New Proteasome Inhibitors in Myeloma

Current Hematologic Malignancy Reports 7, 258-266 DOI: 10.1007/s11899-012-0141-2

Citation Report

#	Article	IF	CITATIONS
2	Marine-Derived Angiogenesis Inhibitors for Cancer Therapy. Marine Drugs, 2013, 11, 903-933.	4.6	62
3	Proteasome inhibitor <scp>MG</scp> â€132 induces <scp>MCPIP</scp> 1 expression. FEBS Journal, 2013, 280, 2665-2674.	4.7	26
5	Bortezomib for the treatment of previously untreated multiple myeloma. Immunotherapy, 2013, 5, 327-352.	2.0	22
8	A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood, 2014, 123, 706-716.	1.4	254
9	Selective and Potent Akt Inhibition Triggers Anti-Myeloma Activities and Enhances Fatal Endoplasmic Reticulum Stress Induced by Proteasome Inhibition. Cancer Research, 2014, 74, 4458-4469.	0.9	63
10	Cu ^{II} and Cu ⁰ Catalyzed Mono Borylation of Unsaturated Hydrocarbons with B ₂ pin ₂ : Entering into the Water. ChemCatChem, 2014, 6, 2162-2174.	3.7	43
11	Early or delayed transplantation for multiple myeloma in the era of novel therapy: does one size fit all?. Hematology American Society of Hematology Education Program, 2014, 2014, 255-261.	2.5	25
12	Inhibitory Effect of b-AP15 on the 20S Proteasome. Biomolecules, 2014, 4, 931-939.	4.0	1
13	Bortezomib and dexamethasone as salvage therapy in patients with relapsed/refractory multiple myeloma: analysis of long-term clinical outcomes. Annals of Hematology, 2014, 93, 123-128.	1.8	15
14	Targeting kallikrein-related peptidases in prostate cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 365-383.	3.4	25
15	Study of chemoselective asymmetric hydrogenation of (1-bromo-1-alkenyl)boronic esters with iridium–PˆN complexes. Tetrahedron, 2014, 70, 2654-2660.	1.9	16
16	New C4- and C1-derivatives of furo[3,4-c]pyridine-3-ones and related compounds: Evidence for site-specific inhibition of the constitutive proteasome and its immunoisoform. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1571-1580.	2.2	15
17	Novel therapeutic targets in myeloma bone disease. British Journal of Pharmacology, 2014, 171, 3765-3776.	5.4	8
18	Development of a new class of proteasome inhibitors with an epoxyketone warhead: Rational hybridization of non-peptidic belactosin derivatives and peptide epoxyketones. Bioorganic and Medicinal Chemistry, 2014, 22, 3091-3095.	3.0	6
19	Systematic Comparison of Peptidic Proteasome Inhibitors Highlights the αâ€Ketoamide Electrophile as an Auspicious Reversible Lead Motif. Angewandte Chemie - International Edition, 2014, 53, 1679-1683.	13.8	74
20	Current Phase II investigational proteasome inhibitors for the treatment of multiple myeloma. Expert Opinion on Investigational Drugs, 2014, 23, 1193-1209.	4.1	6
21	Ubiquitination in disease pathogenesis and treatment. Nature Medicine, 2014, 20, 1242-1253.	30.7	845
22	European Perspective on Multiple Myeloma Treatment Strategies in 2014. Oncologist, 2014, 19, 829-844.	3.7	90

ATION REDO

#	Article	IF	CITATIONS
23	MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB. Molecular and Cellular Biochemistry, 2014, 395, 253-263.	3.1	13
24	New orally active proteasome inhibitors in multiple myeloma. Leukemia Research, 2014, 38, 1-9.	0.8	66
25	A novel tamoxifen derivative, ridaifen-F, is a nonpeptidic small-molecule proteasome inhibitor. European Journal of Medicinal Chemistry, 2014, 71, 290-305.	5.5	17
26	Small-Molecule RA-9 Inhibits Proteasome-Associated DUBs and Ovarian Cancer <i>In Vitro</i> and <i>In Vivo</i> via Exacerbating Unfolded Protein Responses. Clinical Cancer Research, 2014, 20, 3174-3186.	7.0	54
27	Applied techniques for mining natural proteasome inhibitors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 26-38.	4.1	19
28	Neuropathic cancer pain: What we are dealing with? How to manage it?. OncoTargets and Therapy, 2014, 7, 599.	2.0	35
29	Natural Products from Mangrove Actinomycetes. Marine Drugs, 2014, 12, 2590-2613.	4.6	125
30	Inhibition of Cancer Cell Growth by GRP78 siRNA Lipoplex <i>via</i> Activation of Unfolded Protein Response. Biological and Pharmaceutical Bulletin, 2014, 37, 648-653.	1.4	15
32	Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease. Frontiers in Pharmacology, 2015, 6, 116.	3.5	25
33	Carfilzomib: A second-generation proteasome inhibitor for the treatment of multiple myeloma. American Journal of Health-System Pharmacy, 2015, 72, 353-360.	1.0	52
34	SCF ^{JFK} is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer. Genes and Development, 2015, 29, 672-685.	5.9	34
35	The Nuclear Factor (Erythroid-derived 2)-like 2 and Proteasome Maturation Protein Axis Mediate Bortezomib Resistance in Multiple Myeloma. Journal of Biological Chemistry, 2015, 290, 29854-29868.	3.4	64
36	Bisbenzimidazole derivatives as potent inhibitors of the trypsin-like sites of the immunoproteasome core particle. Biochimie, 2015, 108, 94-100.	2.6	7
37	NF-kappaB and the Immune System. , 2016, , 580-587.		2
38	Rrp15 affects cell cycle, proliferation, and apoptosis in NIH 3T3 cells. FEBS Open Bio, 2016, 6, 1085-1092.	2.3	12
39	Bortezomib for the treatment of multiple myeloma. The Cochrane Library, 2016, 2016, CD010816.	2.8	80
40	Molecular mechanisms in multiple myeloma drug resistance. Journal of Clinical Pathology, 2016, 69, 97-101.	2.0	51
41	Mechanism of Degradation of an α-Keto-Epoxide, a Model for the Warhead for Various Proteasome Inhibitor Anticancer Agents. Journal of Pharmaceutical Sciences, 2017, 106, 1051-1061.	3.3	4

CITATION REPORT

#	Article	IF	CITATIONS
42	Anti-mitotic agents: Are they emerging molecules for cancer treatment?. , 2017, 173, 67-82.		55
43	Acylboranes: synthetic strategies and applications. Organic and Biomolecular Chemistry, 2017, 15, 1738-1752.	2.8	62
44	Therapeutic potential of carfilzomib, an irreversible proteasome inhibitor, against acetaminophen-induced hepatotoxicity in mice. Journal of Biochemical and Molecular Toxicology, 2017, 31, e21877.	3.0	3
45	Cellular effect and efficacy of carfilzomib depends on cellular net concentration gradient. Cancer Chemotherapy and Pharmacology, 2017, 80, 71-79.	2.3	5
46	Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radical Biology and Medicine, 2017, 103, 1-13.	2.9	62
47	<scp>CXCL</scp> 12 and <scp>CXCR</scp> 7 are relevant targets to reverse cell adhesionâ€mediated drug resistance in multiple myeloma. British Journal of Haematology, 2017, 179, 36-49.	2.5	63
48	Phenoxypropanolamine derivatives as selective inhibitors of the 20S proteasome β1 and β5 subunits. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5172-5178.	2.2	2
49	Pâ€Glycoprotein Inhibition Sensitizes Human Breast Cancer Cells to Proteasome Inhibitors. Journal of Cellular Biochemistry, 2017, 118, 1239-1248.	2.6	17
50	Novel Proteasome Inhibitors and Histone Deacetylase Inhibitors: Progress in Myeloma Therapeutics. Pharmaceuticals, 2017, 10, 40.	3.8	33
51	A nano-catalytic approach for C–B bond formation reactions. Organic and Biomolecular Chemistry, 2018, 16, 857-873.	2.8	29
52	Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma. , 2018, 182, 176-192.		76
53	Preclinical comparison of proteasome and ubiquitin E1 enzyme inhibitors in cutaneous squamous cell carcinoma: the identification of mechanisms of differential sensitivity. Oncotarget, 2018, 9, 20265-20281.	1.8	21
54	Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome. Frontiers in Chemistry, 2018, 6, 392.	3.6	5
55	The Role of ClpP Protease in Bacterial Pathogenesis and Human Diseases. ACS Chemical Biology, 2018, 13, 1413-1425.	3.4	122
56	Relapsed refractory multiple myeloma: a comprehensive overview. Leukemia, 2019, 33, 2343-2357.	7.2	90
57	Boosting Immunity against Multiple Myeloma. Cancers, 2021, 13, 1221.	3.7	8
59	Chemical tools for selective activity profiling of bacterial penicillin-binding proteins. Methods in Enzymology, 2020, 638, 27-55.	1.0	14
60	First-Row d-Block Element-Catalyzed Carbon–Boron Bond Formation and Related Processes. Chemical Reviews, 2021, 121, 13238-13341.	47.7	163

CITATION REPORT

#	Article	IF	CITATIONS
61	Early or delayed transplantation for multiple myeloma in the era of novel therapy: does one size fit all?. Hematology American Society of Hematology Education Program, 2014, 2014, 255-261.	2.5	16
62	Protein Kinase CK2 Inhibition Down Modulates the NF-κB and STAT3 Survival Pathways, Enhances the Cellular Proteotoxic Stress and Synergistically Boosts the Cytotoxic Effect of Bortezomib on Multiple Myeloma and Mantle Cell Lymphoma Cells. PLoS ONE, 2013, 8, e75280.	2.5	75
63	Anti-β2-microglobulin monoclonal antibodies overcome bortezomib resistance in multiple myeloma by inhibiting autophagy. Oncotarget, 2015, 6, 8567-8578.	1.8	26
64	Overview of Proteasome Inhibitor-Based Anti-cancer Therapies: Perspective on Bortezomib and Second Generation Proteasome Inhibitors versus Future Generation Inhibitors of Ubiquitin-Proteasome System. Current Cancer Drug Targets, 2014, 14, 517-536.	1.6	224
65	Proptosis and hemiplegia as an initial manifestation of multiple myeloma. Journal of Postgraduate Medicine, 2018, 64, 243-246.	0.4	5
66	Crosstalk between autophagy and proteasome protein degradation systems: possible implications for cancer therapy. Folia Histochemica Et Cytobiologica, 2014, 51, 249-264.	1.5	59
67	The Cancer Super-chaperone Hsp90: Drug Targeting and Post-translational Regulation. RSC Drug Discovery Series, 2013, , 318-335.	0.3	0
77	Proteasome Inhibitors and Lessons Learned from Their Mechanisms of Action and Resistance in Human Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2014, , 1-46.	0.1	1
78	Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. International Journal of Molecular Sciences, 2021, 22, 11971.	4.1	42
80	Nonselective proteasome inhibitors in multiple myeloma and future perspectives. Expert Opinion on Pharmacotherapy, 2022, 23, 335-347.	1.8	4
81	The Sec61 translocon is a therapeutic vulnerability in multiple myeloma. EMBO Molecular Medicine, 2022, 14, e14740.	6.9	10
82	Site-Specific Proteasome Inhibitors. Biomolecules, 2022, 12, 54.	4.0	24
83	3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing. Biofabrication, 2022, 14, 035002.	7.1	28
85	Metalâ€Organic Frameworks for Catalytic Construction of Câ^B Bond and Related Reactions. ChemCatChem, 2023, 15, .	3.7	4
86	HAPLN1 confers multiple myeloma cell resistance to several classes of therapeutic drugs. PLoS ONE, 2022, 17, e0274704.	2.5	2
87	PSMA7 promotes the malignant proliferation of esophageal cancer. Heliyon, 2024, 10, e23173.	3.2	0
88	Facile Synthesis of Vinyl Boronate Esters via Dehydrogenative Borylation of Alkenes Enabled by a Co-MOF Catalyst: An Additive-Free Approach. ACS Catalysis, 2024, 14, 3065-3073.	11.2	0
89	Factors determining the sensitivity to proteasome inhibitors of multiple myeloma cells. Frontiers in Pharmacology, 0, 15, .	3.5	0

CITATION REPORT