Keto Acid Therapy in Predialysis Chronic Kidney Diseas

DOI: 10.1053/j.jrn.2011.09.006

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	Nutrition, Phosphorus, and Keto-Analogues in Hemodialysis Patients: A Chinese Perspective. , 2013, 23, 214-217.		3
2	Low-Protein Diet or Nutritional Therapy in Chronic Kidney Disease?. Blood Purification, 2013, 36, 41-46.	0.9	22
3	Bioâ€based production of organic acids with <i><scp>C</scp>orynebacterium glutamicum</i> . Microbial Biotechnology, 2013, 6, 87-102.	2.0	154
4	Dietary Protein Restriction for Renal Patients: Don't Forget Protein-Free Foods. , 2013, 23, 367-371.		34
5	Vegetarian low-protein diets supplemented with keto analogues: a niche for the few or an option for many?. Nephrology Dialysis Transplantation, 2013, 28, 2295-2305.	0.4	44
6	Expert opinion of nephrologists about the effectiveness of low-protein diet in different stages of chronic kidney disease (CKD). International Journal of Food Sciences and Nutrition, 2014, 65, 1027-1032.	1.3	2
7	The pyruvate dehydrogenase complex of Corynebacterium glutamicum: An attractive target for metabolic engineering. Journal of Biotechnology, 2014, 192, 339-345.	1.9	44
8	Effects of Low-Protein Diets Supplemented with Ketoacid on Expression of TGF-βand Its Receptors in Diabetic Rats. BioMed Research International, 2015, 2015, 1-7.	0.9	6
9	Low-protein diets in CKD: how can we achieve them? A narrative, pragmatic review. CKJ: Clinical Kidney Journal, 2015, 8, 61-70.	1.4	53
10	One-step biosynthesis of α-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris. Scientific Reports, 2015, 5, 12614.	1.6	28
11	Trimethylamine N-Oxide From Gut Microbiota in Chronic Kidney Disease Patients: Focus on Diet. , 2015, 25, 459-465.		53
12	Production of 2â€ketoisocaproate with C orynebacterium glutamicum strains devoid of plasmids and heterologous genes. Microbial Biotechnology, 2015, 8, 351-360.	2.0	27
13	Very low-protein diet plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease: a historical cohort controlled study. Nephrology Dialysis Transplantation, 2015, 30, 71-77.	0.4	43
14	Retarding Chronic Kidney Disease (CKD) Progression: A Practical Nutritional Approach for Non-Dialysis CKD. Nephrology @ Point of Care, 2016, 2, pocj.5000207.	0.2	6
15	Association between Low Dietary Protein Intake and Geriatric Nutrition Risk Index in Patients with Chronic Kidney Disease: A Retrospective Single-Center Cohort Study. Nutrients, 2016, 8, 662.	1.7	20
16	Low protein diets in patients with chronic kidney disease: a bridge between mainstream and complementary-alternative medicines?. BMC Nephrology, 2016, 17, 76.	0.8	37
17	Low-protein diet supplemented with ketoacids ameliorates proteinuria in 3/4 nephrectomised rats by directly inhibiting the intrarenal renin–angiotensin system. British Journal of Nutrition, 2016, 116, 1491-1501.	1.2	10
18	"Dietaly― practical issues for the nutritional management of CKD patients in Italy. BMC Nephrology, 2016, 17, 102.	0.8	60

#	Article	IF	CITATIONS
19	Protein-controlled versus restricted protein versus low protein diets in managing patients with non-dialysis chronic kidney disease: a single centre experience in Australia. BMC Nephrology, 2016, 17, 129.	0.8	8
20	Low-protein diets for chronic kidney disease patients: the Italian experience. BMC Nephrology, 2016, 17, 77.	0.8	76
21	Nutritional support in the tertiary care of patients affected by chronic renal insufficiency: report of a step-wise, personalized, pragmatic approach. BMC Nephrology, 2016, 17, 124.	0.8	13
22	A Delphi consensus panel on nutritional therapy in chronic kidney disease. Journal of Nephrology, 2016, 29, 593-602.	0.9	20
23	Effect of restricted protein diet supplemented with keto analogues in chronic kidney disease: a systematic review and meta-analysis. International Urology and Nephrology, 2016, 48, 409-418.	0.6	35
24	Nutritional Issues with Incremental Dialysis: The Role of Lowâ€Protein Diets. Seminars in Dialysis, 2017, 30, 246-250.	0.7	12
25	Controversial issues in CKD clinical practice: position statement of the CKD-treatment working group of the Italian Society of Nephrology. Journal of Nephrology, 2017, 30, 159-170.	0.9	19
26	Very Low-Protein Diet (VLPD) Reduces Metabolic Acidosis in Subjects with Chronic Kidney Disease: The "Nutritional Light Signal―of the Renal Acid Load. Nutrients, 2017, 9, 69.	1.7	45
27	Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake. Nutrients, 2017, 9, 444.	1.7	54
28	Very low-protein diet to postpone renal failure: Pathophysiology andÂclinical applications in chronic kidney disease. Chronic Diseases and Translational Medicine, 2018, 4, 45-50.	0.9	10
29	Safety of Low-Protein Diets and Ketoanalogue Supplementation in CKD. Kidney International Reports, 2018, 3, 510-512.	0.4	0
30	Microbiota metabolites: Pivotal players of cardiovascular damage in chronic kidney disease. Pharmacological Research, 2018, 130, 132-142.	3.1	71
31	Nutritional treatment of advanced CKD: twenty consensus statements. Journal of Nephrology, 2018, 31, 457-473.	0.9	95
32	Severe secondary hyperparathyroidism in patients on haemodialysis is associated with a high initial serum parathyroid hormone and beta-CrossLaps level: Results from an incident cohort. PLoS ONE, 2018, 13, e0199140.	1.1	7
33	Dietary Approach to Recurrent or Chronic Hyperkalaemia in Patients with Decreased Kidney Function. Nutrients, 2018, 10, 261.	1.7	121
34	Nutrients, Nutraceuticals, and Xenobiotics Affecting Renal Health. Nutrients, 2018, 10, 808.	1.7	19
35	Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnology Advances, 2021, 47, 107706.	6.0	29
36	The Influence of Dietary Interventions on Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Nutrients, 2021, 13, 2065.	1.7	6

	CHAIL	TION REPORT		
#	Article	IF	CITATIONS	
37	Protein–Energy Wasting and Nutritional Interventions in Chronic Kidney Disease. , 2014, , 241-253.		1	
38	Effect of a Low-Protein Diet Supplemented with Ketoacids on Skeletal Muscle Atrophy and Autophagy in Rats with Type 2 Diabetic Nephropathy. PLoS ONE, 2013, 8, e81464.	1.1	14	
39	Tuning the transcription and translation of L-amino acid deaminase in Escherichia coli improves α-ketoisocaproate production from L-leucine. PLoS ONE, 2017, 12, e0179229.	1.1	6	
40	Dietary interventions to slow the progression of chronic kidney disease and improve metabolic control of uremia. , 2022, , 249-270.		1	
41	History of Dietary Protein Treatment for Non-dialyzed Chronic Kidney Disease Patients. , 2020, , 19-38.		0	
42	Ketoanalogue Supplementation in Patients with Non-Dialysis Diabetic Kidney Disease: A Systematic Review and Meta-Analysis. Nutrients, 2022, 14, 441.	1.7	6	
43	An overview about the approaches used in the production of alpha-ketoglutaric acid with their applications. ChemistrySelect, 2024, 9, 211-225.	0.7	2	
44	A tunable metabolic valve for precise growth control and increased product formation in Pseudomonas putida. Metabolic Engineering, 2023, 75, 47-57.	3.6	2	
45	Isobutanol production by combined in vivo and in vitro metabolic engineering. Metabolic Engineering Communications, 2022, 15, e00210.	1.9	4	
48	Protein–Energy Wasting and Nutritional Interventions in Chronic Kidney Disease. , 2023, , 257-272.		0	