Nanowire-composite based flexible thermoelectric nantemperature sensors

Nano Research 5, 888-895 DOI: 10.1007/s12274-012-0272-8

Citation Report

#	Article	IF	CITATIONS
1	Harvesting Water Drop Energy by a Sequential Contactâ€Electrification and Electrostaticâ€Induction Process. Advanced Materials, 2014, 26, 4690-4696.	21.0	592
2	A Flexible Reduced Graphene Oxide Fieldâ€Effect Transistor for Ultrasensitive Strain Sensing. Advanced Functional Materials, 2014, 24, 117-124.	14.9	132
3	Materials capability and device performance in flexible electronics for the Internet of Things. Journal of Materials Chemistry C, 2014, 2, 1220-1232.	5.5	150
4	Triboelectric Nanogenerator as an Active UV Photodetector. Advanced Functional Materials, 2014, 24, 2810-2816.	14.9	180
5	Surface polarization enhanced Seebeck effects in vertical multi-layer metal–polymer–metal thin-film devices. Physical Chemistry Chemical Physics, 2014, 16, 22201-22206.	2.8	17
6	Harvesting heat energy from hot/cold water with a pyroelectric generator. Journal of Materials Chemistry A, 2014, 2, 11940-11947.	10.3	101
7	Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. Journal of Materials Chemistry A, 2014, 2, 11107.	10.3	120
8	Dual-Mode Triboelectric Nanogenerator for Harvesting Water Energy and as a Self-Powered Ethanol Nanosensor. ACS Nano, 2014, 8, 6440-6448.	14.6	222
9	Flexible prototype thermoelectric devices based on Ag ₂ Te and PEDOT:PSS coated nylon fibre. Nanoscale, 2015, 7, 5598-5602.	5.6	54
10	Thermoelectric Fabrics: Toward Power Generating Clothing. Scientific Reports, 2015, 5, 6411.	3.3	235
11	PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. Journal of Materials Chemistry A, 2015, 3, 7086-7092.	10.3	224
12	Hierarchical Bi–Te based flexible thin-film solar thermoelectric generator with light sensing feature. Energy Conversion and Management, 2015, 106, 1192-1200.	9.2	40
13	Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Research, 2015, 8, 765-773.	10.4	79
14	Environmental effects on nanogenerators. Nano Energy, 2015, 14, 49-61.	16.0	155
15	Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy, 2015, 14, 139-160.	16.0	202
16	Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications. International Journal of Environmental Research and Public Health, 2016, 13, 202.	2.6	7
17	Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016, 28, 4373-4395.	21.0	1,033
18	Thermoelectric characterization and fabrication of nanostructured p-type Bi0.5Sb1.5Te3 and n-type Bi2Te3 thin film thermoelectric energy generator with an in-plane planar structure. AIP Advances, 2016.6	1.3	24

#	Article	IF	CITATIONS
19	Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors. Energy, 2016, 101, 202-210.	8.8	41
20	Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Advanced Materials, 2016, 28, 9881-9919.	21.0	407
21	Influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI composite films. Organic Electronics, 2016, 39, 146-152.	2.6	22
22	Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate. Current Applied Physics, 2016, 16, 1442-1448.	2.4	45
23	V ₂ O ₅ Thin Films for Flexible and High Sensitivity Transparent Temperature Sensor. Advanced Materials Technologies, 2016, 1, 1600077.	5.8	23
24	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie - International Edition, 2016, 55, 15864-15868.	13.8	32
25	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie, 2016, 128, 16096-16100.	2.0	4
26	Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Humanâ€Activity Monitoringand Personal Healthcare. Advanced Materials, 2016, 28, 4338-4372.	21.0	1,594
27	Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Conversion and Management, 2016, 114, 50-67.	9.2	231
28	Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. Journal of Materials Chemistry B, 2016, 4, 2999-3018.	5.8	116
29	Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications. ECS Journal of Solid State Science and Technology, 2017, 6, N3036-N3044.	1.8	54
30	Triboelectric nanogenerator based on 317L stainless steel and ethyl cellulose for biomedical applications. RSC Advances, 2017, 7, 6772-6779.	3.6	58
31	2D Chalcogenide Nanoplate Assemblies for Thermoelectric Applications. Advanced Materials, 2017, 29, 1700070.	21.0	54
32	A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 2017, 73, 730-744.	16.4	408
33	Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering Reports, 2017, 115, 1-37.	31.8	557
34	Thermoelectric properties of graphite-PEDOT:PSS coated flexible polyester fabrics. Journal of Materials Science: Materials in Electronics, 2017, 28, 5796-5801.	2.2	28
35	Emerging tellurium nanostructures: controllable synthesis and their applications. Chemical Society Reviews, 2017, 46, 2732-2753.	38.1	186
36	Polymer composites-based thermoelectric materials and devices. Composites Part B: Engineering, 2017, 122, 145-155.	12.0	110

#	Article	IF	Citations
37	Energy conversion technologies towards self-powered electrochemical energy storage systems: the state of the art and perspectives. Journal of Materials Chemistry A, 2017, 5, 1873-1894.	10.3	113
38	Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Applied Energy, 2017, 202, 736-745.	10.1	260
39	Recent advances of conductive nanocomposites in printed and flexible electronics. Smart Materials and Structures, 2017, 26, 083001.	3.5	62
40	Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring. Advanced Healthcare Materials, 2017, 6, 1601371.	7.6	217
41	A smart pipet tip: Triboelectricity and thermoelectricity assisted in situ evaluation of electrolyte concentration. Nano Energy, 2017, 38, 419-427.	16.0	30
42	A Solution Processable Highâ€Performance Thermoelectric Copper Selenide Thin Film. Advanced Materials, 2017, 29, 1606662.	21.0	96
43	Nanogenerators: An emerging technology towards nanoenergy. APL Materials, 2017, 5, .	5.1	164
44	Inkjet Printing of Singleâ€Crystalline Bi ₂ Te ₃ Thermoelectric Nanowire Networks. Advanced Electronic Materials, 2017, 3, 1600524.	5.1	48
45	Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small, 2017, 13, 1602790.	10.0	690
46	Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications. Carbohydrate Polymers, 2017, 157, 1801-1808.	10.2	56
47	Metal–Organic Framework-Templated PdO-Co ₃ O ₄ Nanocubes Functionalized by SWCNTs: Improved NO ₂ Reaction Kinetics on Flexible Heating Film. ACS Applied Materials & Interfaces, 2017, 9, 40593-40603.	8.0	55
48	Selfâ€Powered UV Photodetector Array Based on P3HT/ZnO Nanowire Array Heterojunction. Advanced Materials Technologies, 2017, 2, 1700208.	5.8	114
49	Interconnect patterns for printed organic thermoelectric devices with large fill factors. Journal of Applied Physics, 2017, 122, .	2.5	28
50	Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids. Nano Energy, 2017, 41, 164-171.	16.0	103
51	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	6.3	170
52	Synthesis and thermoelectric characterization of bulk-type tellurium nanowire/polymer nanocomposites. Journal of Materials Science, 2017, 52, 12724-12733.	3.7	8
53	Post ionized defect engineering of the screen-printed Bi 2 Te 2.7 Se 0.3 thick film for high performance flexible thermoelectric generator. Nano Energy, 2017, 31, 258-263.	16.0	101
54	Air-stable n-type tellurium nanowires coordinated by large organic salts. Synthetic Metals, 2017, 225, 93-97.	3.9	5

#	Article	IF	CITATIONS
55	Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring. Sensors, 2017, 17, 1622.	3.8	81
56	Materials and Wearable Devices for Autonomous Monitoring of Physiological Markers. Advanced Materials, 2018, 30, e1705024.	21.0	145
57	Using high thermal stability flexible thin film thermoelectric generator at moderate temperature. Applied Physics Letters, 2018, 112, .	3.3	21
59	Tailoring the functional properties of polyurethane foam with dispersions of carbon nanofiber for power generator applications. Applied Surface Science, 2018, 449, 507-513.	6.1	17
60	Stability and protection of nanowire devices in air. Nano Research, 2018, 11, 3353-3361.	10.4	16
61	Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization. Advanced Materials Technologies, 2018, 3, 1700256.	5.8	259
62	A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy, 2018, 49, 588-595.	16.0	124
63	Conductive polymers for thermoelectric power generation. Progress in Materials Science, 2018, 93, 270-310.	32.8	274
64	Towards thermoelectric nanostructured energy harvester for wearable applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 3423-3436.	2.2	9
65	Toward Stretchable Selfâ€Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Advanced Functional Materials, 2018, 28, 1704285.	14.9	171
66	Scalable and facile synthesis of stretchable thermoelectric fabric for wearable self-powered temperature sensors. RSC Advances, 2018, 8, 39992-39999.	3.6	58
67	Application of ferroelectric materials for improving output power of energy harvesters. Nano Convergence, 2018, 5, 30.	12.1	80
68	High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene. Energy, 2018, 165, 677-684.	8.8	48
69	Ultra-high thermoelectric performance in graphene incorporated Cu2Se: Role of mismatching phonon modes. Nano Energy, 2018, 53, 993-1002.	16.0	145
70	Electric impulse spring-assisted contact separation mode triboelectric nanogenerator fabricated from polyaniline emeraldine salt and woven carbon fibers. Nano Energy, 2018, 53, 362-372.	16.0	47
71	Flexible one-structure arched triboelectric nanogenerator based on common electrode for high efficiency energy harvesting and self-powered motion sensing. AIP Advances, 2018, 8, .	1.3	7
72	Semiconductor Nanowires for Thermoelectric Generation. Semiconductors and Semimetals, 2018, 98, 321-407.	0.7	14
73	A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	65

#	Article	IF	Citations
74	Synthesis of bismuth telluride nanotubes and their simulated thermal properties. Superlattices and Microstructures, 2018, 122, 587-595.	3.1	8
75	Direct-current triboelectric nanogenerator via water electrification and phase control. Nano Energy, 2018, 52, 95-104.	16.0	50
76	Exploiting Dynamic Thermal Energy Harvesting for Reusing in Smartphone with Mobile Applications. , 2018, , .		7
78	Thermoelectric Properties of Conducting Polymer Nanowire–Tellurium Nanowire Composites. ACS Applied Energy Materials, 2018, 1, 4883-4890.	5.1	48
79	Generic Design and Advances in Wearable Sensor Technology. , 2018, , 155-171.		0
80	Flexible-detachable dual-output sensors of fluid temperature and dynamics based on structural design of thermoelectric materials. Nano Energy, 2018, 50, 733-743.	16.0	13
81	Polymeric nanocomposites reinforced with nanowires: Opening doors to future applications. Journal of Plastic Film and Sheeting, 2019, 35, 65-98.	2.2	14
82	Thermal conductivity in highly loaded metallic nanowire-dielectric composite: Effect of percolation network. Chemical Physics Letters, 2019, 731, 136630.	2.6	2
83	Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite. IScience, 2019, 17, 1-9.	4.1	4
84	Techniques for Elaboration of Nanomaterials. Advanced Structured Materials, 2019, , 355-391.	0.5	1
85	Hybrid energy harvester with bi-functional nano-wrinkled anti-reflective PDMS film for enhancing energies conversion from sunlight and raindrops. Nano Energy, 2019, 66, 104188.	16.0	64
86	Selfâ€Healing and Stretchable 3Dâ€Printed Organic Thermoelectrics. Advanced Functional Materials, 2019, 29, 1905426.	14.9	115
87	Flexible, High-Power Density, Wearable Thermoelectric Nanogenerator and Self-Powered Temperature Sensor. ACS Applied Materials & Interfaces, 2019, 11, 38616-38624.	8.0	102
88	Enhanced thermoelectric performance of P-type Sb2Te3 thin films through organic-inorganic hybridization on flexible substrate. Current Applied Physics, 2019, 19, 470-474.	2.4	11
89	Rapid Stoichiometry Control in Cu ₂ Se Thin Films for Room-Temperature Power Factor Improvement. ACS Applied Energy Materials, 2019, 2, 1517-1525.	5.1	28
90	A Flexible Selfâ€Powered Sensing Element with Integrated Organic Thermoelectric Generator. Advanced Materials Technologies, 2019, 4, 1900247.	5.8	64
91	Infrared-driven poly(vinylidene difluoride)/tungsten oxide pyroelectric generator for non-contact energy harvesting. Composites Science and Technology, 2019, 178, 26-32.	7.8	21
92	Photoâ€Supercapacitors Based on Thirdâ€Generation Solar Cells. ChemSusChem, 2019, 12, 3431-3447.	6.8	33

#	Article	IF	CITATIONS
93	Self-powered wearable ultraviolet index detector using a flexible thermoelectric generator. Journal of Micromechanics and Microengineering, 2019, 29, 045002.	2.6	12
94	Design, Performance, and Application of Thermoelectric Nanogenerators. Small, 2019, 15, e1805241.	10.0	74
95	Optimisation of Wearable Thermoelectric Generators. PAM Review Energy Science & Technology, 2019, 6, 2-15.	0.2	3
96	Materials and Designs for Power Supply Systems in Skin-Interfaced Electronics. Accounts of Chemical Research, 2019, 52, 53-62.	15.6	59
97	Advanced materials of printed wearables for physiological parameter monitoring. Materials Today, 2020, 32, 147-177.	14.2	110
98	Pulse mode of operation – A new booster of TEG, improving power up to X2.7 – to better fit IoT requirements. Nano Energy, 2020, 68, 104204.	16.0	8
99	Graphene-based wearable piezoresistive physical sensors. Materials Today, 2020, 36, 158-179.	14.2	262
100	A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids. Nano Energy, 2020, 70, 104459.	16.0	58
101	A universal and arbitrary tactile interactive system based on self-powered optical communication. Nano Energy, 2020, 69, 104419.	16.0	67
102	Polymer Matrix Nanocomposites with 1D Ceramic Nanofillers for Energy Storage Capacitor Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 1-37.	8.0	163
103	Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy, 2020, 258, 114069.	10.1	356
104	Progress in <scp>TENG</scp> technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat, 2020, 2, e12058.	11.9	194
105	Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy, 2020, 78, 105186.	16.0	185
106	Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications. Topics in Current Chemistry, 2020, 378, 48.	5.8	52
107	Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review. Nanoscale Research Letters, 2020, 15, 200.	5.7	116
108	Recent Progress in Flexible Wearable Sensors for Vital Sign Monitoring. Sensors, 2020, 20, 4009.	3.8	61
111	Green energy from working surfaces: a contact electrification–enabled data theft protection and monitoring smart table. Materials Today Energy, 2020, 18, 100544.	4.7	23
112	Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces. Nano Letters, 2020, 20, 4445-4453.	9.1	106

#	Article	IF	CITATIONS
113	Ethylene-Octene-Copolymer with Embedded Carbon and Organic Conductive Nanostructures for Thermoelectric Applications. Polymers, 2020, 12, 1316.	4.5	4
114	Plasmonic Metamaterial-Based Label-Free Microfluidic Microwave Sensor for Aqueous Biological Applications. IEEE Sensors Journal, 2020, 20, 10582-10590.	4.7	27
115	Development of a Highâ€Performance Handheld Triboelectric Nanogenerator with a Lightweight Power Transmission Unit. Advanced Materials Technologies, 2020, 5, 2000003.	5.8	20
116	A Sustainable Blue Energy Scavenging Smart Buoy toward Self-Powered Smart Fishing Net Tracker. ACS Sustainable Chemistry and Engineering, 2020, 8, 4120-4127.	6.7	26
117	Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 6442-6450.	8.0	302
118	Review—Textile Based Chemical and Physical Sensors for Healthcare Monitoring. Journal of the Electrochemical Society, 2020, 167, 037546.	2.9	115
119	Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chemical Engineering Journal, 2021, 404, 126064.	12.7	71
120	High Quality Electret Based Triboelectric Nanogenerator for Boosted and Reliable Electrical Output Performance. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 125-137.	4.9	24
121	Recent developments in flexible thermoelectrics: From materials to devices. Renewable and Sustainable Energy Reviews, 2021, 137, 110448.	16.4	84
122	Porosity modulated piezo-triboelectric hybridized nanogenerator for sensing small energy impacts. Applied Materials Today, 2021, 22, 100900.	4.3	28
123	Anionic conduction mediated giant n-type Seebeck coefficient in doped Poly(3-hexylthiophene) free-standing films. Materials Today Physics, 2021, 16, 100307.	6.0	11
124	Redox-induced electricity for energy scavenging and self-powered sensors. Journal of Materials Chemistry A, 2021, 9, 19116-19148.	10.3	18
125	Energy Harvesters for Wearable Electronics and Biomedical Devices. Advanced Materials Technologies, 2021, 6, 2000771.	5.8	49
126	A Flexible Pain Sensor Based on PDMS-AgNWs. IEEE Nanotechnology Magazine, 2021, 20, 137-142.	2.0	2
127	Microstrip Resonant Sensor for Differentiation of Components in Vapor Mixtures. Sensors, 2021, 21, 298.	3.8	3
128	Progress of hybrid nanocomposite materials for thermoelectric applications. Materials Advances, 2021, 2, 1927-1956.	5.4	22
129	Design of flexible inorganic thermoelectric devices for decrease of heat loss. Nano Research, 2021, 14, 2090-2104.	10.4	11
130	Recent progress for nanotechnology-based flexible sensors for biomedical applications. , 2021, , 379-428.		1

#	Article	IF	CITATIONS
131	A Comprehensive Review on Thermoelectric Generator for Energy Harvesting. Lecture Notes in Electrical Engineering, 2021, , 1897-1905.	0.4	2
132	Tailored growth of highâ€quality CsPbI 3 nanobelts. Journal of the American Ceramic Society, 2021, 104, 2358-2365.	3.8	1
133	Outdoor Personal Thermal Management with Simultaneous Electricity Generation. Nano Letters, 2021, 21, 3879-3886.	9.1	124
134	Fabrication and application of biocompatible nanogenerators. IScience, 2021, 24, 102274.	4.1	28
135	Advances in organic thermoelectric materials and devices for smart applications. SmartMat, 2021, 2, 426-445.	10.7	62
136	Stretchable, Stable, and Degradable Silk Fibroin Enabled by Mesoscopic Doping for Finger Motion Triggered Color/Transmittance Adjustment. ACS Nano, 2021, 15, 12429-12437.	14.6	42
137	Triboelectric nanogenerator using multiferroic materials: An approach for energy harvesting and self-powered magnetic field detection. Nano Energy, 2021, 85, 105964.	16.0	53
138	Module-level design and characterization of thermoelectric power generator. Chinese Physics B, 2022, 31, 048502.	1.4	1
139	Selfâ€powered technology based on nanogenerators for biomedical applications. Exploration, 2021, 1, 90-114.	11.0	54
140	Electromagnetic–Triboelectric Hybridized Nanogenerators. Energies, 2021, 14, 6219.	3.1	14
141	Film-Sponge-Coupled Triboelectric Nanogenerator with Enhanced Contact Area Based on Direct Ultraviolet Laser Ablation. ACS Applied Materials & Interfaces, 2021, 13, 48281-48291.	8.0	13
142	Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications. Journal of Power Sources, 2021, 507, 230323.	7.8	18
143	Wearable Thermoelectric Materials and Devices for Selfâ€₽owered Electronic Systems. Advanced Materials, 2021, 33, e2102990.	21.0	221
144	Development progress, performance enhancement routes, and applications of paper-based triboelectric nanogenerators. Chemical Engineering Journal, 2022, 430, 132559.	12.7	13
145	Progress in poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) composites for thermoelectric application. Composites Communications, 2021, 27, 100886.	6.3	2
146	Highly sensitive pressure and temperature sensors fabricated with poly(3-hexylthiophene-2,5-diyl)-coated elastic carbon foam for bio-signal monitoring. Chemical Engineering Journal, 2021, 423, 130197.	12.7	24
147	Liquid-metal embedded sponge-typed triboelectric nanogenerator for omnidirectionally detectable self-powered motion sensor. Nano Energy, 2021, 89, 106442.	16.0	29
148	A new hybrid piezo/triboelectric SbSel nanogenerator. Energy, 2022, 238, 122048.	8.8	20

#	Article	IF	CITATIONS
149	Rapid prototyping and customizable multifunctional structures: 3D-printing technology promotes the rapid development of TENGs. Journal of Materials Chemistry A, 2021, 9, 16255-16280.	10.3	11
150	Thermoelectric Generator Power Converter System Configurations: A Review. , 2014, , 151-166.		5
151	Wearable Printed Temperature Sensors: Short Review on Latest Advances for Biomedical Applications. IEEE Reviews in Biomedical Engineering, 2023, 16, 152-170.	18.0	9
152	Exploiting Dynamic Thermal Energy Harvesting for Reusing in Smartphone with Mobile Applications. ACM SIGPLAN Notices, 2018, 53, 243-256.	0.2	3
153	Flexible Organic-based Thermoelectric Devices. RSC Energy and Environment Series, 2019, , 274-308.	0.5	0
154	Advanced Functional Materials for Intelligent Thermoregulation in Personal Protective Equipment. Polymers, 2021, 13, 3711.	4.5	6
157	Monitoring of physiological sounds with wearable device based on piezoelectric MEMS acoustic sensor. Journal of Micromechanics and Microengineering, 2022, 32, 014001.	2.6	18
158	rGOâ€ZnSnO ₃ Nanostructureâ€Embedded Triboelectric Polymerâ€Based Hybridized Nanogenerators. Advanced Materials Technologies, 2022, 7, .	5.8	11
159	High-Performance Conformal Thermoelectric Generator for Environmental Monitoring. ACS Applied Electronic Materials, 2022, 4, 197-205.	4.3	5
160	Triboelectric Energy Generation for Modulating the Intermodulation of Quartz Oscillators in a Transmitter-to-Receiver System. IEEE Access, 2022, 10, 1714-1719.	4.2	0
161	Carbon fiber/epoxy composite laminates as through-thickness thermoelectric generators. Composites Science and Technology, 2022, 220, 109291.	7.8	5
162	Thermoelectric Generator: Materials and Applications in Wearable Health Monitoring Sensors and Internet of Things Devices. Advanced Materials Technologies, 2022, 7, .	5.8	42
163	Metal-organic frameworks for nanogenerators. , 2022, , 699-707.		1
164	Nanogeneratorsâ€Based Selfâ€Powered Sensors. Advanced Materials Technologies, 2022, 7, .	5.8	13
165	A Review on Epidermal Nanogenerators: Recent Progress of the Future Selfâ€Powered Skins. Small Structures, 2022, 3, .	12.0	5
166	Soft, Pressure-Tolerant, Flexible Electronic Sensors for Sensing under Harsh Environments. ACS Sensors, 2022, 7, 2400-2409.	7.8	14
167	Energy harvesting from human body heat using highly flexible thermoelectric generator based on Bi2Te3 particles and polymer composite. Journal of Alloys and Compounds, 2022, 924, 166575.	5.5	18
168	Rational design of stretchable and highly aligned organic/inorganic hybrid nanofiber films for multidirectional strain sensors and solar-driven thermoelectrics. Science China Materials, 2023, 66, 707-715.	6.3	18

#	Article	IF	CITATIONS
169	Highly tailorable, ultra-foldable, and resorbable thermoelectric paper for origami-enabled energy generation. Nano Energy, 2022, 103, 107824.	16.0	9
170	Highly Tailorable, Ultra-Foldable, and Resorbable Thermoelectric Paper for Origami-Enabled Energy Generation. SSRN Electronic Journal, 0, , .	0.4	0
172	Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. Nanoscale, 2023, 15, 405-433.	5.6	16
173	Tellurium/polymers for flexible thermoelectrics: status and challenges. Journal of Materials Chemistry A, 2023, 11, 3771-3788.	10.3	9
174	Ultra-flexible graphene/nylon/PDMS coaxial fiber-shaped multifunctional sensor. Nano Research, 2023, 16, 5541-5547.	10.4	5
175	Hydrovoltaic Nanogenerators for Selfâ€Powered Sweat Electrolyte Analysis. Small, 2023, 19, .	10.0	10
176	Self-Powered Sensors: Applications, Challenges, and Solutions. IEEE Sensors Journal, 2023, 23, 20483-20509.	4.7	9
177	Strongly enhanced charge density via gradient nano-doping for high performance elastic-material-based triboelectric nanogenerators. Materials Today, 2023, 65, 26-36.	14.2	16
178	Stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film. Nano Research, 2023, 16, 7618-7626.	10.4	8
179	All-Fiber Integrated Thermoelectrically Powered Physiological Monitoring Biosensor. Advanced Fiber Materials, 2023, 5, 1025-1036.	16.1	6
180	Pyro-Phototronic Effect for Advanced Photodetectors and Novel Light Energy Harvesting. Nanomaterials, 2023, 13, 1336.	4.1	4
181	Biological and Bioinspired Thermal Energy Regulation and Utilization. Chemical Reviews, 2023, 123, 7081-7118.	47.7	7
182	Integrated Multifunctional Electronic Skins with Low oupling for Complicated and Accurate Human–Robot Collaboration. Advanced Science, 2023, 10, .	11.2	5
183	Experimental Studies on Particle Dampers with Energy Harvesting Characteristics. Journal of Vibration Engineering and Technologies, 2024, 12, 2571-2583.	2.2	0
184	Flexible Te/PEDOT:PSS thin films with high thermoelectric power factor and their application as flexible temperature sensors. Nanoscale, 2023, 15, 11237-11246.	5.6	5
185	Fully flexible thermoelectric and piezoelectric hybrid generator based on a self-assembled multifunctional single composite film. Materials Today Physics, 2023, 35, 101103.	6.0	1
186	Wearable triboelectric nanogenerator with micro-topping structures via material jet printing method. Nano Energy, 2023, 114, 108650.	16.0	2
187	Advances in Organic Thermoelectric Devices for Multiple Applications. , 2023, 2, .		2

#	Article	IF	CITATIONS
188	Recent Advances in Wearable Sensors for the Monitoring of Sweat: A Comprehensive Tendency Summary. Chemosensors, 2023, 11, 470.	3.6	1
189	Rationally designed g-C3N4/ZnO nn heterojunction based flexible triboelectric nanogenerators for self-powered temperature sensing application. Sensors and Actuators A: Physical, 2023, 362, 114668.	4.1	0
190	Thermoelectrics and thermocells for fire warning applications. Science Bulletin, 2023, 68, 3261-3277.	9.0	8
192	Piezoelectricity, Pyroelectricity, and Ferroelectricity in Biomaterials and Biomedical Applications. Advanced Materials, 2024, 36, .	21.0	7
193	Cotton Based Self-Powered Temperature Sensor Based on Au-Augmented WS2 Triboelectric Nanogenerator. Journal of Electronic Materials, 2024, 53, 238-249.	2.2	2
194	Thermoelectric applications of non-layered 2-D materials. Semiconductors and Semimetals, 2023, , .	0.7	0
195	Contact-electrification enabled water-resistant triboelectric nanogenerators as demonstrator educational appliances. JPhys Energy, 2024, 6, 015003.	5.3	0
196	Antibiotic-Powered Energy Harvesting: Introducing Benzylpenicillin as an Efficient Tribopositive Material for Triboelectric Nanogenerators. Nanomaterials, 2023, 13, 2995.	4.1	Ο
197	Development of Triboelectric Nanogenerators Using Novel 3D Printed Polymer Materials. Advanced Engineering Materials, 2024, 26, .	3.5	0
199	Polymer and composite based thermoelectrics: Basics, scopes and issues. , 2022, 60, 689-699.		0
200	Exceptional Performance of Room Temperature Sputtered Flexible Thermoelectric Thin Film Using High Target Utilisation Sputtering Technique. Advanced Materials Technologies, 2024, 9, .	5.8	0
201	Electrospun vanadium oxide hollow nanofibers based supercapacitor inspired triboelectric nanogenerator as self-powered visible-blind ultraviolet photodetector. Journal of Power Sources, 2024, 602, 234303.	7.8	0
202	Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi2Te3 films. Nature Communications, 2024, 15, .	12.8	0