Green reduction of graphene oxide by aqueous phytoex

Carbon 50, 5331-5339

DOI: 10.1016/j.carbon.2012.07.023

Citation Report

#	Article	IF	CITATIONS
2	Dipotassium hydrogen phosphate as reducing agent for the efficient reduction of graphene oxide nanosheets. Journal of Colloid and Interface Science, 2013, 409, 1-7.	5.0	31
3	Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition. Nanoscale Research Letters, 2013, 8, 285.	3.1	60
4	Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells. Nanoscale Research Letters, 2013, 8, 393.	3.1	89
5	A green reduction of graphene oxide via starch-based materials. RSC Advances, 2013, 3, 21466.	1.7	62
6	Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Advances, 2013, 3, 9476.	1.7	88
7	Green One-Step Approach to Prepare Sulfur/Reduced Graphene Oxide Nanohybrid for Effective Mercury lons Removal. Journal of Physical Chemistry C, 2013, 117, 7636-7642.	1.5	77
8	Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods. Advances in Materials Science and Engineering, 2013, 2013, 1-5.	1.0	265
9	Hyperbranched polyurethane/Fe ₃ O ₄ nanoparticles decorated multiwalled carbon nanotube thermosetting nanocomposites as microwave actuated shape memory materials. Journal of Materials Research, 2013, 28, 2132-2141.	1.2	16
10	Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene. International Journal of Nanomedicine, 2014, 9, 363.	3.3	74
11	An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosensors and Bioelectronics, 2014, 62, 25-30.	5.3	110
12	Production of partially reduced graphene oxide nanosheets using a seaweed sap. RSC Advances, 2014, 4, 64583-64588.	1.7	18
13	Surface-Engineered Graphene-Based Nanomaterials for Drug Delivery. Journal of Biomedical Nanotechnology, 2014, 10, 2086-2106.	0.5	58
14	Assessment of morphology and property of graphene oxide-hydroxypropylmethylcellulose nanocomposite films. International Journal of Biological Macromolecules, 2014, 66, 338-345.	3.6	31
15	Graphene nanosheets synthesis via chemical reduction of graphene oxide using sodium acetate trihydrate solution. Synthetic Metals, 2014, 193, 132-138.	2.1	69
16	Direct growth of Pt@Ag nanochains on tailorable graphene oxide with a green, in situ, template-free method and its biosensing application. Analyst, The, 2014, 139, 2560.	1.7	2
17	Antibacterial activities of copper nanoparticle-decorated organically modified montmorillonite/epoxy nanocomposites. Applied Clay Science, 2014, 90, 18-26.	2.6	55
18	Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 2014, 43, 291-312.	18.7	1,479
19	One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Advances, 2014, 4, 9777.	1.7	67

#	Article	IF	CITATIONS
20	A facile green synthesis of reduced graphene oxide by using pollen grains of Peltophorum pterocarpum and study of its electrochemical behavior. RSC Advances, 2014, 4, 56910-56917.	1.7	28
21	Enhanced electrocatalytic performance of cobalt oxide nanocubes incorporating reduced graphene oxide as a modified platinum electrode for methanol oxidation. RSC Advances, 2014, 4, 62793-62801.	1.7	85
22	Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites. Journal of Materials Chemistry A, 2014, 2, 14867-14875.	5.2	87
23	From graphite oxide to nitrogen and sulfur co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs. RSC Advances, 2014, 4, 17902.	1.7	28
24	Trends in green reduction of graphene oxides, issues and challenges: A review. Materials Research Bulletin, 2014, 59, 323-328.	2.7	108
25	A Facile One-Pot Preparation of Dialdehyde Starch Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors. Electrochimica Acta, 2014, 139, 117-126.	2.6	64
26	Pulicaria glutinosa plant extract: a green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide. RSC Advances, 2014, 4, 24119-24125.	1.7	73
27	Biological reduction of graphene oxide using plant leaf extracts. Biotechnology Progress, 2014, 30, 463-469.	1.3	77
28	Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon, 2014, 80, 725-733.	5 . 4	93
29	Flexible wire-like all-carbon supercapacitors based on porous core–shell carbon fibers. Journal of Materials Chemistry A, 2014, 2, 7250-7255.	5.2	91
30	Aldehyde–poly(ethylene glycol) modified graphene oxide/conducting polymers composite as high-performance electrochemical supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18058-18069.	5.2	41
31	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188.	23.0	968
32	One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal. Materials Chemistry and Physics, 2014, 144, 425-432.	2.0	74
33	Water-tolerant graphene oxide as a high-efficiency catalyst for the synthesis of propylene carbonate from propylene oxide and carbon dioxide. Carbon, 2014, 73, 351-360.	5.4	79
34	Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing. Analytical Biochemistry, 2014, 460, 29-35.	1.1	16
35	Ultratough, Ductile, Castor Oil-Based, Hyperbranched, Polyurethane Nanocomposite Using Functionalized Reduced Graphene Oxide. ACS Sustainable Chemistry and Engineering, 2014, 2, 1195-1202.	3.2	79
36	Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 2014, 430, 108-112.	5.0	752
37	A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon, 2014, 76, 193-202.	5.4	150

3

#	Article	IF	CITATIONS
38	An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231). International Journal of Nanomedicine, 2014, 9, 1783.	3.3	72
39	<i>In-situ</i> thermal reduction and effective reinforcement of graphene nanosheet/poly (ethylene) Tj ETQq1	1 0.784314 1.6	rgBT/Overlo
41	Transformation of graphene oxide by ferrous iron: Environmental implications. Environmental Toxicology and Chemistry, 2015, 34, 1975-1982.	2.2	39
42	Biofabrication of Reduced Graphene Oxide Nanosheets using Terminalia Bellirica Fruit Extract. Current Nanoscience, 2015, 12, 94-102.	0.7	24
43	Spherulitic copper–copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor. International Journal of Nanomedicine, 2015, 10 Spec Iss, 165.	3.3	14
44	A new green approach for the reduction of graphene oxide nanosheets using caffeine. Bulletin of Materials Science, 2015, 38, 667-671.	0.8	46
45	Graphene Oxide. , 2015, , .		91
46	The Chemistry of Graphene Oxide. , 2015, , 61-95.		212
47	Green preparation of reduced graphene oxide using a natural reducing agent. Ceramics International, 2015, 41, 9505-9513.	2.3	54
48	Thermal gravity analysis for the study of stability of graphene oxide–glycine nanocomposites. International Nano Letters, 2015, 5, 187-190.	2.3	60
49	Effect of functional groups on dielectric, optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature. RSC Advances, 2015, 5, 10816-10825.	1.7	92
50	Graphene-supported platinum catalysts for fuel cells. Science Bulletin, 2015, 60, 864-876.	4.3	88
51	A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New Journal of Chemistry, 2015, 39, 2146-2154.	1.4	47
52	Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceramics International, 2015, 41, 5798-5806.	2.3	130
53	Simple Preparation of Exfoliated Graphene Oxide Sheets via Simplified Hummer's Method. Advanced Materials Research, 0, 1109, 390-394.	0.3	15
54	Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon, 2015, 93, 967-973.	5.4	186
55	Modification of graphene oxide for applying as mid-infrared photodetector. Applied Physics B: Lasers and Optics, 2015, 120, 637-643.	1.1	19
56	Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora persica L. Root (Miswak) Extract. Nanoscale Research Letters, 2015, 10, 987.	3.1	138

#	Article	IF	Citations
57	Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon, 2015, 94, 224-242.	5.4	194
58	Tuning of sunlight-induced self-cleaning and self-healing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO ₂ –reduced graphene oxide nanohybrid. Journal of Materials Chemistry A, 2015, 3, 12334-12342.	5 . 2	61
59	Highly dispersed reduced graphene oxide and its hybrid complexes as effective additives for improving thermophysical property of heat transfer fluid. International Journal of Heat and Mass Transfer, 2015, 87, 284-294.	2.5	31
60	Electrochemical sensing of ethylenediamine based on cuprous oxide/graphene hybrid structures. Journal of Materials Science, 2015, 50, 4288-4299.	1.7	13
61	Cinnamon supported facile green reduction of graphene oxide, its dye elimination and antioxidant activities. Materials Letters, 2015, 151, 93-95.	1.3	67
62	Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 145, 117-124.	2.0	93
63	Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors. Materials Chemistry and Physics, 2015, 160, 375-382.	2.0	34
64	Experimental investigation on the use of reduced graphene oxide and its hybrid complexes in improving closed conduit turbulent forced convective heat transfer. Experimental Thermal and Fluid Science, 2015, 66, 290-303.	1.5	47
65	High Yield Preparation of Graphene Oxide Film Using Improved Hummer's Technique for Current-Voltage Characteristic. Advanced Materials Research, 0, 1109, 385-389.	0.3	4
66	Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids and Surfaces B: Biointerfaces, 2015, 136, 791-798.	2.5	51
67	Deoxygenation of graphene oxide using household baking soda as a reducing agent: a green approach. RSC Advances, 2015, 5, 70461-70472.	1.7	39
68	Two-step process for programmable removal of oxygen functionalities of graphene oxide: functional, structural and electrical characteristics. RSC Advances, 2015, 5, 95657-95665.	1.7	113
69	Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Conversion and Management, 2015, 105, 1366-1376.	4.4	59
70	Graphene oxide immobilized with ionic liquids: facile preparation and efficient catalysis for solvent-free cycloaddition of CO ₂ to propylene carbonate. RSC Advances, 2015, 5, 72361-72368.	1.7	73
71	Studies on graphene enfolded olivine composite electrode material via polyol technique for high rate performance lithium-ion batteries. Electronic Materials Letters, 2015, 11, 841-852.	1.0	20
72	Reduced humic acid nanosheets and its uses as nanofiller. Journal of Physics and Chemistry of Solids, 2015, 85, 86-90.	1.9	25
73	Reduction of graphene oxide nanosheets by natural beta carotene and its potential use as supercapacitor electrode. Arabian Journal of Chemistry, 2015, 8, 560-569.	2.3	30
74	A novel nonenzymatic H2O2 sensor based on cobalt hexacyanoferrate nanoparticles and graphene composite modified electrode. Sensors and Actuators B: Chemical, 2015, 208, 593-599.	4.0	56

#	Article	IF	Citations
75	Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Scientific Reports, 2014, 4, 5044.	1.6	250
76	Self-healable castor oil based tough smart hyperbranched polyurethane nanocomposite with antimicrobial attributes. RSC Advances, 2015, 5, 2167-2176.	1.7	54
77	Decoration of chemically reduced graphene oxide modified carbon paste electrode with yttrium hexacyanoferrate nanoparticles for nanomolar detection of rutin. Sensors and Actuators B: Chemical, 2015, 206, 126-132.	4.0	39
78	Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells. Materials, 2016, 9, 69.	1.3	15
79	Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. International Journal of Nanomedicine, 2016, 11, 1927.	3.3	217
80	Characterization and Investigation of Infrared Sensitivity of Reduced Graphene Oxide Films., 2016,,.		1
81	Bacterial response to nanodiamonds and graphene oxide sheets. Physica Status Solidi (B): Basic Research, 2016, 253, 2481-2485.	0.7	19
82	Preparation of wellâ€dispersed reduced graphene oxide and its mechanical reinforcement in polyvinyl alcohol fibre. Polymer International, 2016, 65, 1054-1062.	1.6	24
83	Facile method for liquid-exfoliated graphene size prediction by UV-visible spectroscopy. AIP Conference Proceedings, 2016, , .	0.3	3
84	Solution of reduced graphene oxide synthesized from coconut shells and its optical properties. AIP Conference Proceedings, 2016, , .	0.3	17
85	The Effect of Thermal Behavior on Performance of the Low-cost Reduced Graphene Oxide Battery for Novel Battery Technology. Materials Today: Proceedings, 2016, 3, 1235-1241.	0.9	4
86	Eco-friendly nanocomposites between carboxylated acrylonitrile–butadiene rubber (XNBR) and graphene oxide or graphene at low content with enhanced mechanical properties. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 769-778.	1.0	19
87	Exploration of the environmentally benign and highly effective approach for improving carbon nanotube homogeneity in aqueous system. Journal of Thermal Analysis and Calorimetry, 2016, 124, 815-825.	2.0	6
88	Physical and electrical characterization of reduced graphene oxide synthesized adopting green route. Bulletin of Materials Science, 2016, 39, 543-550.	0.8	26
89	Preparation and characterization of green graphene using grape seed extract for bioapplications. Materials Science and Engineering C, 2016, 65, 345-353.	3.8	57
90	Green preparation using black soybeans extract for graphene-based porous electrodes and their applications in supercapacitors. Journal of Power Sources, 2016, 322, 31-39.	4.0	35
91	Heterogeneous Catalysis and its Industrial Applications. , 2016, , .		18
92	Nanostructured Catalysts., 2016,, 285-327.		0

#	Article	IF	CITATIONS
93	Functionalized Graphene Oxide Based Nanocarrier for Tumorâ€Targeted Combination Therapy to Elicit Enhanced Cytotoxicity against Breast Cancer Cells ⟨i⟩In Vitro⟨/i⟩. ChemistrySelect, 2016, 1, 4845-4855.	0.7	3
94	Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Applied Materials Today, 2016, 5, 150-199.	2.3	140
95	Mangifera indica, Ficus religiosa and Polyalthia longifolia leaf extract-assisted green synthesis of graphene for transparent highly conductive film. RSC Advances, 2016, 6, 96355-96366.	1.7	32
96	Green synthesis of Au-rGO nanocomposite and its catalytic activity in nitro-reduction and degradation of dyes. Materials Research Express, 2016, 3, 105007.	0.8	14
97	Superior electrochemical activity of α-Fe2O3/rGO nanocomposite for advance energy storage devices. Journal of Alloys and Compounds, 2016, 689, 648-654.	2.8	144
98	Chrysanthemum extract assisted green reduction of graphene oxide. Materials Chemistry and Physics, 2016, 183, 76-82.	2.0	64
99	An ecofriendly graphene-based nanofluid for heat transfer applications. Journal of Cleaner Production, 2016, 137, 555-566.	4.6	72
100	Facile synthesis of reduced graphene oxide–gold nanohybrid for potential use in industrial waste-water treatment. Science and Technology of Advanced Materials, 2016, 17, 375-386.	2.8	51
101	Nebulized spray pyrolysis: a new method for synthesis of graphene film and their characteristics. Surface and Coatings Technology, 2016, 307, 65-72.	2.2	20
102	Eco-friendly synthesis of graphene nanoplatelets. Journal of Materials Chemistry A, 2016, 4, 15281-15293.	5.2	24
103	Biodegradable biopolymer–graphene nanocomposites. Journal of Materials Science, 2016, 51, 9915-9945.	1.7	77
104	Green Approach for the Reduction of Graphene Oxide by Thai Shallot. Key Engineering Materials, 0, 675-676, 696-699.	0.4	2
105	Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium. Journal of Colloid and Interface Science, 2016, 481, 168-180.	5.0	38
106	A simplified chemical reduction method for preparation of graphene: Dispersity, reducibility and mechanism. Ceramics International, 2016, 42, 19042-19046.	2.3	11
107	Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy. Nanoscale Research Letters, 2016, 11, 491.	3.1	67
108	Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application. Nanoscale Research Letters, 2016, 11, 498.	3.1	109
109	Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Materials Research Express, 2016, 3, 105036.	0.8	46
110	Effect of hydrogen peroxide and camellia sinensis extract on reduction of oxygen level in graphene oxide. Materials Research Express, 2016, 3, 105011.	0.8	6

#	Article	IF	CITATIONS
111	A Green Approach to the Synthesis of Reduced Graphene Oxide using Sodium Humate. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1711-1718.	1.4	12
112	Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles. RSC Advances, 2016, 6, 60056-60067.	1.7	41
113	Controllable synthesis of reduced graphene oxide. Current Applied Physics, 2016, 16, 1152-1158.	1.1	36
114	Artemisia herba-alba Asso eco-friendly reduced few-layered graphene oxide nanosheets: structural investigations and physical properties. Green Chemistry Letters and Reviews, 2016, 9, 122-131.	2.1	19
115	Green Synthesis of Graphene Based Biomaterial Using Fenugreek Seeds for Lipid Detection. ACS Sustainable Chemistry and Engineering, 2016, 4, 871-880.	3.2	40
116	Synthesis and characterization of stable aqueous dispersions of graphene. Bulletin of Materials Science, 2016, 39, 159-165.	0.8	43
117	Effect of Graphitic Nanosheets on the Physical Properties of Cyclic Olefin Copolymer Composite Films. Polymer-Plastics Technology and Engineering, 2016, 55, 1021-1029.	1.9	2
118	Graphene–copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of Bisphenol-A. Sensors and Actuators B: Chemical, 2016, 229, 570-580.	4.0	88
119	Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. International Journal of Biological Macromolecules, 2016, 86, 546-555.	3.6	173
120	Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property. Materials Research Bulletin, 2016, 79, 41-51.	2.7	101
121	Eco-Friendly Synthesis of Graphene Oxide Reinforced Hydroxypropyl Methylcellulose/Polyvinyl Alcohol Blend Nanocomposites Filled with Zinc Oxide Nanoparticles for High-k Capacitor Applications. Polymer-Plastics Technology and Engineering, 2016, 55, 1240-1253.	1.9	72
122	The green reduction of graphene oxide. RSC Advances, 2016, 6, 27807-27828.	1.7	235
123	Fabrication and characterization of in situ graphene oxide reinforced high-performance shape memory polymeric nanocomposites from vegetable oil. RSC Advances, 2016, 6, 27648-27658.	1.7	16
124	Self assembly of functionalised graphene nanostructures by one step reduction of graphene oxide using aqueous extract of Artemisia vulgaris. Applied Surface Science, 2016, 362, 221-229.	3.1	39
125	Enhanced hydrogen production by carbon-doped TiO2 decorated with reduced graphene oxide (rGO) under visible light irradiation. RSC Advances, 2016, 6, 2479-2488.	1.7	37
126	Decolorization of organic dyes by gold nanoflowers prepared on reduced graphene oxide by tea polyphenols. Catalysis Science and Technology, 2016, 6, 3008-3017.	2.1	25
127	Does silicate mineral impurities in natural graphite affect the characteristics of synthesized graphene?. Materials Research Bulletin, 2016, 74, 333-339.	2.7	27
128	Graphene–gold nanoparticle-based nanocomposites as an electrode material in supercapacitors. Indian Journal of Physics, 2016, 90, 391-397.	0.9	21

#	Article	IF	CITATIONS
129	Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. Biosensors and Bioelectronics, 2017, 89, 384-389.	5.3	31
130	Studies of the kinetics and mechanism of the removal process of proflavine dye through adsorption by graphene oxide. Journal of Molecular Liquids, 2017, 230, 696-704.	2.3	47
131	Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 2017, 104, 1975-1985.	3.6	164
132	Production of biologically safe and mechanically improved reduced graphene oxide/hydroxyapatite composites. Materials Research Express, 2017, 4, 015601.	0.8	18
133	High efficient anti-cancer drug delivery systems using tea polyphenols reduced and functionalized graphene oxide. Journal of Biomaterials Applications, 2017, 31, 1108-1122.	1.2	13
134	High reduction of 4-nitrophenol using reduced graphene oxide/Ag synthesized with tyrosine. Environmental Chemistry Letters, 2017, 15, 467-474.	8.3	15
135	Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue. Applied Surface Science, 2017, 406, 312-318.	3.1	90
136	P-channel thin film transistors using reduced graphene oxide. Nanotechnology, 2017, 28, 155201.	1.3	2
137	Sb ₂ O ₄ @rGO Nanocomposite Anode for High Performance Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 5090-5098.	3.2	53
138	Chemical reduction of graphene oxide using green reductants. Carbon, 2017, 119, 190-199.	5.4	473
139	Dynamic Resolution of Ion Transfer in Electrochemically Reduced Graphene Oxides Revealed by Electrogravimetric Impedance. Journal of Physical Chemistry C, 2017, 121, 9370-9380.	1.5	23
140	Microbial reduction of graphene oxide by Azotobacter chroococcum. Chemical Physics Letters, 2017, 677, 143-147.	1.2	7 3
141	State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrasonics Sonochemistry, 2017, 39, 478-493.	3.8	146
142	Aloe vera assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications. RSC Advances, 2017, 7, 26680-26688.	1.7	116
143	Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT). AIP Conference Proceedings, 2017, , .	0.3	1
144	Effect of reduction time on third order optical nonlinearity of reduced graphene oxide. Optical Materials, 2017, 66, 460-468.	1.7	50
145	Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochimica Acta, 2017, 237, 61-68.	2.6	56
146	Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application. Journal of Power Sources, 2017, 342, 405-413.	4.0	60

#	Article	IF	CITATIONS
147	Green reduction of graphene oxide via Lycium barbarum extract. Journal of Solid State Chemistry, 2017, 246, 351-356.	1.4	72
148	Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2017, 166, 252-258.	1.7	70
149	Efficiency enhancement in inverted planar perovskite solar cells by synergetic effect of sulfated graphene oxide (sGO) and PEDOT:PSS as hole transporting layer. RSC Advances, 2017, 7, 50410-50419.	1.7	21
150	Recent developments in graphene-based/nanometal composite filter membranes. RSC Advances, 2017, 7, 47886-47897.	1.7	22
151	Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties. Nanotechnology, 2017, 28, 495703.	1.3	15
152	Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conference Proceedings, 2017, , .	0.3	264
153	Nanostructured Photocatalysts Based on Different Oxidized Graphenes for VOCs Removal. Industrial & Samp; Engineering Chemistry Research, 2017, 56, 9980-9992.	1.8	37
154	Facile and Ultrafast Green Approach to Synthesize Biobased Luminescent Reduced Carbon Nanodot: An Efficient Photocatalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 9454-9466.	3.2	33
155	Effect of different copper salts on the electrochemical determination of Cu(II) by the application of the graphene oxide-modified glassy carbon electrode. Surfaces and Interfaces, 2017, 9, 160-166.	1.5	6
156	In situ hydrothermal synthesis of Y-TiO2/graphene heterojunctions with improved visible-light-driven photocatalytic properties. Ceramics International, 2017, 43, 16753-16762.	2.3	10
157	Graphene oxide–metal nanocomposites for cancer biomarker detection. RSC Advances, 2017, 7, 35982-35991.	1.7	30
158	Bio-inspired green synthesis of RGO/Fe 3 O 4 magnetic nanoparticles using Murrayakoenigii leaves extract and its application for removal of Pb(II) from aqueous solution. Journal of Environmental Chemical Engineering, 2017, 5, 4374-4380.	3.3	62
159	Consequence of oxidation method on graphene oxide produced with different size graphite precursors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 224, 150-157.	1.7	37
160	Preparation of Lithium Titanate/Reduced Graphene Oxide Composites with Three-Dimensional "Fishnet-Like―Conductive Structure via a Gas-Foaming Method for High-Rate Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 42883-42892.	4.0	25
161	The adsorption behavior and mechanism of perfluorochemicals on oxidized fluorinated graphene sheets supported on silica. Analytical Methods, 2017, 9, 6645-6652.	1.3	15
162	Simultaneous reduction and nitrogen functionalization of graphene oxide using lemon for metal-free oxygen reduction reaction. Journal of Power Sources, 2017, 372, 116-124.	4.0	48
163	Thermodynamically controlled Pt deposition over graphene nanoplatelets: Effect of Pt loading on PEM fuel cell performance. International Journal of Hydrogen Energy, 2017, 42, 19246-19256.	3.8	37
164	Renewable resource derived aliphatic hyperbranched polyurethane/aluminium hydroxide–reduced graphene oxide nanocomposites as robust, thermostable material with multi-stimuli responsive shape memory features. New Journal of Chemistry, 2017, 41, 8781-8790.	1.4	16

#	Article	IF	CITATIONS
165	Low energy liquid plasma for direct reduction and formation of rGO-aminopyridine hybrid for electrical and environmental applications. Journal of Hazardous Materials, 2017, 340, 26-35.	6.5	14
166	Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications. Sensors and Actuators B: Chemical, 2017, 253, 879-892.	4.0	108
167	Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2017, 28, 3819-3836.	1.1	29
168	Ultrasound assisted formation of reduced graphene oxide-copper (II) oxide nanocomposite for energy storage applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512, 158-170.	2.3	74
169	A benign ultrasonic route to reduced graphene oxide from pristine graphite. Journal of Colloid and Interface Science, 2017, 486, 337-343.	5.0	89
170	Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance. Ceramics International, 2017, 43, 625-633.	2.3	37
171	Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sensors and Actuators B: Chemical, 2017, 238, 1043-1051.	4.0	163
172	Tannic acid based hyperbranched epoxy/reduced graphene oxide nanocomposites as surface coating materials. Progress in Organic Coatings, 2017, 104, 180-187.	1.9	35
173	Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application. Macromolecular Symposia, 2017, 376, 1700006.	0.4	289
174	Reduced graphene oxide wrapped on microfiber and its light-control-light characteristics. Optics Express, 2017, 25, 5415.	1.7	10
175	Reduced Graphene Oxides (rGOs) using Nature-based Reducing Sources: Detailed Studies on Properties, Morphologies and Catalytic Activity. Current Graphene Science, 2017, 1, .	0.5	6
176	Green Routes for Graphene Oxide Reduction and Self- Assembled Graphene Oxide Micro- and Nanostructures Production. , 2017, , .		0
177	Surface-Modified Graphene for Mid-Infrared Detection. , 0, , .		2
178	Green conversion of graphene oxide to graphene nanosheets and its biosafety study. PLoS ONE, 2017, 12, e0171607.	1.1	28
179	The flame retardancy of epoxy resin including the modified graphene oxide and ammonium polyphosphate. Combustion Science and Technology, 2018, 190, 1126-1140.	1.2	17
180	Agricultural waste/graphene oxide 3D bio-adsorbent for highly efficient removal of methylene blue from water pollution. Science of the Total Environment, 2018, 628-629, 959-968.	3.9	66
181	High-Performing Biodegradable Waterborne Polyester/Functionalized Graphene Oxide Nanocomposites as an Eco-Friendly Material. ACS Omega, 2018, 3, 2292-2303.	1.6	24
182	Development of bupivacaine decorated reduced graphene oxide and its local anesthetic effect—In vivo study. Journal of Photochemistry and Photobiology B: Biology, 2018, 180, 72-76.	1.7	2

#	Article	IF	Citations
183	Detection and Quantification of Graphene-Family Nanomaterials in the Environment. Environmental Science & Environmental Scienc	4.6	147
184	Graphene analogues in aquatic environments and porous media: dispersion, aggregation, deposition and transformation. Environmental Science: Nano, 2018, 5, 1298-1340.	2.2	68
185	Functionalized Graphene Nanosheets with Fewer Defects Prepared via Sodium Alginate Assisted Direct Exfoliation of Graphite in Aqueous Media for Lithium-Ion Batteries. ACS Applied Nano Materials, 2018, 1, 1985-1994.	2.4	16
186	Nanoscale friction of graphene oxide over glass-fibre and polystyrene. Composites Part B: Engineering, 2018, 148, 272-280.	5 . 9	18
187	Controlled oxidative ageing time of graphite/graphite oxide to graphene oxide in aqueous media. Journal of the Australian Ceramic Society, 2018, 54, 91-96.	1.1	7
188	Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol. Journal of Materiomics, 2018, 4, 256-265.	2.8	63
189	Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (LIBs) graphite and its application in supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 98-108.	2.3	90
190	Anchoring and Upgrading Ultrafine NiPd on Roomâ€Temperatureâ€Synthesized Bifunctional NH ₂ â€Nâ€rGO toward Lowâ€Cost and Highly Efficient Catalysts for Selective Formic Acid Dehydrogenation. Advanced Materials, 2018, 30, e1703038.	11.1	156
191	Green reduction of graphene oxide by ascorbic acid. AIP Conference Proceedings, 2018, , .	0.3	26
192	Investigation the adsorption properties of graphene oxide and polyaniline nano/micro structures for efficient removal of toxic Cr(VI) contaminants from aqueous solutions; kinetic and equilibrium studies. Rendiconti Lincei, 2018, 29, 141-154.	1.0	74
193	High performing smart hyperbranched polyurethane nanocomposites with efficient self-healing, self-cleaning and photocatalytic attributes. New Journal of Chemistry, 2018, 42, 2167-2179.	1.4	25
194	Bio-inspired unprecedented synthesis of reduced graphene oxide: a catalytic probe for electro-/chemical reduction of nitro groups in an aqueous medium. New Journal of Chemistry, 2018, 42, 2067-2073.	1.4	23
195	Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications. Journal of Colloid and Interface Science, 2018, 514, 733-739.	5.0	44
196	Rapid and efficient green reduction of graphene oxide for outstanding supercapacitors and dye adsorption applications. Journal of Environmental Chemical Engineering, 2018, 6, 3223-3232.	3.3	17
197	Bio-derived aliphatic hyperbranched polyurethane nanocomposites with inherent self healing tendency and surface hydrophobicity: Towards creating high performance smart materials. Composites Part A: Applied Science and Manufacturing, 2018, 110, 142-153.	3.8	18
198	Progress of reduction of graphene oxide by ascorbic acid. Applied Surface Science, 2018, 447, 338-346.	3.1	229
199	Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract. Journal of Materials Science: Materials in Electronics, 2018, 29, 9764-9770.	1.1	62
200	Review of Green Methods of Iron Nanoparticles Synthesis and Applications. BioNanoScience, 2018, 8, 491-503.	1.5	64

#	Article	IF	Citations
201	Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Progress in Energy and Combustion Science, 2018, 67, 115-157.	15.8	271
202	Natural Honeycomb Flavone Chrysin (5,7-dihydroxyflavone)-Reduced Graphene Oxide Nanosheets Fabrication for Improved Bactericidal and Skin Regeneration. ACS Sustainable Chemistry and Engineering, 2018, 6, 349-363.	3.2	17
203	Naturally occurring green multifunctional agents: Exploration of their roles in the world of graphene and related systems. Nano Structures Nano Objects, 2018, 13, 1-20.	1.9	10
204	New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environmental Science and Pollution Research, 2018, 25, 10164-10183.	2.7	220
205	Enhancing the Electrical Conductivity of Graphene Oxide Reduced by L-Ascorbic Acid via Microwave-Assisted Method. , 2018, , .		0
206	Environmentally Benign Metal-Free Reduction of GO Using Molecular Hydrogen: A Mechanistic Insight. ACS Omega, 2018, 3, 15112-15118.	1.6	4
207	Green synthesis of reduced graphene oxide decorated with iron oxide nanoparticles using Oolong Tea extract. AIP Conference Proceedings, 2018 , , .	0.3	3
208	Green synthesis of reduced graphene oxide using green tea extract. AIP Conference Proceedings, 2018, ,	0.3	20
210	Development of an auto-phase separable and reusable graphene oxide-potato starch based cross-linked bio-composite adsorbent for removal of methylene blue dye. International Journal of Biological Macromolecules, 2018, 116, 1037-1048.	3.6	43
211	Recent advances of graphene family nanomaterials for nanomedicine. , 2018, , 413-455.		3
212	Microporous Humins Synthesized in Concentrated Sulfuric Acid Using 5-Hydroxymethyl Furfural. ACS Omega, 2018, 3, 8537-8545.	1.6	13
213	Reduced MWCNTs/Palladium Nanotubes Hybrid Fabricated on Graphite Electrode for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Journal of the Electrochemical Society, 2018, 165, B458-B465.	1.3	18
214	A Simplified Ultrasonic Stripping-Chemical Reduction Method for Preparation of Graphene. Springer Proceedings in Energy, 2018, , 959-968.	0.2	0
215	Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications. Materials Science and Engineering C, 2018, 93, 191-205.	3.8	59
216	Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environmental Research, 2018, 166, 602-609.	3.7	28
217	One-step hydrothermal synthesis of titanium dioxide decorated on reduced graphene oxide for dye-sensitised solar cells application. International Journal of Nanotechnology, 2018, 15, 78.	0.1	4
218	One-step biosynthesis of hybrid reduced graphene oxide/iron-based nanoparticles by eucalyptus extract and its removal of dye. Journal of Cleaner Production, 2018, 203, 22-29.	4.6	38
219	Boron doped graphene oxide with enhanced photocatalytic activity for organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 130-139.	2.0	64

#	Article	IF	CITATIONS
220	Hybridized graphene nanomaterials for drug delivery, cyto-compatibility, and electrochemical biosensor application * *Volume VI: Carbon (Nanotube, Fullerene, Graphene) Nanomaterials, 2018, , 375-411.		1
221	A flame retardant rigid polyurethane foam system including functionalized graphene oxide. Polymer Composites, 2019, 40, E1274.	2.3	30
222	In-situ generated Mn3O4-reduced graphene oxide nanocomposite for oxygen reduction reaction and isolated reduced graphene oxide for supercapacitor applications. Carbon, 2019, 154, 285-291.	5.4	38
223	Hydrated FePO ₄ nanoparticles supported on P-doped RGO show enhanced ORR activity compared to their dehydrated form in an alkaline medium. RSC Advances, 2019, 9, 24654-24658.	1.7	2
224	Hyperbranched Polyurethane/Palladium-Reduced Carbon Dot Nanocomposite: An Efficient and Reusable Mesoporous Catalyst for Visible-Light-Driven C–C Coupling Reactions. Industrial & Engineering Chemistry Research, 2019, 58, 16307-16319.	1.8	14
225	Novel Effects of Phytogenic Bulk Graphene on Germination and Growth of Monocots and Dicots. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 493-506.	0.4	0
226	Design and application of nanoporous graphene oxide film for CO2, H2, and C2H2 gases sensing. Journal of Materials Research and Technology, 2019, 8, 4510-4520.	2.6	67
227	Green approaches to synthesize reduced graphene oxide and assessment of its electricalÂproperties. Nano Structures Nano Objects, 2019, 19, 100362.	1.9	17
228	Graphene Family of Nanomaterials: Reviewing Advanced Applications in Drug delivery and Medicine. Current Drug Delivery, 2019, 16, 195-214.	0.8	34
229	<p>Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering</p> . International Journal of Nanomedicine, 2019, Volume 14, 5753-5783.	3.3	130
230	Synthesis and biocompatibility of two-dimensional biomaterials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 124004.	2.3	61
231	Carbon-Based Electrode Materials for Microsupercapacitors in Self-Powering Sensor Networks: Present and Future Development. Sensors, 2019, 19, 4231.	2.1	16
232	Solid waste-derived carbon as anode for high performance lithium-ion batteries. Diamond and Related Materials, 2019, 98, 107517.	1.8	21
233	Reduced graphene oxide loaded with MoS2 and Ag3PO4 nanoparticles/PVA interpenetrating hydrogels for improved mechanical and antibacterial properties. Materials and Design, 2019, 183, 108166.	3.3	38
234	Synthesis and Characterization of Alkylated Graphene Oxide (AGO) and Reduced Graphene Oxide (ARGO). Materials Today: Proceedings, 2019, 17, 508-515.	0.9	1
235	Hyperelastic characteristics of graphene natural rubber composites and reinforcement and toughening mechanisms at multi-scale. Composite Structures, 2019, 228, 111365.	3.1	23
236	Ultrasound-Assisted Facile Green Synthesis of Hexagonal Boron Nitride Nanosheets and Their Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 17114-17125.	3.2	64
237	Comprehensive Application of Graphene: Emphasis on Biomedical Concerns. Nano-Micro Letters, 2019, 11, 6.	14.4	150

#	Article	IF	CITATIONS
238	Electrochemical synthesis of NiCo layered double hydroxide nanosheets decorated on moderately oxidized graphene films for energy storage. Nanoscale, 2019, 11, 2812-2822.	2.8	36
239	Graphene Enhanced Electrical Properties of Polyethylene Blends for High-Voltage Insulation. Electronic Materials Letters, 2019, 15, 582-594.	1.0	10
240	Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell. Chemosphere, 2019, 232, 396-402.	4.2	51
241	An investigation on titanium doping in reduced graphene oxide by RF magnetron sputtering for dye-sensitized solar cells. Solar Energy, 2019, 188, 10-18.	2.9	13
242	Graphene modified electrodes for bioelectricity generation in mediator-less microbial fuel cell. Journal of Materials Science, 2019, 54, 11604-11617.	1.7	24
243	Synthesis and characterization of double heterojunction-graphene nano-hybrids for photocatalytic applications. Ceramics International, 2019, 45, 17806-17817.	2.3	61
244	Enhancement of the active/passive anti-corrosion properties of epoxy coating via inclusion of histamine/zinc modified/reduced graphene oxide nanosheets. Applied Surface Science, 2019, 488, 77-91.	3.1	60
245	Tunable degree of oxidation in graphene oxide: cost effective synthesis, characterization and process optimization. Materials Research Express, 2019, 6, 085625.	0.8	7
246	High performance supercapattery with rGO/TiO2 nanocomposites anode and activated carbon cathode. Journal of Alloys and Compounds, 2019, 796, 13-24.	2.8	38
247	Li+ diffusion kinetics of SnS2 nanoflowers enhanced by reduced graphene oxides with excellent electrochemical performance as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 794, 285-293.	2.8	26
248	Enzymatic synthesis of supported CdS quantum dot/reduced graphene oxide photocatalysts. Green Chemistry, 2019, 21, 4046-4054.	4.6	24
249	Cuprous oxide anchored Reduced Graphene oxide ceramic nanocomposite using Tagetes erecta flower extract and evaluation of its antibacterial activity and cytotoxicity. Ceramics International, 2019, 45, 25020-25026.	2.3	21
250	Polymeric Surface Modification of Graphene. , 2019, , 305-320.		0
251	Moringa oleifera Leaf Extract Mediated Reduced Graphene Oxide/α-Ni(OH)2 Nanocomposite for Asymmetric Supercapacitors. Brazilian Journal of Physics, 2019, 49, 348-359.	0.7	13
252	Development of a electrochemical sensor for the detection of 2,4-dichlorophenol using a polymer nanocomposite of rGO. Journal of Materials Science: Materials in Electronics, 2019, 30, 7150-7162.	1.1	6
253	Facile synthesis of amine modified silica/reduced graphene oxide composite sorbent for CO2 adsorption. Materials Letters, 2019, 247, 44-47.	1.3	12
254	A Proton Conducting Composite Membrane based on Polyvinyl Alcohol and Polyaniline-intercalated Graphene Oxide. Journal of the Korean Physical Society, 2019, 74, 384-388.	0.3	4
255	A Facile Method for Batch Preparation of Electrochemically Reduced Graphene Oxide. Nanomaterials, 2019, 9, 376.	1.9	22

#	Article	IF	CITATIONS
256	Hyperbranched polyurethane/reduced carbon dot-zinc oxide nanocomposite-mediated solar-assisted photocatalytic degradation of organic contaminant: An approach towards environmental remediation. Chemical Engineering Journal, 2019, 370, 716-728.	6.6	42
257	Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. Interface Science and Technology, 2019, 28, 199-322.	1.6	94
258	Novel and green synthesis of chemically reduced graphene sheets using Phyllanthus emblica (Indian) Tj ETQq0 0 0	O rgBT /Ov	verlock 10 Tf !
259	Functionalized graphene nanoplatelet nanofluids based on a commercial industrial antifreeze for the thermal performance enhancement of wind turbines. Applied Thermal Engineering, 2019, 152, 113-125.	3.0	33
260	Investigation of graphene-based nanocomposite for hydrogen storage. IOP Conference Series: Materials Science and Engineering, 2019, 655, 012029.	0.3	1
261	One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. Journal of Electroanalytical Chemistry, 2019, 855, 113638.	1.9	50
262	Durable Antimicrobial Behaviour from Silver-Graphene Coated Medical Textile Composites. Polymers, 2019, 11, 2000.	2.0	31
263	Highly Porous Hypercrosslinked Polymers Derived from Biobased Molecules. ChemSusChem, 2019, 12, 839-847.	3.6	16
264	HRGO–Co@SnO2 Nanocomposite for Electrochemical Detection of Hydrazine. Journal of Electronic Materials, 2019, 48, 542-550.	1.0	6
265	Polyphosphate-reduced graphene oxide on Ni foam as a binder free electrode for fabrication of high performance supercapacitor. Electrochimica Acta, 2019, 296, 130-141.	2.6	17
266	Microporous Humins Prepared from Sugars and Bio-Based Polymers in Concentrated Sulfuric Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 1018-1027.	3.2	17
267	Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chemical Engineering Journal, 2019, 359, 976-981.	6.6	62
268	Highly oxidized and exfoliated graphene using a modified Tour approach. Journal of Materials Science: Materials in Electronics, 2019, 30, 3973-3983.	1.1	4
269	Fundamentals of Nanomaterials and Polymer Nanocomposites. , 2019, , 1-45.		47
270	Visible active reduced graphene oxide loaded titania for photodecomposition of ciprofloxacin and its antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564, 23-30.	2.3	82
271	Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 2019, 219, 148-154.	4.2	69
272	Preparation of new PVC composite using green reduced graphene oxide and its effects in thermal and mechanical properties. Polymer Bulletin, 2020, 77, 1929-1949.	1.7	32
273	High capacitive rGO/WO3 nanocomposite: the simplest and fastest route of preparing it. Applied Nanoscience (Switzerland), 2020, 10, 165-175.	1.6	19

#	Article	IF	CITATIONS
274	Immobilization of platinum-cobalt and platinum-nickel bimetallic nanoparticles on pomegranate peel extract-treated reduced graphene oxide as electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 7680-7690.	3.8	36
275	Designing a dual-functional epoxy composite system with self-healing/barrier anti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmental stability and non-toxicity. Chemical Engineering lournal. 2020. 382. 122819.	6.6	122
276	Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications. Journal of Materials Science, 2020, 55, 480-497.	1.7	16
277	Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Materials Science and Engineering C, 2020, 107, 110273.	3.8	138
278	Synergistic effect of graphene oxide functionalized with SiO2 nanostructures in the epoxy nanocomposites. Applied Surface Science, 2020, 507, 145046.	3.1	21
279	Adhesion of Bacteria to a Graphene Oxide Film. ACS Applied Bio Materials, 2020, 3, 704-712.	2.3	19
280	Synthesis and characterization of reduced graphene oxide-iron oxide-polyaniline ternary nanocomposite and determination of its photothermal properties. Materials Research Bulletin, 2020, 124, 110763.	2.7	27
281	Urea and cow urine-based green approach to fabricate graphene-based transparent conductive films with high conductivity and transparency. Materials Chemistry and Physics, 2020, 242, 122465.	2.0	18
282	Facile synthesis of MgGa2O4/graphene composites for room temperature acetic acid gas sensing. Sensors and Actuators B: Chemical, 2020, 306, 127453.	4.0	23
283	Interfacial electrostatic self-assembly in water-in-oil microemulsion assisted synthesis of Li4Ti5O12/Graphene for lithium-ion-batteries. Journal of Alloys and Compounds, 2020, 819, 153018.	2.8	18
284	An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Technology, 2020, 9, 11587-11610.	2.6	111
285	Graphene oxide thin film structural dielectric capacitors for aviation static electricity harvesting and storage. Composites Part B: Engineering, 2020, 201, 108375.	5.9	22
286	Construction of an epoxy composite with excellent thermal/mechanical properties using graphene oxide nanosheets reduced/functionalized by Tamarindus indiaca extract/zinc ions; detailed experimental and DFT-D computer modeling explorations. Results in Physics, 2020, 19, 103400.	2.0	12
287	Green preparation of reduced graphene oxide by Bougainvillea glabra flower extract and sensing application. Journal of Materials Science: Materials in Electronics, 2020, 31, 14345-14356.	1.1	27
288	Graphene-based functional nanomaterials for biomedical and bioanalysis applications. FlatChem, 2020, 23, 100184.	2.8	72
289	Design and green synthesis of $1\hat{a} \in \{4\hat{a} \in$	1.7	13
290	A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel, 2020, 282, 118796.	3.4	216
291	Influence of Different Nano-Structured Fillers on the Performance of Epoxy Nanocomposites. Nano Hybrids and Composites, 2020, 29, 51-60.	0.8	2

#	Article	IF	CITATIONS
292	CoMoO ₄ /bamboo charcoal hybrid material for high-energy-density and high cycling stability supercapacitors. Dalton Transactions, 2020, 49, 10799-10807.	1.6	39
293	<p>Synthesis of Graphene Oxide Using Atmospheric Plasma for Prospective Biological Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 5813-5824.	3.3	18
294	Biomedical Waste Management by Using Nanophotocatalysts: The Need for New Options. Materials, 2020, 13, 3511.	1.3	28
295	Upcycling of polyethylene terephthalate plastic waste to microporous carbon structure for energy storage. Energy Storage, 2020, 2, e201.	2.3	29
296	A Review of Microscale, Rheological, Mechanical, Thermoelectrical and Piezoresistive Properties of Graphene Based Cement Composite. Nanomaterials, 2020, 10, 2076.	1.9	41
297	Novel and Green Reduction of Graphene Oxide by Capsicum Annuum: Its Photo Catalytic Activity. Journal of Natural Fibers, 2020, , 1-16.	1.7	3
298	High photoresponsivity and external quantum efficiency of ultraviolet photodetection by mechanically exfoliated planar multi-layered graphene oxide sheet prepared using modified Hummer's method and spin coating technique. Materials Express, 2020, 10, 998-1009.	0.2	3
299	Selective oxidation of benzyl alcohol by reduced graphene oxide supported platinum nanoparticles. Journal of Physics: Conference Series, 2020, 1664, 012074.	0.3	20
300	A green strategy for the preparation of a honeycomb-like silicon composite with enhanced lithium storage properties. Nanoscale, 2020, 12, 12849-12855.	2.8	7
301	A composite of imprinted polypyrrole beads and reduced graphene oxide for specific electrochemical sensing of atrazine in complex matrices. Monatshefte FÃ $^1\!\!/4$ r Chemie, 2020, 151, 1271-1282.	0.9	7
302	Metal Oxide–Based Nanocomposites as Antimicrobial and Biomedical Agents. , 2020, , 287-323.		11
303	Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Materials Chemistry and Physics, 2020, 253, 123336.	2.0	39
304	Reduced graphene oxide layered WO3 thin film with enhanced electrochromic properties. Journal of Colloid and Interface Science, 2020, 571, 185-193.	5.0	34
305	Ovalbumin-mediated synthesis and simultaneous functionalization of graphene with increased protein stability. Green Chemistry Letters and Reviews, 2020, 13, 60-67.	2.1	22
306	Graphene-based nanostructures for enhanced photocatalytic degradation of industrial dyes. Emergent Materials, 2020, 3, 169-180.	3.2	29
307	Hybrid Reduced Graphene Oxide with Special Magnetoresistance for Wireless Magnetic Field Sensor. Nano-Micro Letters, 2020, 12, 69.	14.4	22
308	Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Materials Chemistry and Physics, 2020, 247, 122906.	2.0	45
309	Electrically conductive poly(methyl methacrylate)-reduced graphene oxide/poly(styrene-co-acrylonitrile) composite with double percolative architecture. Organic Electronics, 2020, 85, 105877.	1.4	4

#	Article	IF	CITATIONS
310	Biocompatibility of graphene quantum dots and related materials., 2020,, 353-367.		3
311	Ultralight covalently interconnected silicon carbide aerofoam for high performance thermally conductive epoxy composites. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106028.	3.8	22
312	Facile chemical tuning of thermoelectric power factor of graphene oxide. Materials Chemistry and Physics, 2020, 254, 123488.	2.0	1
313	In-situ DRIFT investigation of photocatalytic reduction and oxidation properties of SiO2@α-Fe2O3 core-shell decorated RGO nanocomposite. Scientific Reports, 2020, 10, 2128.	1.6	20
314	Electrochemical energy storage properties studies of Cu0.2Ni0.8O-Reduced graphene oxide nano-hybrids. Ceramics International, 2020, 46, 14304-14310.	2.3	25
315	Green reduction of graphene oxide using Indian gooseberry (amla) extract for gas sensing applications. Journal of Environmental Chemical Engineering, 2020, 8, 103712.	3.3	24
316	Green synthesis of RGO/Ag: As evidence for the production of uniform mono-dispersed nanospheres using microfluidization. Applied Surface Science, 2020, 518, 146264.	3.1	16
317	Microwave-reduced graphene oxide wrapped NCM layered oxide as a cathode material for Li-ion batteries. Journal of Alloys and Compounds, 2020, 834, 155014.	2.8	18
318	Photo-transformation of graphene oxide in the presence of co-existing metal ions regulated its toxicity to freshwater algae. Water Research, 2020, 176, 115735.	5.3	37
319	Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy. RSC Advances, 2020, 10, 12851-12863.	1.7	39
320	Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets. Materials Science and Engineering C, 2020, 113, 110984.	3.8	28
321	Nanostructured graphene materials utilization in fuel cells and batteries: A review. Journal of Energy Storage, 2020, 29, 101386.	3.9	50
322	Green Synthesis of 3D Chemically Functionalized Graphene Hydrogel for High-Performance NH ₃ and NO ₂ Detection at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 20623-20632.	4.0	60
323	Fabrication of <i>Erythrina senegalensis</i> leaf extract mediated reduced graphene oxide for cardiac repair applications in the nursing care. Inorganic and Nano-Metal Chemistry, 2021, 51, 143-149.	0.9	5
324	A Green Method toward Graphene Oxide Reduction by Extracellular Polymeric Substances Assisted with NH4+. Arabian Journal for Science and Engineering, 2021, 46, 485-494.	1.7	2
325	A novel lapping process for single-crystal sapphire using hybrid nanoparticle suspensions. International Journal of Mechanical Sciences, 2021, 191, 106099.	3.6	26
326	Utilization of green reductant Thuja Orientalis for reduction of GO to RGO. Ceramics International, 2021, 47, 14862-14878.	2.3	17
327	Thermal, electrical and mechanical properties of graphene/nano-alumina/epoxy composites. Materials Chemistry and Physics, 2021, 257, 123809.	2.0	39

#	Article	IF	CITATIONS
328	Strategies for reduction of graphene oxide $\hat{a}\in$ A comprehensive review. Chemical Engineering Journal, 2021, 405, 127018.	6.6	252
329	Tailoring mechanical and electrical properties of graphene oxide film for structural dielectric capacitors. Journal of Power Sources, 2021, 482, 229020.	4.0	14
330	Design of an efficient and selective adsorbent of cationic dye through activated carbon - graphene oxide nanocomposite: Study on mechanism and synergy. Materials Chemistry and Physics, 2021, 260, 124090.	2.0	21
331	Human Breathing Monitoring by Graphene Oxide Based Sensors. Smart Sensors, Measurement and Instrumentation, 2021, , 97-107.	0.4	1
332	Investigation of electrochemical reduction effects on graphene oxide powders for high-performance supercapacitors. International Journal of Advanced Manufacturing Technology, 2021, 113, 1203-1213.	1.5	4
333	Interpenetrating polymer network/functionalizedâ€reduced graphene oxide nanocomposite: As an advanced functional material. Journal of Applied Polymer Science, 2021, 138, 50499.	1.3	8
334	Seaweed biomass derived bio solvents for the large scale production of few layered graphene nanosheets from graphite. Materials Science for Energy Technologies, 2021, 4, 100-106.	1.0	4
335	Sonochemical synthesis of Co ₃ O ₄ nanoparticles deposited on GO sheets and their potential application as a nanofiller in MMMs for O ₂ /N ₂ separation. RSC Advances, 2021, 11, 19647-19655.	1.7	4
336	A Facile Synthesis of GO/CuO Nanocomposite with Enhancing Photocatalytic Activity for the Degradation of Azure-B Dye and Its Antimicrobial Behavior. Arabian Journal for Science and Engineering, 2022, 47, 365-378.	1.7	10
337	Superelastic, Fatigue-Resistant, and Flame-Retardant Spongy Conductor for Human Motion Detection against a Harsh High-Temperature Condition. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7580-7591.	4.0	16
338	Highly Efficient Preparation of Graphite Oxide without Water Enhanced Oxidation. Chemistry of Materials, 2021, 33, 1731-1739.	3.2	26
339	Plant extract assisted synthesis of reduced graphene oxide sheet and the photocatalytic performances on cationic and anionic dyes to decontaminate wastewater. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2021, 12, 015008.	0.7	9
340	Advances in green synthesis and applications of graphene. Nano Research, 2021, 14, 3724-3743.	5.8	18
341	An eco-friendly approach for the reduction of graphene oxide using Syzygium samarangense fruit extract. Materials Chemistry and Physics, 2021, 261, 124224.	2.0	12
342	Graphene vanadic acid (GVA) as a novel heterogeneous catalyst for highly selective benzene hydroxylation under mild conditions. Advanced Powder Technology, 2021, 32, 660-669.	2.0	3
343	Rietveld Refinement, $\hat{l}^{1}\!\!/\!\!4$ -Raman, X-ray Photoelectron, and Mössbauer Studies of Metal Oxide-Nanoparticles Growth on Multiwall Carbon Nanotubes and Graphene Oxide. Crystal Growth and Design, 2021, 21, 2128-2141.	1.4	13
344	Fabrication of zinc oxide-decorated phytoreduced graphene oxide nanohybrid via Clerodendrum infortunatum. Emerging Materials Research, 2021, 10, 75-84.	0.4	11
345	Microwave-Induced Expeditious Synthesis of Biologically Active Substituted Imidazoles using CuO-TiO2-GO Nanocomposite as a Recyclable Catalyst. Letters in Organic Chemistry, 2021, 18, 318-333.	0.2	2

#	Article	IF	CITATIONS
346	Green synthesis of reduce graphene oxide by green tea leaves. Journal of Physics: Conference Series, 2021, 1795, 012070.	0.3	0
347	Graphene-Based Nanosystems: Versatile Nanotools for Theranostics and Bioremediation., 0,,.		2
348	The Effect of Environmental and Chemical Approach on rGO Structure. SDU Journal of Science, 2021, 16, 216-224.	0.1	0
349	Biosynthesis of reduced graphene oxide using Turbinaria ornata and its cytotoxic effect on MCFâ€₹ cells. IET Nanobiotechnology, 2021, 15, 455-464.	1.9	3
350	Green reduction of graphene oxide using phytochemicals extracted from Pomelo Grandis and Tamarindus indica and its supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 15265-15278.	1.1	15
351	Synthesis of graphene oxide and graphene quantum dots from miscanthus via ultrasound-assisted mechano-chemical cracking method. Ultrasonics Sonochemistry, 2021, 73, 105519.	3.8	55
352	Top-down synthesis of graphene: A comprehensive review. FlatChem, 2021, 27, 100224.	2.8	143
353	Grape Seed Extract Assisted Synthesis of Dual-Functional Anatase TiO ₂ Decorated Reduced Graphene Oxide Composite for Supercapacitor Electrode Material and Visible Light Photocatalytic Degradation of Bromophenol Blue Dye. ACS Omega, 2021, 6, 14734-14747.	1.6	18
354	Solar light irradiated photocatalytic activity of ZnO–NiO/rGO nanocatalyst. Journal of Materials Research and Technology, 2021, 12, 999-1009.	2.6	56
355	Biologically reduced graphene oxide as a green and easily available photocatalyst for degradation of organic dyes. Environmental Research, 2021, 196, 110983.	3.7	51
356	Reduction of graphene oxide by Phyllanthus Emblica as a reducing agent $\hat{a}\in$ A green approach for supercapacitor application. Materials Today: Proceedings, 2022, 49, 865-869.	0.9	10
357	Superior thermal-mechanical properties of the epoxy composite reinforced with rGO-ATMP; Combined DFT-D theoretical modeling/experimental studies. Journal of Molecular Liquids, 2021, 331, 115800.	2.3	13
358	Introduction, production, characterization and applications of defects in graphene. Journal of Materials Science: Materials in Electronics, 2021, 32, 19991-20030.	1.1	15
359	Structural and Morphological Characterization of Bio-templated Reduced Graphene Oxide and their Antibacterial Efficacy. Journal of Cluster Science, 2022, 33, 1997-2008.	1.7	3
360	Improvement on mechanical and flame retardancy behaviour of bio-exfoliated graphene-filled epoxy/glass fibre composites using compression moulding approach. Polymer Bulletin, 2022, 79, 6289-6307.	1.7	17
361	Synthesis, characterisation and thermo-physical properties of highly stable graphene oxide-based aqueous nanofluids for potential low-temperature direct absorption solar applications. Scientific Reports, 2021, 11, 16549.	1.6	21
362	Synthesis and characterization of 2D structure of graphene oxide by using Phyllanthus Emblica: its photocatalytic activity on cationic dyes. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 409-418.	1.0	1
363	High-Performance Nanofiltration Membranes from Polyphenol–Graphene Oxide Liquid Crystals Prepared Using Natural Extract. ACS Sustainable Chemistry and Engineering, 2021, 9, 10846-10856.	3.2	6

#	Article	IF	CITATIONS
364	Bioinspired synthesis and green ecological applications of reduced graphene oxide based ternary nanocomposites. Sustainable Materials and Technologies, 2021, 29, e00315.	1.7	5
365	Sustainable synthesis, reduction and applications of graphene obtained from renewable resources. Sustainable Materials and Technologies, 2021, 29, e00310.	1.7	23
366	Physicochemical and antibacterial characterization of Aspergillus sp. filtrate-reduced graphene oxide. Journal of Industrial and Engineering Chemistry, 2021, 101, 324-333.	2.9	0
367	Reduction efficiencies of natural substances for reduced graphene oxide synthesis. Journal of Materials Science, 2021, 56, 18477-18492.	1.7	15
368	Designing an eco-friendly lanthanide-based metal organic framework (MOF) assembled graphene-oxide with superior active anti-corrosion performance in epoxy composite. Journal of Cleaner Production, 2021, 319, 128732.	4.6	74
369	Tuning the surface functionalities, textural properties and capacitance properties of reduced graphene oxide by utilizing environmentally threatening invasive weed as a reducing agent. Journal of Energy Storage, 2021, 42, 103149.	3.9	3
370	Nano-scale P, Zn-codoped reduced-graphene oxide incorporated epoxy composite; synthesis, electronic-level DFT-D modeling, and anti-corrosion properties. Progress in Organic Coatings, 2021, 159, 106416.	1.9	17
371	Surface modification with oxygen vacancy in LiNi0.5Co0.2Mn0.3O2 for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 881, 160626.	2.8	10
372	Experimental and theoretical study of solvent effect in graphene oxide. Journal of Molecular Liquids, 2021, 342, 117429.	2.3	3
373	Nanotechnology and green materials: Introduction, fundamentals, and applications., 2022,, 3-19.		3
374	Synthetic routes of the reduced graphene oxide. Chemical Papers, 2020, 74, 3767-3783.	1.0	56
375	Graphene oxide nanoplatforms reduction by green plant-sourced organic compounds for construction of an active anti-corrosion coating; experimental/electronic-scale DFT-D modeling studies. Chemical Engineering Journal, 2020, 397, 125433.	6.6	57
376	Facile green reduction of graphene oxide using Ocimum sanctum hydroalcoholic extract and evaluation of its cellular toxicity. Materials Chemistry and Physics, 2017, 198, 66-72.	2.0	24
377	Cobalt ferrite nanoparticles supported on reduced graphene oxide sheets: optical, magnetic and magneto-antibacterial studies. Nanotechnology, 2020, 31, 445704.	1.3	23
378	Reduced Graphene Oxide-Metal Oxide Nanohybrid for Efficient Adsorption, Photodegradation and Photoinactivation of Chemical and Microbial Contaminants. Journal of Nanotechnology in Diagnosis and Treatment, 2016, 3, 12-22.	0.7	1
379	In Situ Green Synthesis and Functionalization of Reduced Graphene Oxide on Cellulose Fibers by Cannabis sativa L. Extract. Materials Performance and Characterization, 2019, 8, 20180149.	0.2	3
380	Bio-reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis. Current Organic Synthesis, 2020, 17, 164-191.	0.7	9
381	Green Synthesis of Reduced Graphene Oxide Using Ascorbic Acid. Iraqi Journal of Science, 0, , 1313-1319.	0.3	8

#	Article	IF	CITATIONS
382	Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability. Materialpruefung/Materials Testing, 2017, 59, 729-734.	0.8	6
383	Effects of various vitamin C amounts on the green synthesis of reduced graphene oxide. Materialpruefung/Materials Testing, 2019, 61, 1007-1011.	0.8	8
384	Enhanced electrocapacitive performance and high power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature. Carbon Letters, 2014, 15, 171-179.	3.3	13
385	Tunable Nanostructure of TiO ₂ /Reduced Graphene Oxide Composite for High Photocatalysis. Applied Microscopy, 2016, 46, 37-44.	0.8	16
386	Synthesis Methods for Carbon-Based Materials. Indian Institute of Metals Series, 2021, , 367-420.	0.2	0
387	Structural and Surface Morphological Study of rGO/Polystyrene Composites. Macromolecular Symposia, 2021, 399, 2100044.	0.4	0
388	Fabrication and characterization of carbon aerogel/poly(glycerol-sebacate) patches for cardiac tissue engineering. Biomedical Materials (Bristol), 2021, 16, 065027.	1.7	3
389	Rapid microwave growth of mesoporous TiO2 nano-tripods for efficient photocatalysis and adsorption. Journal of Applied Physics, 2021, 130, .	1.1	10
390	Green reduction of oxidized graphite to reduced graphene oxide using Zygophyllum album L.f.: Comparative adsorption studies on p-nitrophenol. Recent Innovations in Chemical Engineering, 2016, 08, 1-1.	0.2	0
392	Synthesis of eco-friendly graphene from agricultural wastes. , 2022, , 215-230.		4
393	Pyrolysis of Wood Biomass to Obtain Biochar and Its Subsequent Application. , 2020, , 410-419.		0
394	Finding the suitability of reduced graphene oxide and lithium based compounds for flexible battery application. AIP Conference Proceedings, 2020, , .	0.3	0
395	Green Synthesis of NanoMaterials for BioSensing. Nanotechnology in the Life Sciences, 2020, , 135-217.	0.4	4
396	Reduced Graphene Oxide Screen Printed Thick Film as NO ₂ Gas Sensor at Low Temperature. Advanced Materials Research, 0, 1167, 43-55.	0.3	3
397	Controlling the surface-enhanced Raman scattering performance of graphene oxide by laser irradiation. Diamond and Related Materials, 2022, 121, 108698.	1.8	2
398	Pulsed versus continuous-wave Laser deoxygenation of graphene oxide suspensions. IOP Conference Series: Materials Science and Engineering, 2020, 956, 012009.	0.3	1
399	Role of alumina filler on thermal properties of carbon-epoxy nanocomposites. Materials Today: Proceedings, 2021, , .	0.9	3
400	Electrochemical sensor to detect terbutaline in biological samples by a green agent. Chemosphere, 2022, 289, 133171.	4.2	1

#	Article	IF	CITATIONS
401	Self-assembly synthesis of 3D graphene/nano-Fe3O4 hybrid aerogels with improved mechanical and thermal properties. Journal of Alloys and Compounds, 2022, 902, 163718.	2.8	5
402	Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. Journal of Molecular Liquids, 2022, 348, 118368.	2.3	12
403	Mechanistic Insight into the One Step Green Synthesis of Hybrid rGO/Fe NPs. SSRN Electronic Journal, 0, , .	0.4	0
404	Nontoxic double-network polymeric hybrid aerogel functionalized with reduced graphene oxide: Preparation, characterization, and evaluation as drug delivery agent. Journal of Polymer Research, 2022, 29, 1.	1.2	19
405	Improved mechanical properties of Ni-rGO/Cu composites prepared by molecular-level mixing. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	3
406	Multi-walled CNT decoration by ZIF-8 nanoparticles: O-MWCNT@ZIF-8/epoxy interfacial, thermal–mechanical properties analysis via combined DFT-D computational/experimental approaches. Journal of Industrial and Engineering Chemistry, 2022, 108, 170-187.	2.9	8
407	Ag-doped FeCo2O4 nanoparticles and their composite with flat 2D reduced graphene oxide sheets for photocatalytic degradation of colored and colorless compounds. FlatChem, 2022, 31, 100325.	2.8	53
408	Synthesis and Characterization of rGO/GaP Nanocomposites Synthesized via Chemical Method Coupled with Investigation of Their Supercapacitive Behavior. Arabian Journal for Science and Engineering, 0, , 1.	1.7	6
409	Multilayered Vanadium Carbide-Reduced Graphene Oxide (VC@rGO) Nanocomposite as an Ultrahigh-Capacity Anode Material for Li- and Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1972-1983.	2.5	6
410	Green synthesis of reduced graphene oxide using Plectranthus amboinicus leaf extract and its supercapacitive performance. Bulletin of Materials Science, 2022, 45, 1.	0.8	4
411	Effect of the green synthesized rGO and Mg/rGO nanocomposites on the phytochemical assay, toxicity, and metabolism of Mentha longifolia in vitro cultures. Environmental Science and Pollution Research, 2022, 29, 46243-46258.	2.7	4
412	Green Reduction of Graphene Oxide Involving Extracts of Plants from Different Taxonomy Groups. Journal of Composites Science, 2022, 6, 58.	1.4	21
413	Impact of Graphene Nano-Additives to Lithium Grease on the Dynamic and Tribological Behavior of Rolling Bearings. Lubricants, 2022, 10, 29.	1.2	20
414	Amperometric Detection of Mercury Ions Using Piperazineâ€Functionalized Reduced Graphene Oxide as an Efficient Sensing Platform. ChemistrySelect, 2022, 7, .	0.7	5
415	Enhanced Electromagnetic Interference Shielding Properties of Immiscible Polyblends with Selective Localization of Reduced Graphene Oxide Networks. Polymers, 2022, 14, 967.	2.0	6
416	Novel bi-functional RGO-HPSE-Zn@epoxy nanocomposite with superior corrosion protection potency. Journal of Industrial and Engineering Chemistry, 2022, 108, 28-46.	2.9	17
417	Effect of high rGO ratio on structural properties, photoluminescence and adsorptive & Description on structural properties, photocatalytic performances under 365Anm-UV and simulated solar lightsofNaTaO3/rGO heterojunction composites. Diamond and Related Materials, 2022, 125, 109022.	1.8	1
418	Mechanistic insight into the one step green synthesis of hybrid rGO/Fe NPs. Materials Today Nano, 2022, 18, 100193.	2.3	7

#	Article	IF	CITATIONS
419	Graphene Oxide (GO) as Sustainable Heterogeneous Carbocatalyst for Synthesis of Organic Carbamates Using Urea and Alcohols under Mild Reaction Conditions. ChemistrySelect, 2021, 6, 13461-13467.	0.7	2
420	Anti-Inflammatory and Antioxidant Properties of Coffea Arabica/Reduced Graphene Oxide Nanocomposite prepared by green synthesis. Material Science Research India, 2021, 18, 305-317.	0.9	5
421	A Selective Electrochemical Sensor Based on Titanium Dioxide-Reduced Graphene Oxide Nanocomposite (TiO ₂ - RGO/GCE) for the Efficient Determination of Nitrite. Materials Research Innovations, 2023, 27, 33-44.	1.0	4
422	Hydrothermally synthesized Gd-doped BiSbO4 nanoparticles and their graphene-based composite: A novel photocatalytic material. Journal of Solid State Chemistry, 2022, 312, 123217.	1.4	15
423	Synthesis of lysozyme-reduced graphene oxide films for biosensor applications. Diamond and Related Materials, 2022, 126, 109093.	1.8	7
424	Electromagnetic Interference Shielding by Reduced Graphene Oxide Foils. ACS Applied Nano Materials, 2022, 5, 6792-6800.	2.4	13
425	Reduced graphene oxide supported cobalt catalysts for ethylene hydroformylation: Modified cobalt-support interaction by rhodium. Fuel, 2022, 324, 124479.	3.4	6
426	Sustainable Approach for Developing Graphene-Based Materials from Natural Resources and Biowastes for Electronic Applications. ACS Applied Electronic Materials, 2022, 4, 2146-2174.	2.0	22
427	Raman, TEM, EELS, and Magnetic Studies of a Magnetically Reduced Graphene Oxide Nanohybrid Following Exposure to Daphnia magna Biomarkers. Nanomaterials, 2022, 12, 1805.	1.9	5
429	A new approach to prepare Nâ€∤Sâ€doped freeâ€standing graphene oxides for vanadium redox flow battery. International Journal of Energy Research, 2022, 46, 19992-20003.	2.2	10
430	Epoxy Nanocomposites with Graphene Derivatives. ACS Symposium Series, 0, , 133-167.	0.5	0
431	Investigation of anticorrosion properties of epoxy GO nanocomposites spin coated Aluminum Alloy 7075. Polymers and Polymer Composites, 2022, 30, 096739112211060.	1.0	0
432	Microstructural and Mechanical Characterization of Chromium Coating Deposed on Carbon Fibers. Transactions of the Indian Institute of Metals, 0, , .	0.7	0
433	Bio-reduction of graphene oxide using pomegranate peels for NO2 sensing and photocatalysis applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 16099-16112.	1.1	5
434	Electrochemical Sensing of Arsenic Ions Using a Covalently Functionalized Benzotriazoleâ€Reduced Graphene Oxideâ€Modified Screenâ€Printed Carbon Electrode. ChemistrySelect, 2022, 7, .	0.7	8
435	Designing a novel anti-corrosion metal-organic platform based on dual-action epoxy coating. Progress in Organic Coatings, 2022, 170, 107007.	1.9	3
436	The effect of growth potential on the self-discharge behavior of Cu–Ni based alloy electrodes. Journal of Physics and Chemistry of Solids, 2022, 169, 110872.	1.9	3
437	Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ's thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. Environmental Science and Pollution Research, 2022, 29, 89772-89787.	2.7	22

#	Article	IF	Citations
438	2d Quantum Dots Decorated Rgo Coated Recycled Facemask for Highly Efficient Solar Steam Generation. SSRN Electronic Journal, 0, , .	0.4	0
439	Ultrasound-Assisted One-Step Reduction and Self-Assembly of Carbon Dots-Reduced Graphene Oxide: Mechanism Investigation and Solid Phase Microextraction of Ultra-Trace Organochlorine Pesticides. SSRN Electronic Journal, 0, , .	0.4	0
440	Unveiling the Electrocatalytic Activity of Crystal Facet-Tailored Cobalt Oxide-rGO Heterostructure Toward Selective Reduction of CO ₂ to Ethanol. ACS Applied Nano Materials, 2022, 5, 10369-10382.	2.4	7
441	Ultrasound-assisted one-step reduction and self-assembly of carbon dots-reduced graphene oxide: Mechanism investigation and solid phase microextraction of ultra-trace organochlorine pesticides. Chemical Engineering Journal, 2023, 451, 138569.	6.6	17
442	Evaluation of the degradation of the graphene-polypropylene composites of masks in harsh working conditions. Materials Today Chemistry, 2022, 26, 101146.	1.7	5
443	Incorporation of Al ₂ O ₃ , GO, and Al ₂ O ₃ @GO nanoparticles into water-borne epoxy coatings: abrasion and corrosion resistance. RSC Advances, 2022, 12, 24804-24820.	1.7	6
444	Artificial Intelligence-Aided Low Cost and Flexible Graphene Oxide-Based Paper Sensor for Ultraviolet and Sunlight Monitoring. Nanoscale Research Letters, 2022, 17, .	3.1	3
445	Activated Carbon Nano-Particles from Recycled Polymers Waste as a Novel Nano-Additive to Grease Lubrication. Lubricants, 2022, 10, 214.	1.2	5
446	Recent major advances and challenges in the emerging graphene-based nanomaterials in electrocatalytic fuel cell technology. Journal of Materials Chemistry C, 2022, 10, 17812-17873.	2.7	3
447	A nanozyme-catalysis-based ratiometric electrochemical sensor for general detection of $Cd < sup > 2 + < /sup > $. Analyst, The, 0 , , .	1.7	O
448	Fabrication of chromium sulfide nanoparticles and reduced graphene oxide based high power asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2022, 33, 24845-24856.	1.1	1
449	Synergistically improved photovoltaic performances of dye-sensitized solar cells with metal-free organic cosensitizer and hybrid rGO-TiO2 photoanode. Dyes and Pigments, 2023, 209, 110892.	2.0	7
450	A novel electrocatalyst composed of graphene oxide/graphitic carbon nitride and CuFe/N-C@Co nanoparticles-embedded in nitrogen-doped carbon nanotube for oxygen reduction reaction and supercapacitor. Journal of Energy Storage, 2022, 56, 106012.	3.9	4
451	Synchronizing charge-carrier capacity and interfacial morphology of green rGO modified ZnO and TiO2 heterojunctions and study of their photocatalytic behaviour towards UV and visible light active drug and dye. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 287, 116094.	1.7	4
452	Microwave assisted synthesis of Mn3O4 nanograins intercalated into reduced graphene oxide layers as cathode material for alternative clean power generation energy device. Scientific Reports, 2022, 12, .	1.6	10
453	Unitarity relation and unitarity bounds for scalars with different sound speeds. Physics-Uspekhi, O, , .	0.8	O
454	Eco-Friendly Reduction of Graphene Oxide by Aqueous Extracts for Photocatalysis Applications. Nanomaterials, 2022, 12, 3882.	1.9	5
455	Electrostructural Compatibility of Battery-Type Diffuse-Porous Co ₉ S ₈ –NiCo ₂ S ₄ /Defective Reduced Graphene Oxide and Flaky FeS/Nitrogen-Doped Defective Reduced Graphene Oxide for Ultra-High-Performance All-Solid-State Hvbrid Pseudocapacitors. ACS Applied Energy Materials. 2022. 5. 13672-13691.	2.5	11

#	Article	IF	CITATIONS
457	Effect of Graphene Oxide and Reduced Graphene Oxide on the Properties of Sunflower Oil-Based Polyurethane Films. Polymers, 2022, 14, 4974.	2.0	7
458	Comparative study of miracle leaf extracts reduced graphene oxide (m-rGO) and chemically synthesized graphene oxide (GO) as methanol gas sensor. Journal of Materials Science: Materials in Electronics, 2022, 33, 27121-27131.	1.1	1
459	Superporous nanocarbon materials upcycled from polyethylene terephthalate waste for scalable energy storage. Journal of Energy Storage, 2023, 58, 106329.	3.9	1
461	Laser reduction of graphene oxide: tuning local material properties. Physics-Uspekhi, 0, , .	0.8	1
462	Green Fabrication of Agglomeration-Reductive and Electrochemical-Active Reduced Graphene Oxide/Polymerized Proanthocyanidins Electrode for High-Performance Supercapacitor., 2023, 1, 369-379.		5
463	Microwave-Assisted Synthesis of rGO-ZnO/CuO Nanocomposites for Photocatalytic Degradation of Organic Pollutants. Crystals, 2023, 13, 133.	1.0	7
464	Extraction of excessively reduced graphene oxide from discarded dry cell batteries by anodic exfoliation method. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	3
465	Electro-stimulated drug release by methacrylated hyaluronic acid-based conductive hydrogel with enhanced mechanical properties. International Journal of Biological Macromolecules, 2023, 231, 123297.	3.6	12
466	Bamboo shoot extract as a novel and efficient reducing agent for graphene oxide and its supercapacitor application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
467	Light-trapping texture bio-hydrogel with anti-biofouling and antibacterial properties for efficient solar desalination. Chemical Engineering Journal, 2023, 458, 141430.	6.6	22
468	Mor lahana $\tilde{A}\Pz\tilde{A}\frac{1}{4}t\tilde{A}\frac{1}{4}$ kullanarak grafen oksitin indirgenmesi ve oksidasyon ile fotokatalitik aktivitesinin incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 0 , , .	0.3	0
469	Influence of Graphene Sheets Accumulation on Optical Band Gap Enhanced Graphite Exfoliation. Mustansiriyah Journal of Science, 2022, 33, 168-174.	0.2	1
470	Reduced graphene oxide/TiTe2 quantum dot coated waste face mask recycled for highly efficient solar steam generation. Solar Energy Materials and Solar Cells, 2023, 253, 112232.	3.0	17
471	Non-emission hydrothermal low-temperature synthesis of carbon nanomaterials from poly (ethylene) Tj $ETQq11$ Reviews, 2023, 16, .	0.784314 2.1	rgBT /Overl
472	Graphene oxide nano-layers functionalized/reduced by L-Citrulline/Pectin bio-molecules for epoxy nanocomposite coating mechanical properties reinforcement. Progress in Organic Coatings, 2023, 178, 107493.	1.9	4
473	Green synthesis and application of graphene oxide extracted from Punica granatum. Materials Today: Proceedings, 2023, 80, 1341-1347.	0.9	1
474	Electrophoretic Deposition of Co3O4 Particles/Reduced Graphene Oxide Composites for Efficient Non-Enzymatic H2O2 Sensing. Materials, 2023, 16, 1261.	1.3	0
475	Microwave-assisted reduction of graphene oxide using Artemisia vulgaris extract for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	5

#	ARTICLE	IF	CITATIONS
476	Effects of graphene, alumina, and their hybrid on dynamic mechanical behavior of epoxy-based nanocomposites. Journal of Composite Materials, 2023, 57, 1557-1570.	1.2	2
477	Conductive Additives for Improving the Rate Capability of Cathode Materials in Secondary Lithium Batteries. ACS Applied Energy Materials, 2023, 6, 2855-2862.	2.5	4
478	Investigating the Extracellular-Electron-Transfer Mechanisms and Kinetics of Shewanella decolorationis NTOU1 Reducing Graphene Oxide via Lactate Metabolism. Bioengineering, 2023, 10, 311.	1.6	0
479	An oral nanoformulation of insulin: Development and characterization of human insulin loaded graphene oxide-sodium alginate-gold nanocomposite in an animal model. Journal of Drug Delivery Science and Technology, 2023, 82, 104309.	1.4	2
480	Crop plant-mediated nanoparticle synthesis and applications. , 2023, , 351-399.		0
481	Bi ₂ S ₃ Nanorods Deposited on Reduced Graphene Oxide for Potassium-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 6121-6132.	2.4	3
482	Eco-friendly synthesized few layered graphene: Main physico-chemical nanocharacterizations for optical quenching applications. EPJ Applied Physics, 0, , .	0.3	0
483	Synergetic Effect of Three-in-One Nanocomposite Based on AuNPs and rGO-MWCNTs for Ultrasensitive Electrochemical Bio-Diagnostic Applications. Journal of the Electrochemical Society, 2023, 170, 047513.	1.3	1
484	Room Temperature UV-Activated NO2 and NO Detection by ZnO/rGO Composites. Chemosensors, 2023, 11, 227.	1.8	3
485	Plant and microbe-based synthesis of nanoparticles and their applications. , 2023, , 69-108.		0
486	Highly Stable and Reusable 3D Graphene-Quinizarin Voltammetric pH Sensor. Journal of the Electrochemical Society, 2023, 170, 047511.	1.3	3
487	The effects of cinnamon, ginger and sesame oils on in-situ solvothermal reduction of multi-layered graphene oxide in epoxy to improve hydrophobicity and corrosion resistance. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-20.	1.0	0
493	Progress of research on the sustainable preparation of graphene and its derivatives., 2023, , 239-304.		0
516	Coconut Shell Derived Carbon Reinforced Polymer Composite Films for Packaging Applications. , 2023, , 127-140.		0