Thermophysical and biological responses of gold nanop

Chemical Society Reviews 41, 1191-1217

DOI: 10.1039/c1cs15184c

Citation Report

#	Article	IF	CITATIONS
3	Direct laser-assisted synthesis of localized gold nanoparticles from both Au (III) and Au (I) precursors within a silica monolith. , 2012 , , .		1
4	Optical Scattering Spectral Thermometry and Refractometry of a Single Gold Nanoparticle under CW Laser Excitation. Journal of Physical Chemistry C, 2012, 116, 15458-15466.	3.1	74
5	Silk inverse opals. Nature Photonics, 2012, 6, 818-823.	31.4	217
6	Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Physical Chemistry Chemical Physics, 2012, 14, 15625.	2.8	247
7	Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chemical Society Reviews, 2012, 41, 6066.	38.1	105
8	Nanoparticle-functionalized microcapsules for in vitro delivery and sensing. Nanophotonics, 2012, 1, 171-180.	6.0	13
9	Hyperthermia Using Inorganic Nanoparticles. Frontiers of Nanoscience, 2012, , 309-335.	0.6	5
10	Polyelectrolyte Wrapping Layers Control Rates of Photothermal Molecular Release from Gold Nanorods. Nano Letters, 2012, 12, 2982-2987.	9.1	68
12	Significantly Improved Analytical Sensitivity of Lateral Flow Immunoassays by Using Thermal Contrast. Angewandte Chemie - International Edition, 2012, 51, 4358-4361.	13.8	155
14	Photothermally Triggered Cytosolic Drug Delivery <i>via</i> Endosome Disruption Using a Functionalized Reduced Graphene Oxide. ACS Nano, 2013, 7, 6735-6746.	14.6	397
15	Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release. Chemistry of Materials, 2013, 25, 3030-3037.	6.7	302
16	Photoinduced Heating of Nanoparticle Arrays. ACS Nano, 2013, 7, 6478-6488.	14.6	351
17	Activated photothermal heating using croconaine dyes. Chemical Science, 2013, 4, 4240.	7.4	83
18	Observation of Nanoscale Cooling Effects by Substrates and the Surrounding Media for Single Gold Nanoparticles under CW-Laser Illumination. ACS Nano, 2013, 7, 7874-7885.	14.6	67
19	Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope. Nanoscale, 2013, 5, 9645.	5. 6	22
20	An overview of nanoparticle assisted laser therapy. International Journal of Heat and Mass Transfer, 2013, 67, 469-486.	4.8	76
21	Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 17, 26-49.	11.6	135
22	Allâ€Inâ€One Optical Heaterâ€Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er ³⁺ Emission and Blackbody Radiation. Advanced Materials, 2013, 25, 4868-4874.	21.0	264

#	ARTICLE	IF	CITATIONS
23	Ultrasensitive Surface Acoustic Wave Detection of Collective Plasmonic Heating by Close-Packed Colloidal Gold Nanoparticles Arrays. Journal of Physical Chemistry C, 2013, 117, 2442-2448.	3.1	8
24	Gold nanoparticle superstructures with enhanced photothermal effect. CrystEngComm, 2013, 15, 3490.	2.6	18
25	Gold nanorods and their plasmonic properties. Chemical Society Reviews, 2013, 42, 2679-2724.	38.1	1,576
26	Gold nanoparticles (GNPs) as multifunctional materials for cancer treatment. , 2013, , 349-389e.		9
27	State of the art in gold nanoparticle synthesis. Coordination Chemistry Reviews, 2013, 257, 638-665.	18.8	766
28	Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Molecular Pharmaceutics, 2013, 10, 2111-2126.	4.6	49
29	Permanent Fixing or Reversible Trapping and Release of DNA Micropatterns on a Gold Nanostructure Using Continuous-Wave or Femtosecond-Pulsed Near-Infrared Laser Light. Journal of the American Chemical Society, 2013, 135, 6643-6648.	13.7	93
30	Sub-100 nm Gold Nanoparticle Vesicles as a Drug Delivery Carrier enabling Rapid Drug Release upon Light Irradiation. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3900-3907.	8.0	138
31	Information Derived from Cluster Ions from DNA-Modified Gold Nanoparticles under Laser Desorption/Ionization: Analysis of Coverage, Structure, and Single-Nucleotide Polymorphism. Analytical Chemistry, 2013, 85, 1021-1028.	6.5	26
32	Laser Welding of Ruptured Intestinal Tissue Using Plasmonic Polypeptide Nanocomposite Solders. ACS Nano, 2013, 7, 2988-2998.	14.6	55
33	Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging. Nanotechnology, 2013, 24, 465101.	2.6	9
34	Reversible Photoinduced Formation and Manipulation of a Two-Dimensional Closely Packed Assembly of Polystyrene Nanospheres on a Metallic Nanostructure. Journal of Physical Chemistry C, 2013, 117, 2500-2506.	3.1	71
35	A plasmon ruler based on nanoscale photothermal effect. Optics Express, 2013, 21, 172.	3.4	62
36	Optotransfection of mammalian cells based on a femtosecond laser and facilitated by gold nanorods. Nanotechnology, 2013, 24, 435102.	2.6	2
37	The †nanobig rod†class of gold nanorods: optimized dimensions for improved i>in vivo /i>therapeutic and imaging efficacy. Nanotechnology, 2013, 24, 215102.	2.6	10
38	Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells. Annals of Biomedical Engineering, 2014, 42, 2392-2404.	2.5	52
39	A promising road with challenges: where are gold nanoparticles in translational research?. Nanomedicine, 2014, 9, 2353-2370.	3.3	58
40	Nearâ€Infrared Croconaine Rotaxanes and Doped Nanoparticles for Enhanced Aqueous Photothermal Heating. Chemistry - A European Journal, 2014, 20, 12628-12635.	3.3	38

#	Article	IF	CITATIONS
41	Enhancement of the 808 nm Photothermal Effect of Gold Nanorods by Thiolâ€Induced Selfâ€Assembly. Particle and Particle Systems Characterization, 2014, 31, 788-793.	2.3	16
42	Time-harmonic optical heating of plasmonic nanoparticles. Physical Review B, 2014, 90, .	3.2	34
43	CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation. Physical Chemistry Chemical Physics, 2014, 16, 26938-26945.	2.8	49
44	Colloidal stability of zwitterionic polymer-grafted gold nanoparticles in water. Journal of Colloid and Interface Science, 2014, 434, 188-194.	9.4	22
45	Copper Sulfide Self-Assembly Architectures with Improved Photothermal Performance. Langmuir, 2014, 30, 1416-1423.	3.5	66
46	Molecular Dynamics Simulation of Heat Transfer from a Gold Nanoparticle to a Water Pool. Journal of Physical Chemistry C, 2014, 118, 1285-1293.	3.1	64
47	Polypyrrole-Coated Chainlike Gold Nanoparticle Architectures with the 808 nm Photothermal Transduction Efficiency up to 70%. ACS Applied Materials & Interfaces, 2014, 6, 5860-5868.	8.0	83
48	Gold nanoparticles in a polycarbonate matrix for optical limiting against a CW laser. Laser Physics, 2014, 24, 105901.	1.2	12
49	Targeted Combinatorial Therapy Using Gold Nanostars as Theranostic Platforms. Journal of Physical Chemistry C, 2014, 118, 26313-26323.	3.1	42
50	Oxidative Nanopeeling Chemistry-Based Synthesis and Photodynamic and Photothermal Therapeutic Applications of Plasmonic Core-Petal Nanostructures. Journal of the American Chemical Society, 2014, 136, 16317-16325.	13.7	152
51	Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. ACS Nano, 2014, 8, 11529-11542.	14.6	220
52	Enhanced cellular uptake of amphiphilic gold nanoparticles with ester functionality. Chemical Communications, 2014, 50, 1265-1267.	4.1	14
53	Nanoparticles Heat through Light Localization. Nano Letters, 2014, 14, 4640-4645.	9.1	379
54	Picosecond-to-Nanosecond Dynamics of Plasmonic Nanobubbles from Pump–Probe Spectral Measurements of Aqueous Colloidal Gold Nanoparticles. Langmuir, 2014, 30, 9504-9513.	3.5	60
55	Efficient Intracellular Delivery of Molecules with High Cell Viability Using Nanosecond-Pulsed Laser-Activated Carbon Nanoparticles. ACS Nano, 2014, 8, 2889-2899.	14.6	50
56	Studying the Dynamics of Photochemical Reactions via Ultrafast Time-Resolved Infrared Spectroscopy of the Local Solvent. Journal of Physical Chemistry Letters, 2014, 5, 2974-2978.	4.6	10
57	Composite Photothermal Platform of Polypyrrole-Enveloped Fe ₃ O ₄ Nanoparticle Self-Assembled Superstructures. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14552-14561.	8.0	108
58	Functional Nanomaterials for Phototherapies of Cancer. Chemical Reviews, 2014, 114, 10869-10939.	47.7	2,120

#	Article	IF	CITATIONS
59	A density functional theory study of Na(H2O)n: an example of the impact of self-interaction corrections. European Physical Journal D, 2014, 68, 1.	1.3	13
60	Size Affects the Stability of the Photoacoustic Conversion of Gold Nanorods. Journal of Physical Chemistry C, 2014, 118, 16140-16146.	3.1	45
61	Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties. Japanese Journal of Applied Physics, 2014, 53, 035201.	1.5	9
62	Plasmon-Mediated Generation of Reactive Oxygen Species from Near-Infrared Light Excited Gold Nanocages for Photodynamic Therapy <i>in Vitro</i> . ACS Nano, 2014, 8, 7260-7271.	14.6	223
63	Kinetics of Nanobubble Generation Around Overheated Nanoparticles. Physical Review Letters, 2014, 112, 105701.	7.8	87
64	Laser Heating Tunability by Offâ€Resonant Irradiation of Gold Nanoparticles. Small, 2014, 10, 376-384.	10.0	21
65	Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale, 2014, 6, 9230.	5.6	63
66	Nucleic Acid-Regulated Perylene Probe-Induced Gold Nanoparticle Aggregation: A New Strategy for Colorimetric Sensing of Alkaline Phosphatase Activity and Inhibitor Screening. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1979-1985.	8.0	114
67	Comparison of Gold Nanoparticle Mediated Photoporation: Vapor Nanobubbles Outperform Direct Heating for Delivering Macromolecules in Live Cells. ACS Nano, 2014, 8, 6288-6296.	14.6	157
68	Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today, 2014, 9, 344-364.	11.9	276
69	Photothermally Controlled Gene Delivery by Reduced Graphene Oxide–Polyethylenimine Nanocomposite. Small, 2014, 10, 117-126.	10.0	245
70	Gold/diamond nanohybrids for quantum sensing applications. EPJ Quantum Technology, 2015, 2, .	6. 3	39
71	Cellular imaging using temporally flickering nanoparticles. Scientific Reports, 2015, 5, 8244.	3.3	23
72	Extensional vibration and size-dependent mechanical properties of single-crystal gold nanorods. Journal of Applied Physics, 2015, 118, .	2.5	10
73	Eine universelle Herstellungsmethode für extrem kleine magnetoâ€fluoreszierende Nanohybride. Angewandte Chemie, 2015, 127, 12645-12648.	2.0	3
75	Nearâ€Infraredâ€Activated Nanocalorifiers in Microcapsules: Vapor Bubble Generation for Inâ€Vivo Enhanced Cancer Therapy. Angewandte Chemie - International Edition, 2015, 54, 12782-12787.	13.8	118
76	Nanocompositeâ€Based Photodynamic Therapy Strategies for Deep Tumor Treatment. Small, 2015, 11, 5860-5887.	10.0	229
77	The Development of Smart, Multi-Responsive Core@Shell Composite Nanoparticles., 0,,.		3

#	Article	IF	CITATIONS
78	Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation. Journal of Materials Chemistry B, 2015, 3, 5189-5196.	5.8	43
79	Evaluating Broader Impacts of Nanoscale Thermal Transport Research. Nanoscale and Microscale Thermophysical Engineering, 2015, 19, 127-165.	2.6	69
80	Detection of Phase Transition in Photosensitive Liposomes by Advanced QCM. Journal of Physical Chemistry C, 2015, 119, 21395-21403.	3.1	14
81	Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. Journal of Biomedical Optics, 2015, 20, 051043.	2.6	48
82	Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods. Nano Letters, 2015, 15, 8282-8288.	9.1	105
83	Optical heating of metallic nanoparticles for fast injection of nanoscale sensor into living cells. , 2015, , .		0
84	Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation. Colloids and Surfaces B: Biointerfaces, 2015, 126, 569-574.	5.0	29
85	Modern Applications of Plasmonic Nanoparticles: From Energy to Health. Advanced Optical Materials, 2015, 3, 602-617.	7.3	209
86	Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with two-photon luminescent ruthenium(II) complexes: A way towards cancer therapy?. Biomaterials, 2015, 63, 102-114.	11.4	56
87	Photothermal response of hollow gold nanoshell to laser irradiation: Continuous wave, short and ultrashort pulse. International Journal of Heat and Mass Transfer, 2015, 89, 866-871.	4.8	53
88	Spatial modulation spectroscopy for imaging and quantitative analysis of single dye-doped organic nanoparticles inside cells. Nanoscale, 2015, 7, 9779-9785.	5.6	9
89	Laser-induced vapor nanobubbles for efficient delivery of macromolecules in live cells. Proceedings of SPIE, 2015, , .	0.8	2
91	Radiofrequency-Triggered Tumor-Targeting Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application. ACS Applied Materials & Delivery System for Theranostics Application for Theranostics Application for Theranostics Applied Materials & Delivery System for Theranostics & Delivery System fo	8.0	38
92	Picosecond Laser Fabrication of Functional Gold–Antibody Nanoconjugates for Biomedical Applications. Journal of Physical Chemistry C, 2015, 119, 9524-9533.	3.1	15
93	Water-soluble hyaluronic acid–hybridized polyaniline nanoparticles for effectively targeted photothermal therapy. Journal of Materials Chemistry B, 2015, 3, 3767-3776.	5.8	101
94	Gold Nanorod-Collagen Nanocomposites as Photothermal Nanosolders for Laser Welding of Ruptured Porcine Intestines. ACS Biomaterials Science and Engineering, 2015, 1, 805-815.	5 . 2	23
95	Superresolved labeling nanoscopy based on temporally flickering nanoparticles and the K-factor image deshadowing. Biomedical Optics Express, 2015, 6, 1262.	2.9	4
96	A Universal Approach to Ultrasmall Magnetoâ€Fluorescent Nanohybrids. Angewandte Chemie - International Edition, 2015, 54, 12468-12471.	13.8	26

#	ARTICLE	IF	CITATIONS
97	Near-IR mediated intracellular uncaging of NO from cell targeted hollow gold nanoparticles. Chemical Communications, 2015, 51, 17692-17695.	4.1	36
98	Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy. ACS Nano, 2015, 9, 11574-11581.	14.6	63
99	Ultrafast laser-excited vibration and elastic modulus of individual gold nanorods. Optics Letters, 2015, 40, 340.	3.3	9
100	Gold Nanomaterials at Work in Biomedicine. Chemical Reviews, 2015, 115, 10410-10488.	47.7	986
101	Sudden, Laser-Induced Heating through Silicon Nanopatterning. ACS Photonics, 2015, 2, 1681-1685.	6.6	7
102	Dissecting the Molecular Mechanism of Apoptosis during Photothermal Therapy Using Gold Nanoprisms. ACS Nano, 2015, 9, 52-61.	14.6	336
103	Laser irradiation of ferrous particles for hyperthermia as cancer therapy, a theoretical study. Lasers in Medical Science, 2015, 30, 165-172.	2.1	3
104	Investigation of laser heating effect of metallic nanoparticles on cancer treatment. IOP Conference Series: Materials Science and Engineering, 2016, 137, 012013.	0.6	2
105	Gold Nanoparticle Mediated Phototherapy for Cancer. Journal of Nanomaterials, 2016, 2016, 1-29.	2.7	65
106	Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. Journal of Functional Biomaterials, 2016, 7, 19.	4.4	32
107	Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles. International Journal of Molecular Sciences, 2016, 17, 1295.	4.1	113
108	A Universal Platform for Macromolecular Deliveryinto Cells Using Gold Nanoparticle Layers via the Photoporation Effect. Advanced Functional Materials, 2016, 26, 5787-5795.	14.9	55
109	Nanoplatforms for Plasmonâ€induced Heating and Thermometry. ChemNanoMat, 2016, 2, 520-527.	2.8	33
110	Temporal flickering of contrast agents for enhanced optical imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 439-448.	6.1	1
111	Controlled cellular fusion using optically trapped plasmonic nano-heaters. Proceedings of SPIE, 2016,	0.8	1
112	Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering. Applied Physics Letters, 2016, 109, .	3.3	66
113	Photothermal effects of plasmonic metal nanoparticles in a fluid. Journal of Applied Physics, 2016, 119,	2.5	37
114	Nanosecond-resolved temperature measurements using magnetic nanoparticles. Review of Scientific Instruments, 2016, 87, 054902.	1.3	6

#	Article	IF	CITATIONS
115	Role of Hydrogen Bonds in Thermal Transport across Hard/Soft Material Interfaces. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33326-33334.	8.0	91
116	Laser-assisted photoporation: fundamentals, technological advances and applications. Advances in Physics: X, 2016, 1, 596-620.	4.1	47
117	Leucocyte Membrane-Coated Janus Microcapsules for Enhanced Photothermal Cancer Treatment. Langmuir, 2016, 32, 3637-3644.	3.5	68
118	Peptide protected gold clusters: chemical synthesis and biomedical applications. Nanoscale, 2016, 8, 12095-12104.	5.6	97
119	Tubelike Gold Sphere–Attapulgite Nanocomposites with a High Photothermal Conversion Ability in the Near-Infrared Region for Enhanced Cancer Photothermal Therapy. ACS Applied Materials & Discrete Interfaces, 2016, 8, 10243-10252.	8.0	45
120	Ultrafast broadband optical limiting in simple pyrene-based molecules with high transmittance from visible to infrared regions. Journal of Materials Chemistry C, 2016, 4, 4647-4653.	5.5	63
121	Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. Journal of the American Chemical Society, 2016, 138, 6492-6497.	13.7	385
122	A versatile plasmonic thermogel for disinfection of antimicrobial resistant bacteria. Biomaterials, 2016, 97, 154-163.	11.4	29
123	Three-Dimensional Printable High-Temperature and High-Rate Heaters. ACS Nano, 2016, 10, 5272-5279.	14.6	161
124	The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway. Nanoscale, 2016, 8, 11748-11759.	5.6	21
125	Plasma resonance effects on bubble nucleation in flow boiling of a nanofluid irradiated by a pulsed laser beam. International Communications in Heat and Mass Transfer, 2016, 72, 90-94.	5.6	10
126	Acid-Responsive Polymeric Doxorubicin Prodrug Nanoparticles Encapsulating a Near-Infrared Dye for Combined Photothermal-Chemotherapy. Chemistry of Materials, 2016, 28, 7039-7050.	6.7	90
127	Mechanistic basis of light induced cytotoxicity of photoactive nanomaterials. NanoImpact, 2016, 3-4, 81-89.	4.5	13
128	Plasmonic-heating-induced nanofabrication on glass substrates. Nanoscale, 2016, 8, 18187-18196.	5.6	20
129	Tuning the Drug Loading and Release of DNAâ€Assembled Goldâ€Nanorod Superstructures. Advanced Materials, 2016, 28, 8511-8518.	21.0	88
130	Dynamic visualization of photothermal heating by gold nanocages using thermoresponsive elastin like polypeptides. Nanoscale, 2016, 8, 18912-18920.	5.6	14
131	Dual wavelength stimulation of polymeric nanoparticles for photothermal therapy. Lasers in Surgery and Medicine, 2016, 48, 893-902.	2.1	17
133	Thiol Molecules as Temperature Sensors for Surface-enhanced Raman Scattering Measurements of Heat-sensitive Materials. Chemistry Letters, 2016, 45, 1207-1209.	1.3	7

#	Article	IF	CITATIONS
134	High-Speed Calcium Imaging of Neuronal Activity Using Acousto-Optic Deflectors., 2016,, 331-356.		1
135	Plasmonic-Heating-Induced Nanoscale Phase Separation of Free Poly(<i>N</i> i>isopropylacrylamide) Molecules. Journal of Physical Chemistry C, 2016, 120, 17745-17752.	3.1	22
136	Direct Synthesis of Waterâ€Soluble Aptamerâ€Ag ₂ S Quantum Dots at Ambient Temperature for Specific Imaging and Photothermal Therapy of Cancer. Advanced Healthcare Materials, 2016, 5, 2437-2449.	7.6	67
137	Interactions of Biomaterial Surfaces with Proteins and Cells. , 2016, , 103-121.		O
138	Organicâ€Baseâ€Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie - International Edition, 2016, 55, 14569-14574.	13.8	480
139	Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors. Journal of Thermal Biology, 2016, 62, 84-89.	2.5	47
140	Thermal Contrast Amplification Reader Yielding 8-Fold Analytical Improvement for Disease Detection with Lateral Flow Assays. Analytical Chemistry, 2016, 88, 11774-11782.	6.5	81
141	Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods. Scientific Reports, 2016, 6, 29836.	3.3	114
142	Organicâ€Baseâ€Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie, 2016, 128, 14789-14794.	2.0	167
143	Multi-scale Thermal Conductivity Measurements for Cryobiological Applications. Frontiers in Nanobiomedical Research, 2016, , 125-171.	0.1	2
144	Hierarchical Plasmonic Nanorods and Upconversion Core–Satellite Nanoassemblies for Multimodal Imagingâ€Guided Combination Phototherapy. Advanced Materials, 2016, 28, 898-904.	21.0	240
145	Optical and electron microscopy study of laser-based intracellular molecule delivery using peptide-conjugated photodispersible gold nanoparticle agglomerates. Journal of Nanobiotechnology, 2016, 14, 2.	9.1	19
146	Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 2016, 235, 205-221.	9.9	429
147	Free-Standing Monolayered Metallic Nanoparticle Networks as Building Blocks for Plasmonic Nanoelectronic Junctions. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1594-1599.	8.0	14
148	Polymeric nanocarriers incorporating near-infrared absorbing agents for potent photothermal therapy of cancer. Polymer Journal, 2016, 48, 589-603.	2.7	57
149	Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal–chemotherapy. International Journal of Pharmaceutics, 2016, 497, 210-221.	5. 2	66
150	Plasmonic Nanofabrication through Optical Heating. Journal of Physical Chemistry C, 2016, 120, 6723-6732.	3.1	31
151	Value added cleaning and disinfection of the root canal: laser-activated irrigation and laser-induced photoporation. , 2016 , , .		0

#	Article	IF	CITATIONS
152	From curiosity to applications. A personal perspective on inorganic photochemistry. Chemical Science, 2016, 7, 2964-2986.	7.4	53
153	Laser-driven phase transitions in aqueous colloidal gold nanoparticles under high pressure: picosecond pump–probe study. Physical Chemistry Chemical Physics, 2016, 18, 4994-5004.	2.8	17
154	Photothermal effects of gold nanoparticles induced by light emitting diodes. Applied Thermal Engineering, 2016, 99, 1093-1100.	6.0	28
155	Study of Heat Transfer Dynamics from Gold Nanorods to the Environment <i>via</i> Time-Resolved Infrared Spectroscopy. ACS Nano, 2016, 10, 2144-2151.	14.6	109
156	Continuous-wave laser-assisted injection of single magnetic nanobeads into living cells. Sensors and Actuators B: Chemical, 2016, 230, 298-305.	7.8	12
157	Temporally flickering nanoparticles for compound cellular imaging and super resolution. Proceedings of SPIE, 2016, , .	0.8	1
158	Gold as a 6p-Element in Dense Lithium Aurides. Journal of the American Chemical Society, 2016, 138, 4046-4052.	13.7	101
159	Mean-field and linear regime approach to magnetic hyperthermia of core–shell nanoparticles: can tiny nanostructures fight cancer?. Nanoscale, 2016, 8, 8363-8377.	5.6	35
160	Gold Nanostructures for Cancer Imaging and Therapy. Springer Series in Biomaterials Science and Engineering, 2016, , 53-101.	1.0	4
161	Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods. Nanoscale, 2016, 8, 12524-12530.	5.6	85
162	Temperature of a metallic nanoparticle embedded in a phase change media exposed to radiation. International Journal of Heat and Mass Transfer, 2016, 93, 980-990.	4.8	6
163	Intracellular host–guest assembly of gold nanoparticles triggered by glutathione. Chemical Communications, 2016, 52, 582-585.	4.1	31
164	Polypeptide-Based Gold Nanoshells for Photothermal Therapy. SLAS Technology, 2017, 22, 18-25.	1.9	13
165	Biomimetic construction of protein-conjugated gold clusters for detecting Hg2+. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 80-84.	4.7	13
166	Bioconjugation of Gold Nanobipyramids for SERS Detection and Targeted Photothermal Therapy in Breast Cancer. ACS Biomaterials Science and Engineering, 2017, 3, 608-618.	5.2	97
167	<i>In situ</i> curing of liquid epoxy via gold-nanoparticle mediated photothermal heating. Nanotechnology, 2017, 28, 065601.	2.6	22
168	Selective inactivation of enzymes conjugated to nanoparticles using tuned laser illumination. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 767-774.	1.5	4
169	A photothermal biosensor for detection of C-reactive protein in human saliva. Sensors and Actuators B: Chemical, 2017, 246, 471-476.	7.8	38

#	Article	IF	CITATIONS
170	Neuartige Ans $\tilde{A}_{\mathbf{Z}}$ e f $\tilde{A}_{\mathbf{Y}}$ die laserbasierte Manipulation von Zellen mit Hilfe plasmoneninduzierter Effekte. , 2017, , .		1
171	Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews, 2017, 117, 6160-6224.	47.7	682
172	Lightâ€Fueled, Spatiotemporal Modulation of Mechanical Properties and Rapid Selfâ€Healing of Grapheneâ€Doped Supramolecular Elastomers. Advanced Functional Materials, 2017, 27, 1700767.	14.9	55
173	Photothermal Microscopy of Coupled Nanostructures and the Impact of Nanoscale Heating in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 11623-11631.	3.1	38
174	Self-assembled core–polyethylene glycol–lipid shell nanoparticles demonstrate high stability in shear flow. Physical Chemistry Chemical Physics, 2017, 19, 13294-13306.	2.8	23
175	Regulatory Aspects of Optical Methods and Exogenous Targets for Cancer Detection. Cancer Research, 2017, 77, 2197-2206.	0.9	74
176	Light-triggered release from dye-loaded fluorescent lipid nanocarriers in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 2017, 156, 414-421.	5.0	17
177	Optically Triggered Melting of DNA on Individual Semiconducting Carbon Nanotubes. Angewandte Chemie - International Edition, 2017, 56, 9326-9330.	13.8	8
178	A smart drug: a pH-responsive photothermal ablation agent for Golgi apparatus activated cancer therapy. Chemical Communications, 2017, 53, 6424-6427.	4.1	68
179	Lightâ€Triggered Assembly of Gold Nanoparticles for Photothermal Therapy and Photoacoustic Imaging of Tumors In Vivo. Advanced Materials, 2017, 29, 1604894.	21.0	444
180	Multiscale Thermal Property Measurements for Biomedical Applications. ACS Biomaterials Science and Engineering, 2017, 3, 2669-2691.	5.2	18
181	Enhancing the photothermal stability and photothermal efficacy of AuNRs and AuNTs by grafting with Ru(<scp>ii</scp>) complexes. Journal of Materials Chemistry B, 2017, 5, 671-678.	5.8	17
182	Poly(<i>N</i> â€phenylglycine)â€Based Nanoparticles as Highly Effective and Targeted Nearâ€Infrared Photothermal Therapy/Photodynamic Therapeutic Agents for Malignant Melanoma. Small, 2017, 13, 1602496.	10.0	88
183	Tantalum Sulfide Nanosheets as a Theranostic Nanoplatform for Computed Tomography Imagingâ€Guided Combinatorial Chemoâ€Photothermal Therapy. Advanced Functional Materials, 2017, 27, 1703261.	14.9	89
184	Influence of thermalization on thermal conduction through molecular junctions: Computational study of PEG oligomers. Journal of Chemical Physics, 2017, 147, 084701.	3.0	31
185	Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging. Analytical Chemistry, 2017, 89, 8704-8712.	6.5	8
186	Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating. Small, 2017, 13, 1700841.	10.0	34
187	Optically Triggered Melting of DNA on Individual Semiconducting Carbon Nanotubes. Angewandte Chemie, 2017, 129, 9454-9458.	2.0	3

#	Article	IF	CITATIONS
188	Near-Infrared Chromophore Functionalized Soft Actuator with Ultrafast Photoresponsive Speed and Superior Mechanical Property. Journal of the American Chemical Society, 2017, 139, 11333-11336.	13.7	180
189	Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution. Journal of Chemical Physics, 2017, 147, 214506.	3.0	6
190	Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Materials, 2017, 9, e454-e454.	7.9	176
191	Polyfluorenylacetylene for near-infrared laser protection: polymer synthesis, optical limiting mechanism and relationship between molecular structure and properties. RSC Advances, 2017, 7, 53785-53796.	3.6	1
192	Gold Nanorod Induced Warming of Embryos from the Cryogenic State Enhances Viability. ACS Nano, 2017, 11, 7869-7878.	14.6	106
193	Long-Range Plasmon Field and Plasmoelectric Effect on Catalysis Revealed by Shell-Thickness-Tunable Pinhole-Free Au@SiO ₂ Core–Shell Nanoparticles: A Case Study of ⟨i⟩p⟨/i⟩-Nitrophenol Reduction. ACS Catalysis, 2017, 7, 5391-5398.	11.2	73
194	Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chemical Society Reviews, 2017, 46, 158-196.	38.1	329
195	Engineering Al 1 Minibody-Conjugated, Polypeptide-Based Gold Nanoshells for Prostate Stem Cell Antigen (PSCA)–Targeted Photothermal Therapy. SLAS Technology, 2017, 22, 26-35.	1.9	11
196	Terahertz thermometry of gold nanospheres in water. , 2017, , .		0
197	Simulation of nanoparticle-mediated near-infrared thermal therapy using GATE. Biomedical Optics Express, 2017, 8, 1665.	2.9	17
198	Modulation of cardiomyocyte activity using pulsed laser irradiated gold nanoparticles. Biomedical Optics Express, 2017, 8, 177.	2.9	35
199	Analysis of poration-induced changes in cells from laser-activated plasmonic substrates. Biomedical Optics Express, 2017, 8, 4756.	2.9	16
200	Sequential and selective localized optical heating in water via on-chip dielectric nanopatterning. Optics Express, 2017, 25, 17820.	3.4	1
201	A Nanotechnology-based Strategy to Increase the Efficiency of Cancer Diagnosis and Therapy: Folate-conjugated Gold Nanoparticles. Current Medicinal Chemistry, 2017, 24, 4399-4416.	2.4	71
202	Multiparametric analysis of anti-proliferative and apoptotic effects of gold nanoprisms on mouse and human primary and transformed cells, biodistribution and toxicity in vivo. Particle and Fibre Toxicology, 2017, 14, 41.	6.2	17
203	DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews, 2019, 119, 6459-6506.	47.7	768
204	In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers in Medical Science, 2018, 33, 917-926.	2.1	84
205	Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1026-1038.	2.8	42

#	Article	IF	CITATIONS
206	Nanomaterials for Cancer Precision Medicine. Advanced Materials, 2018, 30, e1705660.	21.0	136
207	Facile measurement of surface heat loss from polymer thin films via fluorescence thermometry. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 643-652.	2.1	4
208	A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon, 2018, 134, 519-530.	10.3	119
209	From plasmon-induced luminescence enhancement in gold nanorods to plasmon-induced luminescence turn-off: a way to control reshaping. Physical Chemistry Chemical Physics, 2018, 20, 12295-12302.	2.8	8
210	Pulsed Molecular Optomechanics in Plasmonic Nanocavities: From Nonlinear Vibrational Instabilities to Bond-Breaking. Physical Review X, 2018, 8, .	8.9	47
211	Synthesis of gold nanomaterials and their cancer-related biomedical applications: an update. 3 Biotech, 2018, 8, 113.	2.2	13
212	Morphological control of seedlessly-synthesized gold nanorods using binary surfactants. Nanotechnology, 2018, 29, 135601.	2.6	18
213	Rock the nucleus: significantly enhanced nuclear membrane permeability and gene transfection by plasmonic nanobubble induced nanomechanical transduction. Chemical Communications, 2018, 54, 2479-2482.	4.1	19
214	Simulation Studies of Photoacoustic Response from Gold-Silica Core-Shell Nanoparticles. Plasmonics, 2018, 13, 1833-1841.	3.4	19
215	Remotely controlled fusion of selected vesicles and living cells: a key issue review. Reports on Progress in Physics, 2018, 81, 032602.	20.1	17
216	Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated Fe ₂ O ₃ @Au nanocomplex. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 241-253.	2.8	46
217	Tailoring a nanostructured plasmonic absorber for high efficiency surface-assisted laser desorption/ionization. Physical Chemistry Chemical Physics, 2018, 20, 3424-3429.	2.8	3
219	Non-fluorescent Single-Molecule Approaches to Optical Microscopy. Springer Theses, 2018, , 7-35.	0.1	0
220	Liquid phase stabilization versus bubble formation at a nanoscale curved interface. Physical Review E, 2018, 97, 033106.	2.1	3
221	Effect of plasmonic coupling on photothermal behavior of random nanoparticles. Optics Communications, 2018, 420, 52-58.	2.1	17
222	Plasmonic Intracellular Delivery. , 2018, , .		2
223	Combination-Responsive MoO _{3–<i>x</i>} -Hybridized Hyaluronic Acid Hollow Nanospheres for Cancer Phototheranostics. ACS Applied Materials & Enterfaces, 2018, 10, 42088-42101.	8.0	41
224	Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells. Nano Letters, 2018, 18, 7935-7941.	9.1	54

#	ARTICLE	IF	CITATIONS
225	Plasmonics Yields Efficient Electron Transport via Assembly of Shell-Insulated Au Nanoparticles. IScience, 2018, 8, 213-221.	4.1	27
226	Plasmonic Nanoparticles Driven Enhanced Light Amplification in a Local 2D and 3D Self-Assembly. Nanomaterials, 2018, 8, 1051.	4.1	7
227	A Theoretical Model of Laser Heating Carbon Nanotubes. Nanomaterials, 2018, 8, 580.	4.1	14
228	Photothermal Heating of Plasmonic Nanoantennas: Influence on Trapped Particle Dynamics and Colloid Distribution. ACS Photonics, 2018, 5, 2878-2887.	6.6	69
229	Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia. Materials Science and Engineering C, 2018, 92, 547-553.	7.3	54
230	Small Saccharides as a Blanket around Proteins: A Computational Study. Journal of Physical Chemistry B, 2018, 122, 7277-7285.	2.6	11
231	Density-functional tight-binding approach for metal clusters, nanoparticles, surfaces and bulk: application to silver and gold. Journal of Physics Condensed Matter, 2018, 30, 303001.	1.8	24
232	Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid–Water Interfaces. ACS Applied Materials & Solid— Water Interfaces. ACS Applied Materials & Solid–Water Interfaces. ACS Applied Materials & Solid— Water Interfaces. ACS Applied Materials & Solid⧠Water Interfaces. ACS Applied Water Interfaces.	8.0	29
233	Tunable Collagen Microfluidic Platform to Study Nanoparticle Transport in theÂTumor Microenvironment. Methods in Molecular Biology, 2018, 1831, 159-178.	0.9	6
234	PEGylated "stealth―nanoparticles and liposomes. , 2018, , 1-26.		17
235	Advanced physical techniques for gene delivery based on membrane perforation. Drug Delivery, 2018, 25, 1516-1525.	5.7	91
236	Photothermal Effectiveness of Magnetite Nanoparticles: Dependence upon Particle Size Probed by Experiment and Simulation. Molecules, 2018, 23, 1234.	3.8	23
237	Application of Nanoparticles for Targeting G Protein-Coupled Receptors. International Journal of Molecular Sciences, 2018, 19, 2006.	4.1	23
238	Predicting the tissue depth for remote triggering of drug delivery systems. Journal of Controlled Release, 2018, 286, 55-63.	9.9	8
239	Gold with +4 and +6 Oxidation States in AuF ₄ and AuF ₆ . Journal of the American Chemical Society, 2018, 140, 9545-9550.	13.7	80
240	pH-sensitive prodrug conjugated polydopamine for NIR-triggered synergistic chemo-photothermal therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 260-271.	4.3	33
241	Intelligent MnO ₂ /Cu _{2â€"<i>x</i>} S for Multimode Imaging Diagnostic and Advanced Single-Laser Irradiated Photothermal/Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 17732-17741.	8.0	90
242	Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light: Science and Applications, 2018, 7, 47.	16.6	50

#	Article	IF	CITATIONS
243	Energy Relaxation and Thermal Transport in Molecules. , 2018, , 1-22.		0
244	Steel Wire Mesh as a Thermally Resistant SERS Substrate. Nanomaterials, 2018, 8, 663.	4.1	4
245	Multifunctional Nanotherapeutics for Photothermal Combination Therapy of Cancer. Advanced Therapeutics, 2018, 1, 1800049.	3.2	15
246	Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. Journal of Materials Chemistry B, 2018, 6, 4747-4755.	5.8	137
247	From Nanowarming to Thermoregulation: New Multiscale Applications of Bioheat Transfer. Annual Review of Biomedical Engineering, 2018, 20, 301-327.	12.3	22
248	Soft Materials Driven by Photothermal Effect and Their Applications. Advanced Optical Materials, 2018, 6, 1800458.	7.3	120
249	Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 236, 106599.	2.3	10
250	Photoablation of Human Vitreous Opacities by Light-Induced Vapor Nanobubbles. ACS Nano, 2019, 13, 8401-8416.	14.6	36
251	Plasmonic Photothermal Nanoparticles for Biomedical Applications. Advanced Science, 2019, 6, 1900471.	11.2	420
252	Non-Arrhenius Reaction-Diffusion Kinetics for Protein Inactivation over a Large Temperature Range. ACS Nano, 2019, 13, 8669-8679.	14.6	10
253	Photothermally-driven thermo-oxidative degradation of low density polyethylene: heterogeneous heating plus a complex reaction leads to homogeneous chemistry. Nanotechnology, 2019, 30, 475706.	2.6	11
254	Transient Photoinactivation of Cell Membrane Protein Activity without Genetic Modification by Molecular Hyperthermia. ACS Nano, 2019, 13, 12487-12499.	14.6	21
255	Synthesis of Metal Oxide Nanoparticles by Rapid, Highâ€Temperature 3D Microwave Heating. Advanced Functional Materials, 2019, 29, 1904282.	14.9	65
256	MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Physica Medica, 2019, 66, 124-132.	0.7	34
257	Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. Nanoscale, 2019, 11, 18183-18190.	5.6	25
258	Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111599.	3.8	63
259	Cellular responses to beating hydrogels to investigate mechanotransduction. Nature Communications, 2019, 10, 4027.	12.8	60
260	Energy Transport across Interfaces in Biomolecular Systems. Journal of Physical Chemistry B, 2019, 123, 9507-9524.	2.6	33

#	Article	IF	Citations
261	Gold Nanoparticle-Mediated Photoporation Enables Delivery of Macromolecules over a Wide Range of Molecular Weights in Human CD4+ T Cells. Crystals, 2019, 9, 411.	2.2	28
262	pH-Controlled Intracellular in Situ Reversible Assembly of a Photothermal Agent for Smart Chemo-Photothermal Synergetic Therapy and ATP Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39624-39632.	8.0	41
263	Non-photochemical laser-induced nucleation. Journal of Chemical Physics, 2019, 150, 040901.	3.0	44
264	Flow-Induced Transport via Optical Heating of a Single Gold Nanoparticle. Journal of Physical Chemistry C, 2019, 123, 4512-4522.	3.1	23
265	Construction of silica-encapsulated gold-silver core-shell nanorod: Atomic facets enrichment and plasmon enhanced catalytic activity with high stability and reusability. Materials and Design, 2019, 177, 107837.	7.0	21
266	Influence of Morphological Homogeneity of Superspherical Gold Nanoparticles on Plasmonic Photothermal Heat Generation. Particle and Particle Systems Characterization, 2019, 36, 1900131.	2.3	7
267	Continuous flow-based laser-assisted plasmonic heating: A new approach for photothermal energy conversion and utilization. Applied Energy, 2019, 247, 517-524.	10.1	27
268	Microscale direct measurement of localized photothermal heating in tissue-mimetic hydrogels. Scientific Reports, 2019, 9, 6546.	3.3	11
269	Photothermal Response of Hollow Gold Nanorods under Femtosecond Laser Irradiation. Nanomaterials, 2019, 9, 711.	4.1	19
270	New coupling mechanism of titanium nitride nanosphere dimers at short separation distances. Nanotechnology, 2019, 30, 335204.	2.6	3
271	Multifunctional MoO2-ICG nanoplatform for 808nm-mediated synergetic photodynamic/photothermal therapy. Applied Materials Today, 2019, 15, 472-481.	4.3	35
272	Iron oxide–gold core–shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1213-1219.	2.5	65
273	A general approach to the design of high-performance near-infrared (NIR) D-Ï€-A type fluorescent dyes. Chinese Chemical Letters, 2019, 30, 839-846.	9.0	85
274	Two-in-One Platform for High-Efficiency Intracellular Delivery and Cell Harvest: When a Photothermal Agent Meets a Thermoresponsive Polymer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12357-12366.	8.0	35
275	Surfactant-Controlled Photothermal Assembly of Nanoparticles and Microparticles for Rapid Concentration Measurement of Microbes. ACS Applied Bio Materials, 2019, 2, 1561-1568.	4.6	26
276	Mechanisms of Cell Death Induced by Optical Hyperthermia. , 2019, , 201-228.		9
277	Nanomaterials for Combined Thermo-Chemotherapy of Cancer., 2019,, 287-314.		0
278	Elastic and Inelastic Contributions to Thermal Transport between Chemical Groups and Thermal Rectification in Molecules. Journal of Physical Chemistry C, 2019, 123, 6256-6264.	3.1	13

#	Article	IF	CITATIONS
279	Surface plasmon resonance of naked gold nanoparticles for photodynamic inactivation of Escherichia coli. Gold Bulletin, 2019, 52, 51-60.	2.4	6
280	Gold nanoparticles in combinatorial cancer therapy strategies. Coordination Chemistry Reviews, 2019, 387, 299-324.	18.8	147
281	Noble Metal-Based Plasmonic Nanoparticles for SERS Imaging and Photothermal Therapy., 2019,, 83-109.		8
282	T98G Cell Death Induced by Photothermal Treatment with Hollow Gold Nanoshell-Coupled Silica Microrods Prepared from <i>Escherichia Coli</i> ACS Applied Materials & Samp; Interfaces, 2019, 11, 8831-8837.	8.0	13
283	Engineering Nanoscale Thermal Transport: Size- and Spacing-Dependent Cooling of Nanostructures. Physical Review Applied, 2019, 11 , .	3.8	28
284	Unprecedented efficient electron transport across Au nanoparticles with up to 25-nm insulating SiO2-shells. Scientific Reports, 2019, 9, 18336.	3.3	9
285	Effects and side effects of plasmonic photothermal therapy in brain tissue. Cancer Nanotechnology, 2019, 10, .	3.7	13
286	First instance of settlement by cryopreserved coral larvae in symbiotic association with dinoflagellates. Scientific Reports, 2019, 9, 18851.	3.3	25
287	siRNA Delivery Using Dithiocarbamate-Anchored Oligonucleotides on Gold Nanorods. Bioconjugate Chemistry, 2019, 30, 443-453.	3.6	20
288	Vapreotide-mediated hierarchical mineralized Ag/Au nanoshells for photothermal anti-tumor therapy. Nanotechnology, 2019, 30, 055602.	2.6	5
289	Metal alloy hybrid nanoparticles with enhanced catalytic activities in fuel cell applications. Journal of Solid State Chemistry, 2019, 270, 295-303.	2.9	26
291	Multi-Modal Nano Particle Labeling of Neurons. Frontiers in Neuroscience, 2019, 13, 12.	2.8	7
292	Introduction to Hyperthermia. , 2019, , 1-10.		4
293	Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chemical Reviews, 2019, 119, 1456-1518.	47.7	80
294	Quantifying and Comparing the Near-Field Enhancement, Photothermal Conversion, and Local Heating Performance of Plasmonic SiO2@Au Core-Shell Nanoparticles. Plasmonics, 2019, 14, 1019-1027.	3.4	15
295	Advanced Nearâ€Infrared Lightâ€Responsive Nanomaterials as Therapeutic Platforms for Cancer Therapy. Advanced Therapeutics, 2019, 2, 1800090.	3 . 2	27
296	Investigating the mechanisms behind extensive death in human cancer cells following nanoparticle assisted photo-thermo-radiotherapy. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101600.	2.6	9
297	pH-responsive polydopamine nanoparticles for photothermally promoted gene delivery. Materials Science and Engineering C, 2020, 108, 110396.	7.3	40

#	Article	lF	CITATIONS
298	Pulsed photoacoustic and photothermal response of gold nanoparticles. Nanotechnology, 2020, 31, 035704.	2.6	9
299	Single point single-cell nanoparticle mediated pulsed laser optoporation. Analyst, The, 2020, 145, 523-529.	3.5	17
300	Nanoparticle-based photothermal heating to drive chemical reactions within a solid: using inhomogeneous polymer degradation to manipulate mechanical properties and segregate carbonaceous by-products. Nanoscale, 2020, 12, 904-923.	5.6	6
301	Quantum Plasmonics in Nanorods: A Time-Dependent Orbital-Free Density Functional Theory Study with Thousands of Atoms. Journal of Physical Chemistry C, 2020, 124, 945-951.	3.1	13
302	Engineering gold nanoparticles for photothermal therapy, surgery, and imaging., 2020, , 175-193.		8
303	Liquid–Liquid Interface Can Promote Micro-Scale Thermal Marangoni Convection in Liquid Binary Mixtures. Journal of Physical Chemistry C, 2020, 124, 2427-2438.	3.1	7
304	Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications. International Journal of Hydrogen Energy, 2020, 45, 30288-30324.	7.1	118
305	Metal-free two-dimensional nanomaterial-mediated photothermal tumor therapy. Smart Materials in Medicine, 2020, 1, 150-167.	6.7	28
306	Gold nanocages for effective photothermal conversion and related applications. Chemical Science, 2020, 11, 12955-12973.	7.4	46
307	Improving Plasmonic Photothermal Therapy of Lung Cancer Cells with Anti-EGFR Targeted Gold Nanorods. Nanomaterials, 2020, 10, 1307.	4.1	16
308	Femtosecond Laser Pulse Excitation of DNA-Labeled Gold Nanoparticles: Establishing a Quantitative Local Nanothermometer for Biological Applications. ACS Nano, 2020, 14, 8570-8583.	14.6	33
309	Engineering near-infrared vision. Science, 2020, 370, 925-925.	12.6	0
310	Controlling Light, Heat, and Vibrations in Plasmonics and Phononics. Advanced Optical Materials, 2020, 8, 2001225.	7.3	46
311	Studies of Nanoparticle-Assisted Photoannealing of Polydimethylsiloxane by Time-Harmonic Photothermal Microscopy. ACS Photonics, 2020, 7, 2601-2609.	6.6	7
312	Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Advances in Colloid and Interface Science, 2020, 283, 102236.	14.7	46
313	Development and optimization of thermal contrast amplification lateral flow immunoassays for ultrasensitive HIV p24 protein detection. Microsystems and Nanoengineering, 2020, 6, 54.	7.0	33
314	Transient photothermal inactivation of Escherichia coli stained with visible dyes by using a nanosecond pulsed laser. Scientific Reports, 2020, 10, 17805.	3.3	7
315	Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems, 2020, 2, 2000128.	6.1	244

#	ARTICLE	IF	CITATIONS
316	Femtosecond Plasmonic Laser Nanosurgery (fs-PLN) mediated by molecularly targeted gold nanospheres at ultra-low pulse fluences. Scientific Reports, 2020, 10, 12387.	3.3	13
317	A Quantitative Optical Microscopy Method for Investigating the Laser-Induced Transient Melting Behavior of a Nanoparticle-Laden Polymer System in a Microenvironment. Journal of Physical Chemistry C, 2020, 124, 18784-18796.	3.1	4
318	Optical Properties and Applications of Plasmonicâ€Metal Nanoparticles. Advanced Functional Materials, 2020, 30, 2005400.	14.9	265
319	An Inside Job: Applications of Intracellular Single Domain Antibodies. Biomolecules, 2020, 10, 1663.	4.0	19
320	Persistent coherence of quantum superpositions in an optimally doped cuprate revealed by 2D spectroscopy. Science Advances, 2020, 6, eaaw9932.	10.3	9
321	Near-infrared nanosecond-pulsed laser-activated highly efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale, 2020, 12, 12057-12067.	5.6	49
322	Programmable ROSâ€Mediated Cancer Therapy via Magnetoâ€Inductions. Advanced Science, 2020, 7, 1902933.	11.2	43
323	New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine, 2020, 15, 1127-1145.	3.3	33
324	Targeted hyperthermia with plasmonic nanoparticles. Frontiers of Nanoscience, 2020, 16, 307-352.	0.6	8
325	Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials. Nanoscale, 2020, 12, 12346-12356.	5.6	20
326	Cell organelle targeting of near-infrared croconaine dye controls photothermal outcome. Chemical Communications, 2020, 56, 6977-6980.	4.1	12
327	Photoinduced Temperature Gradients in Subâ€Wavelength Plasmonic Structures: The Thermoplasmonics of Nanocones. Advanced Optical Materials, 2020, 8, 2000568.	7.3	14
328	Restoring light sensitivity using tunable near-infrared sensors. Science, 2020, 368, 1108-1113.	12.6	77
329	Unblinding with infrared nanosensors. Science, 2020, 368, 1057-1058.	12.6	10
330	Docetaxel gold complex nanoflowers: A chemo-biological evaluation for their use as nanotherapeutics. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111172.	5.0	5
331	Surface-Mediated Intracellular Delivery by Physical Membrane Disruption. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31054-31078.	8.0	22
332	Biocompatible Direct Deposition of Functionalized Nanoparticles Using Shrinking Surface Plasmonic Bubble. Advanced Materials Interfaces, 2020, 7, 2000597.	3.7	14
333	Photothermal response of plasmonic nanofillers for membrane distillation. Journal of Chemical Physics, 2020, 152, 114102.	3.0	16

#	Article	IF	Citations
334	Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors. Acta Biomaterialia, 2020, 107, 260-271.	8.3	39
335	Enhanced Heat Transfer with Metal-Dielectric Core-Shell Nanoparticles. Physical Review Applied, 2020, 13, .	3.8	19
336	Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie, 2020, 132, 8686-8693.	2.0	6
337	Accurate and Real-Time Temperature Monitoring during MR Imaging Guided PTT. Nano Letters, 2020, 20, 2522-2529.	9.1	56
338	Understanding Optomagnetic Interactions in Fe Nanowire–Au Nanoring Hybrid Structures Synthesized through Coaxial Lithography. Chemistry of Materials, 2020, 32, 2843-2851.	6.7	2
339	Kinetics of molecular decomposition under irradiation of gold nanoparticles with nanosecond laser pulses—A 5-Bromouracil case study. Journal of Chemical Physics, 2020, 152, 124712.	3.0	6
340	Quantum Leap from Gold and Silver to Aluminum Nanoplasmonics for Enhanced Biomedical Applications. Applied Sciences (Switzerland), 2020, 10, 4210.	2.5	14
341	Boron-Doped Nanodiamonds as Anticancer Agents: En Route to Hyperthermia/Thermoablation Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 4446-4453.	5.2	16
342	Plasmonic Material Engineering for Targeted Therapeutics. Advanced Optical Materials, 2020, 8, 2000616.	7.3	2
343	Size- and Surface-Dependent Photoresponses of Solution-Processed Aluminum Nanoparticles. ACS Photonics, 2020, 7, 637-645.	6.6	7
344	Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie - International Edition, 2020, 59, 8608-8615.	13.8	36
345	Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. European Journal of Pharmaceutical Sciences, 2020, 145, 105235.	4.0	68
346	Tunable thermo-piezo-plasmonic effect on core/shell nanoparticles under laser irradiation and external electric field. Optical and Quantum Electronics, 2020, 52, 1.	3.3	2
347	Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics, 2020, 10, 4359-4373.	10.0	59
348	Effects of graphene layer and gold nanoparticles on sensitivity of humidity sensors. Journal of Micromanufacturing, 2020, 3, 20-27.	1.1	4
349	Photothermal bactericidal surfaces: killing bacteria using light instead of biocides. Biomaterials Science, 2021, 9, 10-22.	5.4	109
350	Laserâ€induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. Journal of Biophotonics, 2021, 14, e202000161.	2.3	33
351	A novel colorimetric assay for calcium ion and calmodulin detection based on gold nanoparticles. Inorganic and Nano-Metal Chemistry, 2021, 51, 673-682.	1.6	1

#	Article	IF	CITATIONS
352	Radiosensitizing and Phototherapeutic Effects of AuNPs are Mediated by Differential Noxa and Bim Gene Expression in MCF-7 Breast Cancer Cell Line. IEEE Transactions on Nanobioscience, 2021, 20, 20-27.	3.3	3
353	Controlled preparation and photothermal properties of polydopamine submicrospheres. Inorganic Chemistry Communication, 2021, 124, 108395.	3.9	9
354	Chromophoreâ€Free Sealing and Repair of Soft Tissues Using Midâ€Infrared Lightâ€Activated Biosealants. Advanced Functional Materials, 2021, 31, 2007811.	14.9	9
355	Radiation induced plasmonic nanobubbles: fundamentals, applications and prospects. AIMS Energy, 2021, 9, 676-713·.	1.9	7
356	Water-compatible Colloidal Nanocrystals. RSC Nanoscience and Nanotechnology, 2021, , 47-76.	0.2	0
357	Aggregation affects optical properties and photothermal heating of gold nanospheres. Scientific Reports, 2021, 11, 898.	3.3	16
358	Thermal analysis of laser irradiation-gold nanorod combinations at 808 nm, 940 nm, 975 nm and 10 wavelengths in breast cancer model. International Journal of Hyperthermia, 2021, 38, 1099-1110.	064 n 2.5	m 14
359	Plasmonic carriers responsive to pulsed laser irradiation: a review of mechanisms, design, and applications. New Journal of Chemistry, 2021, 45, 15131-15157.	2.8	6
360	Fluorescence imaging-guided cancer photothermal therapy using polydopamine and graphene quantum dot-capped Prussian blue nanocubes. RSC Advances, 2021, 11, 8420-8429.	3.6	10
361	The video-rate imaging of sub-10 nm plasmonic nanoparticles in a cellular medium free of background scattering. Chemical Science, 2021, 12, 3017-3024.	7.4	12
362	Crystal structures and superconductivity of lithium and fluorine implanted gold hydrides under high pressures. Physical Chemistry Chemical Physics, 2021, 23, 21544-21553.	2.8	3
364	Dynamics, heat and mass transfer of a plasmonic bubble on a solid surface. International Journal of Heat and Mass Transfer, 2021, 167, 120814.	4.8	4
365	Can titanium oxide nanotubes facilitate intracellular delivery by laser-assisted photoporation?. Applied Surface Science, 2021, 543, 148815.	6.1	14
366	Near-infrared light–triggered platelet arsenal for combined photothermal-immunotherapy against cancer. Science Advances, 2021, 7, .	10.3	57
367	Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them—a review. Environmental Science and Pollution Research, 2021, 28, 22203-22220.	5. 3	9
368	A Study on Improving the Efficacy of Nanoparticle-Based Photothermal Therapy: From Nanoscale to Micron Scale to Millimeter Scale. Materials, 2021, 14, 2407.	2.9	5
369	Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. Micromachines, 2021, 12, 631.	2.9	13
370	Conjugated Organic Photothermal Films for Spatiotemporal Thermal Engineering. Advanced Materials, 2021, 33, e2005940.	21.0	26

#	Article	IF	CITATIONS
371	Nano―and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. Small, 2021, 17, e2100165.	10.0	7
372	Heat transfer and thermoregulation within single cells revealed by transient plasmonic imaging. CheM, 2021, 7, 1569-1587.	11.7	25
373	Facile Synthesis of Thermo-Sensitive Composite Hydrogel with Well Dispersed Ag Nanoparticles for Application in Superior Antibacterial Infections. Journal of Biomedical Nanotechnology, 2021, 17, 1148-1159.	1.1	4
374	Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Earlyâ€Stage Breast Cancer Therapy Using Gold Nanorods. Advanced Healthcare Materials, 2021, 10, e2100636.	7.6	8
375	Environment-dependent vibrational heat transport in molecular junctions: Rectification, quantum effects, vibrational mismatch. Physical Review E, 2021, 104, 014148.	2.1	2
376	Delivery of Foreign Materials into Adherent Cells by Gold Nanoparticle-Mediated Photoporation. Membranes, 2021, 11, 550.	3.0	3
377	Influencing factors and strategies of enhancing nanoparticles into tumors inÂvivo. Acta Pharmaceutica Sinica B, 2021, 11, 2265-2285.	12.0	94
378	Solar water sterilization enabled by photothermal nanomaterials. Nano Energy, 2021, 87, 106158.	16.0	58
379	Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. Photoacoustics, 2021, 23, 100281.	7.8	18
380	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815.	9.1	49
381	Photothermal lateral flow immunoassay using microfiber long-period grating. Sensors and Actuators B: Chemical, 2021, 344, 130283.	7.8	14
382	A State-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum. Chemical Engineering Journal, 2022, 429, 132322.	12.7	56
383	Nanotechnology for stroke treatment. , 2022, , 339-369.		0
384	Terahertz pump–probe of liquid water at 12.3 THz. Physical Chemistry Chemical Physics, 2022, 24, 653-665.	2.8	14
385	Parametric study of temperature distribution in plasmon-assisted photocatalysis. Nanoscale, 2020, 12, 17821-17832.	5.6	23
386	Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia. Journal of Biomechanical Engineering, 2021, 143, .	1.3	7
387	Experimental investigation of parameters influencing plasmonic nanoparticle-mediated bubble generation with nanosecond laser pulses. Journal of Biomedical Optics, 2019, 24, 1.	2.6	17
388	Light-activated microbubbles around gold nanorods for photoacoustic microsurgery. , 2018, , .		2

#	Article	IF	CITATIONS
389	Size-dependent thresholds for melting and nanobubble generation using pulsed-laser irradiated gold nanoparticles. , $2018, \ldots$		4
390	Combined Nd:YAG and Er:YAG lasers for real-time closed-loop tissue-specific laser osteotomy. Biomedical Optics Express, 2020, 11, 1790.	2.9	19
391	Terahertz thermometry of gold nanospheres in water. Optics Letters, 2016, 41, 5801.	3.3	18
392	Controlling light with light in silver-nanospheres and gold-nanorods colloids. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2019, 13, 1e-16e.	0.1	2
393	Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. Journal of Functional Biomaterials, 2016, 7, 19.	4.4	22
394	Remote Hyperthermia, Drug Delivery and Thermometry: The Multifunctional Platform Provided by Nanoparticles. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	5
395	Nanoparticle-Mediated Heating: A Theoretical Study for Photothermal Treatment and Photo Immunotherapy. Bioanalysis, 2021, , 89-114.	0.1	0
396	Time-Harmonic Photothermal Heating by Nanoparticles in a Non-Fourier Medium. Journal of Physical Chemistry C, 2021, 125, 22856-22862.	3.1	4
397	A combination strategy based on an Au nanorod/doxorubicin gel via mild photothermal therapy combined with antigen-capturing liposomes and anti-PD-L1 agent promote a positive shift in the cancer-immunity cycle. Acta Biomaterialia, 2021, 136, 495-507.	8.3	28
399	Molecular-Level Understanding of Efficient Thermal Transport across the Silica–Water Interface. Journal of Physical Chemistry C, 2021, 125, 24115-24125.	3.1	10
400	Plasmonic Nanobubbles–A Perspective. Journal of Physical Chemistry C, 2021, 125, 25357-25368.	3.1	19
401	Metamaterial Light Absorber. The Review of Laser Engineering, 2016, 44, 27.	0.0	0
402	Plasmonics Yields Surprisingly Efficient Electron Transport Via Assembly of Shell-Insulated Au Nanoparticles. SSRN Electronic Journal, 0, , .	0.4	0
404	Instant Intracellular Delivery of miRNA via Photothermal Effect Induced on Plasmonic Pyramid Arrays. Advanced Functional Materials, 2022, 32, 2107999.	14.9	6
405	Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2101428.	7.6	27
406	Numerical Analysis of Breast Cancer Cell with Gold Nanoparticles Necrosis by Laser Hyperthermia. Polytechnic Journal, 2020, 10, 138-144.	0.2	0
407	Energy Relaxation and Thermal Transport in Molecules. , 2020, , 865-885.		0
408	Considering variables in ultra-short laser pulses to release nucleic acids from the surface of gold nanoparticles. , 2020, , .		0

#	Article	IF	CITATIONS
411	Mechanism of transient photothermal inactivation of bacteria using a wavelength-tunable nanosecond pulsed laser. Scientific Reports, 2021, 11, 22310.	3.3	4
412	Biocompatible BSA-Ag2S nanoparticles for photothermal therapy of cancer. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112295.	5.0	13
413	Optically sensitive isolated silver nano-dots development by broad ion implantation on nitrogen ion-induced pre-patterned silicon nano-templates. Applied Surface Science, 2022, 578, 152079.	6.1	5
414	Current Trends in Engineered Gold Nanoparticles for Cancer Therapy. Nanotechnology in the Life Sciences, 2021, , 1-40.	0.6	3
415	Spatiotemporal Evolution of Temperature During Transient Heating of Nanoparticle Arrays. Journal of Heat Transfer, 2022, 144, .	2.1	4
416	Electron-phonon effects on the photoacoustic response of gold core-silica shell nanoparticles : from the linear regime to nanocavitation. Journal of Chemical Physics, 2022, 156, 084701.	3.0	2
417	Flower Pollen-Based Photosensitization Process for Enhanced Solar Disinfection of Drinking Water: Reactor Design and Inactivation Mechanisms. ACS ES&T Engineering, 2022, 2, 629-641.	7.6	19
418	Core-cap heterodimer independent of polarization direction of excitation light. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 037801.	0.5	0
419	Photothermal inactivation of universal viral particles by localized surface plasmon resonance mediated heating filter membrane. Scientific Reports, 2022, 12, 1724.	3.3	3
420	Validation of an automated system for the experimentation of photothermal therapies on cell cultures. Sensors and Actuators A: Physical, 2022, 337, 113426.	4.1	O
421	PERSPECTIVE: Critical Cooling and Warming Rates as a Function of CPA Concentration. Cryo-Letters, 2020, 41, 185-193.	0.3	4
422	Single pulse heating of a nanoparticle array for biological applications. Nanoscale Advances, 2022, 4, 2090-2097.	4.6	3
423	Hyperthermia: Clinical Applications and Theoretical Models. Journal of Biosciences and Medicines, 2022, 10, 56-71.	0.2	0
424	High-Intensity Focused Ultrasound energized nanoparticles-mediated enhanced thermal ablation of tumors: Recent Progress and a Proposed Method for Distinguishing Heat Sources. Annual Review of Heat Transfer, 2022, , .	1.0	0
425	Gold Nanorods for Doxorubicin Delivery: Numerical Analysis of Electric Field Enhancement, Optical Properties and Drug Loading/Releasing Efficiency. Materials, 2022, 15, 1764.	2.9	10
426	Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management. Nanomaterials, 2022, 12, 922.	4.1	19
427	ATP-Triggered Intracellular In Situ Aggregation of a Gold-Nanoparticle-Equipped Triple-Helix Molecular Switch for Fluorescence Imaging and Photothermal Tumor Therapy. Langmuir, 2022, 38, 3755-3764.	3.5	12
428	Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics. Nature Communications, 2022, 13, 1687.	12.8	16

#	Article	IF	CITATIONS
429	Single-Cell Photothermal Analysis Induced by MoS2 Nanoparticles by Raman Spectroscopy. Frontiers in Bioengineering and Biotechnology, 2022, 10, 844011.	4.1	4
430	Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms. Nature Communications, 2022, 13, 1255.	12.8	33
431	Au with sp ³ Hybridization in Li ₅ AuP ₂ . Journal of Physical Chemistry Letters, 2022, 13, 236-242.	4.6	2
432	Azulene-Containing Squaraines for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19192-19203.	8.0	20
433	Gold@Carbon Nitride Yolk and Core–Shell Nanohybrids. ACS Applied Materials & Diterfaces, 2022, 14, 21340-21347.	8.0	6
434	Folate-Targeted PEGylated Magnetoliposomes for Hyperthermia-Mediated Controlled Release of Doxorubicin. Frontiers in Pharmacology, 2022, 13, 854430.	3.5	14
435	Upconversion Nanoparticle@Au Core–Satellite Assemblies for <i>In Situ</i> Amplified Imaging of MicroRNA in Living Cells and Combined Cancer Phototherapy. Analytical Chemistry, 2022, 94, 7075-7083.	6.5	12
436	Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials, 2022, 286, 121567.	11.4	19
437	Challenges for optical nanothermometry in biological environments. Chemical Society Reviews, 2022, 51, 4223-4242.	38.1	38
438	A 2D nanotheranostic platform based on graphene oxide and phase-change materials for bimodal CT/MR imaging, NIR-activated drug release, and synergistic thermo-chemotherapy. Nanotheranostics, 2022, 6, 350-364.	5.2	13
439	Numerical Simulation on Thermal Response of Laser-Irradiated Biological Tissues Embedded with Liquid Metal Nanoparticles. Journal of Thermal Science, 2022, 31, 1220-1235.	1.9	7
440	Injectable and Selfâ€Healing Polysaccharide Hydrogel Loading Molybdenum Disulfide Nanoflakes for Synergistic Photothermalâ€Photodynamic Therapy of Breast Cancer. Macromolecular Bioscience, 2022, 22, .	4.1	13
441	Nanoparticleâ€essisted, imageâ€guided laser interstitial thermal therapy for cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	6.1	4
442	Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. Journal of Controlled Release, 2022, 348, 518-536.	9.9	10
443	Curvature and temperature-dependent thermal interface conductance between nanoscale-gold and water. Journal of Chemical Physics, 0, , .	3.0	4
444	Asymmetrical Spectral Continuum between Anti-Stokes and Stokes Scattering Revealed in Low-Frequency Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 11193-11200.	3.1	3
445	Laserâ€induced heating of polydimethylsiloxaneâ€magnetite nanocomposites for hyperthermic inhibition of tripleâ€negative breast cancer cell proliferation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 0, , .	3.4	1
446	Photothermal heating of titanium nitride nanomaterials for fast and uniform laser warming of cryopreserved biomaterials. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	4

#	Article	IF	CITATIONS
447	Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH. Polymers, 2022, 14, 3151.	4.5	0
448	Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Advances in Colloid and Interface Science, 2022, 308, 102753.	14.7	46
449	Crystal Structures and Electronic Properties of BaAu Compound under High Pressure. Materials, 2022, 15, 7381.	2.9	0
450	Bioanalytical Applications of Graphene Quantum Dots for Circulating Cell-Free Nucleic Acids: A Review. ACS Omega, 2022, 7, 39586-39602.	3.5	14
451	Optical properties of nanoparticles dispersed in ambient medium and their dependences on temperature. Current Nanomaterials, 2022, 08, .	0.4	2
452	Nanochemistry byÂThermoplasmonic Effects. Topics in Applied Physics, 2022, , 71-91.	0.8	3
453	Two-dimentional photo-thermo-polimerisation of MMA with Cr3+ doped nanoheaters. Materials Research Bulletin, 2023, 160, 112119.	5.2	1
454	Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioactive Materials, 2023, 23, 471-507.	15.6	16
455	Gold Nanoparticles-Mediated Photothermal Therapy of Pancreas Using GATE: A New Simulation Platform. Cancers, 2022, 14, 5686.	3.7	1
456	Seedless Synthesis of Disulfide-Grafted Gold Nanoflowers with Size and Shape Control and Their Photothermally Mediated Cell Perforation. Chemistry of Materials, 2023, 35, 163-176.	6.7	1
457	Nanomaterial-mediated photoporation for intracellular delivery. Acta Biomaterialia, 2023, 157, 24-48.	8.3	7
458	Gold nanoparticles-based photothermal therapy for breast cancer. Photodiagnosis and Photodynamic Therapy, 2023, 42, 103312.	2.6	29
459	Gold-iron oxide nanoparticle: A unique multimodal theranostic approach for thrombosis. Applied Materials Today, 2023, 31, 101750.	4.3	4
460	High-coordinated BiV/BilV regulates photocatalytic selective activation of structural oxygen and self-generated H2O2 dominating an efficient synergistic sterilization. Applied Catalysis B: Environmental, 2023, 331, 122724.	20.2	10
461	Key Parameters in Phototherapy with Gold Nanorods Using Continuous Near Infrared Radiation. Advanced Materials Interfaces, 2023, 10, .	3.7	4
463	Phototheranostics: Combining Targeting, Imaging, Therapy. , 2023, , 649-691.		0
464	Enhanced Nanobubble Formation: Gold Nanoparticle Conjugation to $Q^{\hat{1}^2}$ Virus-like Particles. ACS Nano, 2023, 17, 7797-7805.	14.6	5
465	The Combination of Photothermal Therapy and Chemotherapy using Alginate-Modified Iron Oxide-Gold Nanohybrids Carrying Cisplatin. Journal of Biomedical Physics and Engineering, 2023, 13, .	0.9	0

#	Article	IF	CITATIONS
466	Rational Design of Biomaterials to Potentiate Cancer Thermal Therapy. Chemical Reviews, 2023, 123, 7326-7378.	47.7	28
467	Near-Field-Induced Ionization on Photo-Excited Gold Nanoparticles. Journal of Physical Chemistry C, 2023, 127, 10508-10514.	3.1	1
468	Advances in immunological and theranostic approaches of gold nanoparticles $\hat{a} \in \text{``A review. Inorganic}$ Chemistry Communication, 2023, 153, 110858.	3.9	3
469	Photothermal-Contrast Method Based on <i>In Situ</i> Gold Nanostructure Formation for Phenylalanine Detection in Human Blood. ACS Applied Nano Materials, 2023, 6, 12673-12678.	5.0	2
470	New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. Analytical Methods, 2023, 15, 4351-4376.	2.7	2
471	Noble Metal Nanoparticles in Biomedical Thermoplasmonics. Colloid Journal, 2023, 85, 500-519.	1.3	4
472	Effectiveness of Gold Nanorods of Different Sizes in Photothermal Therapy to Eliminate Melanoma and Glioblastoma Cells. International Journal of Molecular Sciences, 2023, 24, 13306.	4.1	0
473	Thermal-Induced Convective Flow around Core–Shell Gold Nanodimers under Continuous-Wave Laser Irradiation: Implications for Nanofluidics. ACS Applied Nano Materials, 2023, 6, 18016-18028.	5.0	1
474	Influence of photothermal and plasma-mediated nano-processes on fluence thresholds for ultrafast laser-induced cavitation around gold nanoparticles. Nanoscale Advances, 0, , .	4.6	0
475	Influence of plasmonic and thermo-optical effects of silver nanoparticles on near-infrared optical thermometry in Nd3+-doped TeO2–ZnO glasses. Journal of Luminescence, 2024, 265, 120222.	3.1	0
476	Cryopreservation of oocytes: history, achievements and future. , 2023, 53, 0902.		0
477	Laser Direct Writing of Crystallized TiO ₂ by Photothermal Effect Induced by Gold Nanoparticles. Advanced Materials Technologies, 2024, 9, .	5.8	1
478	Recent Advances in Photonic Polymerase Chain Reaction Processes with Functionalized Nanomaterials. Applied Science and Convergence Technology, 2023, 32, 134-140.	0.9	0
479	Interactions of Biomaterial Surfaces with Proteins and Cells. , 2023, , 199-225.		0
480	Recent progress in photo-thermal synergistic catalysis for methane dry reforming. International Journal of Hydrogen Energy, 2024, 57, 696-708.	7.1	0
481	Recent progress in SERS monitoring of photocatalytic reactions. Chemical Society Reviews, 2024, 53, 656-683.	38.1	0
482	Two-Dimensional (2D)-Based Hybrid Composites for Cancer Diagnosis and Therapy. Engineering Materials, 2024, , 295-327.	0.6	0
483	A mini-review on gene delivery technique using nanoparticles-mediated photoporation induced by nanosecond pulsed laser. Drug Delivery, 2024, 31, .	5.7	0

#	Article	IF	CITATIONS
484	Molecular dynamics study on the effect of surface ionization on the interfacial heat transfer between silica and water. Applied Thermal Engineering, 2024, 244, 122762.	6.0	0
485	Critical laser frequency for nanofluid pendant droplet evaporation. Physics of Fluids, 2024, 36, .	4.0	0
486	Revisiting Croconaine Dyes: a Glimpse into their Applications in Bioimaging, Therapy and Metal Detection. Journal of Analytical Chemistry, 2024, 79, 15-28.	0.9	o