	10
181	Early accretion of water and volatile elements to the inner Solar System: evidence from Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 20160209.		1.6	51
182	Magmatic evolution of lunar highland rocks estimated from trace elements in plagiocla silicate Moon model with sub-chondritic Ti/Ba, Sr/Ba, and Sr/Al ratios. Geochimica Et Co Acta, 2017, 210, 152-183.	ase: A new bulk osmochimica	1.6	7
183	Evidence for an early wet Moon from experimental crystallization of the lunar magma Geoscience, 2017, 10, 14-18.	ocean. Nature	5.4	94
184	Experimental constraints on the solidification of a nominally dry lunar magma ocean. E Planetary Science Letters, 2017, 471, 104-116.	Iarth and	1.8	56
185	Chemical and isotopic kinship of iron in the Earth and Moon deduced from the lunar M and Planetary Science Letters, 2017, 471, 125-135.	lg-Suite. Earth	1.8	41
186	The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. Jou Geophysical Research E: Planets, 2017, 122, 950-982.	ırnal of	1.5	81
187	Tungsten Isotopes in Planets. Annual Review of Earth and Planetary Sciences, 2017, 45	5, 389-417.	4.6	78
188	Origin and Evolution of Water in the Moon's Interior. Annual Review of Earth and Plan 2017, 45, 89-111.	etary Sciences,	4.6	29
189	The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar of mantle. Geophysical Research Letters, 2017, 44, 6543-6552.	cumulate	1.5	38
190	Impact erosion model for gravity-dominated planetesimals. Icarus, 2017, 294, 234-246	5.	1.1	22
191	Gallium isotopic evidence for extensive volatile loss from the Moon during its formatio Advances, 2017, 3, e1700571.	n. Science	4.7	74
192	Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the Na of Sciences of the United States of America, 2017, 114, 9547-9551.	ational Academy	3.3	41

#	Article	IF	CITATIONS
193	On the Impact Origin of Phobos and Deimos. I. Thermodynamic and Physical Aspects. Astrophysical Journal, 2017, 845, 125.	1.6	52
194	The Giant Impact Made the Present Earth–Moon Systemâ^—. , 2017, , 59-100.		0
195	Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon. Geochimica Et Cosmochimica Acta, 2017, 218, 114-131.	1.6	19
196	Astronomical Applications. SpringerBriefs in Astronomy, 2017, , 71-84.	1.6	0
197	Three Body Dynamics and Its Applications to Exoplanets. SpringerBriefs in Astronomy, 2017, , .	1.6	8
198	Reconciling magmaâ€ocean crystallization models with the presentâ€day structure of the Earth's mantle. Geochemistry, Geophysics, Geosystems, 2017, 18, 2785-2806.	1.0	58
199	Formation, stratification, and mixing of the cores of Earth and Venus. Earth and Planetary Science Letters, 2017, 474, 375-386.	1.8	63
200	Investigation of newly discovered lobate scarps: Implications for the tectonic and thermal evolution of the Moon. Icarus, 2017, 298, 78-88.	1.1	22
201	Tungsten isotopes and the origin of the Moon. Earth and Planetary Science Letters, 2017, 475, 15-24.	1.8	56
202	Geochemical Constraints on the Size of the Moonâ€Forming Giant Impact. Geophysical Research Letters, 2017, 44, 11,770.	1.5	10
203	Energy geodynamo parameters compatible with analytical, numerical, paleomagnetic models and observations. Izvestiya, Physics of the Solid Earth, 2017, 53, 908-921.	0.2	6
204	Tidal locking of habitable exoplanets. Celestial Mechanics and Dynamical Astronomy, 2017, 129, 509-536.	0.5	174
205	The composition of Solar system asteroids and Earth/Mars moons, and the Earth–Moon composition similarity. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3597-3609.	1.6	38
206	Coupled orbital-thermal evolution of the early Earth-Moon system with a fast-spinning Earth. Icarus, 2017, 281, 90-102.	1.1	54
207	Highly siderophile element and 182 W evidence for a partial late veneer in the source of 3.8 Ga rocks from Isua, Greenland. Earth and Planetary Science Letters, 2017, 458, 394-404.	1.8	60
208	Experimental Constraints on Ferropericlase (Mg, Fe)O Melt Viscosity Up to 70ÂGPa. Geophysical Research Letters, 2017, 44, 12,190.	1.5	1
209	Formation of Massive Rocky Exomoons by Giant Impact. Monthly Notices of the Royal Astronomical Society, 0, , stx078.	1.6	4
210	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	3.7	76

щ.	Article	IF	Citations
#	The Origin of the Moon Within a Terrestrial Synestia. Journal of Geophysical Research E: Planets, 2018,	IF	
211	123, 910-951.	1.5	200
212	Creating an isotopically similar Earth–Moon system with correct angular momentum from a giant impact. Journal of Astrophysics and Astronomy, 2018, 39, 1.	0.4	1
213	A large planetary body inferred from diamond inclusions in a ureilite meteorite. Nature Communications, 2018, 9, 1327.	5.8	56
214	Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearsideâ€ãî¼4â€billion years ago. Geochimica Et Cosmochimica Acta, 2018, 230, 46-59.	1.6	39
215	Extinct Radionuclides. , 0, , 407-443.		0
216	The third isotope of the third element on the third planet. American Mineralogist, 2018, 103, 1-10.	0.9	3
217	Inefficient volatile loss from the Moon-forming disk: Reconciling the giant impact hypothesis and a wet Moon. Earth and Planetary Science Letters, 2018, 487, 117-126.	1.8	47
218	HEK. VI. On the Dearth of Galilean Analogs in Kepler, and the Exomoon Candidate Kepler-1625b I. Astronomical Journal, 2018, 155, 36.	1.9	103
219	Collisional stripping of planetary crusts. Earth and Planetary Science Letters, 2018, 484, 276-286.	1.8	56
220	Oxygen isotopic evidence for accretion of Earth's water before a high-energy Moon-forming giant impact. Science Advances, 2018, 4, eaao5928.	4.7	77
221	Constraining the Time Interval for the Origin of Life on Earth. Astrobiology, 2018, 18, 343-364.	1.5	71
222	The Ice Cap Zone: A Unique Habitable Zone for Ocean Worlds. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	21
223	lsotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature, 2018, 555, 507-510.	13.7	140
224	Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites. Earth and Planetary Science Letters, 2018, 481, 1-8.	1.8	62
225	Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body. Icarus, 2018, 301, 235-246.	1.1	65
226	SPH calculations of Mars-scale collisions: The role of the equation of state, material rheologies, and numerical effects. Icarus, 2018, 301, 247-257.	1.1	56
227	Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nature Geoscience, 2018, 11, 77-81.	5.4	67
228	Radial mixing and Ru–Mo isotope systematics under different accretion scenarios. Earth and Planetary Science Letters, 2018, 482, 105-114.	1.8	19

#	Article	IF	CITATIONS
229	Formation of Embryos of the Earth and the Moon from a Common Rarefied Condensation and Their Subsequent Growth. Solar System Research, 2018, 52, 401-416.	0.3	6
230	The New Moon: Major Advances in Lunar Science Enabled by Compositional Remote Sensing from Recent Missions. Geosciences (Switzerland), 2018, 8, 498.	1.0	11
231	Computational modelling unravels the precise clockwork of cyanobacteria. Interface Focus, 2018, 8, 20180038.	1.5	10
232	The Elusive Origin of Mercury. , 2018, , 497-515.		21
234	Radial velocities. , 0, , 17-80.		0
235	Astrometry. , 0, , 81-102.		0
236	Timing. , 0, , 103-118.		0
237	Microlensing. , 0, , 119-152.		0
239	Host stars. , 0, , 373-428.		0
240	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
241	Formation and evolution. , 0, , 449-558.		0
242	Interiors and atmospheres. , 0, , 559-648.		0
243	The solar system. , 0, , 649-700.		0
251	Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon. Geochimica Et Cosmochimica Acta, 2018, 234, 50-69.	1.6	102
252	Collisional disruption of planetesimals in the gravity regime with iSALE code: Comparison with SPH code for purely hydrodynamic bodies. Icarus, 2018, 314, 121-132.	1.1	10
253	Implantation of Martian Materials in the Inner Solar System by a Mega Impact on Mars. Astrophysical Journal Letters, 2018, 856, L36.	3.0	13
254	The Role of Multiple Giant Impacts in the Formation of the Earth–Moon System. Astrophysical Journal, 2018, 862, 5.	1.6	14
255	Implications of Tides for Life on Exoplanets. Astrobiology, 2018, 18, 967-982.	1.5	21

		ITATION REF	ORI	
#	Article		IF	Citations
257	Earth's Atmosphere. Encyclopedia of Earth Sciences Series, 2018, , 383-392.		0.1	0
258	Constraints on the pre-impact orbits of Solar system giant impactors. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2924-2936.		1.6	46
259	Atmosphere Impact Losses. Space Science Reviews, 2018, 214, 1.		3.7	62
260	Effect of Reimpacting Debris on the Solidification of the Lunar Magma Ocean. Journal of Geophysical Research E: Planets, 2018, 123, 1168-1191.		1.5	16
261	Transits. , 0, , 153-328. Endogenous Firm Dynamics and Labor Flows via Heterogeneous Agents are frage Support from the J	ohn D. and		0
262	Catherine T. MacArthur Foundation, the National Science Foundation (0738606), the Small Business Administration (SBAHQ-05-Q-0018), and the Mercatus Center at George Mason is gratefully acknowledged. I have no relevant or material financial interests that relate to the research described in this paper or the associated model. Earlier versions of this work were presented at research			

#	Article	IF	CITATIONS
276	The Moon: A personal recollection and memorial for Professor Lawrence A. Taylor, an Apollo stalwart. Geochimica Et Cosmochimica Acta, 2019, 266, 9-16.	1.6	2
277	Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids. Earth and Planetary Science Letters, 2019, 526, 115771.	1.8	59
278	Probabilities of Collisions of Planetesimals from Different Regions of the Feeding Zone of the Terrestrial Planets with the Forming Planets and the Moon. Solar System Research, 2019, 53, 332-361.	0.3	7
279	A reassessment of the iron isotope composition of the Moon and its implications for the accretion and differentiation of terrestrial planets. Geochimica Et Cosmochimica Acta, 2019, 267, 257-274.	1.6	17
280	Evolving Theories on the Origin of the Moon. Historical & Cultural Astronomy, 2019, , .	0.1	4
281	Giant impacts stochastically change the internal pressures of terrestrial planets. Science Advances, 2019, 5, eaav3746.	4.7	11
282	Origin and Early Differentiation of Carbon and Associated Life-Essential Volatile Elements on Earth. , 2019, , 4-39.		20
283	Volatile element depletion of the Moon—The roles of precursors, post-impact disk dynamics, and core formation. Science Advances, 2019, 5, eaau7658.	4.7	22
284	First-principles calculations of equilibrium Ca isotope fractionation: Implications for oldhamite formation and evolution of lunar magma ocean. Earth and Planetary Science Letters, 2019, 510, 153-160.	1.8	64
285	Planetary giant impacts: convergence of high-resolution simulations using efficient spherical initial conditions and swift. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5029-5040.	1.6	35
286	In situ Viscometry of Primitive Lunar Magmas at High Pressure and High Temperature. Frontiers in Earth Science, 2019, 7, .	0.8	9
287	Are the Moon's Nearsideâ€Farside Asymmetries the Result of a Giant Impact?. Journal of Geophysical Research E: Planets, 2019, 124, 2117-2140.	1.5	32
288	Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nature Astronomy, 2019, 3, 736-741.	4.2	120
289	Potassium isotope fractionation during high-temperature evaporation determined from the Trinity nuclear test. Chemical Geology, 2019, 522, 84-92.	1.4	13
290	Fate of the Runner in Hit-and-run Collisions. Astrophysical Journal, 2019, 875, 95.	1.6	19
291	Melt–crystal density crossover in a deep magma ocean. Earth and Planetary Science Letters, 2019, 516, 202-211.	1.8	54
292	Surface gravity and crater diameter as proxies of extra-terrestrial impact. Icarus, 2019, 331, 62-68.	1.1	2
293	Dynamical Constraints on Mercury's Collisional Origin. Astronomical Journal, 2019, 157, 208.	1.9	23

# 294	ARTICLE Terrestrial magma ocean origin of the Moon. Nature Geoscience, 2019, 12, 418-423.	IF 5.4	Citations 56
295	Near/far side asymmetry in the tidally heated Moon. Icarus, 2019, 329, 182-196.	1.1	11
296	Impact Dynamics of Moons Within a Planetary Potential. Journal of Geophysical Research E: Planets, 2019, 124, 1008-1019.	1.5	1
297	Enhanced Mixing in Giant Impact Simulations with a New Lagrangian Method. Astrophysical Journal, 2019, 870, 127.	1.6	21
298	The vanadium isotopic composition of lunar basalts. Earth and Planetary Science Letters, 2019, 511, 12-24.	1.8	12
299	Is Earth special?. Earth-Science Reviews, 2019, 192, 445-470.	4.0	4
300	Dynamics of a terrestrial magma ocean under planetary rotation: A study in spherical geometry. Earth and Planetary Science Letters, 2019, 513, 81-94.	1.8	16
301	The fate of nitrogen during core-mantle separation on Earth. Geochimica Et Cosmochimica Acta, 2019, 251, 87-115.	1.6	34
302	Primordial Earth Mantle Heterogeneity Caused by the Moon-forming Giant Impact?. Astrophysical Journal, 2019, 887, 211.	1.6	14
303	Impacts into rotating targets: angular momentum draining and efficient formation of synthetic families. Astronomy and Astrophysics, 2019, 629, A122.	2.1	9
304	Thermodynamical constraints on the crystallization of a deep magma-ocean on Earth. Comptes Rendus - Geoscience, 2019, 351, 221-228.	0.4	4
305	Core formation, mantle differentiation and core-mantle interaction within Earth and the terrestrial planets. Tectonophysics, 2019, 760, 165-198.	0.9	67
306	Origin of the Earth and the Late Heavy Bombardment. , 2019, , 27-47.		5
307	Solidification of lunar core from melting experiments on the Fe–Ni–S system. Earth and Planetary Science Letters, 2020, 530, 115834.	1.8	5
308	The energy budget and figure of Earth during recovery from the Moon-forming giant impact. Earth and Planetary Science Letters, 2020, 530, 115885.	1.8	15
309	Iron isotopic composition of very low-titanium basalt deduced from the iron isotopic signature in Luna 16, 20, and 24 soils. Geochimica Et Cosmochimica Acta, 2020, 269, 1-14.	1.6	7
310	The Energy Budgets of Giant Impacts. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006042.	1.5	31
311	Vertical angular momentum constraint on lunar formation and orbital history. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15460-15464.	3.3	10

		CITATION RE	IPORT	
#	Article		IF	Citations
312	Atmospheric Erosion by Giant Impacts onto Terrestrial Planets. Astrophysical Journal, 2	020, 897, 161.	1.6	19
313	Review of pulsed power-driven high energy density physics research on Z at Sandia. Phy 2020, 27, .	ysics of Plasmas,	0.7	140
314	The shock physics of giant impacts: Key requirements for the equations of state. AIP Co Proceedings, 2020, , .	onference	0.3	22
315	Partial core vaporization during Giant Impacts inferred from the entropy and the critica iron. Earth and Planetary Science Letters, 2020, 547, 116463.	l point of	1.8	7
316	Tidal Evolution of the Evection Resonance/Quasiâ€Resonance and the Angular Momen Earthâ€Moon System. Journal of Geophysical Research E: Planets, 2020, 125, e2019JEC		1.5	15
317	The Role of Meteorite Impacts in the Origin of Life. Astrobiology, 2020, 20, 1121-1149		1.5	63
318	Geochemical Constraints on the Origin of the Moon and Preservation of Ancient Terres Heterogeneities. Space Science Reviews, 2020, 216, 1.	strial	3.7	16
319	Liquidâ€Vapor Coexistence and Critical Point of Mg ₂ SiO ₄ Fr Simulations. Geophysical Research Letters, 2020, 47, e2020GL089599.	om Ab Initio	1.5	6
320	The Critical Point and the Supercritical State of Alkali Feldspars: Implications for the Be Crust During Impacts. Journal of Geophysical Research E: Planets, 2020, 125, e2020JEC	havior of the)06412.	1.5	9
321	Problem of Iron Isotope Composition of the Earth and Moon. Data on δ57Fe of Luna 16 Luna 24 Lunar Soil Samples (Report on the XXII Symposium on the Geochemistry of St	5, Luna 20, and able Isotopes,) Tj ETQq1 1	0.084314	rgBT /Over
322	The Solar Wind Prevents Reaccretion of Debris after Mercury's Giant Impact. Plane Journal, 2020, 1, 7.	tary Science	1.5	9
323	The selenium isotope composition of lunar rocks: Implications for the formation of the volatile loss. Earth and Planetary Science Letters, 2020, 542, 116289.	Moon and its	1.8	8
324	Hadean Earth. , 2020, , .			21
325	A new equation of state applied to planetary impacts. Astronomy and Astrophysics, 20	20, 635, A21.	2.1	1
326	Distinct oxygen isotope compositions of the Earth and Moon. Nature Geoscience, 2020	0, 13, 270-274.	5.4	55
327	Characteristics of a precessing flow under the influence of a convecting temperature fi spheroidal shell. Journal of Fluid Mechanics, 2020, 891, .	eld in a	1.4	2
328	A possible high-temperature origin of the Moon and its geochemical consequences. Ea Planetary Science Letters, 2020, 538, 116222.	rth and	1.8	21
329	Realistic On-the-fly Outcomes of Planetary Collisions. II. Bringing Machine Learning to N Simulations. Astrophysical Journal, 2020, 891, 6.	N-body	1.6	22

#	Article	IF	CITATIONS
330	Experimental constraints on the solidification of a hydrous lunar magma ocean. Meteoritics and Planetary Science, 2020, 55, 207-230.	0.7	20
331	Oxygen Isotopes and Sampling of the Solar System. Space Science Reviews, 2020, 216, 1.	3.7	22
332	Venus: A Thick Basal Magma Ocean May Exist Today. Geophysical Research Letters, 2020, 47, e2019GL086126.	1.5	15
333	Silicate Melting and Vaporization During Rocky Planet Formation. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006227.	1.5	24
334	Thermal and magnetic evolution of a crystallizing basal magma ocean in Earth's mantle. Earth and Planetary Science Letters, 2020, 534, 116085.	1.8	13
335	Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification. Nature Communications, 2020, 11, 548.	5.8	26
336	Geochemistry and Petrogenesis of Northwest Africa 10401: A New Type of the Mg‧uite Rocks. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006225.	1.5	30
337	Analytical Model for the Tidal Evolution of the Evection Resonance and the Timing of Resonance Escape. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006266.	1.5	5
338	Potassium isotopic composition of the Moon. Geochimica Et Cosmochimica Acta, 2020, 280, 263-280.	1.6	40
339	On the evolution of global ocean tides. Geophysical and Astrophysical Fluid Dynamics, 2021, 115, 184-191.	0.4	1
340	On the fate of impact-delivered metal in a terrestrial magma ocean. Earth and Planetary Science Letters, 2021, 554, 116680.	1.8	9
341	Planetary embryo collisions and the wiggly nature of extreme debris discs. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2984-3002.	1.6	11
342	Could Uranus and Neptune form by collisions of planetary embryos?. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1647-1660.	1.6	6
343	The origin of the Moon's Earth-like tungsten isotopic composition from dynamical and geochemical modeling. Nature Communications, 2021, 12, 35.	5.8	5
344	Timescales of chemical equilibrium between the convecting solid mantle and over- and underlying magma oceans. Solid Earth, 2021, 12, 421-437.	1.2	5
345	Constraints on early Earth's water budget from the evolution of the lunar hydrogen cycle. Global and Planetary Change, 2021, 197, 103393.	1.6	3
346	Buoyancy and Structure of Volatileâ€Rich Silicate Melts. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021045.	1.4	14
347	Isotopic evidence for the formation of the Moon in a canonical giant impact. Nature Communications, 2021, 12, 1817.	5.8	12

		CITATION RE	PORT	
#	Article		IF	CITATIONS
349	Melting driven by rotating Rayleigh–Bénard convection. Journal of Fluid Mechanics	, 2021, 916, .	1.4	8
350	Temperature and Density on the Forsterite Liquidâ€Vapor Phase Boundary. Journal of G Research E: Planets, 2021, 126, e2020JE006745.	eophysical	1.5	1
351	The Onset of Chaos in Permanently Deformed Binaries from Spin–Orbit and Spin–S Astrophysical Journal, 2021, 913, 31.	spin Coupling.	1.6	6
352	The EOS/resolution conspiracy: convergence in proto-planetary collision simulations. M Notices of the Royal Astronomical Society, 2021, 505, 1806-1816.	onthly	1.6	6
353	Geodetic model for teaching motion on the Earth's spheroidal surface. European Jo 2022, 43, 015003.	urnal of Physics,	0.3	2
354	Metal-silicate mixing by large Earth-forming impacts. Earth and Planetary Science Letter 116888.	rs, 2021, 564,	1.8	18
355	Can a jumping-Jupiter trigger the Moon's formation impact?. Monthly Notices of th Astronomical Society, 2021, 507, 539-547.	e Royal	1.6	10
356	Tidal Evolution of the Earth–Moon System with a High Initial Obliquity. Planetary Sci€ 2021, 2, 147.	ence Journal,	1.5	5
357	Possible link between Earth's rotation rate and oxygenation. Nature Geoscience, 20)21, 14, 564-570.	5.4	27
359	Migration processes in the Solar System and their role in the evolution of the Earth and Physics-Uspekhi, 2023, 66, 2-31.	planets.	0.8	8
360	Forces and conservation laws for motion on our spheroidal Earth. American Journal of P 89, 830-842.	hysics, 2021,	0.3	4
361	Large impact cratering during lunar magma ocean solidification. Nature Communication 5433.	ns, 2021, 12,	5.8	16
362	Collision Chains among the Terrestrial Planets. II. An Asymmetry between Earth and Ver Science Journal, 2021, 2, 199.	ius. Planetary	1.5	11
363	Collision Chains among the Terrestrial Planets. III. Formation of the Moon. Planetary Sci 2021, 2, 200.	ence Journal,	1.5	10
364	Thermal metamorphism on the Moon as recorded by the granulite suite. Journal of the Society, 2022, 179, .	Geological	0.9	7
365	Calcium isotope cosmochemistry. Chemical Geology, 2021, 581, 120396.		1.4	5
366	Tidal Dissipation in Dual-body, Highly Eccentric, and Nonsynchronously Rotating Syster Applications to Pluto–Charon and the Exoplanet TRAPPIST-1e. Planetary Science Jour	ns: nal, 2021, 2, 4.	1.5	13
369	Isotopic Composition of the Moon and the Lunar Isotopic Crisis. , 2014, , 1-13.			4

#	Article	IF	CITATIONS
370	Evolution, Lunar: From Magma Ocean to Crust Formation. , 2016, , 1-20.		19
371	Earth's Core. Encyclopedia of Earth Sciences Series, 2017, , 1-13.	0.1	2
372	Secular change and the onset of plate tectonics on Earth. Earth-Science Reviews, 2020, 207, 103172.	4.0	171
374	Planetary science: Lunar conspiracies. Nature, 2013, 504, 27-29.	13.7	14
375	A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. Nature Astronomy, 2019, 3, 416-423.	4.2	64
376	A new equation of state applied to planetary impacts. Astronomy and Astrophysics, 2020, 643, A40.	2.1	7
377	Development of uncertainty-aware equation-of-state models: Application to copper. Journal of Applied Physics, 2020, 128, .	1.1	14
378	Solar System Physics for Exoplanet Research. Publications of the Astronomical Society of the Pacific, 2020, 132, 102001.	1.0	29
379	Origin of Earth's oceans: An assessment of the total amount, history and supply of water. Geochemical Journal, 2016, 50, 27-42.	0.5	54
380	Comparative Climatology of Terrestrial Planets. , 2013, , .		6
381	The Atmospheres of the Terrestrial Planets: Clues to the Origins and Early Evolution of Venus, Earth, and Mars. , 2013, , .		19
382	Atmospheric Erosion by Giant Impacts onto Terrestrial Planets: A Scaling Law for any Speed, Angle, Mass, and Density. Astrophysical Journal Letters, 2020, 901, L31.	3.0	16
383	Evaporation from the Lunar Magma Ocean Was Not the Mechanism for Fractionation of the Moon's Moderately Volatile Elements. Planetary Science Journal, 2020, 1, 49.	1.5	14
384	Evidence for Transient Atmospheres during Eruptive Outgassing on the Moon. Planetary Science Journal, 2020, 1, 67.	1.5	11
386	Genesis of a CO ₂ -rich and H ₂ O-depleted atmosphere from Earth's early global magma ocean. Science Advances, 2021, 7, eabj0406.	4.7	9
387	Planet Orbit—Lunar Orbit Resonances and the History of the Earth-Moon System. , 2015, , 295-354.		0
389	Lunar Magma Ocean Theory, Origins, and Rationale. , 2015, , 1-8.		0
390	Insights into Planet Formation from Debris Disks. Space Sciences Series of ISSI, 2016, , 273-307.	0.0	1

#	Article	IF	CITATIONS
391	Neurochemistry. , 2016, , 35-49.		0
393	Lunar Magma Ocean, Comparison to Other Planetary Magma Oceans. , 2017, , 1-6.		1
394	Isotopic Composition of the Moon and the Lunar Isotopic Crisis. , 2017, , 1-13.		0
395	Giant Impact Hypothesis. Encyclopedia of Earth Sciences Series, 2017, , 1-4.	0.1	Ο
396	Origin and Evolution of the Moon: Tungsten Isotopic Constraints. , 2018, , 1-9.		0
397	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 2018, , 291-314.	0.0	0
398	Atmosphere Impact Losses. Space Sciences Series of ISSI, 2018, , 397-427.	0.0	0
399	Earth's Core. Encyclopedia of Earth Sciences Series, 2018, , 418-429.	0.1	Ο
400	Giant Impact Hypothesis. Encyclopedia of Earth Sciences Series, 2018, , 617-620.	0.1	0
405	Was There Land on the Early Earth?. Life, 2021, 11, 1142.	1.1	21
406	The effect of pre-impact spin on the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2861-2870.	1.6	7
408	The Lunar Surface and Late Heavy Bombardment Concept. , 2020, , 59-100.		Ο
409	Radionuclide Produced Isotopic Variations in Mantle Rocks. , 2020, , 39-58.		0
411	A Magnetized, Moon-forming Giant Impact. Astrophysical Journal Letters, 2020, 903, L15.	3.0	4
413	The core-merging giant impact in Earth's accretion history and its implications. Acta Geochimica, 2022, 41, 553-567.	0.7	1
414	Updated studies on exomoons in the HD 23079 system. Publications of the Astronomical Society of Australia, 2021, 38, .	1.3	2
415	Formation and evolution of the core. , 2022, , 247-280.		0
416	Formation of the Earth and Moon: Influence of Small Bodies. Geochemistry International, 2021, 59, 1010-1017.	0.2	5

#	Article	IF	CITATIONS
417	Formation of the Lunar Primary Crust From a Long‣ived Slushy Magma Ocean. Geophysical Research Letters, 2022, 49, .	1.5	6
418	Role of Earth-Moon rotational dynamics in the shaping of the surface of our planet. , 2022, , .		0
419	Internal dynamics of magma ocean and its linkage to atmospheres. Acta Geochimica, 2022, 41, 568-591.	0.7	1
420	The Extent, Nature, and Origin of K and Rb Depletions and Isotopic Fractionations in Earth, the Moon, and Other Planetary Bodies. Planetary Science Journal, 2022, 3, 29.	1.5	16
421	Large planets may not form fractionally large moons. Nature Communications, 2022, 13, 568.	5.8	4
422	An evolutionary system of mineralogy, Part VI: Earth's earliest Hadean crust (>4370 Ma). American Mineralogist, 2023, 108, 42-58.	0.9	7
423	The Lithophile Element Budget of Earth's Core. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	4
424	The origin of volatile elements in the Earth–Moon system. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
425	Asteroids and Life: How Special Is the Solar System?. Astrophysical Journal Letters, 2022, 926, L20.	3.0	1
426	Rayleigh–Taylor instability in impact cratering experiments. Journal of Fluid Mechanics, 2022, 937, .	1.4	12
427	Primordial Heliumâ€3 Exchange Between Earth's Core and Mantle. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	11
428	Coaccretion + Giant-impact Origin of the Uranus System: Tilting Impact. Astrophysical Journal, 2022, 928, 123.	1.6	8
429	Garnet stability in the deep lunar mantle: Constraints on the physics and chemistry of the interior of the Moon. Earth and Planetary Science Letters, 2022, 584, 117491.	1.8	5
430	The Exosphere as a Boundary: Origin and Evolution of Airless Bodies in the Inner Solar System and Beyond Including Planets with Silicate Atmospheres. Space Science Reviews, 2022, 218, 1.	3.7	6
431	Atmosphere loss in oblique Super-Earth collisions. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1680-1700.	1.6	6
432	The infinitely fractal universe paradigm and consupponibility. Chaos, Solitons and Fractals, 2022, 158, 112065.	2.5	2
433	Probing the source of ancient linear gravity anomalies on the Moon. Icarus, 2022, 380, 114978.	1.1	4
434	Interiors of Earth-Like Planets and Satellites of the Solar System. Surveys in Geophysics, 0, , 1.	2.1	5

#	Article	IF	CITATIONS
435	Loss of angular momentum when the planet's atmosphere leaks into space. Bulletin of Taras Shevchenko National University of Kyiv Astronomy, 2021, , 45-47.	0.1	0
436	Did Earth Eat Its Leftovers? Impact Ejecta as a Component of the Late Veneer. Planetary Science Journal, 2022, 3, 83.	1.5	1
438	Core segregation during pebble accretion. Earth and Planetary Science Letters, 2022, 587, 117537.	1.8	5
439	The Creation of Moon: Comparative Analysis between Modern Sciences and Religious Studies. Journal of Islamic Thought and Civilization, 2021, 11, .	0.1	0
441	A Collision Mechanism for the Removal of Earth's Trojan Asteroids. Planetary Science Journal, 2022, 3, 121.	1.5	2
442	Reduced Atmospheres of Post-impact Worlds: The Early Earth. Planetary Science Journal, 2022, 3, 115.	1.5	18
443	Large Impacts onto the Early Earth: Planetary Sterilization and Iron Delivery. Planetary Science Journal, 2022, 3, 116.	1.5	13
444	A Review of the Lunar 182Hf-182W Isotope System Research. Minerals (Basel, Switzerland), 2022, 12, 759.	0.8	2
445	Trace element volatility and the conditions of liquid-vapor separation in the proto-lunar disk. Icarus, 2022, 386, 115143.	1.1	2
447	Miscibility of rock and ice in the interiors of water worlds. Scientific Reports, 2022, 12, .	1.6	9
448	Indigenous noble gases in the Moonâ \in ${}^{\mathrm{M}}$ s interior. Science Advances, 2022, 8, .	4.7	3
449	Thermal state of earth's mantle during accretion. Physics of the Earth and Planetary Interiors, 2022, , 106925.	0.7	0
450	Explaining mercury via a single giant impact is highly unlikely. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5576-5586.	1.6	4
451	Redox-dependent Ti stable isotope fractionation on the Moon: implications for current lunar magma ocean models. Contributions To Mineralogy and Petrology, 2022, 177, .	1.2	7
452	Impact Earth: A review of the terrestrial impact record. Earth-Science Reviews, 2022, 232, 104112.	4.0	25
453	Rethinking the role of the giant planet instability in terrestrial planet formation models. Icarus, 2023, 389, 115260.	1.1	5
454	Early Thermal Evolution of the Lunar Interiors. , 2022, , 1-14.		0
455	Earth was seasoned by countless blows. Science, 2022, 377, 1490-1491.	6.0	0

		CITATION R	EPORT	
# 456	ARTICLE Immediate Origin of the Moon as a Post-impact Satellite. Astrophysical Journal Letters,	2022, 937, L40.	IF 3.0	Citations 8
457	Early thermal evolution and planetary differentiation of the Moon: A giant impact pers of Earth System Science, 2022, 131, .	pective. Journal	0.6	1
458	Origin of life-forming volatile elements in the inner Solar System. Nature, 2022, 611, 2	45-255.	13.7	12
459	The accretion of planet Earth. Nature Reviews Earth & Environment, 2023, 4, 19-35.		12.2	4
460	On the Jacobi capture origin of binaries with applications to the Earth-Moon system an galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5653-5		1.6	10
461	Isolating the extreme debris disc signature $\hat{a} \in \hat{a}$ explorations of eccentric extreme debri giant impacts. Monthly Notices of the Royal Astronomical Society, 2022, 519, 172-193	s discs formed by 1.	1.6	1
463	Trace element evidence for serial processing of the lunar flotation crust and a depleted Earth and Planetary Science Letters, 2023, 602, 117958.	l bulk Moon.	1.8	2
464	Comparisons of the core and mantle compositions of earth analogs from different terr formation scenarios. Icarus, 2023, 394, 115425.	estrial planet	1.1	3
465	Solar/planetary formation and evolution. , 2023, , 1-54.			0
466	Lunar explorations—Discovering water, minerals, and underground caves andÂtunne 2023, , 399-452.	l complexes. ,		0
467	Impact Generation of Holes in the Early Lunar Crust: Scaling Relations. Journal of Geop Research E: Planets, 0, , .	hysical	1.5	0
468	Compositional variations in Ohm ray crater on the farside of the Moon: Implications fo anomaly. Planetary and Space Science, 2023, 229, 105674.	r mafic	0.9	1
469	Rapid solidification of Earth's magma ocean limits early lunar recession. Icarus, 202	23, 400, 115564.	1.1	1
470	Mercury's formation within the early instability scenario. Icarus, 2023, 394, 11544	5.	1.1	0
471	Cerium-Nd isotope evidence for an incompatible element depleted Moon. Earth and Pla Letters, 2023, 606, 118018.	anetary Science	1.8	3
472	Earth's volatile depletion trend is consistent with a high-energy Moon-forming imp Communications Earth & Environment, 2023, 4, .	act.	2.6	3
473	No magma ocean surface after giant impacts between rocky planets. Earth and Planeta Letters, 2023, 608, 118014.	ary Science	1.8	5
474	Predicting HP-HT Earth and Planetary Materials. Springer Mineralogy, 2023, , 131-151.		0.4	0

#	Article	IF	CITATIONS
475	Modeling of the Lunar Magma Ocean. , 2023, , 901-909.		0
476	Origin and Evolution of the Moon: Tungsten Isotopic Constraints. , 2023, , 949-957.		0
477	Evolution, Lunar: From Magma Ocean to Crust Formation. , 2023, , 268-287.		0
478	Isotopic Composition of the Moon and the Lunar Isotopic Crisis. , 2023, , 373-385.		0
479	Lunar Magma Ocean, Comparison to Other Planetary Magma Oceans. , 2023, , 676-681.		0
480	Lunar Magma Ocean Theory, Origins, and Rationale. , 2023, , 665-672.		0
481	Lunar Core Dynamo. , 2023, , 488-491.		0
482	Moon: Origin, Alternative Theories. , 2023, , 919-922.		0
483	Early Thermal Evolution of the Lunar Interiors. , 2023, , 228-242.		0