Oral curcumin for Alzheimer's disease: tolerability and double blind, placebo-controlled study

Alzheimer's Research and Therapy

4, 43

DOI: 10.1186/alzrt146

Citation Report

#	Article	IF	CITATIONS
1	Hippocampal Neurogenesis in Alzheimer's Disease: Is There a Role for Dietary Modulation?. Journal of Alzheimer's Disease, 2013, 38, 11-38.	1.2	62
2	Treatment of Alzheimer's Disease: Current Management and Experimental Therapeutics. Current Translational Geriatrics and Experimental Gerontology Reports, 2013, 2, 174-181.	0.7	11
3	Traditional Chinese medicine: a promising candidate for the treatment of Alzheimer's disease. Translational Neurodegeneration, 2013, 2, 6.	3.6	82
4	Epigenetics: A novel therapeutic approach for the treatment of Alzheimer's disease., 2013, 139, 41-50.		95
5	Curcumin protects neuronalâ€like cells against acrolein by restoring <scp>A</scp> kt and redox signaling pathways. Molecular Nutrition and Food Research, 2013, 57, 1660-1670.	1.5	47
6	Curcumin: a natural substance with potential efficacy in Alzheimer's disease. Journal of Experimental Pharmacology, 2013, 5, 23.	1.5	36
7	Nutrition and Healthy Ageing: Calorie Restriction or Polyphenol-Rich "MediterrAsian―Diet?. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-14.	1.9	97
8	Prenatal Curcumin Administration Reverses Behavioral and Neurochemical Effects and Decreases iNOS and COX-2 Expressions in Ischemic Rat Pups. International Journal of Brain Science, 2014, 2014, 1-10.	0.6	2
9	Oxidative Stress in Alzheimer's Disease: Why Did Antioxidant Therapy Fail?. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-11.	1.9	232
10	Human Pharmacokinetics of High Dose Oral Curcumin and Its Effect on Heme Oxygenase-1 Expression in Healthy Male Subjects. BioMed Research International, 2014, 2014, 1-7.	0.9	47
11	Curcumin as a Therapeutic Agent in Dementia: A Mini Systematic Review of Human Studies. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	70
12	Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin. BioMed Research International, 2014, 2014, 1-14.	0.9	94
13	Nutraceuticals in cognitive impairment and Alzheimer \tilde{A} ¢ \hat{a} , $\neg \hat{a}$, φ s disease. Frontiers in Pharmacology, 2014, 5, 147.	1.6	99
15	Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5621-5626.	1.0	41
16	The Role of Nutrient-Based Epigenetic Changes in Buffering Against Stress, Aging, and Alzheimer's Disease. Psychiatric Clinics of North America, 2014, 37, 591-623.	0.7	20
17	Polyphenols and the Human Brain: Plant "Secondary Metabolite―Ecologic Roles and Endogenous Signaling Functions Drive Benefits. Advances in Nutrition, 2014, 5, 515-533.	2.9	91
18	Nutritional Approaches for Healthy Aging of the Brain and the Prevention of Neurodegenerative Diseases. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 457-479.	0.2	4
19	Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins. Biochemical Pharmacology, 2014, 88, 468-478.	2.0	93

#	Article	IF	CITATIONS
20	Protective effect of curcumin against heavy metals-induced liver damage. Food and Chemical Toxicology, 2014, 69, 182-201.	1.8	294
21	Advances in Therapeutics for Neurodegenerative Tauopathies: Moving toward the Specific Targeting of the Most Toxic Tau Species. ACS Chemical Neuroscience, 2014, 5, 752-769.	1.7	63
22	SAR Studies on Curcumin's Pro-inflammatory Targets: Discovery of Prenylated Pyrazolocurcuminoids as Potent and Selective Novel Inhibitors of 5-Lipoxygenase. Journal of Medicinal Chemistry, 2014, 57, 5638-5648.	2.9	53
23	The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Molecular Nutrition and Food Research, 2014, 58, 516-527.	1.5	240
24	Curcumin supplementation improves mitochondrial and behavioral deficits in experimental model of chronic epilepsy. Pharmacology Biochemistry and Behavior, 2014, 125, 55-64.	1.3	35
25	Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Archives of Toxicology, 2014, 88, 1803-1853.	1.9	472
26	Beneficial properties of natural phenols: Highlight on protection against pathological conditions associated with amyloid aggregation. BioFactors, 2014, 40, 482-493.	2.6	83
27	Adenosine triphosphate concentrations are higher in the brain of APOE3- compared to APOE4-targeted replacement mice and can be modulated by curcumin. Genes and Nutrition, 2014, 9, 397.	1.2	33
28	Curcumin may impair iron status when fed to mice for six months. Redox Biology, 2014, 2, 563-569.	3.9	65
29	Farmer to pharmacist: curcumin as an anti-invasive and antimetastatic agent for the treatment of cancer1. Frontiers in Chemistry, 2014, 2, 113.	1.8	76
30	Diet and Inflammation in Alzheimer's Disease and Related Chronic Diseases: A Review. Journal of Alzheimer's Disease, 2016, 50, 301-334.	1.2	46
31	Effects of green tea consumption on cognitive dysfunction in an elderly population: a randomized placebo-controlled study. Nutrition Journal, 2015, 15, 49.	1.5	50
32	An update on Curcuma as a functional food in the control of cancer and inflammation. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 605-611.	1.3	33
33	Effects of curcumin in pediatric epithelial liver tumors: inhibition of tumor growth and alpha-fetoprotein <i>in vitro</i> in vivoin vivo	0.8	29
34	Curcumin, Inflammation, and Chronic Diseases: How Are They Linked?. Molecules, 2015, 20, 9183-9213.	1.7	391
35	Targeting Assembly and Disassembly of Protein Aggregates. , 2015, , 173-228.		1
36	Clinical development of curcumin in neurodegenerative disease. Expert Review of Neurotherapeutics, 2015, 15, 629-637.	1.4	144
37	Effectiveness and Safety of MLC601 in the Treatment of Mild to Moderate Alzheimer's Disease: A Multicenter, Randomized Controlled Trial. Dementia and Geriatric Cognitive Disorders Extra, 2015, 5, 96-106.	0.6	14

#	Article	IF	Citations
38	Improved blood–brain-barrier permeability and tissue distribution following the oral administration of a food-grade formulation of curcumin with fenugreek fibre. Journal of Functional Foods, 2015, 14, 215-225.	1.6	33
39	Oxidative Stress in Alzheimer's Disease: Should We Keep Trying Antioxidant Therapies?. Cellular and Molecular Neurobiology, 2015, 35, 595-614.	1.7	76
40	\hat{l}^2 -Sheet interfering molecules acting against \hat{l}^2 -amyloid aggregation and fibrillogenesis. Bioorganic and Medicinal Chemistry, 2015, 23, 1671-1683.	1.4	63
41	Slowing the progression of Alzheimer's disease; what works?. Ageing Research Reviews, 2015, 23, 193-209.	5.0	71
42	Reducing $\hat{A^2}$ load and tau phosphorylation: Emerging perspective for treating Alzheimer's disease. European Journal of Pharmacology, 2015, 764, 571-581.	1.7	42
43	Natural Phenolic Compounds as Therapeutic and Preventive Agents for Cerebral Amyloidosis. Advances in Experimental Medicine and Biology, 2015, 863, 79-94.	0.8	50
44	Diet, nutrients and metabolism: cogs in the wheel driving Alzheimer's disease pathology?. British Journal of Nutrition, 2015, 113, 1499-1517.	1.2	24
45	Curcumin, a golden spice with a low bioavailability. Journal of Herbal Medicine, 2015, 5, 57-70.	1.0	224
46	Beyond Yellow Curry: Assessing Commercial Curcumin Absorption Technologies. Journal of the American College of Nutrition, 2015, 34, 347-358.	1.1	56
47	The Antiaggregative, Antiamyloid Properties of Bioactive Polyphenols in the Treatment of Alzheimer's Disease. , 2015, , 73-76.		0
48	Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. Journal of Psychopharmacology, 2015, 29, 642-651.	2.0	259
49	Screening of \hat{l}^2 -secretase and acetylcholinesterase inhibitors from plant resources. Journal of Natural Medicines, 2015, 69, 123-129.	1.1	46
50	Current development in non-enzymatic lipid peroxidation products, isoprostanoids and isofuranoids, in novel biological samples. Free Radical Research, 2015, 49, 816-826.	1.5	28
51	Inhalable Curcumin: Offering the Potential for Translation to Imaging and Treatment of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 44, 283-295.	1.2	40
52	Modulators of Amyloid \hat{l}^2 -Protein (A \hat{l}^2) Self-Assembly. , 2016, , 97-191.		6
53	Curcumin against amyloid pathology in mental health and brain composition. , 2016, , 487-505.		0
54	Herbal Medicine for the Treatment of Vascular Dementia: An Overview of Scientific Evidence. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-15.	0.5	50
55	Natural Phytochemicals in the Treatment and Prevention of Dementia: An Overview. Molecules, 2016, 21, 518.	1.7	68

#	Article	IF	CITATIONS
56	Curcumin and Resveratrol in the Management of Cognitive Disorders: What is the Clinical Evidence?. Molecules, 2016, 21, 1243.	1.7	74
57	Potential of Asian Natural Products for Health in Aging. , 2016, , 659-676.		7
58	Dietary Phytochemicals in Neuroimmunoaging: A New Therapeutic Possibility for Humans?. Frontiers in Pharmacology, 2016, 7, 364.	1.6	59
59	The role of modulation of antioxidant enzyme systems in the treatment of neurodegenerative diseases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 194-204.	2.5	10
60	Effects of Curcumin on Neuroinflammation in Animal Models and in Patients with Alzheimer Disease., 2016,, 259-296.		5
61	Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer's disease. British Journal of Nutrition, 2016, 115, 449-465.	1.2	186
62	Curcumin and cognition: a randomised, placebo-controlled, double-blind study of community-dwelling older adults. British Journal of Nutrition, 2016, 115, 2106-2113.	1.2	147
63	Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiology of Aging, 2016, 39, 69-81.	1.5	43
64	Dietary Polyphenols as Potential Remedy for Dementia. Advances in Neurobiology, 2016, 12, 41-56.	1.3	5
65	Controlled curcumin release via conjugation into PBAE nanogels enhances mitochondrial protection against oxidative stress. International Journal of Pharmaceutics, 2016, 511, 1012-1021.	2.6	22
66	Polyphenols in dementia: From molecular basis to clinical trials. Life Sciences, 2016, 161, 69-77.	2.0	90
67	Curcumin ameliorates neuropathic pain by down-regulating spinal IL- $1\hat{l}^2$ via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Scientific Reports, 2016, 6, 28956.	1.6	67
68	Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick. Behavioural Pharmacology, 2016, 27, 536-541.	0.8	5
69	Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. Immunity and Ageing, 2016, 13, 16.	1.8	90
70	Anti-arrhythmic Medication Propafenone a Potential Drug for Alzheimer's Disease Inhibiting Aggregation of Aβ: In Silico and in Vitro Studies. Journal of Chemical Information and Modeling, 2016, 56, 1344-1356.	2.5	41
71	Downstream modulation of extrinsic apoptotic pathway in streptozotocin-induced Alzheimer's dementia in rats: Erythropoietin versus curcumin. European Journal of Pharmacology, 2016, 770, 52-60.	1.7	56
72	Focus on PAINS: false friends in the quest for selective anti-protozoal lead structures from Nature?. MedChemComm, 2016, 7, 214-223.	3.5	34
73	Neuronal Uptake and Neuroprotective Properties of Curcumin-Loaded Nanoparticles on SK-N-SH Cell Line: Role of Poly(lactide- <i>co</i> glycolide) Polymeric Matrix Composition. Molecular Pharmaceutics, 2016, 13, 391-403.	2.3	53

#	Article	IF	CITATIONS
74	Curcuma longa. , 2016, , 241-362.		4
75	Effects of curcumin on synapses in APPswe/PS1dE9 mice. International Journal of Immunopathology and Pharmacology, 2016, 29, 217-225.	1.0	30
76	Effects of Curcumin on Oxidative Stress in Animal Models and Patients with Alzheimer Disease. , 2016, , 209-257.		0
77	Summary, Perspective and Direction for Future Research. , 2016, , 369-392.		0
78	Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer's disease. Neurochemistry International, 2016, 95, 63-74.	1.9	145
79	Oxidative Stress in Neurodegenerative Diseases. Molecular Neurobiology, 2016, 53, 4094-4125.	1.9	523
80	Neuroprotective effects of curcumin on endothelin-1 mediated cell death in hippocampal neurons. Nutritional Neuroscience, 2017, 20, 273-283.	1.5	19
81	Oxidative Stress, Synaptic Dysfunction, andÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2017, 57, 1105-1121.	1.2	1,123
85	The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry, 2017, 60, 1620-1637.	2.9	1,291
86	High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Archives of Toxicology, 2017, 91, 1623-1634.	1.9	94
87	Natural product-based amyloid inhibitors. Biochemical Pharmacology, 2017, 139, 40-55.	2.0	155
88	Fabrication of nanostructures through self-assembly of non-ionic amphiphiles for biomedical applications. RSC Advances, 2017, 7, 22121-22132.	1.7	26
89	Herbal medicine for management of the behavioural and psychological symptoms of dementia (BPSD): A systematic review and meta-analysis. Journal of Psychopharmacology, 2017, 31, 169-183.	2.0	28
90	The Mechanisms of Action of Curcumin inÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 1003-1016.	1.2	200
91	Tau-based therapies in neurodegeneration: opportunities and challenges. Nature Reviews Drug Discovery, 2017, 16, 863-883.	21.5	193
93	Multicomponent, fragment-based synthesis of polyphenol-containing peptidomimetics and their inhibiting activity on beta-amyloid oligomerization. Organic and Biomolecular Chemistry, 2017, 15, 9331-9351.	1.5	21
94	Association of polymorphisms in NFE2L2 gene encoding transcription factor Nrf2 with multifactorial diseases. Russian Journal of Genetics, 2017, 53, 851-864.	0.2	1
95	Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 953-972.	1.5	125

#	Article	IF	Citations
96	Nutritional Strategies in the Management of Alzheimer Disease: Systematic Review With Network Meta-Analysis. Journal of the American Medical Directors Association, 2017, 18, 897.e13-897.e30.	1.2	23
97	Multifunctional Curcumin Mediate Multitherapeutic Effects. Journal of Food Science, 2017, 82, 2006-2015.	1.5	77
98	Olive polyphenols: new promising agents to combat aging-associated neurodegeneration. Expert Review of Neurotherapeutics, 2017, 17, 345-358.	1.4	99
99	Development of Nasal Lipid Nanocarriers Containing Curcumin for Brain Targeting. Journal of Alzheimer's Disease, 2017, 59, 961-974.	1.2	38
100	The Potential of Small Molecules in Preventing Tau Oligomer Formation and Toxicity., 2017,, 97-121.		3
101	Plants-Derived Neuroprotective Agents: Cutting the Cycle of Cell Death through Multiple Mechanisms. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-27.	0.5	52
102	Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration?. Antioxidants, 2017, 6, 65.	2.2	126
103	Turmeric (<i>Curcuma longa</i>) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytotherapy Research, 2018, 32, 985-995.	2.8	364
104	Lanthanide Texaphyrins as Photocatalysts. Inorganic Chemistry, 2018, 57, 3458-3464.	1.9	14
105	Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. GeroScience, 2018, 40, 73-95.	2.1	73
106	Potential amelioration of nicotineâ€induced toxicity by nanocurcumin. Drug Development Research, 2018, 79, 119-128.	1.4	5
107	Can Curcumin Counteract Cognitive Decline? Clinical Trial Evidence and Rationale for Combining ω-3 Fatty Acids with Curcumin. Advances in Nutrition, 2018, 9, 105-113.	2.9	20
108	A refined concept: α-synuclein dysregulation disease. Neurochemistry International, 2018, 119, 84-96.	1.9	24
109	The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer's disease. Progress in Neurobiology, 2018, 168, 104-127.	2.8	74
110	Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Medicinal Research Reviews, 2018, 38, 261-324.	5.0	55
111	Therapeutic potential of curcumin for multiple sclerosis. Neurological Sciences, 2018, 39, 207-214.	0.9	74
112	The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Delivery and Translational Research, 2018, 8, 740-759.	3.0	42
113	Curcumin or combined curcuminoids are effective in lowering the fasting blood glucose concentrations of individuals with dysglycemia: Systematic review and meta-analysis of randomized controlled trials. Pharmacological Research, 2018, 128, 137-144.	3.1	44

#	Article	IF	CITATIONS
114	Adultâ€onset brain tumors and neurodegeneration: Are polyphenols protective?. Journal of Cellular Physiology, 2018, 233, 3955-3967.	2.0	34
115	Memory and Brain Amyloid and Tau Effects of a Bioavailable Form of Curcumin in Non-Demented Adults: A Double-Blind, Placebo-Controlled 18-Month Trial. American Journal of Geriatric Psychiatry, 2018, 26, 266-277.	0.6	204
116	Improvement of Curcumin Bioavailability for Medical Applications., 2018, 07,.		18
118	Nanoparticle-conjugated nutraceuticals exert prospectively palliative of amyloid aggregation. International Journal of Nanomedicine, 2018, Volume 13, 8473-8485.	3.3	7
119	Amphiphilic Nanocarrier Systems for Curcumin Delivery in Neurodegenerative Disorders. Medicines (Basel, Switzerland), 2018, 5, 126.	0.7	62
120	Curcumin, Cardiometabolic Health and Dementia. International Journal of Environmental Research and Public Health, 2018, 15, 2093.	1.2	46
121	Pharmacoepigenomic Interventions as Novel Potential Treatments for Alzheimer's and Parkinson's Diseases. International Journal of Molecular Sciences, 2018, 19, 3199.	1.8	45
122	Etersalate prevents the formations of $6 \mbox{Al}^2 16$ -22 oligomer: An in silico study. PLoS ONE, 2018, 13, e0204026.	1.1	11
123	Nano-delivery systems for encapsulation of dietary polyphenols: An experimental approach for neurodegenerative diseases and brain tumors. Biochemical Pharmacology, 2018, 154, 303-317.	2.0	78
124	The Effect of BSA-Based Curcumin Nanoparticles on Memory and Hippocampal MMP-2, MMP-9, and MAPKs in Adult Mice. Journal of Molecular Neuroscience, 2018, 65, 319-326.	1.1	15
126	Self-nanomicellizing solid dispersion of edaravone: part I & amp; ndash; oral bioavailability improvement. Drug Design, Development and Therapy, 2018, Volume 12, 2051-2069.	2.0	17
127	Self-nanomicellizing solid dispersion of edaravone: part II: in vivo assessment of efficacy against behavior deficits and safety in Alzheimer's disease model. Drug Design, Development and Therapy, 2018, Volume 12, 2111-2128.	2.0	17
128	Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Food and Chemical Toxicology, 2018, 120, 183-195.	1.8	24
129	Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases. International Journal of Molecular Sciences, 2018, 19, 1637.	1.8	151
130	Understanding AMD by analogy: systematic review of lipid-related common pathogenic mechanisms in AMD, AD, AS and GN. Lipids in Health and Disease, 2018, 17, 3.	1.2	37
131	Phloroglucinol ameliorates cognitive impairments by reducing the amyloid \hat{l}^2 peptide burden and pro-inflammatory cytokines in the hippocampus of 5XFAD mice. Free Radical Biology and Medicine, 2018, 126, 221-234.	1.3	28
132	Curcumin-loaded self-nanomicellizing solid dispersion system: part II: in vivo safety and efficacy assessment against behavior deficit in Alzheimer disease. Drug Delivery and Translational Research, 2018, 8, 1406-1420.	3.0	32
133	Curcumin in epilepsy disorders. Phytotherapy Research, 2018, 32, 1865-1875.	2.8	23

#	Article	IF	Citations
134	Shaping the Nrf2-ARE-related pathways in Alzheimer's and Parkinson's diseases. Ageing Research Reviews, 2019, 54, 100942.	5.0	163
135	ls curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 705-733.	1.5	140
136	Effectiveness of Yi-Zhi-An-Shen granules on cognition and sleep quality in older adults with amnestic mild cognitive impairment: protocol for a randomized, double-blind, placebo-controlled trial. Trials, 2019, 20, 518.	0.7	9
137	Dietary Strategies and Supplements for the Prevention of Cognitive Decline and Alzheimer's Disease. , 2019, , 231-247.		0
138	The chemical and pharmacological basis of turmeric (Curcuma longa L.) as potential therapy for type 2 diabetes and metabolic syndrome., 2019,, 751-789.		1
139	N-of-1 Clinical Trials in Nutritional Interventions Directed at Improving Cognitive Function. Frontiers in Nutrition, 2019, 6, 110.	1.6	16
140	Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Frontiers in Pharmacology, 2019, 10, 902.	1.6	173
141	Toll-like receptors and their therapeutic potential in Parkinson's disease and α-synucleinopathies. Brain, Behavior, and Immunity, 2019, 81, 41-51.	2.0	81
142	B14 ameliorates bone cancer pain through downregulating spinal interleukin- $1\hat{l}^2$ via suppressing neuron JAK2/STAT3 pathway. Molecular Pain, 2019, 15, 174480691988649.	1.0	14
143	Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 5090.	1.8	57
144	Nutritional and Botanical Approaches for Cognitive Healthâ€"Part 2. Alternative and Complementary Therapies, 2019, 25, 257-265.	0.1	0
145	Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophysical Reviews, 2019, 11, 901-925.	1.5	50
146	Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. Journal of Controlled Release, 2019, 316, 359-380.	4.8	206
147	Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients, 2019, 11, 2147.	1.7	310
148	Natural Products as Modulators of the Proteostasis Machinery: Implications in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2019, 20, 4666.	1.8	14
149	The effect of curcumin on cognition in Alzheimer's disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Research, 2019, 1725, 146476.	1.1	127
150	Design, synthesis, and evaluation of a water soluble C5-monoketone type curcumin analogue as a potent amyloid \hat{l}^2 aggregation inhibitor. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2157-2161.	1.0	26
151	Neuroprotection in Alzheimer Disease. Springer Protocols, 2019, , 465-585.	0.1	1

#	Article	IF	CITATIONS
152	Neuroprotective Potential of Curcumin-Loaded Nanostructured Lipid Carrier in an Animal Model of Alzheimer's Disease: Behavioral and Biochemical Evidence. Journal of Alzheimer's Disease, 2019, 69, 671-686.	1.2	64
153	Three Structural Features of Functional Food Components and Herbal Medicine with Amyloid \hat{l}^2 42 Anti-Aggregation Properties. Molecules, 2019, 24, 2125.	1.7	24
154	Considerations for the Use of Polyphenols as Therapies in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2019, 20, 1883.	1.8	87
155	Potential Treatment Strategies of Dementia With Ayurvedic Medicines. , 2019, , 287-328.		2
156	Curcumin in Neurological Disorders. , 2019, , 45-62.		6
157	Curcumin in Neurological Disorders: An Overview. , 2019, , 63-84.		1
158	The Potential Role of Curcumin in Treatment and Prevention for Neurological Disorders. , 2019, , 85-103.		2
159	Curcumin Offers Potential Efficacy for Treating Alzheimer's Disease. , 2019, , 191-209.		2
160	Usefulness of Curcumin Analogs for the Diagnosis and Treatment of Alzheimer Disease., 2019, , 231-245.		0
161	Potential Therapeutic Impacts of Curcumin Against Age-Related Impaired Cognition and Memory. , 2019, , 247-255.		O
162	Extending Lifespan of Alzheimer's Mode Nematode CL4176 Using a Novel Bifunctional Peptide with Inhibition of β-Amyloid Aggregation and Anti-oxidation. Chemical Research in Chinese Universities, 2019, 35, 245-250.	1.3	0
163	ADAM10 in Alzheimer's disease: Pharmacological modulation by natural compounds and its role as a peripheral marker. Biomedicine and Pharmacotherapy, 2019, 113, 108661.	2.5	52
164	The impact of curcumin and its modified formulations on Alzheimer's disease. Journal of Cellular Physiology, 2019, 234, 16953-16965.	2.0	71
165	Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience, 2019, 406, 1-21.	1.1	194
166	The differential cellular uptake of curcuminoids in vitro depends dominantly on albumin interaction. Phytomedicine, 2019, 59, 152902.	2.3	15
167	Curcumin: Total-Scale Analysis of the Scientific Literature. Molecules, 2019, 24, 1393.	1.7	48
168	Anti-Inflammatory Activity of A Polyphenolic Extract from Arabidopsis thaliana in In Vitro and In Vivo Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 708.	1.8	34
169	Prevention of Cognitive Decline. Clinical Handbooks in Neuropsychology, 2019, , 205-229.	0.1	0

#	Article	IF	CITATIONS
170	Toxic Tau Oligomers Modulated by Novel Curcumin Derivatives. Scientific Reports, 2019, 9, 19011.	1.6	50
171	Natural Compounds as Beneficial Antioxidant Agents in Neurodegenerative Disorders: A Focus on Alzheimer's Disease. Antioxidants, 2019, 8, 608.	2.2	69
172	Curcumin intervention for cognitive function in different types of people: A systematic review and metaâ€analysis. Phytotherapy Research, 2019, 33, 524-533.	2.8	52
173	The protective effects of polyphenols on Alzheimer's disease: A systematic review. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 184-196.	1.8	61
174	The therapeutic potential of curcumin: A review of clinical trials. European Journal of Medicinal Chemistry, 2019, 163, 527-545.	2.6	319
175	Use of Herbal Products/Alternative Medicines in Neurodegenerative Diseases (Alzheimer's Disease and) Tj ETo	Qq1 1 0.7	84 <u>3</u> 14 rgBT
176	Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases. Advanced Healthcare Materials, 2020, 9, e1901589.	3.9	50
177	Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2020, 60, 289-305.	2.5	44
178	Oxidative stress in alzheimer's disease: A review on emergent natural polyphenolic therapeutics. Complementary Therapies in Medicine, 2020, 49, 102294.	1.3	151
179	Dimethyl Fumarate and Its Esters: A Drug with Broad Clinical Utility?. Pharmaceuticals, 2020, 13, 306.	1.7	52
180	Managing obesity through natural polyphenols: A review. Future Foods, 2020, 1-2, 100002.	2.4	48
181	Therapeutic Potential of TNF-α Inhibition for Alzheimer's Disease Prevention. Journal of Alzheimer's Disease, 2020, 78, 619-626.	1.2	68
182	Sectoral segmentation of retinal amyloid imaging in subjects with cognitive decline. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12109.	1.2	27
183	Dietary Interventions to Prevent or Delay Alzheimer's Disease: What the Evidence Shows. Current Nutrition Reports, 2020, 9, 210-225.	2.1	20
184	Curcumin Formulations and Trials: What's New in Neurological Diseases. Molecules, 2020, 25, 5389.	1.7	22
185	A Novel Nanosystem Realizing Curcumin Delivery Based on Fe3O4@Carbon Dots Nanocomposite for Alzheimer's Disease Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 614906.	2.0	34
186	Modulating disease-relevant tau oligomeric strains by small molecules. Journal of Biological Chemistry, 2020, 295, 14807-14825.	1.6	35
187	A "keto-enol―plaque buster mechanism to diminish Alzheimer's β-Amyloid burden. Biochemical and Biophysical Research Communications, 2020, 532, 82-87.	1.0	2

#	Article	IF	CITATIONS
189	Alzheimer's disease: natural products as inhibitors of neuroinflammation. Inflammopharmacology, 2020, 28, 1439-1455.	1.9	43
190	Obstacles against the Marketing of Curcumin as a Drug. International Journal of Molecular Sciences, 2020, 21, 6619.	1.8	62
191	Redox signaling and Alzheimer's disease: from pathomechanism insights to biomarker discovery and therapy strategy. Biomarker Research, 2020, 8, 42.	2.8	20
192	Emodin inhibits aggregation of amyloidâ $\hat{\epsilon l^2}$ peptide $1\hat{a}\hat{\epsilon l''}$ 42 and improves cognitive deficits in Alzheimer's disease transgenic mice. Journal of Neurochemistry, 2021, 157, 1992-2007.	2.1	17
193	Revisiting the Amyloid Cascade Hypothesis: From Anti-Aβ Therapeutics to Auspicious New Ways for Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 5858.	1.8	79
194	α-Synuclein and tau, two targets for dementia. Studies in Natural Products Chemistry, 2020, 67, 1-25.	0.8	6
195	Interplay of curcumin and its liver metabolism on the level of $\hat{Al^2}$ in the brain of APPswe/PS1dE9 mice before AD onset. Pharmacological Reports, 2020, 72, 1604-1613.	1.5	6
196	Solid Lipid Nanoparticles Enhanced the Neuroprotective Role of Curcumin against Epilepsy through Activation of Bcl-2 Family and P38 MAPK Pathways. ACS Chemical Neuroscience, 2020, 11, 1985-1995.	1.7	22
197	Secondary Metabolites from Plants Possessing Inhibitory Properties against Beta-Amyloid Aggregation as Revealed by Thioflavin-T Assay and Correlations with Investigations on Transgenic Mouse Models of Alzheimer's Disease. Biomolecules, 2020, 10, 870.	1.8	21
198	An Update on the Pharmacological Usage of Curcumin: Has it Failed in the Drug Discovery Pipeline?. Cell Biochemistry and Biophysics, 2020, 78, 267-289.	0.9	26
199	Plant Natural Products as Neuroprotective Nutraceuticals: Preclinical and Clinical Studies and Future Implications. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 929-943.	0.4	5
200	Therapeutic Applications of Curcumin Nanomedicine Formulations in Cardiovascular Diseases. Journal of Clinical Medicine, 2020, 9, 746.	1.0	57
201	Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mechanisms of Ageing and Development, 2020, 190, 111297.	2.2	21
202	The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. Environmental Science and Pollution Research, 2020, 27, 11461-11483.	2.7	5
203	Healthy Effects of Plant Polyphenols: Molecular Mechanisms. International Journal of Molecular Sciences, 2020, 21, 1250.	1.8	265
204	Bidirectional interactions between curcumin and gut microbiota in transgenic mice with Alzheimer's disease. Applied Microbiology and Biotechnology, 2020, 104, 3507-3515.	1.7	77
205	Lifestyle Modifications and Nutritional Interventions in Aging-Associated Cognitive Decline and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 369.	1.7	77
206	Bioanalytical method by HPLC-FLD for curcumin analysis in supplemented athletes. Saudi Pharmaceutical Journal, 2020, 28, 599-606.	1.2	7

#	Article	IF	CITATIONS
207	Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	40
208	Targeting Ubiquitin-Proteasome Pathway by Natural Products: Novel Therapeutic Strategy for Treatment of Neurodegenerative Diseases. Frontiers in Physiology, 2020, 11, 361.	1.3	24
209	Enhancement of chemical stability of curcumin-enriched oil-in-water emulsions: Impact of antioxidant type and concentration. Food Chemistry, 2020, 320, 126653.	4.2	28
210	Acute liver injury following turmeric use in Tuscany: An analysis of the Italian Phytovigilance database and systematic review of case reports. British Journal of Clinical Pharmacology, 2021, 87, 741-753.	1.1	41
211	Nutraceuticals in neurodegenerative diseases. , 2021, , 249-270.		2
212	Rutin ameliorates copper sulfateâ€induced brain damage via antioxidative and antiâ€inflammatory activities in rats. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22623.	1.4	34
213	Beneficial Effects of Epigallocatechin-3-O-Gallate, Chlorogenic Acid, Resveratrol, and Curcumin on Neurodegenerative Diseases. Molecules, 2021, 26, 415.	1.7	36
214	Potential Effects of Nutraceuticals in Retinopathy of Prematurity. Life, 2021, 11, 79.	1.1	11
215	Advancements in delivery of herbal drugs for cognitive disorders., 2021,, 343-355.		0
216	Nutraceuticals Supporting Cognitive Function in Mild Cognitive Impairment. Contemporary Cardiology, 2021, , 167-208.	0.0	0
217	The Role of Natural Antioxidants in the Prevention of Dementiaâ€"Where Do We Stand and Future Perspectives. Nutrients, 2021, 13, 282.	1.7	28
218	Turmeric products in Alzheimer's disease. , 2021, , 19-33.		0
219	Curcumin., 2021,, 49-63.		1
220	Understanding the relationship between oxidative stress and cognition in the elderly., 2021,, 57-80.		1
221	Prospective Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases. CNS and Neurological Disorders - Drug Targets, 2021, 20, 430-450.	0.8	29
222	Curcumin as Scaffold for Drug Discovery against Neurodegenerative Diseases. Biomedicines, 2021, 9, 173.	1.4	10
223	Can Natural Products Exert Neuroprotection without Crossing the Blood–Brain Barrier?. International Journal of Molecular Sciences, 2021, 22, 3356.	1.8	22
224	The total synthesis of berberine and selected analogues, and their evaluation as amyloid beta aggregation inhibitors. European Journal of Medicinal Chemistry, 2021, 215, 113289.	2.6	16

#	Article	IF	CITATIONS
225	Bioactive Compounds and Traditional Herbal Medicine: Promising Approaches for the Treatment of Dementia. Degenerative Neurological and Neuromuscular Disease, 2021, Volume 11, 1-14.	0.7	14
226	Effects of Curcumin and Its Different Formulations in Preclinical and Clinical Studies of Peripheral Neuropathic and Postoperative Pain: A Comprehensive Review. International Journal of Molecular Sciences, 2021, 22, 4666.	1.8	17
227	Curcuma Longa, the "Golden Spice―to Counteract Neuroinflammaging and Cognitive Decline—What Have We Learned and What Needs to Be Done. Nutrients, 2021, 13, 1519.	1.7	11
228	PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer's Disease and Parkinson's Disease. Frontiers in Pharmacology, 2021, 12, 648636.	1.6	168
229	Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. BioFactors, 2021, 47, 570-586.	2.6	24
230	Alteration of CYP2E1, DBN1, DNMT1, miRNA-335, miRNA-21, c-Fos and Cox-2 gene expression in prefrontal cortex of rats' offspring submitted to prenatal ethanol exposure during their neurodevelopment and the preventive role of nancocurcumin administration: A histological, ultrastructural and molecular study. Journal of Chemical Neuroanatomy, 2021, 113, 101940.	1.0	4
231	Modulation of proteasome activity by curcumin and didemethylcurcumin. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8332-8339.	2.0	3
232	Oxidative Stress, Neuroinflammation, and NADPH Oxidase: Implications in the Pathogenesis and Treatment of Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-19.	1.9	52
233	Brain regional pharmacokinetics following the oral administration of curcumagalactomannosides and its relation to cognitive function. Nutritional Neuroscience, 2022, 25, 1928-1939.	1.5	7
235	Analgesic effects of intravenous curcumin in the rat formalin test. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 101, 337.	0.9	1
236	Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochemistry International, 2021, 145, 105011.	1.9	20
237	An Overview on Dietary Polyphenols and Their Biopharmaceutical Classification System (BCS). International Journal of Molecular Sciences, 2021, 22, 5514.	1.8	62
238	Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications. International Journal of Molecular Sciences, 2021, 22, 6110.	1.8	34
239	Analyzing Olfactory Neuron Precursors Non-Invasively Isolated through NADH FLIM as a Potential Tool to Study Oxidative Stress in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 6311.	1.8	7
240	Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. International Journal of Molecular Sciences, 2021, 22, 8208.	1.8	62
242	Medicinal Herbs and Nutritional Supplements for Dementia Therapy: Potential Targets and Clinical Evidence. CNS and Neurological Disorders - Drug Targets, 2022, 21, 26-51.	0.8	0
243	Nanotechnological approaches for targeting amyloid- \hat{l}^2 aggregation with potential for neurodegenerative disease therapy and diagnosis. Drug Discovery Today, 2021, 26, 1972-1979.	3.2	21
244	Effects of Dietary Food Components on Cognitive Functions in Older Adults. Nutrients, 2021, 13, 2804.	1.7	21

#	Article	IF	CITATIONS
245	Immunotherapeutics for AD: A Work in Progress. CNS and Neurological Disorders - Drug Targets, 2021, 20, .	0.8	2
246	Development of curcumin-based amyloid \hat{l}^2 aggregation inhibitors for Alzheimer's disease using the SAR matrix approach. Bioorganic and Medicinal Chemistry, 2021, 46, 116357.	1.4	6
247	Current clinical developments in curcuminâ€based therapeutics for cancer and chronic diseases. Phytotherapy Research, 2021, 35, 6768-6801.	2.8	28
248	Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. Journal of Neurochemistry, 2021, 159, 804-825.	2.1	89
249	The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials. Phytotherapy Research, 2021, 35, 6862-6882.	2.8	30
250	Round Scad-Derived Octapeptide WCPFSRSF Confers Neuroprotection by Regulating Akt/Nrf2/NFκB Signaling. Journal of Agricultural and Food Chemistry, 2021, 69, 10606-10616.	2.4	7
251	An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 9592.	1.8	62
252	Effects of Spices (Saffron, Rosemary, Cinnamon, Turmeric and Ginger) in Alzheimer's Disease. Current Alzheimer Research, 2021, 18, 347-357.	0.7	11
253	Beta cell protective effect of Curcuma longa and Piper nigrum in cytokine cocktail induced apoptosis in Min6 pancreatic beta cells. Phytomedicine Plus, 2021, 1, 100072.	0.9	3
254	ProspeCtive study to evaluate efficacy, safety and tOlerability of dietary supplemeNT of Curcumin (BCM95) in subjects with Active relapsing Multiple Sclerosis treated with subcutaNeous Interferon beta 1a 44 mcg TIW (CONTAIN): A randomized, controlled trial. Multiple Sclerosis and Related Disorders. 2021. 56, 103274.	0.9	16
255	Potentiation of microglial endocannabinoid signaling alleviates neuroinflammation in Alzheimer's disease. Neuropeptides, 2021, 90, 102196.	0.9	13
256	Antioxidant effects of curcumin and neuroaging. , 2021, , 603-616.		0
257	Application of curcumine and its derivatives in the treatment of cardiovascular diseases: a review. International Journal of Food Properties, 2021, 24, 1510-1528.	1.3	7
258	Drug Development for Neurodegenerative Diseases. , 2015, , 183-216.		5
259	Epigenetic treatment of neurodegenerative disorders. , 2020, , 311-335.		1
260	Redox modifications in synaptic components as biomarkers of cognitive status, in brain aging and disease. Mechanisms of Ageing and Development, 2020, 189, 111250.	2.2	13
261	Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neuroscience and Biobehavioral Reviews, 2020, 114, 134-155.	2.9	32
262	Effects of Curcumin on Cognitive Function—A Systematic Review of Randomized Controlled Trials. Exploratory Research and Hypothesis in Medicine, 2019, 4, 1-11.	0.1	13

#	Article	IF	CITATIONS
263	Dietary interventions and cognition of Alzheimer's disease patients: a systematic review of randomized controlled trial. Dementia E Neuropsychologia, 2020, 14, 258-282.	0.3	14
264	The potential role of nutritional components in improving brain function among patients with Alzheimer's disease: a meta-analysis of RCT studies. Journal of King Abdulaziz University, Islamic Economics, 2020, 25, 4-17.	0.5	10
265	Curcuminoid submicron particle ameliorates cognitive deficits and decreases amyloid pathology in Alzheimer's disease mouse model. Oncotarget, 2018, 9, 10681-10697.	0.8	18
266	Supplementation with Curcuma longa Reverses Neurotoxic and Behavioral Damage in Models of Alzheimer's Disease: A Systematic Review. Current Neuropharmacology, 2019, 17, 406-421.	1.4	38
267	Natural Products for the Treatment of Neurodegenerative Diseases. Current Medicinal Chemistry, 2020, 27, 5790-5828.	1.2	15
268	Dietary Approaches and Supplements in the Prevention of Cognitive Decline and Alzheimer';s Disease. Current Pharmaceutical Design, 2016, 22, 688-700.	0.9	17
269	New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Current Pharmaceutical Design, 2017, 23, 731-752.	0.9	30
270	Plant Polyphenols as Neuroprotective Agents in Parkinson's Disease Targeting Oxidative Stress. Current Drug Targets, 2020, 21, 458-476.	1.0	17
271	Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease. Current Alzheimer Research, 2019, 16, 418-452.	0.7	88
272	Natural Compounds and Plant Extracts as Therapeutics Against Chronic Inflammation in Alzheimer's Disease – A Translational Perspective. CNS and Neurological Disorders - Drug Targets, 2014, 13, 1175-1191.	0.8	58
273	The Efficacy of Curcumin on Cognition, Depression, and Agitation in Older Adults with Alzheimer's Disease. The Open Nutrition Journal, 2017, 11, 11-16.	0.6	4
274	Curcuminoids and Novel Opportunities for the Treatment of Alzheimer's Disease: Which Molecules are Actually Effective?. Current Molecular Pharmacology, 2019, 12, 12-26.	0.7	7
275	Nutritional prevention of cognitive decline and dementia. Acta Biomedica, 2018, 89, 276-290.	0.2	54
276	Turmeric and Chinese goldthread synergistically inhibit prostate cancer cell proliferation and NF-kB signaling. Functional Foods in Health and Disease, 2014, 4, 312.	0.3	10
277	Development of a core outcome set for disease modification trials in mild to moderate dementia: a systematic review, patient and public consultation and consensus recommendations. Health Technology Assessment, 2017, 21, 1-192.	1.3	37
278	Use of curcumin in diagnosis, prevention, and treatment of Alzheimer's disease. Neural Regeneration Research, 2018, 13, 742.	1.6	158
279	Possible role of common spices as a preventive and therapeutic agent for Alzheimerâ€2s disease. International Journal of Preventive Medicine, 2017, 8, 5.	0.2	29
280	Curcumin and hesperetin attenuate D-galactose-induced brain senescence <i>in vitro</i> and <i>in vivo</i> . Nutrition Research and Practice, 2020, 14, 438.	0.7	15

#	Article	IF	CITATIONS
281	Therapeutic Effects of Curcumin on Alzheimer's Disease. Advances in Alzheimer's Disease, 2014, 03, 145-159.	0.3	14
282	A combination of curcumin, vorinostat and silibinin reverses $A < i > \hat{l}^2 < /i >$ -induced nerve cell toxicity via activation of AKT-MDM2-p53 pathway. PeerJ, 2019, 7, e6716.	0.9	12
283	Tetrahydrocurcumin Has Similar Anti-Amyloid Properties as Curcumin:Â In Vitro Comparative Structure-Activity Studies. Antioxidants, 2021, 10, 1592.	2.2	11
284	Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. Environmental Science and Pollution Research, 2022, 29, 62160-62207.	2.7	18
285	Protein clearance strategies for disease intervention. Journal of Neural Transmission, 2022, 129, 141-172.	1.4	15
286	Soluble Curcumin in the Prevention of Diabetic Retinopathy via Modulation of Anti-Oxidant Activity and Genetic Pathways – In Vivo Model. Advances in Ophthalmology & Visual System, 2015, 3, .	0.2	0
287	Prevention of Dementia., 2016,, 9-32.		0
288	Alzheimer's Disease Management: Current Therapy and Recent Drug Development. International Neuropsychiatric Disease Journal, 2016, 7, 1-19.	0.1	0
290	Curcumin Loaded BSA Nanoparticles Protects More Efficiently Than Natural Curcumin Against Scopolamine-Induced Memory Retrieval Deficit. Basic and Clinical Neuroscience, 2019, 10, 157-164.	0.3	5
291	Curcuma longa L. (Zingiberaceae). , 2020, , 781-807.		4
292	Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. International Journal of Molecular Sciences, 2021, 22, 11847.	1.8	49
293	Effects of polyphenols in aging and neurodegeneration associated with oxidative stress. Current Medicinal Chemistry, 2021, 28, .	1.2	12
294	Naturally Occurring Antioxidants. , 2020, , 731-751.e12.		3
295	Functional foods for mental health promotion. Journal of Mahatma Gandhi Institute of Medical Sciences, 2020, 25, 72.	0.1	1
297	Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Molecular Neurobiology, 2022, 59, 657-680.	1.9	26
298	Effect of Polyphenols on Cognitive Function: Evidence from Population-based Studies and Clinical Trials. Journal of Nutrition, Health and Aging, 2021, 25, 1190-1204.	1.5	13
300	Polyphenols as Potential Therapeutic Drugs in Neurodegeneration. , 0, , .		1
301	An overview on therapeutics attenuating amyloid \hat{l}^2 level in Alzheimer's disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels. American Journal of Translational Research (discontinued), 2016, 8, 246-69.	0.0	30

#	Article	IF	CITATIONS
302	Antioxidant diets and functional foods attenuate dementia and cognition in elderly subjects. , 2022, , 533-549.		4
303	Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients, 2021, 13, 4080.	1.7	114
304	The Effect of Curcumin Differs on Individual Cognitive Domains across Different Patient Populations: A Systematic Review and Meta-Analysis. Pharmaceuticals, 2021, 14, 1235.	1.7	8
305	Perspective on Improving the Relevance, Rigor, and Reproducibility of Botanical Clinical Trials: Lessons Learned From Turmeric Trials. Frontiers in Nutrition, 2021, 8, 782912.	1.6	4
306	ANTIOXIDANT SUPPLEMENTS IN ALZHEIMER'S DEMENTIA AND MILD COGNITIVE IMPAIRMENT: A SYSTEMATIC REVIEW. JAR Life, 0, , 1-8.	0.0	0
307	Plant derived bioactive compounds and their potential to enhance adult neurogenesis. Phytomedicine Plus, 2022, 2, 100191.	0.9	6
308	A New Perspective on the Treatment of Alzheimer's Disease and Sleep Deprivation-Related Consequences: Can Curcumin Help?. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-23.	1.9	6
309	Progress in the development of naturally derived active metabolitesâ€based drugs: Potential therapeutics for Alzheimer's disease. Biotechnology and Applied Biochemistry, 2022, 69, 2713-2732.	1.4	4
310	Curcumin and Weight Loss: Does It Work?. International Journal of Molecular Sciences, 2022, 23, 639.	1.8	22
311	Nutraceuticals in HIV and COVID-19-Related Neurological Complications: Opportunity to Use Extracellular Vesicles as Drug Delivery Modality. Biology, 2022, 11, 177.	1.3	5
312	Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants, 2022, 11, 213.	2.2	38
314	Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile. Plants, 2022, 11, 549.	1.6	5
315	Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants, 2022, 11, 408.	2.2	49
316	Pharmacological considerations for treating neuroinflammation with curcumin in Alzheimer's disease. Journal of Neural Transmission, 2022, 129, 755-771.	1.4	9
318	Neurotechnological Approaches to the Diagnosis and Treatment of Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, 854992.	1.4	12
319	Curcumin and Quercetin-Loaded Lipid Nanocarriers: Development of Omega-3 Mucoadhesive Nanoemulsions for Intranasal Administration. Nanomaterials, 2022, 12, 1073.	1.9	10
320	Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Current Neuropharmacology, 2023, 21, 353-379.	1.4	5
321	Curcumin-Rich Curry Consumption and Neurocognitive Function from 4.5-Year Follow-Up of Community-Dwelling Older Adults (Singapore Longitudinal Ageing Study). Nutrients, 2022, 14, 1189.	1.7	5

#	Article	IF	CITATIONS
322	Co-encapsulation of curcumin and boswellic acids in chitosan-coated niosome: an <i>in-vitro</i> digestion study. Journal of Microencapsulation, 2022, 39, 226-238.	1.2	3
323	New Promising Therapeutic Avenues of Curcumin in Brain Diseases. Molecules, 2022, 27, 236.	1.7	37
324	Role of Phytoconstituents as PPAR Agonists: Implications for Neurodegenerative Disorders. Biomedicines, 2021, 9, 1914.	1.4	10
325	Chitosan-coated niosome as an efficient curcumin carrier to cross the blood–brain barrier: an animal study. Journal of Liposome Research, 2022, 32, 284-292.	1.5	8
327	Neuroinflammation as a Potential Therapeutic Target in Alzheimer's Disease. Clinical Interventions in Aging, 2022, Volume 17, 665-674.	1.3	27
328	The Effect of Curcumin on Idiopathic Parkinson Disease: A Clinical and Skin Biopsy Study. Journal of Neuropathology and Experimental Neurology, 2022, 81, 545-552.	0.9	11
329	Exploring the Therapeutic Potential of Phytochemicals in Alzheimer's Disease: Focus on Polyphenols and Monoterpenes. Frontiers in Pharmacology, 2022, 13, .	1.6	18
330	A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. South African Journal of Botany, 2022, 149, 944-962.	1.2	2
331	Curcumin: Useful add-on for Rheumatic Diseases?. Journal of Clinical Medicine, 2022, 11, 2908.	1.0	7
332	Curcumin as a Holistic Treatment for Tau Pathology. Frontiers in Pharmacology, 2022, 13, .	1.6	5
333	A tough trek in the development of an anti-amyloid therapy for Alzheimer's disease: Do we see hope in the distance?. Journal of the Neurological Sciences, 2022, 438, 120294.	0.3	9
334	Tau-aggregation inhibition: promising role of nanoencapsulated dietary molecules in the management of Alzheimer's disease. Critical Reviews in Food Science and Nutrition, 2023, 63, 11153-11168.	5.4	1
335	Nutraceuticals as a Therapeutic Promise in Healthy Aging and Neurocognitive Disorders. , 0, , .		0
336	Neuroprotection of Multitargeted Phytochemicals against Alzheimer: A Desperate Need from Nature. Natural Products Journal, 2022, 12, .	0.1	0
337	Neuroprotective potential of curcuminoids in modulating Alzheimer's Disease via multiple signaling pathways. Current Medicinal Chemistry, 2022, 29, .	1,2	0
338	Targeting Oxidative Stress Mechanisms to Treat Alzheimer's and Parkinson's Disease: A Critical Review. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-9.	1.9	43
339	Oxygen Sensing in Neurodegenerative Diseases: Current Mechanisms, Implication of Transcriptional Response, and Pharmacological Modulation. Antioxidants and Redox Signaling, 2023, 38, 160-182.	2.5	4
340	The Role of the NRF2 Pathway in Maintaining and Improving Cognitive Function. Biomedicines, 2022, 10, 2043.	1.4	9

#	Article	IF	Citations
341	Multifaceted role of polyphenols in the treatment and management of neurodegenerative diseases. Chemosphere, 2022, 307, 136020.	4.2	21
342	Microencapsulation of curcumin by ionotropic gelation with surfactants: Characterization, release profile and antioxidant activity. Journal of Drug Delivery Science and Technology, 2022, 76, 103812.	1.4	3
343	Exploring the role of protein quality control in aging and age-associated neurodegenerative diseases. , 2022, , 139-171.		0
344	Effectiveness and safety of antiâ€ŧau drugs for Alzheimer's disease: Systematic review and metaâ€analysis. Journal of the American Geriatrics Society, 2022, 70, 3281-3292.	1.3	7
345	Liver Injury Associated with Turmericâ€"A Growing Problem: Ten Cases from the Drug-Induced Liver Injury Network [DILIN]. American Journal of Medicine, 2023, 136, 200-206.	0.6	18
346	The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer's Disease: Therapeutic Implications and Future Perspectives. Antioxidants, 2022, 11, 2167.	2.2	17
347	Ayurvedic Formulations and Their Clinical Uses. , 2022, , 374-390.		0
348	Chemical Composition and Biological Activities of the Leaf Essential Oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia. Antibiotics, 2022, 11, 1547.	1.5	12
349	Polyphenols for the Prevention and Treatment of Cognitive Impairment. Journal of Nutritional Science and Vitaminology, 2022, 68, S121-S124.	0.2	1
350	Research progress in traditional Chinese medicine in the treatment of Alzheimer's disease and related dementias. Frontiers in Pharmacology, 0, 13, .	1.6	6
351	Benefits of dietary polyphenols in Alzheimer's disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	8
352	Therapeutic Potential of Natural Compounds in Neurodegenerative Diseases: Insights from Clinical Trials. Pharmaceutics, 2023, 15, 212.	2.0	8
353	Small molecules to perform big roles: The search for Parkinson's and Huntington's disease therapeutics. Frontiers in Neuroscience, 0, 16 , .	1.4	1
354	Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants, 2023, 12, 180.	2.2	9
355	A Review on Phyto-Therapeutic Approaches in Alzheimer's Disease. Journal of Functional Biomaterials, 2023, 14, 50.	1.8	5
356	Herbal Components for the Treatment of Alzheimer's Disease. Natural Products Journal, 2023, 13, .	0.1	0
357	Curcuma longa (Turmeric): Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicity profiles—A review. Pharmacological Research Modern Chinese Medicine, 2023, 6, 100222.	0.5	15
358	Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants, 2023, 12, 393.	2.2	9

#	Article	IF	Citations
359	Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. International Journal of Molecular Sciences, 2023, 24, 4476.	1.8	13
360	Protective effects of curcumin and Ginkgo biloba extract combination on aÂnew model of Alzheimer's disease. Inflammopharmacology, 2023, 31, 1449-1464.	1.9	3
361	Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacology and Translational Science, 2023, 6, 447-518.	2.5	28
362	The Role of Dietary Antioxidants and Their Potential Mechanisms in Alzheimer's Disease Treatment. Metabolites, 2023, 13, 438.	1.3	4
364	Therapeutic Implications of Some Natural Products for Neuroimmune Diseases: A Narrative of Clinical Studies Review. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-18.	0.5	2
365	Design, Synthesis and Evaluation of Catechol-Based Amyloid Beta Aggregation Inhibitors. Heterocycles, 2023, 106, 797.	0.4	1
366	Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants, 2023, 12, 965.	2.2	3
367	Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Sub-Cellular Biochemistry, 2023, , 341-435.	1.0	2
370	Herbs for Alzheimer's disease management; clinical studies: A narrative., 2023,, 21-45.		0
387	Precision Nutrition in Aging and Brain Health. , 2024, , 241-276.		0
388	Estrogen receptor-mediated health benefits of phytochemicals: a review. Food and Function, 2023, 14, 10681-10699.	2.1	0
393	Amyloid cascade hypothesis, tau synthesis, and role of oxidative stress in AD., 2024, , 73-92.		0
398	Controlled Release of Curcumin from Hydrogels: Biomedical Applications with a Focus on Neurodegenerative Diseases., 2023,, 403-436.		0
402	Limitations and Future Directions for 4-Hexylresorcinol Applications. , 2024, , 163-174.		O