Taming Dr. Frankenstein: Contract-Based Design for Cy

European Journal of Control 18, 217-238 DOI: 10.3166/ejc.18.217-238

Citation Report

#	Article	IF	CITATIONS
1	Safety contract based design of software components. , 2013, , .		14
2	Utilizing Intervals in Component-Based Design of Cyber Physical Systems. , 2013, , .		1
3	<scp>metro</scp> II. Transactions on Embedded Computing Systems, 2013, 12, 1-31.	2.1	54
4	Research on Aviation Electric Power Cyber Physical Systems. Advanced Materials Research, 2013, 846-847, 126-133.	0.3	2
6	Cyber-physical system design contracts. , 2013, , .		82
7	Power contracts: A formal way towards power-closure?!. , 2013, , .		4
8	Functional modeling compiler for system-level design of automotive cyber-physical systems. , 2014, , .		10
9	Test Bed for Safety Assessment of New e-Navigation Systems. International Journal of E-Navigation and Maritime Economy, 2014, 1, 14-28.	1.2	7
10	Library-based scalable refinement checking for contract-based design. , 2014, , .		11
11	Model-based synthesis for real-time embedded systems. , 2014, , .		0
12	Metronomy. , 2014, , .		23
13	Towards satisfaction checking of power contracts in Uppaal. , 2014, , .		1
14	Looking into the Crystal Ball: From Transistors to the Smart Earth. IEEE Design and Test, 2014, 31, 47-55.	1.1	0
15	Are interface theories equivalent to contract theories?. , 2014, , .		9
16	BCL: A compositional contract language for embedded systems. , 2014, , .		8
17	Supporting Heterogeneity in Cyber-Physical Systems Architectures. IEEE Transactions on Automatic Control, 2014, 59, 3178-3193.	3.6	70
18	Monitor-based run-time contract verification of distributed systems. , 2014, , .		4
19	Integrating viewpoints in the development of mechatronic products. Mechatronics, 2014, 24, 745-762.	2.0	77

TION REDO

#	Article	IF	CITATIONS
20	Design synthesis and optimization for automotive embedded systems. , 2014, , .		5
21	Analysis as a First-Class Citizen: An Application to Architecture Description Languages. , 2014, , .		0
22	The Swarm at the Edge of the Cloud. IEEE Design and Test, 2014, 31, 8-20.	1.1	83
23	Refinement-based synthesis of correct contract model decompositions. , 2014, , .		2
24	A flexible contracts approach to system resiliency. , 2014, , .		14
25	Reuse in Safety Critical Systems: Educational Use Case First Experiences. , 2014, , .		4
26	Stochastic Contracts for Runtime Checking of Component-based Real-time Systems. , 2015, , .		2
27	Cyber-Physical System and Contract-Based Design. , 2015, , .		4
28	Obtaining Trust in Autonomous Systems: Tools for Formal Model Synthesis and Validation. , 2015, , .		10
29	Design-Space Exploration Tool for the HIPAO Methodology. IFAC-PapersOnLine, 2015, 48, 93-98.	0.5	2
30	Towards Programmable Coordination of Unmanned Vehicle Networksâ~ IFAC-PapersOnLine, 2015, 48, 256-261.	0.5	5
31	Extending Contract theory with Safety Integrity Levels. , 2015, , .		8
32	Methodology and Tools for Next Generation Cyberâ€Physical Systems: The iCyPhy Approach. Incose International Symposium, 2015, 25, 235-249.	0.2	11
33	Failure Propagation Modeling Based on Contracts Theory. , 2015, , .		4
34	A Contract-Based Approach to Support Goal-Driven Analysis. , 2015, , .		4
35	A mixed discrete-continuous optimization scheme for Cyber-Physical System architecture exploration. , 2015, , .		18
36	Eliminating Inter-Domain Vulnerabilities in Cyber-Physical Systems. , 2015, , .		2
37	Verification of design contracts for cyber-physical system design using evolutionary optimization. , 2015, , .		2

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
38	A Contract-based Framework for Integrated Demand Response Management in Smart Grids. , 2015, , .		7
39	Cyber Physical Systems Approach to Smart Electric Power Grid. Power Systems, 2015, , .	0.3	26
40	Design Techniques and Applications of Cyberphysical Systems: A Survey. IEEE Systems Journal, 2015, 9, 350-365.	2.9	628
41	A Platform-Based Design Methodology With Contracts and Related Tools for the Design of Cyber-Physical Systems. Proceedings of the IEEE, 2015, 103, 2104-2132.	16.4	114
42	Design optimization of the control system for the powertrain of an electric vehicle: A cyber-physical system approach. , 2015, , .		7
43	A model-based synthesis flow for automotive CPS. , 2015, , .		19
44	Contracts-refinement proof system for component-based embedded systems. Science of Computer Programming, 2015, 97, 333-348.	1.5	54
45	Ontological reasoning for consistency in the design of cyber-physical systems. , 2016, , .		12
46	Fostering concurrent engineering of cyber-physical systems a proposal for an ontological context framework. , 2016, , .		15
47	Developing Multi-view Contracts Using Event-B and Uppaal Timed Automata. , 2016, , .		1
48	Systems Engineering for Industrial Cyber–Physical Systems Using Aspects. Proceedings of the IEEE, 2016, 104, 997-1012.	16.4	57
49	Emerging challenges in cyber-physical systems: A balance of performance, correctness, and security. , 2016, , .		5
50	Virtual Systems Integration using Model Based Systems Engineering. , 2016, , .		1
51	A smart display component model for embedded systems modeling and simulation. , 2016, , .		1
52	Verification and Synthesis of Timing Contracts for Embedded Controllers. , 2016, , .		11
53	Smart Connected Buildings Design Automation: Foundations and Trends. Foundations and Trends in Electronic Design Automation, 2016, 10, 1-143.	1.0	16
54	Collaborative Modelâ€based Systems Engineering for Cyberâ€Physical Systems, with a Building Automation Case Study. Incose International Symposium, 2016, 26, 817-832.	0.2	20
55	Experiences and reflections on three years of CPS summer schools within EIT digital. , 2016, , .		3

ARTICLE IF CITATIONS # On the architecture and development life cycle of secure cyber-physical systems. Journal of 3.5 20 56 Communications and Information Networks, 2016, 1, 1-21. Design and verification of Cyber-Physical Systems using TrueTime, evolutionary optimization and 1.8 UPPĂAL. Microprocessors and Microsystems, 2016, 42, 37-48. 58 Formal Aspects of Component Software. Lecture Notes in Computer Science, 2016, , . 1.0 1 Perceptions on the State of the Art in Verification and Validation in Cyber-Physical Systems. IEEE 59 59 Systems Journal, 2017, 11, 2614-2627. Functional Model-Based Design Methodology for Automotive Cyber-Physical Systems. IEEE Systems 60 2.9 37 Journal, 2017, 11, 2028-2039. Digital hydraulics and "Industrie 4.0†Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2017, 231, 82-93. 62 Cyber Physical Systems. Design, Modeling, and Evaluation. Lecture Notes in Computer Science, 2017, , . 1.0 0 Formal Aspects of Component Software. Lecture Notes in Computer Science, 2017, , . 1.0 Formal architecture modeling of sequential non-recursive C programs. Science of Computer 65 1.5 4 Programming, 2017, 146, 2-27. <scp>CSL4P</scp>: A Contract Specification Language for Platforms. Systems Engineering, 2017, 20, 1.6 220-234. Design Automation of Cyber-Physical Systems: Challenges, Advances, and Opportunities. IEEE 67 107 1.9 Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36, 1421-1434. Temporal properties in automotive control software., 2017, , . 68 Stochastic contracts for cyber-physical system design under probabilistic requirements., 2017, , . 69 17 Cyber Physical System (CPS)-Based Industry 4.0: A Survey. Journal of Industrial Integration and 3.1 123 Management, 2017, 02, 1750014. Safety and degraded mode in civilian applications of unmanned aerial systems., 2017,,. 71 4 An Integrated Approach for Resilience in Industrial Control Systems., 2017,,. Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control. SAE 73 0.4 20 International Journal of Commercial Vehicles, 0, 10, 254-264. Compositional Proofs in Differential Dynamic Logic dL., 2017, , . 74

#	ARTICLE	IF	CITATIONS
75	Ensuring Dependability and Performance for CPS Design. , 2017, , 363-375.		2
76	Contracts for System Design. Foundations and Trends in Electronic Design Automation, 2018, 12, 124-400.	1.0	116
77	Optimized synthesis of costâ€effective, controllable oil system architectures for turbofan engines. Systems Engineering, 2018, 21, 417-431.	1.6	1
78	Compositional synthesis of state-dependent switching control. Theoretical Computer Science, 2018, 750, 53-68.	0.5	4
79	Correctness Guarantees for the Composition of Lane Keeping and Adaptive Cruise Control. IEEE Transactions on Automation Science and Engineering, 2018, 15, 1216-1229.	3.4	103
80	On Architecture Specification. Lecture Notes in Computer Science, 2018, , 19-39.	1.0	3
81	Specification decomposition for synthesis from libraries of LTL Assume/Guarantee contracts. , 2018, , .		3
82	Towards a greater reliability of driver/device communication around the system life cycle through a contractâ€based protocol specification. IET Cyber-Physical Systems: Theory and Applications, 2018, 3, 11-23.	1.9	2
83	A methodology for model-based verification of safety contracts and performance requirements. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2018, 232, 227-247.	0.6	2
84	Dependability Assessment of SOA-Based CPS With Contracts and Model-Based Fault Injection. IEEE Transactions on Industrial Informatics, 2018, 14, 360-369.	7.2	12
85	Eventâ€ŧriggered MPC design for distributed systems toward global performance. International Journal of Robust and Nonlinear Control, 2018, 28, 1474-1495.	2.1	31
86	Transdisciplinary Systems Engineering. , 2018, , .		13
87	Affordable Resilience. , 2018, , 133-159.		2
88	Conditions of contracts for separating responsibilities in heterogeneous systems. Formal Methods in System Design, 2018, 52, 147-192.	0.9	11
89	Theory and methodology of assumption/commitment based system interface specification and architectural contracts. Formal Methods in System Design, 2018, 52, 33-87.	0.9	5
90	An improved algorithm for the control synthesis of nonlinear sampled switched systems. Formal Methods in System Design, 2018, 53, 363-383.	0.9	5
91	Sharpening the Scythe of Technological Change: Socio-Technical Challenges of Autonomous and Adaptive Cyber-Physical Systems. Designs, 2018, 2, 52.	1.3	2
92	Eingebettete Optimierung in der Regelungstechnik – Grundlagen und Herausforderungen. Automatisierungstechnik, 2018, 66, 877-902.	0.4	10

			_
#	ARTICLE	IF	CITATIONS
93	Multi-view modeling for MPSoC design aspects. , 2018, , .		0
94	Layering Assume-Guarantee Contracts for Hierarchical System Design. Proceedings of the IEEE, 2018, 106, 1616-1654.	16.4	5
95	Codesign Methodologies and Tools for Cyber–Physical Systems. Proceedings of the IEEE, 2018, 106, 1484-1500.	16.4	25
96	Model and Tool Integration Platforms for Cyber–Physical System Design. Proceedings of the IEEE, 2018, 106, 1501-1526.	16.4	34
97	Monitoring Industry 4.0 applications for security and safety standard compliance. , 2018, , .		12
98	A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints. Sensors, 2018, 18, 628.	2.1	7
99	CHASE: Contract-based requirement engineering for cyber-physical system design. , 2018, , .		20
100	SMC: Satisfiability Modulo Convex Programming. Proceedings of the IEEE, 2018, 106, 1655-1679.	16.4	35
101	Driving-Style-Based Codesign Optimization of an Automated Electric Vehicle: A Cyber-Physical System Approach. IEEE Transactions on Industrial Electronics, 2019, 66, 2965-2975.	5.2	195
102	Verification and synthesis of interconnected embedded control systems under timing contracts. , 2019, , .		1
103	Virtual Systems Integration Applied to Advanced Space Systems. , 2019, , .		4
104	A Methodology for the Design of Safety-Compliant and Secure Communication of Autonomous Vehicles. IEEE Access, 2019, 7, 125022-125037.	2.6	14
105	A comparison of fog and cloud computing cyber-physical interfaces for Industry 4.0 real-time embedded machine learning engineering applications. Computers in Industry, 2019, 110, 12-35.	5.7	89
106	Science of design for societal-scale cyber-physical systems: challenges and opportunities. Cyber-Physical Systems, 2019, 5, 145-172.	1.6	6
107	A full Model-Based Design Environment for the Development of Cyber Physical Systems. Designs, 2019, 3, 15.	1.3	0
108	Concept Design: Modeling and Synthesis from Requirements to Functional Models and Simulation. , 2019, , 3-20.		2
109	From Electronic Design Automation to Cyber-Physical System Design Automation. , 2019, , .		7
110	Basis for an Approach to Design Collaborative Cyber-Physical Systems. IFIP Advances in Information and Communication Technology, 2019, , 193-205.	0.5	12

		CITATION REPORT		
#	Article		IF	CITATIONS
111	Predictive Formal Analysis of Resilience in Cyber-Physical Systems. IEEE Access, 2019, 2	7, 33741-33758.	2.6	15
112	Supply Chain Design for the Industrial Internet of Things and the Industry 4.0. SSRN El Journal, 0, , .	ectronic	0.4	4
113	Compositional Models for Complex Systems. , 2019, , 241-270.			9
114	Towards Design and Verification of Evolving Cyber Physical Systems Using Contract-Ba Methodology. , 2019, , .	ased		7
115	Contracts as specifications for dynamical systems in driving variable form. , 2019, , .			10
116	Towards verified programming of embedded devices. , 2019, , .			1
117	A Model-Driven Engineering Framework to Support the Functional Safety Process. , 20	19,,.		8
118	Optimizing Assume-Guarantee Contracts for Cyber-Physical System Design. , 2019, , .			5
119	Safety and Reliability Driven Design for the More Electric Aircraft. , 2019, , .			1
120	A Framework for Vehicle Lateral Motion Control With Guaranteed Tracking and Perform.	mance. , 2019, ,		0
121	Automatic Generation of Hierarchical Contracts for Resilience in Cyber-Physical System	ns. , 2019, , .		3
122	A Domain Specific Language for Automotive Systems Integration. , 2019, , .			0
123	Autonomous Vehicles and Systems of Cyber-Physical Systems. , 2019, , 299-305.			11
124	Constrained synthesis from component libraries. Science of Computer Programming, 2	2019, 171, 21-41.	1.5	4
126	Model Checking Techniques Applied to Satellite Operational Mode Management. IEEE 2019, 13, 1018-1029.	Systems Journal,	2.9	13
127	Providing tool support for specifying safety-critical systems by enforcing syntactic con conditions. Requirements Engineering, 2019, 24, 231-256.	tract	2.1	4
128	A survey: Cyber-physical-social systems and their system-level design methodology. Fu Computer Systems, 2020, 105, 1028-1042.	ture Generation	4.9	124
129	A modelling and simulation framework for the integrated design of aircraft systems. Pr the Institution of Mechanical Engineers, Part C: Journal of Aerospace Engineering, 202	oceedings of 0, 234, 1648-1660.	0.7	3

#	Article	IF	CITATIONS
130	Optimized Selection of Reliable and Cost-Effective Safety-Critical System Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 2109-2123.	1.9	16
131	Unifying theories of reactive design contracts. Theoretical Computer Science, 2020, 802, 105-140.	0.5	22
132	Toward a better integration of requirements and modelâ€based specifications. Systems Engineering, 2020, 23, 751-769.	1.6	3
133	A survey of model-driven techniques and tools for cyber-physical systems. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 1567-1590.	1.5	10
134	Human-cyber-physical systems: concepts, challenges, and research opportunities. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 1535-1553.	1.5	36
136	Cyber risk at the edge: current and future trends on cyber risk analytics and artificial intelligence in the industrial internet of things and industry 4.0 supply chains. Cybersecurity, 2020, 3, .	3.1	60
137	Artificial intelligence and machine learning in dynamic cyber risk analytics at the edge. SN Applied Sciences, 2020, 2, 1.	1.5	40
138	Timing Contracts and Monitors for Safety Relevant Controller Design in IEC 61499. , 2020, , .		1
139	A scenario- and platform-aware design flow for image-based control systems. Microprocessors and Microsystems, 2020, 75, 103037.	1.8	14
141	Constructing Models for Systems Resilience: Challenges, Concepts, and Formal Methods. Systems, 2020, 8, 3.	1.2	15
142	Cyber-Physical Vehicle Systems: Methodology and Applications. Synthesis Lectures on Advances in Automotive Technology, 2020, 4, 1-85.	0.2	1
143	The Origins of Requirements. IEEE Systems Journal, 2021, 15, 3692-3702.	2.9	3
144	Combining Genetic Programming and Model Checking to Generate Environment Assumptions. IEEE Transactions on Software Engineering, 2022, 48, 3664-3685.	4.3	3
145	A Relational Abstraction of Structure and Behavior for Cyber-Physical System Design. IEEE Access, 2021, 9, 40388-40401.	2.6	2
146	Compositional Cyber-Physical Systems Modeling. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 333, 125-138.	0.8	7
147	Contract-based verification of model transformations. , 2021, , .		0
148	Cyber Resilience Meta-Modelling: The Railway Communication Case Study. Electronics (Switzerland), 2021, 10, 583.	1.8	7
149	Digital twins: artificial intelligence and the IoT cyber-physical systems in Industry 4.0. International Journal of Intelligent Robotics and Applications, 2022, 6, 171-185.	1.6	42

#	Apticie	IF	CITATIONS
150	How to Improve IT Specialists Training for Designing Cyber-Physical Systems. , 2021, , .		0
151	Automated verification of reactive and concurrent programs by calculation. Journal of Logical and Algebraic Methods in Programming, 2021, 121, 100681.	0.4	2
152	Contract-based methods and activities in the validation of interfaces for System of Systems. , 2021, , .		1
153	Categorical Semantics of Cyber-Physical Systems Theory. ACM Transactions on Cyber-Physical Systems, 2021, 5, 1-32.	1.9	12
154	MONICA Vision: An Approach, a Model and the Interactive Tools for Cyber-Physical Systems Designers. , 2021, , .		2
155	A resilient hierarchical distributed model of a cyber physical system. Cyber-Physical Systems, 2023, 9, 97-121.	1.6	4
156	Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry. AI, 2021, 2, 429-443.	2.1	14
157	Big Data-Driven Assessment of Proposals to Improve Enterprise Flexibility Through Control Options Untested in Practice. Global Journal of Flexible Systems Management, 2022, 23, 43-74.	3.4	7
158	Testing Deep Learning-based Visual Perception for Automated Driving. ACM Transactions on Cyber-Physical Systems, 2021, 5, 1-28.	1.9	11
159	Optimising Multiprocessor Image-Based Control Through Pipelining and Parallelism. IEEE Access, 2021, 9, 112332-112358.	2.6	4
160	A Mechanically Verified Theory of Contracts. Lecture Notes in Computer Science, 2021, , 134-151.	1.0	0
161	Contract-Based Reasoning for Component Systems with Rich Interactions. Embedded Systems, 2014, , 139-154.	0.6	16
162	Software Abstractions and Human-Cyber-Physical Systems Architecture Modelling. Lecture Notes in Computer Science, 2020, , 159-219.	1.0	6
163	Formally Proving Compositionality in Industrial Systems with Informal Specifications. Lecture Notes in Computer Science, 2020, , 348-365.	1.0	5
165	Model-Based Verification of Safety Contracts. Lecture Notes in Computer Science, 2015, , 101-115.	1.0	3
166	Formal Architecture Modeling of Sequential C-Programs. Lecture Notes in Computer Science, 2016, , 312-329.	1.0	1
167	Constrained Synthesis from Component Libraries. Lecture Notes in Computer Science, 2017, , 92-110.	1.0	2
168	Hierarchical System Design with Vertical Contracts. Lecture Notes in Computer Science, 2018, , 360-382.	1.0	5

#	Article	IF	CITATIONS
169	Structuring Safety Requirements in ISO 26262 Using Contract Theory. Lecture Notes in Computer Science, 2013, , 166-177.	1.0	16
170	Let's Get Physical: Computer Science Meets Systems. Lecture Notes in Computer Science, 2014, , 193-208.	1.0	7
171	Smart Buildings in the Smart Grid: Contract-Based Design of an Integrated Energy Management System. Power Systems, 2015, , 103-132.	0.3	6
172	Contract-Based Requirement Modularization via Synthesis of Correct Decompositions. Transactions on Embedded Computing Systems, 2016, 15, 1-26.	2.1	11
173	Scheduling of Embedded Controllers Under Timing Contracts. , 2017, , .		8
174	Stochastic Assume-Guarantee Contracts for Cyber-Physical System Design. Transactions on Embedded Computing Systems, 2019, 18, 1-26.	2.1	19
176	A methodology for design space exploration of real-time location systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, , 551-567.	0.1	3
182	Simulation-Based Elicitation of Accuracy Requirements for the Environmental Perception of Autonomous Vehicles. Lecture Notes in Computer Science, 2021, , 129-145.	1.0	5
184	Temporal logic satisfiability for the design of complex systems. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 119, 4-6.	0.8	0
185	Introduction: Modeling, Analysis and Synthesis of Embedded Software and Systems. Embedded Systems, 2014, , 1-16.	0.6	1
187	Towards An Executable Sociotechnical Model For Product Development And Engineering Systems. , 2014, , .		1
188	The Research of Safe Computer Simulation Test System. , 0, , .		0
189	c-Walker: A Cyber-Physical System for Ambient Assisted Living. Lecture Notes in Electrical Engineering, 2016, , 75-82.	0.3	0
190	ACCURACY INCREASE OF DYNAMIC OBJECTS STATE ESTIMATION BY A COMPLEX MATLAB-ARDUINO WHEN CYBERPHYSICAL SYSTEMS DESIGNING. Radìoelektronika, Ìnformatika, Upravlìnnâ, 2016, .	0.1	1
191	Towards Satisfaction Checking of Power Contracts in Uppaal. Lecture Notes in Electrical Engineering, 2016, , 157-179.	0.3	0
193	Structural Contracts – Motivating Contracts to Ensure Extra-Functional Semantics. IFIP Advances in Information and Communication Technology, 2017, , 77-87.	0.5	1
194	Ontological Reasoning as an Enabler of Contract-Based Co-design. Lecture Notes in Computer Science, 2017, , 101-115.	1.0	2
195	The Leading Role of Software and Systems Architecture in the Age of Digitization. , 2018, , 1-23.		1

#	Article	IF	CITATIONS
196	Optimization techniques for time-critical cyber-physical systems. , 2019, , .		0
197	Modular Safety Cases for Product Lines Based on Assume-Guarantee Contracts. Lecture Notes in Computer Science, 2019, , 28-40.	1.0	0
198	Modular Design for Constrained Control of Actuator-Plant Cascades. , 2019, , .		2
199	Towards Time-Sensitive Behavioral Contract Monitors for IEC 61499 Function Blocks. , 2020, , .		6
200	Incremental Contract-based Verification of Software Updates for Safety-Critical Cyber-Physical Systems. , 2020, , .		10
201	Scaling Correctness-by-Construction. Lecture Notes in Computer Science, 2020, , 187-207.	1.0	4
202	Cyber-Physical Systems-Based Component Tracking and Operation. , 2020, , 45-61.		2
203	Counterexample-Guided Safety Contracts for Autonomous Driving. Springer Proceedings in Advanced Robotics, 2020, , 939-955.	0.9	0
204	Mining assumptions for software components using machine learning. , 2020, , .		10
206	Methodologies for the Synthesis of Reliable MEA Electrical Power System Architectures. , 2020, , .		0
207	Behavioural contracts for linear dynamical systems: input assumptions and output guarantees. , 2021, ,		4
208	Control education in the software age. Automatisierungstechnik, 2022, 70, 3-12.	0.4	0
211	Ensure: Towards Reliable Control of Cyber-Physical Systems Under Uncertainty. IEEE Transactions on Reliability, 2023, 72, 289-301.	3.5	1
212	Organizing the fragmented landscape of multidisciplinary product development: a mapping of approaches, processes, methods and tools from the scientific literature. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2022, 33, 307-349.	1.2	4
213	Hypercontracts. Lecture Notes in Computer Science, 2022, , 674-692.	1.0	2
214	Lifecycle Management of Automotive Safety-Critical Over the Air Updates: A Systems Approach. IEEE Access, 2022, 10, 57696-57717.	2.6	5
215	Hierarchical Contract-Based Synthesis forÂAssurance Cases. Lecture Notes in Computer Science, 2022, , 175-192.	1.0	7
216	Human-Cyber-Physical Automata andÂTheir Synthesis. Lecture Notes in Computer Science, 2022, , 36-41.	1.0	3

#	Article	IF	CITATIONS
217	ARACHNE: Automated Validation ofÂAssurance Cases withÂStochastic Contract Networks. Lecture Notes in Computer Science, 2022, , 65-81.	1.0	5
218	Formal Development of Safe Automated Driving Using Differential Dynamic Logic. IEEE Transactions on Intelligent Vehicles, 2023, 8, 988-1000.	9.4	4
219	Using Digital Twins inÂtheÂDevelopment ofÂComplex Dependable Real-Time Embedded Systems. Lecture Notes in Computer Science, 2022, , 37-53.	1.0	0
220	Assume-Guarantee Synthesis of Decentralised Supervisory Control. IFAC-PapersOnLine, 2022, 55, 165-172.	0.5	1
221	A Contract-Based Semantics andÂRefinement forÂSimulink. Lecture Notes in Computer Science, 2022, , 134-148.	1.0	0
222	Designing Secure and Resilient Cyber-Physical Systems Using Formal Models. , 2022, , .		0
223	A novel approach to Real-time contract based reasoning for Hybrid Systems. , 2022, , .		0
224	Quantitative Verification and Design Space Exploration under Uncertainty with Parametric Stochastic Contracts. , 2022, , .		1
225	The ForeMoSt approach to building valid model-based safety arguments. Software and Systems Modeling, 2023, 22, 1473-1494.	2.2	1
226	Composition of behavioural assume-guarantee contracts. IEEE Transactions on Automatic Control, 2022, , 1-16.	3.6	0
227	From Interface Automata toÂHypercontracts. Lecture Notes in Computer Science, 2022, , 477-493.	1.0	1
228	Towards contract-based verification for autonomous vessels. Ocean Engineering, 2023, 270, 113685.	1.9	2
229	Series composition of simulation-based assume-guarantee contracts for linear dynamical systems. , 2022, , .		2
230	Invariant Sets for Assume-Guarantee Contracts. , 2022, , .		1
231	Symbiotic CPS Design-Space Exploration through Iterated Optimization. , 2023, , .		1
232	Reasoning overÂTest Specifications Using Assume-Guarantee Contracts. Lecture Notes in Computer Science, 2023, , 278-294.	1.0	0
233	Challenges and Opportunities of DevOps in Cyber-Physical Production Systems Engineering. , 2023, , .		2
234	Contract-Based Specification Refinement and Repair for Mission Planning. , 2023, , .		1

#	Article	IF	Citations
235	Estimating Parameter Regions for Structured Parameter Tuning via Reduced Order Subsystem Models. , 2023, , .		0
238	Early Design Exploration of Space System Scenarios Using Assume-Guarantee Contracts. , 2023, , .		0
240	Linking Formal Methods inÂSoftware Development. Lecture Notes in Computer Science, 2023, , 52-84.	1.0	3
241	Modular Control Software Design to Support Mechatronic Variants in IEC 61499. , 2023, , .		0
242	DESIGNING CUSTOM COMPUTING PLATFORMS FOR CYBER-PHYSICAL SYSTEMS. , 2023, , .		0
245	AACE: Automated Assurance Case Environment for Aerospace Certification. , 2023, , .		1

0

246 Constraint-Behavior Contracts: A Formalism for Specifying Physical Systems. , 2023, , .