Synthesis of Cu₂O Nanocrystals from Cubi Structures and Their Comparative Photocatalytic Activ

Journal of the American Chemical Society 134, 1261-1267 DOI: 10.1021/ja209662v

Citation Report

#	Article	IF	CITATIONS
2	Crystal cuts on the nanoscale. Nature, 2012, 482, 41-42.	13.7	51
3	Self-Assembly of Copper Oxide Core-Shell Nanowires Through Ethyl Alcohol. , 0, , .		0
4	Cu2O and Au/Cu2O Particles: Surface Properties and Applications in Glucose Sensing. Sensors, 2012, 12, 13019-13033.	2.1	61
5	Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities. Nanoscale, 2012, 4, 7817.	2.8	68
6	A Truncated Manganese Spinel Cathode for Excellent Power and Lifetime in Lithium-Ion Batteries. Nano Letters, 2012, 12, 6358-6365.	4.5	272
7	Selective growth of Au nanograins on specific positions (tips, edges and facets) of Cu2O octahedrons to form Cu2O–Au hierarchical heterostructures. Dalton Transactions, 2012, 41, 13795.	1.6	31
8	pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra. CrystEngComm, 2012, 14, 8068.	1.3	94
9	Equal-parenting policy. Nature, 2012, 482, 42-43.	13.7	4
10	Tuning of the Surface-Exposing and Photocatalytic Activity for AgX (X = Cl and Br): A Theoretical Study. Journal of Physical Chemistry C, 2012, 116, 19372-19378.	1.5	31
11	Morphology Control of Nanostructures: Na-Doped PbTe–PbS System. Nano Letters, 2012, 12, 5979-5984.	4.5	100
12	Crystallization behavior and formation mechanism of dendrite Cu2O crystals. CrystEngComm, 2012, 14, 8017.	1.3	24
13	Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 25373.	6.7	91
14	Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures. Chemistry - A European Journal, 2012, 18, 14473-14478.	1.7	29
15	A Facile Topâ€Down Etching To Create a Cu ₂ O Jagged Polyhedron Covered with Numerous {110} Edges and {111} Corners with Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2012, 18, 14261-14266.	1.7	67
16	(Zn,H)-codoped copper oxide nanoparticles via pulsed laser ablation on Cu-Zn alloy in water. Nanoscale Research Letters, 2012, 7, 272.	3.1	13
17	Mesocrystalline Cu2O hollow nanocubes: synthesis and application in non-enzymatic amperometric detection of hydrogen peroxide and glucose. CrystEngComm, 2012, 14, 6639.	1.3	91
18	Polyhedral Cu2O particles: shape evolution and catalytic activity on cross-coupling reaction of iodobenzene and phenol. CrystEngComm, 2012, 14, 8454.	1.3	33
19	Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. CrystEngComm, 2012, 14, 4431.	1.3	70

ATION REDO

#	Article	IF	CITATIONS
20	Facet-Dependent Catalytic Activity of Gold Nanocubes, Octahedra, and Rhombic Dodecahedra toward 4-Nitroaniline Reduction. Journal of Physical Chemistry C, 2012, 116, 23757-23763.	1.5	199
21	Selective Synthesis of Cu ₂ 0 Nanocrystals as Shapeâ€Dependent Catalysts for Oxidative Arylation of Phenylacetylene. Chemistry - A European Journal, 2012, 18, 10491-10496.	1.7	74
22	Shape-controlled synthesis of Cu2O nano/microcrystals and their antibacterial activity. Journal of Physics and Chemistry of Solids, 2013, 74, 1842-1847.	1.9	64
23	One-dimensional metal oxide nanostructures for heterogeneous catalysis. Nanoscale, 2013, 5, 7175.	2.8	38
24	Co3O4 nanocrystals with predominantly exposed facets: synthesis, environmental and energy applications. Journal of Materials Chemistry A, 2013, 1, 14427.	5.2	147
25	First-principles study on the doping effects of nitrogen on the electronic structure and optical properties of Cu ₂ 0. RSC Advances, 2013, 3, 84-90.	1.7	35
26	Morphology dependent photosensitization and formation of singlet oxygen (1î"g) by gold and silver nanoparticles and its application in cancer treatment. Journal of Materials Chemistry B, 2013, 1, 4379.	2.9	88
27	Microwave-assisted growth of WO3·0.33H2O micro/nanostructures with enhanced visible light photocatalytic properties. CrystEngComm, 2013, 15, 7904.	1.3	34
28	Continuous Mesoporous Titania Nanocrystals: Their Growth in Confined Space and Scope for Application. ChemSusChem, 2013, 6, 2039-2041.	3.6	5
29	Controllable growth and photocatalytic activity of Cu2O solid microspheres. Materials Research Bulletin, 2013, 48, 3431-3437.	2.7	8
30	Zn2+-assisted synthesis of concave Cu2O crystals and enhanced photocatalytic properties. Catalysis Communications, 2013, 42, 109-112.	1.6	15
31	Fabrication of Diverse Cu ₂ 0 Nanoframes through Face-Selective Etching. Journal of Physical Chemistry C, 2013, 117, 24611-24617.	1.5	50
32	Synthesis of anatase TiO2 nanocrystals with {101}, {001} or {010} single facets of 90% level exposure and liquid-phase photocatalytic reduction and oxidation activity orders. Journal of Materials Chemistry A, 2013, 1, 10532.	5.2	147
33	Facetâ€Dependent Catalytic Activity of Cu ₂ 0 Nanocrystals in the Oneâ€Pot Synthesis of 1,2,3â€Triazoles by Multicomponent Click Reactions. Chemistry - A European Journal, 2013, 19, 16036-16043.	1.7	143
34	Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions. Scientific Reports, 2013, 3, 2886.	1.6	105
35	Designed synthesis of hematite-based nanosorbents for dye removal. Journal of Materials Chemistry A, 2013, 1, 9837.	5.2	73
36	Metal ion-assisted reshaping of Cu2O nanocrystals for catalytic applications. Journal of Materials Chemistry A, 2013, 1, 14183.	5.2	14
37	Structure evolution and SERS activation of cuprous oxide microcrystals via chemical etching. Journal of Materials Chemistry A, 2013, 1, 8790.	5.2	24

#	Article	IF	CITATIONS
38	A new strategy for the surface-free-energy-distribution induced selective growth and controlled formation of Cu ₂ O–Au hierarchical heterostructures with a series of morphological evolutions. Journal of Materials Chemistry A, 2013, 1, 919-929.	5.2	84
39	Investigation of facet effects on the catalytic activity of Cu2O nanocrystals for efficient regioselective synthesis of 3,5-disubstituted isoxazoles. Nanoscale, 2013, 5, 12494.	2.8	64
40	Facile synthesis of water-dispersible Cu2O nanocrystal–reduced graphene oxide hybrid as a promising cancer therapeutic agent. Nanoscale, 2013, 5, 1227.	2.8	53
41	Efficient photocatalytic degradation of gaseous formaldehyde by the TiO2/tourmaline composites. Materials Research Bulletin, 2013, 48, 3743-3749.	2.7	35
42	Three-dimensional Ag/POM/Cu2O tricomponent nanohybrids with enhanced visible-light photocatalytic activity. Materials Letters, 2013, 99, 68-71.	1.3	10
43	A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant. Journal of Physics and Chemistry of Solids, 2013, 74, 635-640.	1.9	71
44	Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties. European Journal of Inorganic Chemistry, 2013, 2013, 2640-2651.	1.0	106
45	Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosensors and Bioelectronics, 2013, 45, 206-212.	5.3	687
46	Conversion of Metallic Single-Walled Carbon Nanotube Networks to Semiconducting through Electrochemical Ornamentation. Journal of the American Chemical Society, 2013, 135, 7511-7522.	6.6	9
47	Chemical Regulation of Carbon Quantum Dots from Synthesis to Photocatalytic Activity. Chemistry - an Asian Journal, 2013, 8, 1035-1041.	1.7	152
48	Emerging Strategies for the Total Synthesis of Inorganic Nanostructures. Angewandte Chemie - International Edition, 2013, 52, 6154-6178.	7.2	184
49	Controlled synthesis of concave Cu ₂ 0 microcrystals enclosed by {hhl} high-index facets and enhanced catalytic activity. Journal of Materials Chemistry A, 2013, 1, 282-287.	5.2	98
50	Pearson's Principle Inspired Generalized Strategy for the Fabrication of Metal Hydroxide and Oxide Nanocages. Journal of the American Chemical Society, 2013, 135, 16082-16091.	6.6	284
51	Growth of Concave Polyhedral Pd Nanocrystals with 32 Facets Through Inâ€Situ Facet‧elective Etching. ChemSusChem, 2013, 6, 1893-1897.	3.6	17
52	A facile strategy for crystal engineering of Cu2O polyhedrons with high-index facets. CrystEngComm, 2013, 15, 1849.	1.3	36
53	Fabrication of Supported Cuprous Sites at Low Temperatures: An Efficient, Controllable Strategy Using Vapor-Induced Reduction. Journal of the American Chemical Society, 2013, 135, 8137-8140.	6.6	104
54	Facile synthesis, enhanced field emission and photocatalytic activities of Cu ₂ 0–TiO ₂ –ZnO ternary hetero-nanostructures. Journal Physics D: Applied Physics, 2013, 46, 175303.	1.3	19
55	Facile synthesis of uniform α-Fe2O3 crystals and their facet-dependent catalytic performance in the photo-Fenton reaction. Journal of Materials Chemistry A, 2013, 1, 7242.	5.2	92

#	Article	IF	CITATIONS
56	Thermodynamic control of iron pyrite nanocrystal synthesis with high photoactivity and stability. Journal of Materials Chemistry A, 2013, 1, 49-54.	5.2	28
57	Enhanced Photocatalytic Oxygen Evolution by Crystal Cutting. Advanced Materials, 2013, 25, 2035-2039.	11.1	49
58	Achieving polyhedral nanocrystal growth with systematic shape control. Journal of Materials Chemistry A, 2013, 1, 8081.	5.2	60
59	Concave trisoctahedral Ag ₃ PO ₄ microcrystals with high-index facets and enhanced photocatalytic properties. Chemical Communications, 2013, 49, 636-638.	2.2	137
60	Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. Journal of Materials Chemistry A, 2013, 1, 8299.	5.2	107
61	AgBr Nanocrystals from Plates to Cubes and Their Photocatalytic Properties. ChemCatChem, 2013, 5, 1426-1430.	1.8	13
62	Tuning Activities of K _{1.9} Na _{0.1} Ta ₂ O ₆ <i>·</i> 2H ₂ O Nanocrystals in Photocatalysis by Controlling Exposed Facets. ACS Applied Materials & Interfaces, 2013, 5, 10260-10265.	4.0	16
63	Morphology Change in Cuprous Oxide Particle Synthesis with PVP: Effect of Reaction Temperature. Advanced Materials Research, 0, 873, 147-151.	0.3	0
64	Crystalâ€Planeâ€Controlled Surface Chemistry and Catalytic Performance of Surfactantâ€Free Cu ₂ O Nanocrystals. ChemSusChem, 2013, 6, 1966-1972.	3.6	89
65	TEMPLATE STRATEGY FOR THE SYNTHESIS OF Cu2O–Pt HIERARCHICAL HETEROSTRUCTURES FOR THE DEGRADATION OF METHYLENE BLUE. Nano, 2013, 08, 1350062.	0.5	5
66	Crystalâ€Facet Engineering of Ferric Giniite by Using Ionicâ€Liquid Precursors and Their Enhanced Photocatalytic Performances under Visibleâ€Light Irradiation. Chemistry - A European Journal, 2013, 19, 7231-7242.	1.7	29
68	Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Research, 2014, 7, 1311-1318.	5.8	73
69	Investigation of Adsorption Behavior of Cu ₂ O Submicro-Octahedra towards Congo Red. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	8
70	Controllable synthesis of two different morphologies of Cu2O particles with the assistance of carbon dots. RSC Advances, 2014, 4, 16524-16527.	1.7	7
71	Synthesis of {100} Facet Dominant Anatase TiO ₂ Nanobelts and the Origin of Facetâ€Đependent Photoreactivity. Chemistry - A European Journal, 2014, 20, 15095-15101.	1.7	22
73	Crystalâ€Plane ontrolled Selectivity of Cu ₂ O Catalysts in Propylene Oxidation with Molecular Oxygen. Angewandte Chemie - International Edition, 2014, 53, 4856-4861.	7.2	180
74	Cubic In ₂ O ₃ Microparticles for Efficient Photoelectrochemical Oxygen Evolution. Journal of Physical Chemistry Letters, 2014, 5, 4298-4304.	2.1	49
75	Shape-dependent photocatalytic activity of Bi ₅ O ₇ I caused by facets synergetic and internal electric field effects. RSC Advances, 2014, 4, 65056-65064.	1.7	36

#	Article	IF	CITATIONS
76	Enhanced Photodegradation of Methyl Orange Synergistically by Microcrystal Facet Cutting and Flexible Electrically-Conducting Channels. Journal of Physical Chemistry C, 2014, 118, 28063-28068.	1.5	23
78	Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant. Materials Science-Poland, 2014, 32, 702-708.	0.4	33
79	A scalable synthesis technique of hierarchical BiOBr microspheres for advanced visible light photocatalyst. Materials Letters, 2014, 136, 438-440.	1.3	13
80	Temperature dependence on p-Cu2O thin film electrochemically deposited onto copper substrate. Applied Surface Science, 2014, 301, 369-377.	3.1	44
81	Room temperature additive-free synthesis of uniform Cu 2 O nanocubes with tunable size from 20 nm to 500 nm and photocatalytic property. Materials Letters, 2014, 114, 88-91.	1.3	30
82	Synthesis of micro-nano heterostructure AgBr/ZnO composite for advanced visible light photocatalysis. Materials Letters, 2014, 130, 5-8.	1.3	48
83	Photovoltaic performance enhancement of Cu ₂ 0 photocathodes by electrostatic adsorption of polyoxometalate on Cu ₂ 0 crystal faces. RSC Advances, 2014, 4, 1362-1365.	1.7	11
85	Facet Cutting and Hydrogenation of In ₂ O ₃ Nanowires for Enhanced Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 4081-4088.	4.0	58
86	Synergistic effect over photocatalytic active Cu2O thin films and their morphological and orientational transformation under visible light irradiation. Applied Catalysis A: General, 2014, 470, 294-302.	2.2	29
87	Facet-dependent optical properties of polyhedral Au–Cu2O core–shell nanocrystals. Nanoscale, 2014, 6, 4316.	2.8	81
88	Synthesis and sonocatalytic property of rod-shape Sr(OH)2·8H2O. Ultrasonics Sonochemistry, 2014, 21, 1318-1324.	3.8	15
89	Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts: Fabrication and photocatalytic activity. Chinese Chemical Letters, 2014, 25, 287-291.	4.8	41
90	Electronic structures of halogen-doped Cu ₂ O based on DFT calculations. Chinese Physics B, 2014, 23, 017401.	0.7	8
91	LaMer diagram approach to study the nucleation and growth of Cu2O nanoparticles using supersaturation theory. Korean Journal of Chemical Engineering, 2014, 31, 2020-2026.	1.2	12
92	Nonenzymatic hydrogen peroxide biosensor based on four different morphologies of cuprous oxide nanocrystals. RSC Advances, 2014, 4, 40638-40642.	1.7	30
93	Comparative Photocatalytic Properties of Cu ₂ O from Octahedron to Sphere Structures. Key Engineering Materials, 2014, 609-610, 45-50.	0.4	2
94	In situ synthesis of a reduced graphene oxide/cuprous oxide nanocomposite: a reusable catalyst. RSC Advances, 2014, 4, 52044-52052.	1.7	57
95	Evolution of nanoplate morphology, structure and chemistry during synthesis of pyrite by a hot injection method. RSC Advances, 2014, 4, 16489.	1.7	19

#	Article	IF	CITATIONS
96	Controllable synthesis of Cu ₂ O hierarchical nanoclusters with high photocatalytic activity. RSC Advances, 2014, 4, 42892-42898.	1.7	7
97	Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles. Nanoscale, 2014, 6, 8704.	2.8	99
98	Effect of Au Nanorods on Potential Barrier Modulation in Morphologically Controlled Au@Cu ₂ O Core–Shell Nanoreactors for Gas Sensor Applications. ACS Applied Materials & Interfaces, 2014, 6, 7491-7497.	4.0	75
99	One-pot fabrication of novel cuboctahedral Cu ₂ O crystals enclosed by anisotropic surfaces with enhancing catalytic performance. Physical Chemistry Chemical Physics, 2014, 16, 20424-20428.	1.3	13
100	Cu ₂ O mesoporous spheres with a high internal diffusion capacity and improved catalytic ability for the aza-Henry reaction driven by visible light. Chemical Communications, 2014, 50, 14237-14240.	2.2	33
101	Effect of mineralization agents on the surface structure and dielectric properties of SrTiO ₃ nanocrystals. CrystEngComm, 2014, 16, 10750-10753.	1.3	7
102	Facile hydroxyl-assisted synthesis of morphological Cu ₂ O architectures and their shape-dependent photocatalytic performances. New Journal of Chemistry, 2014, 38, 4656-4660.	1.4	30
103	Microwave-assisted synthesis of Cu ₂ O microcrystals with systematic shape evolution from octahedral to cubic and their comparative photocatalytic activities. RSC Advances, 2014, 4, 38059-38063.	1.7	17
104	Recent advances in tuning crystal facets of polyhedral cuprous oxide architectures. RSC Advances, 2014, 4, 3804-3822.	1.7	89
105	Novel Cu2O quantum dots coupled flower-like BiOBr for enhanced photocatalytic degradation of organic contaminant. Journal of Hazardous Materials, 2014, 280, 417-427.	6.5	169
106	A generic in situ seed-mediated size-control method in the case of cuprous oxide nanocubes and their antibacterial activities. CrystEngComm, 2014, 16, 5184.	1.3	15
107	Facet-dependent properties of polyhedral nanocrystals. Chemical Communications, 2014, 50, 1634.	2.2	126
108	Constructing a confined space in silica nanopores: an ideal platform for the formation and dispersion of cuprous sites. Journal of Materials Chemistry A, 2014, 2, 3399.	5.2	91
109	Room temperature light-induced recrystallization of Cu ₂ O cubes to CuO nanostructures in water. CrystEngComm, 2014, 16, 8546-8554.	1.3	15
110	Insights into the Thermal Decomposition of Co(II) Oleate for the Shape-Controlled Synthesis of Wurtzite-Type CoO Nanocrystals. Chemistry of Materials, 2014, 26, 1492-1499.	3.2	41
111	Face-Raised Octahedral Co3O4Nanocrystals and Their Catalytic Activity in the Selective Oxidation of Alcohols. Journal of Physical Chemistry C, 2014, 118, 4767-4773.	1.5	30
112	Controllably Interfacing with Metal: A Strategy for Enhancing CO Oxidation on Oxide Catalysts by Surface Polarization. Journal of the American Chemical Society, 2014, 136, 14650-14653.	6.6	89
113	Cu2O-templated strategy for synthesis of definable hollow architectures. Chemical Communications, 2014, 50, 7403.	2.2	80

#		IE	CITATIONS
#	ARTICLE Specificity of Growth Inhibitors and their Cooperative Effects in Calcium Oxalate Monohydrate	IF	CITATIONS
114	Crystallization. Journal of the American Chemical Society, 2014, 136, 367-376.	6.6	105
115	Utilization of shape-controlled nanoparticles as catalysts with enhanced activity and selectivity. RSC Advances, 2014, 4, 41017-41027.	1.7	54
116	Tailoring the physicochemical properties of zeolite catalysts. Catalysis Science and Technology, 2014, 4, 3762-3771.	2.1	62
117	Additive-Free Shape-Invariant Nano-to-Micron Size-Tuning of Cu ₂ O Cubic Crystals by Square-Wave Voltammetry. Journal of Physical Chemistry C, 2014, 118, 11062-11077.	1.5	18
118	Enhanced visible-light photoelectrochemical behaviour of heterojunction composite with Cu ₂ O nanoparticles-decorated TiO ₂ nanotube arrays. New Journal of Chemistry, 2014, 38, 4975-4984.	1.4	47
119	Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environmental Science: Nano, 2014, 1, 90.	2.2	594
120	Ag–Cu2O composite microstructures with tunable Ag contents: synthesis and surface-enhanced (resonance) Raman scattering (SE(R)RS) properties. RSC Advances, 2014, 4, 17249.	1.7	20
121	Synthesis of iron oxide/manganese oxide composite particles and their magnetic properties. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	5
122	Graphene oxide stabilized Cu2O for shape selective nanocatalysis. Journal of Materials Chemistry A, 2014, 2, 7147.	5.2	28
123	Synthesis of Rhombic Dodecahedral Fe ₃ O ₄ Nanocrystals with Exposed High-Energy {110} Facets and Their Peroxidase-like Activity and Lithium Storage Properties. Journal of Physical Chemistry C, 2014, 118, 12588-12598.	1.5	67
124	Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Applied Catalysis B: Environmental, 2014, 156-157, 331-340.	10.8	316
125	Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation. Materials Research Bulletin, 2014, 56, 19-24.	2.7	104
126	Distinguishing Localized Surface Plasmon Resonance and Schottky Junction of Au–Cu ₂ O Composites by Their Molecular Spacer Dependence. ACS Applied Materials & Interfaces, 2014, 6, 10958-10962.	4.0	63
127	Morphology-dependent nanocatalysts: Rod-shaped oxides. Chemical Society Reviews, 2014, 43, 1543-1574.	18.7	445
128	Recent advances in synthesis and applications of clay-based photocatalysts: a review. Physical Chemistry Chemical Physics, 2014, 16, 8178-8192.	1.3	171
129	One-step chemical bath deposition and photocatalytic activity of Cu2O thin films with orientation and size controlled by a chelating agent. Materials Chemistry and Physics, 2014, 143, 713-719.	2.0	32
130	Account of Nitroarene Reduction with Size- and Facet-Controlled CuO–MnO ₂ Nanocomposites. ACS Applied Materials & Interfaces, 2014, 6, 9173-9184.	4.0	79
131	Universal Sulfide-Assisted Synthesis of M–Ag Heterodimers (M = Pd, Au, Pt) as Efficient Platforms for Fabricating Metal–Semiconductor Heteronanostructures. Journal of the American Chemical Society, 2014, 136, 5221-5224.	6.6	42

#	Article	IF	CITATIONS
132	Preparation, optical property, and photocatalytic activity of cubic Cu2O/amorphous TiO2 and spheric CuO/TiO2 core–shell nanocomposites. Materials Letters, 2014, 131, 86-89.	1.3	10
133	EG-Assisted hand-in-hand growth of prism-like Cu2O nanorods with high aspect ratios and their thermal conductive performance. RSC Advances, 2014, 4, 30610-30616.	1.7	5
134	Which affect the photoreactivity of BiOBr single-crystalline nanosheets with different hydrothermal pH value: Size or facet?. Applied Surface Science, 2014, 311, 858-863.	3.1	44
135	Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag ₂ CrO ₄ . Beilstein Journal of Nanotechnology, 2014, 5, 658-666.	1.5	76
136	Stabilization of Catalytically Active Cu ⁺ Surface Sites on Titanium–Copper Mixedâ€Oxide Films. Angewandte Chemie - International Edition, 2014, 53, 5336-5340.	7.2	51
137	Self-assembled synthesis of hollow Nb3O7F nanomaterials based on Kirkendall effect and its photocatalytic properties. Materials Technology, 2015, 30, 144-150.	1.5	11
138	Facetâ€Controlled Synthetic Strategy of Cu ₂ Oâ€Based Crystals for Catalysis and Sensing. Advanced Science, 2015, 2, 1500140.	5.6	175
139	Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging. Scientific Reports, 2015, 5, 17729.	1.6	29
140	Synthesis of Hierarchical Nanoporous Microstructures via the Kirkendall Effect in Chemical Reduction Process. Scientific Reports, 2015, 5, 16061.	1.6	21
141	Identification of nitrogen acceptor in Cu2O: First-principles study. Applied Physics Letters, 2015, 107, .	1.5	17
142	Morphologyâ€controlled Synthesis of Octahedralâ€toâ€Rhombic Dodecahedral <scp>Cu₂O</scp> Microcrystals and Shapeâ€dependent Antibacterial Activities. Bulletin of the Korean Chemical Society, 2015, 36, 1828-1833.	1.0	10
143	Colloidal Moderateâ€Refractiveâ€Index Cu ₂ O Nanospheres as Visibleâ€Region Nanoantennas with Electromagnetic Resonance and Directional Lightâ€Scattering Properties. Advanced Materials, 2015, 27, 7432-7439.	11.1	102
144	The Facile Fabrication of Hollow <scp>Cu₂O</scp> Nanoparticles Induced by the Kirkendall Effect on Cu@Ag Coreâ€6hell Nanoparticles. Bulletin of the Korean Chemical Society, 2015, 36, 2150-2153.	1.0	3
145	Reaction Kinetic Parameters and Surface Thermodynamic Properties of Cu2O Nanocubes. Entropy, 2015, 17, 5437-5449.	1.1	17
146	The effect of negative pressure aging on the aggregation of Cu ₂ O nanoparticles and its application to laser induced copper electrode fabrication. Physical Chemistry Chemical Physics, 2015, 17, 4360-4366.	1.3	9
147	Facet-dependent optical properties of Pd–Cu ₂ O core–shell nanocubes and octahedra. Nanoscale, 2015, 7, 11135-11141.	2.8	51
148	Hydrothermal Synthesis of Open-Framework Borophosphates with Tunable Micropore Sizes, Crystal Morphologies, and Thermal Stabilities. Crystal Growth and Design, 2015, 15, 3594-3601.	1.4	5
149	Room-temperature solid-state synthesis of BiOCl hierarchical microspheres with nanoplates. Catalysis Communications, 2015, 69, 34-38.	1.6	38

#	Article	IF	CITATIONS
150	Studies on formation mechanism of 3D Cu2O nanospheres through self-assembly of 0D nanodots. Superlattices and Microstructures, 2015, 84, 181-191.	1.4	10
151	Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality. ACS Applied Materials & Interfaces, 2015, 7, 13238-13250.	4.0	34
152	Ionic liquid-assisted fabrication of copper hydroxyphosphate nanocrystals with exposed {100} facets for enhanced photocatalytic activity. Nanotechnology, 2015, 26, 031001.	1.3	7
153	Facile sonochemical synthesis of hierarchical Cu2O hollow submicrospheres with high adsorption capacity for methyl orange. Materials Letters, 2015, 141, 214-216.	1.3	16
154	Highly efficient hydrogen production and formaldehyde degradation by Cu2O microcrystals. Applied Catalysis B: Environmental, 2015, 172-173, 1-6.	10.8	58
155	Facet-Dependent Stripping Behavior of Cu ₂ O Microcrystals Toward Lead Ions: A Rational Design for the Determination of Lead Ions. Small, 2015, 11, 2493-2498.	5.2	47
156	Restructuring of Co3O4particles from polycrystalline microspheres to single-crystalline polyhedra under the assistance of acetic acid. CrystEngComm, 2015, 17, 1848-1855.	1.3	6
157	Fe2O3–AgBr nonwoven cloth with hierarchical nanostructures as efficient and easily recyclable macroscale photocatalysts. RSC Advances, 2015, 5, 10951-10959.	1.7	34
158	Plasmon Enhancement Effect in Au Gold Nanorods@Cu ₂ O Core–Shell Nanostructures and Their Use in Probing Defect States. Langmuir, 2015, 31, 1537-1546.	1.6	46
159	Creation of Cu ₂ O@TiO ₂ Composite Photocatalysts with <i>p</i> – <i>n</i> Heterojunctions Formed on Exposed Cu ₂ O Facets, Their Energy Band Alignment Study, and Their Enhanced Photocatalytic Activity under Illumination with Visible Light. ACS Applied Materials &: Interfaces, 2015, 7, 1465-1476.	4.0	174
160	A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production. Journal of Materials Chemistry A, 2015, 3, 3416-3424.	5.2	126
161	Fabrication of hollow Cu ₂ O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. Journal of Materials Chemistry A, 2015, 3, 4578-4585.	5.2	89
162	Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Advanced Materials, 2015, 27, 2150-2176.	11.1	3,046
163	Facet-Dependent Electrical Conductivity Properties of Cu ₂ O Crystals. Nano Letters, 2015, 15, 2155-2160.	4.5	203
164	Hollow Cu ₂ O microspheres with two active {111} and {110} facets for highly selective adsorption and photodegradation of anionic dye. RSC Advances, 2015, 5, 55520-55526.	1.7	22
165	Up-scaling the synthesis of Cu2O submicron particles with controlled morphologies for solar H2 evolution from water. Journal of Colloid and Interface Science, 2015, 456, 219-227.	5.0	20
166	Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials. Electrochimica Acta, 2015, 176, 434-441.	2.6	19
167	Controlled synthesis of series NixCo3-xO4 products: Morphological evolution towards quasi-single-crystal structure for high-performance and stable lithium-ion batteries. Scientific Reports, 2015, 5, 11584.	1.6	16

#	Article	IF	Citations
168	Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale, 2015, 7, 14159-14190.	2.8	164
169	Hexahedron Prism-Anchored Octahedronal CeO ₂ : Crystal Facet-Based Homojunction Promoting Efficient Solar Fuel Synthesis. Journal of the American Chemical Society, 2015, 137, 9547-9550.	6.6	294
170	A surfactant free synthesis and formation mechanism of hollow Cu ₂ O nanocubes using Cl ^{â^'} ions as the morphology regulator. RSC Advances, 2015, 5, 61421-61425.	1.7	11
171	Facile synthesis of Cu ₂ O nanocages and gas sensing performance towards gasoline. RSC Advances, 2015, 5, 54433-54438.	1.7	16
172	A Facile One-Pot Synthesis of Au/Cu2O Nanocomposites for Nonenzymatic Detection of Hydrogen Peroxide. Nanoscale Research Letters, 2015, 10, 935.	3.1	21
173	Precursor-induced self-assembly of Bi ₅ O ₇ NO ₃ nanocrystals into superstructures and their distinct photocatalytic performance. CrystEngComm, 2015, 17, 516-519.	1.3	7
174	Atomistic Simulations of CdS Morphologies. Crystal Growth and Design, 2015, 15, 1792-1800.	1.4	21
175	Copper Salts Mediated Morphological Transformation of Cu2O from Cubes to Hierarchical Flower-like or Microspheres and Their Supercapacitors Performances. Scientific Reports, 2015, 5, 9672.	1.6	90
176	Designed synthesis of a novel BiVO4–Cu2O–TiO2 as an efficient visible-light-responding photocatalyst. Journal of Colloid and Interface Science, 2015, 444, 58-66.	5.0	56
177	The preparation and properties of a g-C ₃ N ₄ /AgBr nanocomposite photocatalyst based on protonation pretreatment. New Journal of Chemistry, 2015, 39, 1132-1138.	1.4	80
178	Surface energy-driven growth of crystalline PbS octahedra and dendrites in the presence of cyclodextrin–surfactant supramolecular complexes. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	9
179	Controllable synthesis and photocatalytic activity of Ag/BiOI based on the morphology effect of BiOI substrate. Surface and Coatings Technology, 2015, 272, 213-220.	2.2	41
180	Facile pH-mediated synthesis of morphology-tunable MnCO ₃ and their transformation to truncated octahedral spinel LiMn ₂ O ₄ cathode materials for superior lithium storage. Journal of Materials Chemistry A, 2015, 3, 3633-3640.	5.2	79
181	Hydrothermal etching preparation and growth process of Î ³ -MnOOH with novel hexagram morphology. Solid State Sciences, 2015, 42, 30-36.	1.5	3
182	Recent advances in hybrid Cu ₂ O-based heterogeneous nanostructures. Nanoscale, 2015, 7, 10850-10882.	2.8	157
183	Ultrasmall Cu ₂ 0 nanocrystals: facile synthesis, controllable assembly and photocatalytic properties. RSC Advances, 2015, 5, 42855-42860.	1.7	6
184	Controlled preparation of Ag–Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light. Materials Research Bulletin, 2015, 70, 296-302.	2.7	28
185	Heterostructured Cu ₂ O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. Journal of Materials Chemistry A, 2015, 3, 12482-12499.	5.2	257

#	Article	IF	Citations
186	Synthesis of octahedral and cubic Cu2O microcrystals in sub- and super-critical methanol and their photocatalytic performance. Journal of Materials Science, 2015, 50, 4115-4121.	1.7	25
187	Enhanced visible-light catalytic activity of Au nanoparticles loaded c-axis oriented Bi2VO5.5 porous thin films. Ceramics International, 2015, 41, 8433-8443.	2.3	8
188	Surface Chemistry and Catalytic Properties of Well-Defined Cu2O Nanocrystals. , 2015, , 1-29.		0
189	Facile synthesis of litchi shaped cuprous oxide and its application in the aerobic oxidative synthesis of imines. RSC Advances, 2015, 5, 10341-10345.	1.7	10
190	Synthesis and characterization of multipod frameworks of Cu ₂ 0 microcrystals and Cu ₇ S ₄ hollow microcages. CrystEngComm, 2015, 17, 3908-3911.	1.3	10
191	Cu2O/TiO2 heterostructured hollow sphere with enhanced visible light photocatalytic activity. Materials Research Bulletin, 2015, 72, 176-183.	2.7	45
192	Synthesis and size-dependent electrochemical nonenzymatic H2O2 sensing of cuprous oxide nanocubes. RSC Advances, 2015, 5, 82496-82502.	1.7	21
193	Ratio-Controlled Synthesis of CuNi Octahedra and Nanocubes with Enhanced Catalytic Activity. Journal of the American Chemical Society, 2015, 137, 14027-14030.	6.6	75
194	Morphological evolution of Cu2O based on a solvent effect in a microwave-assisted system. Solid State Sciences, 2015, 50, 101-106.	1.5	6
195	Preferential cleavage of C C bonds over C N bonds at interfacial CuO Cu2O sites. Journal of Catalysis, 2015, 330, 458-464.	3.1	18
196	An Obtuse Rhombohedral Superlattice Assembled by Pt Nanocubes. Nano Letters, 2015, 15, 6254-6260.	4.5	65
197	Morphologically controllable synthesis of core–shell structured Au@Cu ₂ O with enhanced photocatalytic activity. RSC Advances, 2015, 5, 71559-71564.	1.7	13
198	Hierarchical Shape Evolution of Cuprous Oxide Micro- and Nanocrystals by Surfactant-Assisted Electrochemical Deposition. Crystal Growth and Design, 2015, 15, 4969-4974.	1.4	12
199	Crystal-plane effects on surface and catalytic properties of Cu2O nanocrystals for NO reduction by CO. Applied Catalysis A: General, 2015, 505, 334-343.	2.2	65
200	SSZ-13 Crystallization by Particle Attachment and Deterministic Pathways to Crystal Size Control. Journal of the American Chemical Society, 2015, 137, 13007-13017.	6.6	191
201	Identifying alkali metal inhibitors of crystal growth: a selection criterion based on ion pair hydration energy. Chemical Communications, 2015, 51, 13964-13967.	2.2	25
202	A highly sensitive electrochemical sensor based on Cu/Cu ₂ O@carbon nanocomposite structures for hydrazine detection. Analytical Methods, 2015, 7, 9040-9046.	1.3	17
203	Hydrothermal synthesis of morphology controllable Cu2O and their catalysis in thermal decomposition of ammonium perchlorate. Journal of Industrial and Engineering Chemistry, 2015, 32, 313-318.	2.9	36

#	Article	IF	Citations
	Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen		
204	peroxide amperometric sensor. Sensors and Actuators B: Chemical, 2015, 206, 735-743.	4.0	256
205	Facetâ€Dependent Photocatalytic Activity and Facetâ€Selective Etching of Silver(I) Oxide Crystals with Controlled Morphology. ChemCatChem, 2015, 7, 80-86.	1.8	17
206	Sonochemical synthesis of porous Cu2O–Cu hollow spheres and their photo-catalysis. Materials Chemistry and Physics, 2015, 151, 252-258.	2.0	28
207	Probing Defects in Nitrogen-Doped Cu2O. Scientific Reports, 2014, 4, 7240.	1.6	96
208	Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting. Journal of Materials Chemistry A, 2015, 3, 156-162.	5.2	114
209	Morphology engineering of high performance binary oxide electrodes. Physical Chemistry Chemical Physics, 2015, 17, 732-750.	1.3	95
210	Facet-Specific Assembly of Proteins on SrTiO3 Polyhedral Nanocrystals. Scientific Reports, 2014, 4, 5084.	1.6	35
211	Controllable sonochemical synthesis of Cu2O/Cu2(OH)3NO3 composites toward synergy of adsorption and photocatalysis. Applied Catalysis B: Environmental, 2015, 164, 234-240.	10.8	48
212	Facet-Dependent Surface Plasmon Resonance Properties of Au-Cu ₂ O Core-Shell Nanocubes, Octahedra, and Rhombic Dodecahedra. Small, 2015, 11, 195-201.	5.2	50
213	Synthesis, characterization and stability of Cu2O nanoparticles produced via supersaturation method considering operational parameters effect. Journal of Industrial and Engineering Chemistry, 2015, 22, 34-40.	2.9	34
214	Green synthesis of bi-component copper oxide composites and enhanced photocatalytic performance. Materials Science and Technology, 2015, 31, 25-30.	0.8	5
215	BiOX (X = Cl, Br, and I) Photocatalysts. , 0, , .		6
216	One Pot Synthesis of Cuprous Oxide Nanoparticles on Multi-Walled Carbon Nanotubes for Nonenzymatic Glucose Sensors. International Journal of Electrochemical Science, 2016, 11, 8722-8729.	0.5	4
217	Facet-Dependent Optical and Photothermal Properties of Au@Ag–Cu ₂ O Core–Shell Nanocrystals. Chemistry of Materials, 2016, 28, 5140-5146.	3.2	48
218	Promotion of ZnSn(OH)6 photoactivity by constructing heterojunction with Ag@Ag3PO4 nanoparticles: Visible light elimination of single or multiple dyes. Catalysis Communications, 2016, 84, 137-141.	1.6	12
219	Facile synthesis of low dimensional CuO nanostructures and their gas sensing applications. Crystal Research and Technology, 2016, 51, 145-153.	0.6	15
220	Sizeâ€Dependent Crystal Properties of Nanocuprite. International Journal of Applied Ceramic Technology, 2016, 13, 389-394.	1.1	10
221	Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser. Journal of Chemical Physics, 2016, 144, 164703.	1.2	7

#	Article	IF	Citations
222	Copper(I) oxide nanospheres decorated with graphene quantum dots display improved electrocatalytic activity for enhanced luminol electrochemiluminescence. Mikrochimica Acta, 2016, 183, 1591-1599.	2.5	12
223	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	23.0	2,051
224	Thermosensitive Cu ₂ O–PNIPAM core–shell nanoreactors with tunable photocatalytic activity. Journal of Materials Chemistry A, 2016, 4, 9677-9684.	5.2	46
225	A chemical bath deposition route to facet-controlled Ag3PO4 thin films with improved visible light photocatalytic activity. Journal of Solid State Chemistry, 2016, 240, 115-121. A new route towards selective synthesis of supported <mml:math< td=""><td>1.4</td><td>18</td></mml:math<>	1.4	18
226	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>Cu</mml:mi></mml:mstyle </mml:mrow><mml:mrow><mml:mn>2</mml:mn> mathvariant="normal"><mml:mi>O</mml:mi> and CuO nanoparticles under</mml:mrow></mml:msub>	/mml:mrc	ow>
227	extremely mild condition. Nano Structures Nano Objects, 2016, 6, 34-38. Photoelectrochemical stability improvement of cuprous oxide (Cu ₂ O) thin films in aqueous solution. International Journal of Energy Research, 2016, 40, 112-123.	2.2	33
228	In command of non-equilibrium. Chemical Society Reviews, 2016, 45, 2768-2784.	18.7	20
229	Synthesis of BiOBr/WO ₃ p–n heterojunctions with enhanced visible light photocatalytic activity. CrystEngComm, 2016, 18, 3856-3865.	1.3	104
230	Structure, optical properties and photocatalysis performance of Cu2O microspheres prepared by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2016, 27, 8856-8861.	1.1	9
231	Cu/Ag/Ag3PO4 ternary composite: A hybrid alloy-semiconductor heterojunction structure with visible light photocatalytic properties. Journal of Alloys and Compounds, 2016, 682, 778-784.	2.8	27
232	Electrodeposition of Cu ₂ O Nanostructure on 3D Cu Micro-Cone Arrays as Photocathode for Photoelectrochemical Water Reduction. Journal of the Electrochemical Society, 2016, 163, H976-H981.	1.3	14
233	Facet-Dependent Photocatalytic N ₂ Fixation of Bismuth-Rich Bi ₅ O ₇ I Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 27661-27668.	4.0	320
234	Formation mechanism of apex-truncated octahedral Cu2O microcrystal. CrystEngComm, 2016, 18, 8229-8236.	1.3	5
235	Precise control of Cu ₂ 0 nanostructures and LED-assisted photocatalysis. RSC Advances, 2016, 6, 78181-78186.	1.7	19
236	Highly Facetâ€Dependent Photocatalytic Properties of Cu ₂ O Crystals Established through the Formation of Auâ€Decorated Cu ₂ O Heterostructures. Chemistry - A European Journal, 2016, 22, 12548-12556.	1.7	98
237	A Heterojunction Cu2O/N–TiO2Photocatalyst for Highly Efficient Visible Light-Driven Hydrogen Production. Catalysis Letters, 2016, 146, 1655-1662.	1.4	12
238	Synthesis of CuO and Cu ₂ O nano/microparticles from a single precursor: effect of temperature on CuO/Cu ₂ O formation and morphology dependent nitroarene reduction. RSC Advances, 2016, 6, 85083-85090.	1.7	33
239	Roomâ€ŧemperature Synthesis of <scp>Cu₂O</scp> Nanostructures and Their Morphologyâ€dependent Adsorption Properties. Bulletin of the Korean Chemical Society, 2016, 37, 1114-1123.	1.0	14

#	Article	IF	CITATIONS
240	Understanding of the major reactions in solution synthesis of functional nanomaterials. Science China Materials, 2016, 59, 938-996.	3.5	86
241	Ignition and Combustion Characteristics of Nanoaluminum with Copper Oxide Nanoparticles of Differing Oxidation State. Journal of Physical Chemistry C, 2016, 120, 29023-29029.	1.5	29
242	Enhanced uptake of iodide on Ag@Cu2O nanoparticles. Chemosphere, 2016, 164, 396-403.	4.2	85
243	Oneâ€step inâ€situ fabrication of silverâ€modified Cu ₂ O crystals with enhanced visible photocatalytic activity. Micro and Nano Letters, 2016, 11, 363-365.	0.6	12
244	Atomic layer deposition on Pd nanocrystals for forming Pd-TiO 2 interface toward enhanced CO oxidation. Progress in Natural Science: Materials International, 2016, 26, 289-294.	1.8	18
245	Plasmon Modes Induced by Anisotropic Gap Opening in Au@Cu ₂ O Nanorods. Small, 2016, 12, 4264-4276.	5.2	28
246	Novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure: Preparation and photocatalytic characteristics. Chinese Journal of Catalysis, 2016, 37, 855-862.	6.9	24
247	Morphology-dependent performance of Co 3 O 4 via facile and controllable synthesis for methane combustion. Applied Catalysis A: General, 2016, 525, 94-102.	2.2	121
248	Tuning Zeolite Precursor Interactions by Switching the Valence of Polyamine Modifiers. Langmuir, 2016, 32, 11888-11898.	1.6	23
249	Systematic shape evolution of Co ₃ O ₄ nanocrystals from octahedra to spheres under the influence of C ₂ O ₄ ^{2â^'} and PVP. CrystEngComm, 2016, 18, 9299-9306.	1.3	12
250	Engineering Crystal Modifiers: Bridging Classical and Nonclassical Crystallization. Chemistry of Materials, 2016, 28, 8453-8465.	3.2	107
251	Morphology Controlled Solution-Based Synthesis of Cu ₂ O Crystals for the Facets-Dependent Catalytic Reduction of Highly Toxic Aqueous Cr(VI). Crystal Growth and Design, 2016, 16, 3688-3698.	1.4	65
252	Facet-dependent Cu2O nanocrystals in manipulating alignment of liquid crystals and photomechanical behaviors. Nano Research, 2016, 9, 2581-2589.	5.8	10
253	Honeycomb-like CuO/ZnO hybrid nanocatalysts prepared from solid waste generated in the organosilane industry. RSC Advances, 2016, 6, 59737-59748.	1.7	9
254	A novel fabrication of Cu 2 O@Cu 7 S 4 core-shell micro/nanocrystals from Cu 2 O temples and enhanced photocatalytic activities. Materials Research Bulletin, 2016, 80, 200-208.	2.7	17
255	Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots. Nature Materials, 2016, 15, 987-994.	13.3	101
256	Recent progress in red semiconductor photocatalysts for solar energy conversion and utilization. Nanotechnology Reviews, 2016, 5, .	2.6	12
257	Cu2O rhombic dodecahedra as a superexcellent electroactive substance for ultrasensitive electrochemical immunosensors. Analytical Methods, 2016, 8, 1307-1312.	1.3	2

#	Article	IF	CITATIONS
258	A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red. Applied Surface Science, 2016, 360, 594-600.	3.1	80
259	Synthesis of cuprous oxide with morphological evolution from truncated octahedral to spherical structures and their size and shape-dependent photocatalytic activities. Journal of Colloid and Interface Science, 2016, 461, 25-31.	5.0	26
260	Synthesis of Cu ₂ O Octadecahedron/TiO ₂ Quantum Dot Heterojunctions with High Visible Light Photocatalytic Activity and High Stability. ACS Applied Materials & Interfaces, 2016, 8, 91-101.	4.0	132
261	Graphene oxide supported rhombic dodecahedral Cu2O nanocrystals for the detection of carcinoembryonic antigen. Analytical Biochemistry, 2016, 494, 101-107.	1.1	24
262	Solution synthesis protocols for shaping mixed valent oxide crystalline particles as robust catalytic materials. Inorganic Chemistry Frontiers, 2016, 3, 9-25.	3.0	8
263	Full Spectrum Visible LED Light Activated Antibacterial System Realized by Optimized Cu ₂ O Crystals. ACS Applied Materials & Interfaces, 2016, 8, 8386-8392.	4.0	22
264	Formation of pseudomorphic nanocages from Cu ₂ O nanocrystals through anion exchange reactions. Science, 2016, 351, 1306-1310.	6.0	101
265	Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science, 2016, 351, 1310-1313.	6.0	256
266	Direct growth of pod-like Cu 2 O nanowire arrays on copper foam: Highly sensitive and efficient nonenzymatic glucose and H 2 O 2 biosensor. Sensors and Actuators B: Chemical, 2016, 231, 860-866.	4.0	88
267	Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chemistry of Materials, 2016, 28, 1574-1580.	3.2	56
268	Au@Cu2O stellated polytope with core–shelled nanostructure for high-performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes. Journal of Colloid and Interface Science, 2016, 469, 138-146.	5.0	29
269	Facile synthesis of hollow Cu 2 O polyhedron without template or etchant. Materials Letters, 2016, 164, 225-228.	1.3	9
270	Photocatalytic degradation of rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis. Journal of Alloys and Compounds, 2016, 659, 101-111.	2.8	68
271	Cu-doped Bi2O3/Bi0 composite as an efficient Fenton-like catalyst for degradation of 2-chlorophenol. Separation and Purification Technology, 2016, 157, 203-208.	3.9	29
272	Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Applied Catalysis B: Environmental, 2016, 181, 495-503.	10.8	163
273	Tuning shape of barium titanate nanocubes by combination of oleic acid/tert-butylamine through hydrothermal process. Journal of Alloys and Compounds, 2016, 655, 71-78.	2.8	24
274	Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. Advances in Colloid and Interface Science, 2017, 244, 199-266.	7.0	73
275	Understanding the property-activity relationships of polyhedral cuprous oxide nanocrystals in terms of reactive crystallographic facets. Toxicological Sciences, 2017, 156, kfx011.	1.4	15

ARTICLE IF CITATIONS Photocatalytic coupling of formaldehyde to ethylene glycol and glycolaldehyde over bismuth 276 2.1 30 vanadate with controllable facets and cocatalysts. Catalysis Science and Technology, 2017, 7, 923-933. Enhanced visible light photocatalytic activity in N-doped edge- and corner-truncated octahedral 1.5 Cu2O. Solid State Sciences, 2017, 65, 22-28. Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu₂Oâ€"ZnO Heterostructures. Advanced Functional 278 7.8 112 Materials, 2017, 27, 1604635. In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic 279 performance. Applied Catalysis B: Environmental, 2017, 206, 510-519. Synthesis of NiO Nano Octahedron Aggregates as High-Performance Anode Materials for Lithium Ion 280 2.6 81 Batteries. Electrochimica Acta, 2017, 231, 272-278. Controlling Surface Termination and Facet Orientation in Cu₂O Nanoparticles for High Photocatalytic Activity: A Combined Experimental and Density Functional Theory Study. ACS Applied 4.0 99 Materials & amp; Interfaces, 2017, 9, 8100-8106. Evolution of the morphology of Cu₂O microcrystals: cube to 50-facet polyhedron 282 1.3 29 through beveled cube and rhombicuboctahedron. CrystEngComm, 2017, 19, 1627-1632. Spherically aggregated Cu₂Oâ€"TA hybrid sub-microparticles with modulated size and 1.3 improved chemical stability. CrystEngComm, 2017, 19, 1888-1895. Cu2O nanocrystals with various morphology: Synthesis, characterization and catalytic properties. 284 4.8 25 Chinese Chemical Letters, 2017, 28, 1125-1130. The influence of Au nuclei layer on formation and photoelectrochemical properties of Cu2O thin 1.1 films. Journal of Materials Science: Materials in Electronics, 2017, 28, 8579-8587. Assembly of colloidal cuprous oxide nanocrystals and study of its magnetic and electrocatalytic 287 2.36 properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 295-303. Structural, electronic, optical, and magnetic properties of Co-doped Cu ₂ O. Chinese 288 Physics B, 2017, 26, 027102. Photocatalytic performance enhancement of CuO/Cu2O heterostructures for photodegradation of 289 10.8 136 organic dyes: Effects of CuO morphology. Applied Catalysis B: Environmental, 2017, 211, 199-204. Dimer-type heterostructure of Ag/Zn0.995Ni0.005O microspheres: Microwave-assisted synthesis and synergistic antibacterial activity. Journal of Industrial and Engineering Chemistry, 2017, 52, 349-358. 290 Engineering an N-doped Cu₂O@N–C interface with long-lived photo-generated carriers 291 5.242 for efficient photoredox catalysts. Journal of Materials Chemistry A, 2017, 5, 10220-10226. Chemical bath deposition of well-aligned ZnO nanorod arrays on Ag rods for photoelectrocatalytic degradation of rhodamine B. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 292 1700059. Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal 293 2.8 249 of rhodamine B. Journal of Alloys and Compounds, 2017, 718, 112-115.

CITATION REPORT

294Utilization of MoS2 and graphene to enhance the photocatalytic activity of Cu2O for oxidative C C
bond formation. Applied Catalysis B: Environmental, 2017, 213, 1-8.10.852

#	Article	IF	CITATIONS
295	Remarkable Facet Selective Reduction of 4-Nitrophenol by Morphologically Tailored (111) Faceted Cu ₂ O Nanocatalyst. ACS Omega, 2017, 2, 1968-1984.	1.6	101
296	Shape-oriented photodynamic therapy of cuprous oxide (Cu ₂ O) nanocrystals for cancer treatment. RSC Advances, 2017, 7, 23607-23614.	1.7	20
297	Assembly mechanism and photoproduced electron transfer for a novel cubic Cu2O/tetrakis(4-hydroxyphenyl)porphyrin hybrid with visible photocatalytic activity for hydrogen evolution. Applied Catalysis B: Environmental, 2017, 211, 296-304.	10.8	37
298	Experimental and theoretical DFT+ D investigations regarding to various morphology of cuprous oxide nanoparticles: Growth mechanism of ionic liquid-assisted synthesis and photocatalytic activities. Chemical Engineering Journal, 2017, 324, 347-357.	6.6	31
299	Reduced graphene oxide encapsulated Cu2O with controlled crystallographic facets for enhanced visible-light photocatalytic degradation. Functional Materials Letters, 2017, 10, 1750034.	0.7	3
300	SnS ₂ Nanoplates with Specific Facets Exposed for Enhanced Visible‣ightâ€Driven Photocatalysis. ChemPhotoChem, 2017, 1, 60-69.	1.5	22
301	Ultrasoundâ€Assisted Preparation of Copper(I) Oxide Nanocubes: High Catalytic Activity in the Synthesis of Quinazolines. ChemCatChem, 2017, 9, 1292-1297.	1.8	19
302	Growth of Mg ₂ Si crystals shaped by {100} and {111} facets from Al–Mg–Si melts in the presence of calcium. CrystEngComm, 2017, 19, 3058-3062.	1.3	14
303	Facile Construction of Dual p–n Junctions in CdS/Cu ₂ O/ZnO Photoanode with Enhanced Charge Carrier Separation and Transfer Ability. ACS Omega, 2017, 2, 852-863.	1.6	62
304	Electroless Deposition of Silver Nanostructures by Redox Reaction of Copper Oxide. Journal of Physical Chemistry C, 2017, 121, 6986-6996.	1.5	5
305	Oxygen Vacancies in Shape Controlled Cu ₂ O/Reduced Graphene Oxide/In ₂ O ₃ Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants. ACS Applied Materials & Interfaces, 2017, 9, 11678-11688.	4.0	137
306	Cu2O nanoparticle-functionalized cellulose-based aerogel as high-performance visible-light photocatalyst. Cellulose, 2017, 24, 1017-1029.	2.4	53
307	Enhanced photocatalytic activity of Cu 2 O/g-C 3 N 4 heterojunction coupled with reduced graphene oxide three-dimensional aerogel photocatalysis. Materials Research Bulletin, 2017, 96, 18-27.	2.7	60
308	Morphology-controllable Cu2O supercrystals: Facile synthesis, facet etching mechanism and comparative photocatalytic H2 production. Journal of Alloys and Compounds, 2017, 729, 563-570.	2.8	29
309	Superior photocatalytic performance of LaFeO ₃ /g-C ₃ N ₄ heterojunction nanocomposites under visible light irradiation. RSC Advances, 2017, 7, 45369-45376.	1.7	87
310	Hollow Cu _x O (x = 2, 1) micro/nanostructures: synthesis, fundamental properties and applications. CrystEngComm, 2017, 19, 6225-6251.	1.3	21
311	Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices. Journal of the American Chemical Society, 2017, 139, 14476-14482.	6.6	42
312	The role of a metallic copper interlayer during visible photocatalytic hydrogen generation over a Cu/Cu ₂ O/Cu/TiO ₂ catalyst. Catalysis Science and Technology, 2017, 7, 5028-5037.	2.1	92

#	Article	IF	CITATIONS
313	Designed Peptoids as Tunable Modifiers of Zeolite Crystallization. Chemistry of Materials, 2017, 29, 9536-9546.	3.2	34
314	LED-Assisted Degradation of Aromatic Organics Using Cu2O Photocatalysts. MRS Advances, 2017, 2, 3377-3381.	0.5	2
315	Homeostasis in Cu _x O/SrTiO ₃ hybrid allows highly active and stable visible light photocatalytic performance. Chemical Communications, 2017, 53, 12329-12332.	2.2	48
316	Distinguishing faceted oxide nanocrystals with 17O solid-state NMR spectroscopy. Nature Communications, 2017, 8, 581.	5.8	48
317	Revealing the hydrothermal crystallization mechanism of ilmenite-type sodium niobate microplates: the roles of potassium ions. CrystEngComm, 2017, 19, 5966-5972.	1.3	6
318	Annealing disintegrates Cu2MoS4 nanosheets into MoS2 and Cu2S nanoheterostructures. Journal of Materials Science: Materials in Electronics, 2017, 28, 15936-15941.	1.1	5
319	MgO nanolayering of Cu2O semiconductors enhances photoreactivity: Superoxide radicals boost. Journal of Environmental Chemical Engineering, 2017, 5, 2648-2657.	3.3	14
320	Photoreduction preparation of Cu 2 O@polydopamine nanospheres with enhanced photocatalytic activity under visible light irradiation. Journal of Solid State Chemistry, 2017, 254, 55-61.	1.4	42
321	Notable in situ surface transformation of Cu ₂ O nanomaterials leads to dramatic activity enhancement for CO oxidation. RSC Advances, 2017, 7, 37596-37603.	1.7	31
322	Dielectric nanoresonators for light manipulation. Physics Reports, 2017, 701, 1-50.	10.3	145
322 323	Dielectric nanoresonators for light manipulation. Physics Reports, 2017, 701, 1-50. Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Science China Materials, 2017, 60, 1215-1226.	10.3 3.5	145 9
	Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Science China Materials, 2017,		
323	Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Science China Materials, 2017, 60, 1215-1226. Enhanced Photocatalytic and Fenton-like Performance of CuO <i>_x</i> -Decorated	3.5	9
323 324	Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Science China Materials, 2017, 60, 1215-1226. Enhanced Photocatalytic and Fenton-like Performance of CuO <i></i> -Decorated ZnFe ₂ O ₄ . ACS Applied Materials & amp; Interfaces, 2017, 9, 41927-41936. One-Step Synthesis of CuO–Cu ₂ O Heterojunction by Flame Spray Pyrolysis for Cathodic Photoelectrochemical Sensing of <scp>l</scp> -Cysteine. ACS Applied Materials & amp; Interfaces, 2017,	3.5 4.0	9 107
323 324 325	Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Science China Materials, 2017, 60, 1215-1226. Enhanced Photocatalytic and Fenton-like Performance of CuO <i>_{Enhanced Photocatalytic and Fenton-like Performance of CuO<i>_x</i> One-Step Synthesis of CuO–Cu₂O Heterojunction by Flame Spray Pyrolysis for Cathodic Photoelectrochemical Sensing of <scp>I</scp>-Cysteine. ACS Applied Materials & amp; Interfaces, 2017, 9, 40452-40460. Photocatalytic hydrogen evolution performance of NiS cocatalyst modified LaFeO₃/g-C₃N₄ heterojunctions. New Journal of Chemistry, 2017,}</i>	3.5 4.0 4.0	9 107 145
323 324 325 326	Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Science China Materials, 2017, 60, 1215-1226. Enhanced Photocatalytic and Fenton-like Performance of CuO <i>_x</i> >olicity -Decorated ZnFe ₂ O ₄ . ACS Applied Materials & amp; Interfaces, 2017, 9, 41927-41936. One-Step Synthesis of CuO–Cu ₂ O Heterojunction by Flame Spray Pyrolysis for Cathodic Photoelectrochemical Sensing of <scp>l</scp> -Cysteine. ACS Applied Materials & amp; Interfaces, 2017, 9, 40452-40460. Photocatalytic hydrogen evolution performance of NiS cocatalyst modified LaFeO ₃ /g-C ₃ N ₄ heterojunctions. New Journal of Chemistry, 2017, 41, 14602-14609. New electrochemiluminescence catalyst: Cu2O semiconductor crystal and the enhanced activity of	3.5 4.0 4.0 1.4	9 107 145 36
323 324 325 326 327	Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Science China Materials, 2017, 60, 1215-1226. Enhanced Photocatalytic and Fenton-like Performance of CuO <i>_x</i> >-Decorated ZnFe ₂ O ₄ . ACS Applied Materials & amp; Interfaces, 2017, 9, 41927-41936. One-Step Synthesis of CuO–Cu ₂ O Heterojunction by Flame Spray Pyrolysis for Cathodic Photoelectrochemical Sensing of <scp>I</scp> -Cysteine. ACS Applied Materials & amp; Interfaces, 2017, 9, 40452-40460. Photocatalytic hydrogen evolution performance of NiS cocatalyst modified LaFeO sub>3N ₄ heterojunctions. New Journal of Chemistry, 2017, 41, 14602-14609. New electrochemiluminescence catalyst: Cu2O semiconductor crystal and the enhanced activity of octahedra synthesized by iodide ions coordination. Materials Research Express, 2017, 4, 115021. Facet-dependent photocatalytic properties of Cu ₂ O crystals probed by using electron,	3.5 4.0 4.0 1.4 0.8	9 107 145 36 3

#	Article	IF	CITATIONS
332	Facetâ€Engineered Surface and Interface Design of Photocatalytic Materials. Advanced Science, 2017, 4, 1600216.	5.6	307
333	Modified g-C 3 N 4 /TiO 2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p -toluenesulfonic acid (p -TSA) under visible light. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85, 1-6.	1.3	33
334	P-type octahedral Cu 2 O particles with exposed {111} facets and superior CO sensing properties. Sensors and Actuators B: Chemical, 2017, 239, 211-217.	4.0	83
335	AgBr and g-C 3 N 4 co-modified Ag 2 CO 3 photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity. Applied Surface Science, 2017, 391, 440-448.	3.1	120
336	Formation of Copper-Containing Particles on the Quartz Surface as a Result of the Photolysis of Copper(II) Complexes with Amino Acids. Russian Journal of General Chemistry, 2017, 87, 2852-2857.	0.3	3
337	Photocatalytic and Adsorption Performances of Faceted Cuprous Oxide (Cu2O) Particles for the Removal of Methyl Orange (MO) from Aqueous Media. Molecules, 2017, 22, 677.	1.7	84
338	Cu x O@DNA sphere-based electrochemical bioassay for sensitive detection of Pb2+. Mikrochimica Acta, 2018, 185, 186.	2.5	11
339	Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor. Nanotechnology, 2018, 29, 205501.	1.3	23
340	Dye-Assisted Transformation of Cu ₂ O Nanocrystals to Amorphous Cu <i>_x</i> O Nanoflakes for Enhanced Photocatalytic Performance. ACS Omega, 2018, 3, 1939-1945.	1.6	13
341	Imaging Catalytic Activation of CO ₂ on Cu ₂ O (110): A First-Principles Study. Chemistry of Materials, 2018, 30, 1912-1923.	3.2	56
342	Gold nanobipyramid@cuprous oxide jujube-like nanostructures for plasmon-enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2018, 234, 26-36.	10.8	52
343	Facile synthesis of mesoporous cuprous oxide nanoparticles for enhanced visible-light-driven photodegradation. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 91-96.	0.4	2
344	In-situ synthesis of Cu2O Au nanocomposites as nanozyme for colorimetric determination of hydrogen peroxide. Journal of Alloys and Compounds, 2018, 747, 676-683.	2.8	21
345	Optimization of photoelectrochemical performance in Pt-modified p-Cu ₂ O/n-Cu ₂ O nanocomposite. Nanotechnology, 2018, 29, 145402.	1.3	7
346	Highly Efficient Cuprous Oxide Nanocrystals Assisted with Graphene for Decolorization Using Visible Light. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	6
347	Metal–semiconductor yolk–shell heteronanostructures for plasmon-enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 4068-4078.	5.2	56
348	Polyhedral Cu2O to Cu pseudomorphic conversion for stereoselective alkyne semihydrogenation. Chemical Science, 2018, 9, 2517-2524.	3.7	34
349	Dissimilitude behaviour of Cu ₂ O nano-octahedra and nano-cubes towards photo- and electrocatalytic activities. New Journal of Chemistry, 2018, 42, 3692-3702.	1.4	8

		15	Cizizzionia
#	ARTICLE High Efficient Cu ₂ 0/TiO ₂ Nanocomposite Photocatalyst to Degrade Organic	IF	CITATIONS
350	Polluant under Visible Light Irradiation. ChemistrySelect, 2018, 3, 1682-1687.	0.7	23
351	Metal–Organic Framework Derived Narrow Bandgap Cobalt Carbide Sensitized Titanium Dioxide Nanocage for Superior Photoâ€Electrochemical Water Oxidation Performance. Advanced Functional Materials, 2018, 28, 1706154.	7.8	80
352	Surface/Interfacial Catalysis of (Metal)/Oxide System: Structure and Performance Control. ChemCatChem, 2018, 10, 2125-2163.	1.8	28
353	3D Network and 2D Paper of Reduced Graphene Oxide/Cu ₂ O Composite for Electrochemical Sensing of Hydrogen Peroxide. Analytical Chemistry, 2018, 90, 1983-1991.	3.2	163
354	Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nature Catalysis, 2018, 1, 111-119.	16.1	600
355	Facile deposition of Cu2O in a UV-enhanced sulfite-mediated glucose fuel cell for photoelectrocatalytic reduction of oxygen. Journal of Alloys and Compounds, 2018, 740, 355-363.	2.8	9
357	A Short Review on Synthetic Advances toward the Synthesis of Rufinamide, an Antiepileptic Drug. Organic Process Research and Development, 2018, 22, 457-466.	1.3	29
358	Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications. Progress in Materials Science, 2018, 96, 111-173.	16.0	183
359	Electrodeposition of copper oxides (CuxOy) from acetate bath. Journal of Electroanalytical Chemistry, 2018, 817, 36-47.	1.9	21
360	Preparation of carbon nanotube and graphene doped polyphenylene sulfide flexible film electrodes and the electrodeposition of Cu2O nanocrystals for hydrogen-generation. International Journal of Hydrogen Energy, 2018, 43, 7356-7365.	3.8	8
361	Impact of the Cu2O microcrystal planes on active phase formation in the Rochow reaction and an experimental and theoretical understanding of the reaction mechanism. Journal of Catalysis, 2018, 361, 73-83.	3.1	24
362	Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible light photocatalytic activity. Catalysis Today, 2018, 300, 58-70.	2.2	85
363	Au@Cu2O core-shell structure for high sensitive non-enzymatic glucose sensor. Sensors and Actuators B: Chemical, 2018, 255, 2510-2519.	4.0	183
364	A topological screening heuristic for low-energy, high-index surfaces. Surface Science, 2018, 669, 50-56.	0.8	11
365	Green synthesis of glucose-reduced graphene oxide supported Ag-Cu 2 O nanocomposites for the enhanced visible-light photocatalytic activity. Composites Part B: Engineering, 2018, 138, 35-44.	5.9	80
366	A powerful Li O2 battery based on an efficient hollow Cu2O cathode catalyst with tailored crystal plane. Electrochimica Acta, 2018, 260, 31-39.	2.6	11
367	Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Applied Materials & Interfaces, 2018, 10, 4-15.	4.0	98
368	Theoretical and experimental researches on NiS2 nanocubes with uniform reactive exposure facets. Materials Chemistry and Physics, 2018, 207, 194-202.	2.0	10

#	Article	IF	CITATIONS
369	Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides. Applied Catalysis B: Environmental, 2018, 224, 783-790.	10.8	129
370	Roles played by polysaccharides with different structures in biomimetic synthesis of cuprous oxide. CrystEngComm, 2018, 20, 6243-6251.	1.3	0
371	Synthesis of Hollow Silica Nanocubes with Tuneable Size and Shape, Suitable for Light Scattering Studies. Colloids and Interfaces, 2018, 2, 44.	0.9	14
372	Sustainable Recovery of CO2 by Using Visible-Light-Responsive Crystal Cuprous Oxide/Reduced Graphene Oxide. Sustainability, 2018, 10, 4145.	1.6	9
373	Extra Surfactant-Assisted Self-Assembly of Highly Ordered Monolayers of BaTiO3 Nanocubes at the Air—Water Interface. Nanomaterials, 2018, 8, 739.	1.9	14
374	Photodegradation of Stearic Acid Adsorbed on Copper Oxide Heterojunction Thin Films Prepared by Magnetron Sputtering. ChemEngineering, 2018, 2, 40.	1.0	4
375	Facet-Inspired Core–Shell Gold Nanoislands on Metal Oxide Octadecahedral Heterostructures: High Sensing Performance toward Sulfide in Biotic Fluids. ACS Applied Materials & Interfaces, 2018, 10, 36675-36685.	4.0	80
376	Evolution of a Cu ₂ O Cube to a Hollow Truncated Octahedron and Their Photocatalytic and Electrocatalytic Activity. ACS Applied Nano Materials, 2018, 1, 6038-6045.	2.4	10
378	Formation of hollow MoO ₃ /SnS ₂ heterostructured nanotubes for efficient light-driven hydrogen peroxide production. Journal of Materials Chemistry A, 2018, 6, 20304-20312.	5.2	106
379	Structure dependent luminescence, peroxidase mimetic and hydrogen peroxide sensing of samarium doped cerium phosphate nanorods. Journal of Materials Chemistry B, 2018, 6, 6559-6571.	2.9	15
380	Facet-dependent electrical and mechanical properties of polyhedral Cu2O under compression. Journal of Alloys and Compounds, 2018, 762, 835-841.	2.8	2
381	Cuprous oxide nanostructures tuned by histidine-containing peptides and their photocatalytic activities. Applied Surface Science, 2018, 453, 173-181.	3.1	4
382	Continuous UV irradiation synthesis of ultra-small Au nanoparticles decorated Cu2O with enhanced photocatalytic activity. Composites Communications, 2018, 9, 27-32.	3.3	6
383	Effect of cooling rate on growth and transformation of primary Mg ₂ Si in Al–Mg ₂ Si in situ composites. Journal of Materials Research, 2018, 33, 3458-3465.	1.2	11
384	Photocatalytic conversion of gas phase carbon dioxide by graphitic carbon nitride decorated with cuprous oxide with various morphologies. Journal of CO2 Utilization, 2018, 26, 511-521.	3.3	20
385	Electrochemical sensor for the determination of dimetridazole using a 3D Cu ₂ O/ErGO-modified electrode. Analytical Methods, 2018, 10, 3380-3385.	1.3	24
386	Solution Processable Cu(II)macrocycle for the Formation of Cu ₂ 0 Thin Film on Indium Tin Oxide and Its Application for Water Oxidation. Journal of Physical Chemistry C, 2018, 122, 16510-16518.	1.5	25
387	SbSI Nanocrystals: An Excellent Visible Light Photocatalyst with Efficient Generation of Singlet Oxygen. ACS Sustainable Chemistry and Engineering, 2018, 6, 12166-12175.	3.2	27

#	Article	IF	CITATIONS
388	The long and successful journey of electrochemically active amino acids. From fundamental adsorption studies to potential surface engineering tools Anais Da Academia Brasileira De Ciencias, 2018, 90, 607-630.	0.3	21
389	Facile Fabrication of Cu2O Nanobelts in Ethanol on Nanoporous Cu and Their Photodegradation of Methyl Orange. Materials, 2018, 11, 446.	1.3	49
390	Controlled Synthesis of Cu and Cu2O NPs and Incorporation of Octahedral Cu2O NPs in Cellulose II Films. Nanomaterials, 2018, 8, 238.	1.9	9
391	Facet-Dependent Cuprous Oxide Nanocrystals Decorated with Graphene as Durable Photocatalysts under Visible Light. Nanomaterials, 2018, 8, 423.	1.9	9
392	Work function: a determining factor of the photodegradation rate of methyl orange <i>via</i> hollow octadecahedron Cu ₂ O crystals. Physical Chemistry Chemical Physics, 2018, 20, 20117-20123.	1.3	12
393	Synthesis of a TiO ₂ –Cu ₂ O composite catalyst with enhanced visible light photocatalytic activity for gas-phase toluene. New Journal of Chemistry, 2018, 42, 9252-9259.	1.4	22
394	Highly visible-light-responsive Cu ₂ 0/rGO decorated with Fe ₃ 0 ₄ @SiO ₂ nanoparticles as a magnetically recyclable photocatalyst. Nanotechnology, 2018, 29, 305606.	1.3	11
395	Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu ₂ 0 Cubes, Octahedra, and Rhombic Dodecahedra. Journal of Physical Chemistry C, 2018, 122, 13027-13033.	1.5	52
396	Why Could the Nature of Surface Facets Lead to Differences in the Activity and Stability of Cu ₂ O-Based Electrocatalytic Sensors?. ACS Catalysis, 2018, 8, 6265-6272.	5.5	49
397	Metal–semiconductor ternary hybrids for efficient visible-light photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 13225-13235.	5.2	37
398	Sizeâ€Dependent Visible Light Photocatalytic Performance of Cu ₂ O Nanocubes. ChemCatChem, 2018, 10, 3554-3563.	1.8	44
399	Cu ₂ O@PNIPAM core–shell microgels as novel inkjet materials for the preparation of CuO hollow porous nanocubes gas sensing layers. Journal of Materials Chemistry C, 2018, 6, 7249-7256.	2.7	10
400	Photocatalysis for Hydrogen Production and CO ₂ Reduction: The Case of Copper atalysts. ChemCatChem, 2019, 11, 368-382.	1.8	131
401	Synthesis of mesoporous sphere-like Copper(I) oxide and its enhancement of Congo red photodegradation performance and CO sensing properties. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 405-415.	2.7	8
402	An amperometric biosensor based on Cu2O@Au nanocomposites for the detection of galectin-1 via lactose–galectin interactions. Nanotechnology, 2019, 30, 485706.	1.3	6
403	Template free mild hydrothermal synthesis of core–shell Cu ₂ O(Cu)@CuO visible light photocatalysts for <i>N</i> -acetyl- <i>para</i> -aminophenol degradation. Journal of Materials Chemistry A, 2019, 7, 20767-20777.	5.2	46
404	High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications. Nanoscale, 2019, 11, 15739-15762.	2.8	74
405	Nitrogen dioxide sensing based on multiple-morphology cuprous oxide mixed structures anchored on reduced graphene oxide nanosheets at room temperature. Nanotechnology, 2019, 30, 455502.	1.3	9

#	Article	IF	CITATIONS
406	Triple amplified ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on MoS2@Cu2O-Au nanoparticles. Sensors and Actuators B: Chemical, 2019, 297, 126821.	4.0	48
407	Fabrication of MCC/Cu2O/GO composite foam with high photocatalytic degradation ability toward methylene blue. Carbohydrate Polymers, 2019, 223, 115101.	5.1	20
408	Synergetic Effect of Facet Junction and Specific Facet Activation of ZnFe ₂ O ₄ Nanoparticles on Photocatalytic Activity Improvement. ACS Applied Materials & Interfaces, 2019, 11, 29004-29013.	4.0	57
409	Tuning Interfacial Cuâ€O Atomic Structures for Enhanced Catalytic Applications. Chemistry - an Asian Journal, 2019, 14, 2912-2924.	1.7	14
410	Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu ₂ O core–shell nanorods. Nanoscale, 2019, 11, 16445-16454.	2.8	40
411	From wustite to hematite: thermal transformation of differently sized iron oxide nanoparticles in air. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	12
412	Surface chemistry and catalysis of oxide model catalysts from single crystals to nanocrystals. Surface Science Reports, 2019, 74, 100471.	3.8	99
413	Superior synergy of g-C3N4/Cd compounds and Al-MOF-derived nanoporous carbon for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 257, 117906.	10.8	62
414	Cu2O cubic and polyhedral structures versus commercial powder: Shape effect on photocatalytic activity under visible light. Journal of Saudi Chemical Society, 2019, 23, 1016-1023.	2.4	15
415	Application of CuxO-FeyOz Nanocatalysts in Ethynylation of Formaldehyde. Nanomaterials, 2019, 9, 1301.	1.9	19
416	Amino Acids for the Sustainable Production of Cu ₂ O Materials: Effects on Morphology and Photocatalytic Reactivity. ACS Sustainable Chemistry and Engineering, 2019, 7, 17055-17064.	3.2	10
417	Synthesis of Highly Monodisperse Cu ₂ O Nanocrystals and Their Applications as Holeâ€Transporting Layers in Solutionâ€Processed Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 14767-14770.	1.7	7
418	Facet-dependent and interfacial plane-related photocatalytic behaviors of semiconductor nanocrystals and heterostructures. Nano Today, 2019, 28, 100768.	6.2	81
419	Reactive Oxygen Species–Activatable Liposomes Regulating Hypoxic Tumor Microenvironment for Synergistic Photo/Chemodynamic Therapies. Advanced Functional Materials, 2019, 29, 1905013.	7.8	124
420	The Effects of Exposed Specific Facets and Sulfation on the Surface Acidity of Cu 2 O Solids. Chemistry - A European Journal, 2019, 25, 14771-14774.	1.7	7
421	GIT1 regulates angiogenic factor secretion in bone marrow mesenchymal stem cells via NFâ€₽̂B/Notch signalling to promote angiogenesis. Cell Proliferation, 2019, 52, e12689.	2.4	16
422	Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nature Catalysis, 2019, 2, 889-898.	16.1	234
423	Facile Universal Mass Production Strategy to Sub-3 nm Monodisperse Nanocrystals of Transition-Metal Oxides and Their Excellent Cyclability for Li-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 37867-37874.	4.0	23

#	Article	IF	CITATIONS
424	Hydrothermal synthesis of La0.7Sr0.3MnO3 and its application in visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2019, 30, 19001-19008.	1.1	8
425	Graphene nanoplatelet supported CeO2 nanocomposites towards electrocatalytic oxidation of multiple phenolic pollutants. Analytica Chimica Acta, 2019, 1088, 45-53.	2.6	25
426	Quantitative evaluation of the surface stability and morphological changes of Cu2O particles. Heliyon, 2019, 5, e02500.	1.4	22
427	Morphology-controlled synthesis of cuprous oxide nanoparticles by plasma electrochemistry and its photocatalytic activity. European Physical Journal D, 2019, 73, 1.	0.6	5
428	Facetâ€Dependent Optical Properties of Semiconductor Nanocrystals. Small, 2019, 15, e1804726.	5.2	58
429	Enhanced photoreduction of CO2 into methanol by facet-dependent Cu2O/reduce graphene oxide. Journal of CO2 Utilization, 2019, 33, 171-178.	3.3	62
430	Excellent adsorption capacity and photocatalytic regeneration of nanoparticles-assembled mesoporous Cu2O/Bi2O3 composites for removal of methyl orange. Materials Research Express, 2019, 6, 085532.	0.8	8
431	Chemically Synthesized Electromagnetic Metal Oxide Nanoresonators. Advanced Optical Materials, 2019, 7, 1900396.	3.6	13
432	In Situ Analysis of Growth Behaviors of Cu ₂ 0 Nanocubes in Liquid Cell Transmission Electron Microscopy. Analytical Chemistry, 2019, 91, 9665-9672.	3.2	9
433	A Nonâ€Pt Electronically Coupled Semiconductor Heterojunction for Enhanced Oxygen Reduction Electrocatalytic Property. ChemistrySelect, 2019, 4, 5264-5268.	0.7	2
434	Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals. Crystals, 2019, 9, 163.	1.0	23
435	Rapid design of a core–shell-like metal hydroxide/oxide composite and activated carbon from biomass for high-performance supercapattery applications. Inorganic Chemistry Frontiers, 2019, 6, 1707-1720.	3.0	19
436	Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity. Nano Research, 2019, 12, 1453-1460.	5.8	41
437	One-pot green hydrothermal synthesis and visible-light photocatalytic properties of Cu2O/Cu hybrid composites using egg albumin as structure modifier. Solid State Sciences, 2019, 93, 70-78.	1.5	13
438	Controlled Synthesis of Cuprous Oxide Nanoparticles with Different Morphologies for Nonenzymatic Hydrogen Peroxide Sensing Applications. Journal of the Electrochemical Society, 2019, 166, B200-B204.	1.3	13
439	Design of hollow dodecahedral Cu2O nanocages for ethanol gas sensing. Materials Letters, 2019, 247, 15-18.	1.3	23
440	Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. Chemical Reviews, 2019, 119, 5192-5247.	23.0	551
441	Integrating Nano-Cu2O@ZrP into In Situ Polymerized Polyethylene Terephthalate (PET) Fibers with Enhanced Mechanical Properties and Antibacterial Activities. Polymers, 2019, 11, 113.	2.0	20

#	Article	IF	Citations
442	Cu ₂ 0 Nanoparticle Hyper-Cross-Linked Polymer Composites for the Visible-Light Photocatalytic Degradation of Methyl Orange. ACS Applied Nano Materials, 2019, 2, 2706-2712.	2.4	35
443	Ultrafine Cu2O/CuO nanosheet arrays integrated with NPC/BMG composite rod for photocatalytic degradation. Applied Surface Science, 2019, 483, 285-293.	3.1	36
444	From Atoms to Lives: The Evolution of Nanoparticle Assemblies. Advanced Functional Materials, 2019, 29, 1807658.	7.8	44
445	Facile Synthesis of Cu Nanocrystals with Morphology Evolution from Transitional Truncated Octahedra to Octahedra. Journal of Nanomaterials, 2019, 2019, 1-7.	1.5	8
446	Dynamic growth of rhombic dodecahedral Cu ₂ O crystals controlled by reaction temperature and their size-dependent photocatalytic performance. RSC Advances, 2019, 9, 36831-36837.	1.7	9
447	Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications. Journal of Alloys and Compounds, 2019, 772, 447-459.	2.8	18
448	Constructing the Band Alignment of Graphitic Carbon Nitride (g-C ₃ N ₄)/Copper(I) Oxide (Cu ₂ O) Composites by Adjusting the Contact Facet for Superior Photocatalytic Activity. ACS Applied Energy Materials, 2019, 2, 1803-1811.	2.5	29
449	Inverse Wulff construction for surface energies of coexisting and missing surfaces of crystal particles. Journal of Crystal Growth, 2019, 508, 1-7.	0.7	16
450	Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu ₂ O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Applied Materials & Interfaces, 2019, 11, 3582-3589.	4.0	39
451	Facile synthesis of Cu2O particles with different morphologies. Journal of Solid State Chemistry, 2019, 270, 192-199.	1.4	13
452	Photocatalytic Activity Suppression of Ag ₃ PO ₄ -Deposited Cu ₂ O Octahedra and Rhombic Dodecahedra. Journal of Physical Chemistry C, 2019, 123, 2314-2320.	1.5	21
453	Enhanced light harvesting and electron-hole separation for efficient photocatalytic hydrogen evolution over Cu7S4-enwrapped Cu2O nanocubes. Applied Catalysis B: Environmental, 2019, 246, 202-210.	10.8	71
454	Polynuclear Aminohydroximate Metallamacrocyclic Cu(II) e(III) Complexes: A Facile Route to Intricate Nanostructures of Copper and Cerium Oxides. European Journal of Inorganic Chemistry, 2019, 2019, 1002-1010.	1.0	6
455	Recent advances in suppressing the photocorrosion of cuprous oxide for photocatalytic and photoelectrochemical energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 191-211.	5.6	113
456	Self-induced Fenton reaction constructed by Fe(III) grafted BiVO4 nanosheets with improved photocatalytic performance and mechanism insight. Applied Surface Science, 2019, 467-468, 673-683.	3.1	15
457	Polyhedral Cu ₂ 0 Crystals for Diverse Aryl Alkyne Hydroboration Reactions. Chemistry - A European Journal, 2019, 25, 1300-1303.	1.7	23
458	Chiral Molecule-mediated Porous Cu _{<i>x</i>} O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease. Journal of the American Chemical Society, 2019, 141, 1091-1099.	6.6	264
459	Selective growth of palladium nanocrystals on the (100) facets of truncated octahedral Cu ₂ O for UV plasmonic photocatalysis. CrystEngComm, 2019, 21, 30-33.	1.3	9

#	Article	IF	CITATIONS
460	Magnetically Recyclable MoS ₂ /Fe ₃ O ₄ Hybrid Composite as Visible Light Responsive Photocatalyst with Enhanced Photocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 1673-1682.	3.2	76
461	Nitrogen-doped double-layer graphite supported CuCo2S4 electrode for high-performance asymmetric supercapacitors. Materials Letters, 2019, 235, 6-10.	1.3	33
462	The comparative study of two kinds of \hat{l}^2 -Bi2O3/TiO2 binary composite and their removal of 17É ⁴ -ethynylestradiol. Environmental Science and Pollution Research, 2020, 27, 24692-24701.	2.7	10
463	Tunable morphologies of polymer capsules templated from cuprous oxide particles for control over cell association. Chinese Chemical Letters, 2020, 31, 505-508.	4.8	8
464	Artificial all-solid-state system by RGO bridged Cu2O and Bi2WO6 for Z-scheme H2 production and tetracycline degradation. Fuel, 2020, 259, 116311.	3.4	56
465	Degradation of acetaminophen in a photocatalytic (batch and continuous system) and photoelectrocatalytic process by application of faceted-TiO2. Separation and Purification Technology, 2020, 230, 115859.	3.9	30
466	Selective Deposition of Cobalt and Copper Oxides on BiVO ₄ Facets for Enhancement of CO ₂ Photocatalytic Reduction to Hydrocarbons. ChemCatChem, 2020, 12, 740-749.	1.8	28
467	Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323, 253-261.	0.7	11
468	Synthesis of au-decorated SnO2 crystallites with exposed (221) facets and their enhanced acetylene sensing properties. Sensors and Actuators B: Chemical, 2020, 307, 127629.	4.0	44
469	An LSPR-based "push–pull―synergetic effect for the enhanced photocatalytic performance of a gold nanorod@cuprous oxide-gold nanoparticle ternary composite. Nanoscale, 2020, 12, 1912-1920.	2.8	20
470	Assessing the adsorption and photocatalytic activity of TiO2 nanoparticles for the gas phase acetaldehyde: A computational and experimental study. Journal of Alloys and Compounds, 2020, 819, 153055.	2.8	13
471	Pompon Dahliaâ€like Cu ₂ 0/rGO Nanostructures for Visible Light Photocatalytic H ₂ Production and 4 hlorophenol Degradation. ChemCatChem, 2020, 12, 1699-1709.	1.8	34
472	Fabrication of highly (1 1 1)-oriented Cu2O films on glass substrates by repeated chemical bath deposition. Journal of Crystal Growth, 2020, 551, 125920.	0.7	2
473	Pollutants degradation and power generation by photocatalytic fuel cells: A comprehensive review. Arabian Journal of Chemistry, 2020, 13, 8458-8480.	2.3	60
474	Cu ₂ O as an emerging semiconductor in photocatalytic and photoelectrocatalytic treatment of water contaminated with organic substances: a review. RSC Advances, 2020, 10, 36514-36525.	1.7	53
475	Theoretical investigation of cuprous oxide/silicon heterojunction solar cells. Optik, 2020, 223, 165534.	1.4	3
476	Morphology and crystal facet-dependent activation mechanism of persulfate by V2O5 nanomaterials for organic pollutants degradation. Separation and Purification Technology, 2020, 253, 117501.	3.9	16
477	Doing nano-enabled water treatment right: sustainability considerations from design and research through development and implementation. Environmental Science: Nano, 2020, 7, 3255-3278.	2.2	13

#	Article	IF	CITATIONS
478	Identification of the Miller indices of a crystallographic plane: a tutorial and a comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. Nanoscale, 2020, 12, 16657-16677.	2.8	29
479	Toward Informed Design of Nanomaterials: A Mechanistic Analysis of Structure–Property–Function Relationships for Faceted Nanoscale Metal Oxides. ACS Nano, 2020, 14, 16472-16501.	7.3	41
480	Critical Roles of Doping Cl on Cu ₂ O Nanocrystals for Direct Epoxidation of Propylene by Molecular Oxygen. Journal of the American Chemical Society, 2020, 142, 14134-14141.	6.6	51
481	Regulation of intrinsic physicochemical properties of metal oxide nanomaterials for energy conversion and environmental detection applications. Journal of Materials Chemistry A, 2020, 8, 17326-17359.	5.2	33
482	Size-Tunable Cu ₃ Se ₂ Nanocubes Possessing Surface Plasmon Resonance Properties for Photothermal Applications. ACS Applied Nano Materials, 2020, 3, 8446-8452.	2.4	16
483	Performance of cuprous oxide mesoparticles with different morphologies as catalysts in a carbon nanotube ink for printing electrochemical sensors. Journal of Alloys and Compounds, 2020, 847, 156449.	2.8	5
484	Protection of highly active sites on Cu ₂ O nanocages: an efficient crystalline catalyst for ammonium perchlorate decomposition. CrystEngComm, 2020, 22, 8214-8220.	1.3	8
485	Cu2O polyhedra for aryl alkyne homocoupling reactions. Catalysis Science and Technology, 2020, 10, 6948-6952.	2.1	25
486	Cu2O/MoS2 composites: a novel photocatalyst for photocatalytic degradation of organic dyes under visible light. Ionics, 2020, 26, 6359-6369.	1.2	23
487	Effect of Nonincorporative Cations on the Size and Shape of Indium Oxide Nanocrystals. Chemistry of Materials, 2020, 32, 9347-9354.	3.2	11
488	Recent Advances in the Design and Photocatalytic Enhanced Performance of Gold Plasmonic Nanostructures Decorated with Non-Titania Based Semiconductor Hetero-Nanoarchitectures. Catalysts, 2020, 10, 1459.	1.6	15
489	Antioxidant Activity of Telmisartan–Cu(II) Nanoparticles Connected 2-Pyrimidinamine and Their Evaluation of Cytotoxicity Activities. BioMed Research International, 2020, 2020, 1-12.	0.9	5
490	Visible light assisted Fenton type degradation of methylene blue by admicelle anchored alumina supported rod shaped manganese oxide. Journal of Water Process Engineering, 2020, 36, 101272.	2.6	28
491	Photodegradation of dyes in batch and continuous reactors by Cu2O-CuO nano-photocatalyst on Cu foils prepared by chemical-thermal oxidation. Materials Research Bulletin, 2020, 130, 110920.	2.7	41
492	A recyclable catalyst made of two-dimensional gold-loaded cellulose paper for reduction of 4-nitrophenol. Journal of Industrial and Engineering Chemistry, 2020, 89, 204-211.	2.9	6
493	Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nature Communications, 2020, 11, 2788.	5.8	406
494	Mesoporous Cu–Cu ₂ O@TiO ₂ heterojunction photocatalysts derived from metal–organic frameworks. RSC Advances, 2020, 10, 14550-14555.	1.7	25
495	Facet-Specific Photocatalytic Activity Enhancement of Cu ₂ O Polyhedra Functionalized with 4-Ethynylanaline Resulting from Band Structure Tuning. ACS Central Science, 2020, 6, 984-994.	5.3	42

#	Article	IF	CITATIONS
496	Facet-energy inspired metal oxide extended hexapods decorated with graphene quantum dots: sensitive detection of bisphenol A in live cells. Nanoscale, 2020, 12, 9014-9023.	2.8	35
497	Synthesis and Photocatalytic Activity of Cu2O Microspheres upon Methyl Orange Degradation. Topics in Catalysis, 2020, 63, 586-600.	1.3	14
498	Curtailing the Overpotential of Li–CO 2 Batteries with Shape ontrolled Cu 2 O as Cathode: Effect of Illuminating the Cathode. ChemSusChem, 2020, 13, 2719-2725.	3.6	24
499	Nanoparticleâ€Catalysed 1,3â€Dipolar Cycloadditions. European Journal of Organic Chemistry, 2020, 2020, 6173-6191.	1.2	7
500	Heterostructured graphitic-carbon-nitride-nanosheets/copper(I) oxide composite as an enhanced visible light photocatalyst for decomposition of tetracycline antibiotics. Separation and Purification Technology, 2020, 250, 117238.	3.9	22
501	Design of high-performance electrochemistry sensors: Elucidation of detection mechanism by DFT studies. Journal of Electroanalytical Chemistry, 2020, 860, 113905.	1.9	8
502	TiO ₂ superstructures with oriented nanospaces: a strategy for efficient and selective photocatalysis. Nanoscale, 2020, 12, 6420-6428.	2.8	8
503	Morphology-dependent interfacial interactions of Fe2O3 with Ag nanoparticles for determining the catalytic reduction of p-nitrophenol. Journal of Environmental Sciences, 2020, 92, 1-10.	3.2	14
504	Dual Lewis site creation for activation of methanol on Fe ₃ O ₄ (111) thin films. Chemical Science, 2020, 11, 2448-2454.	3.7	10
505	Active faceted Cu2O hollow nanospheres for unprecedented adsorption and visible-light degradation of pollutants. Journal of Colloid and Interface Science, 2020, 565, 207-217.	5.0	31
506	Correlation between Surface Chemistry and Optical Properties in Colloidal Cu ₂ O Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 4810-4819.	1.5	13
507	Efficient photocatalytic reduction of Cr(VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light. Applied Surface Science, 2020, 510, 145495.	3.1	108
508	Surface heterojunction of photocatalysts. Interface Science and Technology, 2020, 31, 161-191.	1.6	4
509	The self-assembly of octahedral CuxO and its triethylamine-sensing properties. Sensors and Actuators B: Chemical, 2020, 312, 128014.	4.0	23
510	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
511	Construction of novel ternary Au/LaFeO ₃ /Cu ₂ O composite photocatalysts for RhB degradation via photo-Fenton catalysis. Materials Technology, 2021, 36, 603-615.	1.5	91
512	Rhombic dodecahedral Cu2O/Ag-3D Fe3O4 micro-flower composites for water purification under visible light irradiation. Journal of Alloys and Compounds, 2021, 858, 157698.	2.8	19
513	Phospholipid/protein co-mediated assembly of Cu2O nanoparticles for specific inhibition of growth and biofilm formation of pathogenic fungi. Science China Materials, 2021, 64, 759-768.	3.5	5

#	Article	IF	CITATIONS
514	Anisotropic heteronanocrystals of Cu2O–2D MoS2 for efficient visible light driven photocatalysis. Applied Surface Science, 2021, 538, 148159.	3.1	19
515	Novel biogenic gold nanoparticles catalyzing multienzyme cascade reaction: Glucose oxidase and peroxidase mimicking activity. Chemical Engineering Journal, 2021, 421, 127859.	6.6	45
516	Surfactant- and template-free hydrothermal assembly of Cu2O visible light photocatalysts for trimethoprim degradation. Applied Catalysis B: Environmental, 2021, 284, 119741.	10.8	60
517	Fluxâ€Assisted Synthesis of Prismâ€like Octahedral Ta ₃ N ₅ Singleâ€Crystals with Controllable Facets for Promoted Photocatalytic H ₂ Evolution. Solar Rrl, 2021, 5, 2000574.	3.1	10
518	Recent advances and perspective on heterogeneous catalysis using metals and oxide nanocrystals. Materials Chemistry Frontiers, 2021, 5, 151-222.	3.2	18
519	Synthesis, Structure and Catalytic Properties of Faceted Oxide Crystals. ChemCatChem, 2021, 13, 6-27.	1.8	10
520	Well-defined Cu ₂ O photocatalysts for solar fuels and chemicals. Journal of Materials Chemistry A, 2021, 9, 5915-5951.	5.2	101
521	Green synthesis of starch-capped Cu ₂ O nanocubes and their application in the direct electrochemical detection of glucose. RSC Advances, 2021, 11, 13711-13721.	1.7	10
522	CsPbBr ₃ and CsPbI ₃ rhombic dodecahedra and nanocubes displaying facet-dependent optical properties. Inorganic Chemistry Frontiers, 2021, 8, 4685-4695.	3.0	17
523	Group 13 Lewis acid catalyzed synthesis of metal oxide nanocrystals <i>via</i> hydroxide transmetallation. Nanoscale, 2021, 13, 11505-11517.	2.8	1
524	Visible-light-driven cuprous oxide nanomotors with surface-heterojunction-induced propulsion. Nanoscale Horizons, 2021, 6, 238-244.	4.1	23
525	Two-dimensional Ti3C2TX-nanosheets/Cu2O composite as a high-performance photocatalyst for decomposition of tetracycline. Carbon Resources Conversion, 2021, 4, 197-204.	3.2	17
526	Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. Journal of the American Chemical Society, 2021, 143, 1251-1266.	6.6	61
527	Improvement in biodegradability of paper mill wastewater by anatase TiO2 predominant in {001} facet in the batch and packed bed photoreactor (PBPR). International Journal of Environmental Science and Technology, 2021, 18, 3441.	1.8	1
529	Inactive Cu ₂ O Cubes Become Highly Photocatalytically Active with Ag ₂ S Deposition. ACS Applied Materials & Interfaces, 2021, 13, 11515-11523.	4.0	52
530	Facet-Dependent Cu ₂ O Electrocatalysis for Wearable Enzyme-Free Smart Sensing. ACS Catalysis, 2021, 11, 2949-2955.	5.5	65
532	Machine Learningâ€Aided Crystal Facet Rational Design with Ionic Liquid Controllable Synthesis. Small, 2021, 17, e2100024.	5.2	24
533	An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis. Chemical Record, 2021, 21, 1811-1844.	2.9	29

		ATION REPORT	
#	Article	IF	CITATIONS
534	Dendritic branching Z-scheme Cu2O/TiO2 heterostructure photocatalysts for boosting H2 production. Journal of Physics and Chemistry of Solids, 2021, 152, 109948.	1.9	21
535	Driving Click Reactions with Plasmonic Hot Holes on (Au Core)@(Cu ₂ O Shell) Nanostructures for Regioselective Production of 1,2,3-Triazoles. ACS Applied Nano Materials, 2021, 4, 4623-4631.	2.4	12
536	A Sandwich-Type Immunosensor Based on Pd NPs@DSHSs-Cu ₂ O and Au NPs Functionaliz Graphene Oxide Doped Poly(3,4-ethylenedioxythiophene) Nanorod for Quantitative Detection NSE. Journal of the Electrochemical Society, 2021, 168, 057530.	2ed 1.3	4
537	Synthesis of a new porous Cu2O@Cu4(SO4) (OH)6·2H2O core-shell thermocatalyst by in situ etching for efficient catalytic degradation of dye under dark condition. Journal of Solid State Chemistry, 2021, 298, 122107.	g 1.4	6
538	A special zinc metal-organic frameworks-controlled composite nanosensor for highly sensitive and stable SERS detection. Applied Surface Science, 2021, 550, 149302.	3.1	16
539	Synthesis and characterization of a novel single-phase sputtered Cu2O thin films: Structural, antibacterial activity and photocatalytic degradation of methylene blue. Inorganic Chemistry Communication, 2021, 128, 108606.	1.8	20
540	Effect of Si content on the performance of direct synthesis of dimethyl ether over slurry CuZnAl catalyst prepared by complete liquid phase technology. Journal of Fuel Chemistry and Technology, 2021, 49, 791-798.	0.9	2
541	An immunosensor using functionalized Cu2O/Pt NPs as the signal probe for rapid and highly sensitive CEA detection with colorimetry and electrochemistry dual modes. Sensors and Actuators B: Chemical, 2021, 341, 130032.	4.0	39
542	Hydrothermal synthesis of Cu2O with morphology evolution and its effect on visible-light photocatalysis. Materials Letters, 2021, 297, 129921.	1.3	15
543	An overview of the use of nanozymes in antibacterial applications. Chemical Engineering Journal, 2021, 418, 129431.	, 6.6	140
544	Hollow Dodecahedra Graphene Oxide- Cuprous Oxide Nanocomposites With Effective Photocatalytic and Bactericidal Activity. Frontiers in Chemistry, 2021, 9, 755836.	1.8	2
545	Keggin-type polycationic AlO4Al12(OH)24(H2O)127+ intercalated MoO3 composites for methyl orang adsorption. Chinese Chemical Letters, 2022, 33, 2617-2620.	ge 4.8	7
546	Strategies for Improved Electrochemical CO ₂ Reduction to Valueâ€Added Products by Highly Anticipated Copperâ€Based Nanoarchitectures. Chemical Record, 2022, 22, .	2.9	12
547	Simultaneous Tuning Band Gaps of Cu ₂ O and TiO ₂ to Form Sâ€Scheme Heteroâ€Photocatalyst. Chemistry - A European Journal, 2021, 27, 14638-14644.	1.7	8
548	Synthesis of MXene/COF/Cu2O heterojunction for photocatalytic bactericidal activity and mechanism evaluation. Chemical Engineering Journal, 2022, 430, 132663.	6.6	25
549	In situ fabrication of BiOBr/BiFeWO6 heterojunction with excellent photodegradation activity under visible light. Journal of Solid State Chemistry, 2021, 303, 122465.	1.4	29
550	Citric acid modulated preparation of CdS photocatalyst for efficient removal of Cr(VI) and methyl orange. Optical Materials, 2021, 121, 111604.	1.7	16
551	Effective photocatalytic removal of As(III) by ZnFe2O4/Ag/AgCl coupled peroxymonosulfate: Z-Scheme charge transfer and dual active sites. Applied Surface Science, 2021, 567, 150860.	3.1	11

ARTICLE IF CITATIONS # The Facile Synthesis of Cu2O-Cu hybrid cubes as efficient visible-light-driven photocatalysts for water 552 2.1 17 remediation processes. Powder Technology, 2021, 394, 1111-1120. Bifunctional catalysts AC/Cu2O/CuO for removal of organic pollutant with enhanced visible light 1.7 photocatalysis. Chemical Physics Impact, 2021, 3, 100041. Perovskite-type lanthanum ferrite based photocatalysts: Preparation, properties, and applications. 554 7.1 88 Journal of Energy Chemistry, 2022, 66, 314-338. Cu2O nanowires with exposed {111} facet for nonenzymatic detection of glucose in complex biological fluids. Chemical Engineering Journal, 2022, 429, 132267. Rapid fabrication of silver–cuprous oxide core–shell nanowires for visible light photocatalysts. 556 1.3 6 CrystEngComm, 2021, 23, 24-29. Rapid synthesis of Cu₂O hollow spheres at low temperature and their catalytic performance for the decomposition of ammonium perchlorate. CrystEngComm, 2021, 23, 7985-7993. 1.3 Factors controlling the molecular modification of one-dimensional zeolites. Physical Chemistry 558 1.3 5 Chemical Physics, 2021, 23, 18610-18617. UiO-66-NH2/Cu2O composite as an enhanced visible light photocatalyst for decomposition of organic 2.0 19 pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 399, 112625. Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass 560 7 1.1 films. Journal of Applied Physics, 2016, 119, . Photocatalytic reduction of graphene oxide with cuprous oxide film under UV-vis irradiation. 1.4 Reviews on Advanced Materials Science, 2020, 59, 207-214. Anisotropy of Photocatalytic Properties in Nanostructured Photocatalysts. Soft Nanoscience Letters, 562 10 0.8 2016, 06, 11-30. Cuprous Oxide Films Deposition by Mid-Frequency Magnetron Sputtering and Their Photocatalytic Activity under Visible Light. Nano, 2021, 16,. Self-Assembly: The Primary Source of Coherence., 2014, , 117-125. 564 0 Synthesis mechanism of cuprous oxide nanoparticles by atmospheric-pressure plasma electrolysis. 1.3 Journal Physics D: Applied Physics, 2021, 54, 105201. Research Progress on CO₂ Photocatalytic Reduction with Full Solar Spectral Responses. 566 2.541 Energy & amp; Fuels, 2021, 35, 19920-19942. Manipulation of amorphous precursors to enhance zeolite nucleation. Faraday Discussions, 2022, 235, 322-342. Morphology of framboidal pyrite and its textural evolution: Evidence from the Logatchev area, 568 1.1 7 Mid-Atlantić Ridge. Ore Geology Reviews, 2022, 141, 104630. Extensive solar light utilizing by ternary C-dots/Cu2O/SrTiO3: Highly enhanced photocatalytic 569 4.2 degradation of antibiotics and inactivation of E. coli. Chemosphere, 2022, 290, 133340.

# 570	ARTICLE Hydroxyl ions: flexible tailoring of Cu ₂ 0 crystal morphology. RSC Advances, 2021, 11, 37760-37766.	lF 1.7	Citations
571	Facet-dependent carrier dynamics of cuprous oxide regulating the photocatalytic hydrogen generation. Materials Advances, 2022, 3, 2200-2212.	2.6	15
572	Chemical conversion based on the crystal facet effect of transition metal oxides and construction methods for sharp-faced nanocrystals. Chemical Communications, 2022, 58, 908-924.	2.2	9
573	<scp>Cu₂O</scp> Nanocrystal Model Catalysts. Chinese Journal of Chemistry, 2022, 40, 846-855.	2.6	18
574	Facet-dependent nanostructures for visible light photocatalysis. , 2022, , 351-374.		1
575	Morphology-oxygen evolution activity relationship of iridium(<scp>iv</scp>) oxide nanomaterials. New Journal of Chemistry, 2022, 46, 3716-3726.	1.4	2
576	Cu vacancy engineering on facet dependent CuO to enhance water oxidation efficiency. International Journal of Hydrogen Energy, 2022, 47, 9261-9272.	3.8	9
577	Cobalt oxide confined in mesoporous SiO2 as effective catalyst for CO oxidation. Microporous and Mesoporous Materials, 2022, 333, 111733.	2.2	4
578	Shape-controlled metal nanoparticles for fuel cells applications. , 2022, , 349-360.		2
579	Photocatalytic activity enhancement of Cu ₂ O cubes functionalized with 2-ethynyl-6-methoxynaphthalene through band structure modulation. Journal of Materials Chemistry C, 2022, 10, 3980-3989.	2.7	22
580	Facet-controlled synthesis and morphological evolution of Cu ₂ 0 microcrystals. CrystEngComm, 2022, 24, 3014-3019.	1.3	4
581	Unveiling the Bonding Nature of C3 Intermediates in the CO ₂ Reduction Reaction through the Oxygen-Deficient Cu ₂ O(110) Surface─A DFT Study. Journal of Physical Chemistry C, 2022, 126, 5502-5512.	1.5	11
582	Emerging Strategies for CO ₂ Photoreduction to CH ₄ : From Experimental to Dataâ€Đriven Design. Advanced Energy Materials, 2022, 12, .	10.2	68
583	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
584	Facet-dependent spatial charge separation with rational cocatalyst deposition on BiVO4. Materials Today Energy, 2022, 26, 100986.	2.5	6
585	Shapeâ€Dependent Performance of Cu/Cu ₂ O for Photocatalytic Reduction of CO ₂ . ChemSusChem, 2022, 15, .	3.6	22
586	Decoration of CdS nanowires with Ni3S4 nanoballs enhancing H2 and H2O2 production under visible light. Applied Catalysis B: Environmental, 2022, 310, 121350.	10.8	27
588	Tuning the Redox Chemistry of Copper Oxide Nanoarchitectures Integrated with rGOP <i>via</i> Facet Engineering: Sensing H ₂ S toward SRB Detection. ACS Applied Materials & Interfaces, 2022, 14, 19480-19490.	4.0	13

#	Article	IF	CITATIONS
589	Strategies for induced defects in metal–organic frameworks for enhancing adsorption and catalytic performance. Dalton Transactions, 2022, 51, 8133-8159.	1.6	22
590	Elucidating Facet Dependent Electronic and Electrochemical Properties of Cu2o Nanocrystals Using Afm/Scem and Dft. SSRN Electronic Journal, 0, , .	0.4	0
591	4-Nitrophenylacetylene-modified Cu ₂ O cubes and rhombic dodecahedra showing superior photocatalytic activity through surface band structure modulation. Journal of Materials Chemistry C, 2022, 10, 8422-8431.	2.7	11
592	Facet-Dependent Bactericidal Activity of Ag ₃ PO ₄ Nanostructures against Gram-Positive/Negative Bacteria. ACS Omega, 2022, 7, 16616-16628.	1.6	5
593	Synthesis of perovskite polyhedron nanocrystals with equivalent facets and the controlled growth of Pt nanoparticles with differing surface concentration of oxidized Pt4+/Pt2+ species. Catalysis Today, 2022, , .	2.2	1
594	Composites of porous carbon and copper-based nanoparticles for the electrochemical analysis of chemical oxygen demand. Materials Today Chemistry, 2022, 24, 100899.	1.7	3
595	Graphene oxide coupled high-index facets CdZnS with rich sulfur vacancies for synergistic boosting visible-light-catalytic hydrogen evolution in natural seawater: Experimental and DFT study. Journal of Colloid and Interface Science, 2022, 623, 34-43.	5.0	13
596	Room Temperature Engineering Crystal Facet of Cu2O for Photocatalytic Degradation of Methyl Orange. Nanomaterials, 2022, 12, 1697.	1.9	9
597	Synthesis of Rhombic Dodecahedral Cuprous Oxide Nanoparticles and Investigation of Biological Activity. BioNanoScience, 0, , .	1.5	0
598	Template synthesis of copper azide primary explosive through Cu2O@HKUST-1 core-shell composite prepared by "bottle around ship―method. Defence Technology, 2023, 25, 99-111.	2.1	4
599	Morphologically Tailored Facet Dependent Silver Nanoparticles Supported Α-Al2o3 Catalysts for Chemoselective Reduction of Aromatic Nitro Compounds. SSRN Electronic Journal, 0, , .	0.4	0
600	Spectrally Resolved Single Particle Photoluminescence Microscopy Reveals Heterogeneous Photocorrosion Activity of Cuprous Oxide Microcrystals. Nano Letters, 2022, 22, 4654-4660.	4.5	5
601	Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nature Communications, 2022, 13, .	5.8	47
602	Preparation of Cu2o Crystals by Glucose Liquid Phase Reduction Morphology Evolution and Size Control. SSRN Electronic Journal, 0, , .	0.4	0
603	Influence of structural disorder on the photocatalytic properties of ZnS nanocrystals prepared by the one-pot solvothermal approach. Ecletica Quimica, 2022, 47, 17-31.	0.2	1
604	Crystal Facet Dependent Energy Band Structures of Polyhedral Cu ₂ O Nanocrystals and Their Application in Solar Fuel Production. Journal of Physical Chemistry Letters, 2022, 13, 6298-6305.	2.1	9
605	Differentiating the {100} surfaces of Cu2O nanocrystals from {111} and {110} for benzylic Csp3-H bond oxidation: Oxidations of diphenyl methane to benzophenone and cumene to cumene hydroperoxide under mild conditions. Molecular Catalysis, 2022, 528, 112490.	1.0	1
606	Elucidating facet dependent electronic and electrochemical properties of Cu2O nanocrystals using AFM/SCEM and DFT. Nano Today, 2022, 45, 101538.	6.2	6

#	Article	IF	CITATIONS
607	Facet-Engineering of Materials for Photocatalytic Application: Status and Future Prospects. EnergyChem, 2022, 4, 100084.	10.1	20
608	Modulating Charge Carrier Dynamics among Anisotropic Crystal Facets of Cu ₂ 0 for Enhanced CO ₂ Photoreduction. Journal of Physical Chemistry C, 2022, 126, 13094-13104.	1.5	7
609	Controlled synthesis of Cu2O nanorods in aqueous solution using gallic acid as both reductant and crystal growth modifier. Catalysis Communications, 2022, 170, 106494.	1.6	0
610	Nanoscale p–n junction integration via the synergetic hybridization of facet-controlled Cu2O and defect-modulated g-C3N4-x atomic layers for enhanced photocatalytic water splitting. Materials Today Energy, 2022, 29, 101102.	2.5	4
611	Morphologically tailored facet dependent silver nanoparticles supported α-Al2O3 catalysts for chemoselective reduction of aromatic nitro compounds. Chemical Engineering Journal, 2023, 451, 138507.	6.6	15
612	Preparation of Cu2O crystals by glucose liquid phase reduction: Morphology evolution and size control. Solid State Sciences, 2022, 133, 107006.	1.5	9
613	Morphological evolution of cadmium oxide crystals showing color changes and facet-dependent conductivity behavior. Journal of Materials Chemistry C, 2022, 10, 12125-12131.	2.7	10
614	Preparation of Cu2o Crystals by Glucose Liquid Phase Reduction Morphology Evolution and Size Control. SSRN Electronic Journal, 0, , .	0.4	0
615	Surface differences of oxide nanocrystals determined by geometry and exogenously coordinated water molecules. Chemical Science, 2022, 13, 11083-11090.	3.7	3
616	A review of the preparation and photocatalytic hydrogen evolution of core–shell Cu ₂ O composites. New Journal of Chemistry, 2022, 46, 16243-16255.	1.4	3
617	Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioactive Materials, 2023, 22, 141-167.	8.6	30
619	Toward Excellence in Photocathode Engineering for Photoelectrochemical CO ₂ Reduction: Design Rationales and Current Progress. Advanced Energy Materials, 2022, 12, .	10.2	30
620	The Role of Nanocrystal Facets in Sustainable Organic Synthesis. ChemNanoMat, 2022, 8, .	1.5	1
621	Quantum Dot-Based Micromotors with NIR-I Light Photocatalytic Propulsion and NIR-II Fluorescence. ACS Applied Materials & Interfaces, 2022, 14, 48967-48975.	4.0	2
622	Low-frequency acoustic irradiation coupled photocatalytic degradation of dye pollutant using LaNi0.5Co0.5O3/g-C3N4 nanocatalyst. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104570.	2.7	6
623	Directional growth of quasi-2D Cu2O monocrystals on rGO membranes in aqueous environments. IScience, 2022, 25, 105472.	1.9	0
624	Protocol to modify the surface of nano-Cu2O using facet controlling and MOF shell coating. STAR Protocols, 2022, 3, 101792.	0.5	0
625	Facet-dependent Cu2O@Zn(OH)2 composites with enhanced visible-light photocatalysis. Materials Letters, 2023, 330, 133334.	1.3	2

#	Article	IF	CITATIONS
627	Productive and Sustainable H2 Production from Waste Aluminum Using Copper Oxides-Based Graphene Nanocatalysts: A Techno-Economic Analysis. Sustainability, 2022, 14, 15256.	1.6	3
628	Low dimensional nanomaterials for treating acute kidney injury. Journal of Nanobiotechnology, 2022, 20, .	4.2	5
629	<i>In Situ</i> Tracking of Crystal-Surface-Dependent Cu ₂ O Nanoparticle Dissolution in an Aqueous Environment. Environmental Science & amp; Technology, 2023, 57, 1006-1016.	4.6	3
630	Zwitterion-Functionalized Cuprous Oxide Nanoparticles for Highly Specific and Enzymeless Electrochemical Creatinine Biosensing in Human Serum. ACS Applied Nano Materials, 2023, 6, 2083-2094.	2.4	11
631	Morphological guidance and proportional control of Cu2O/ZnO core/shell heterojunction with enhanced visible-light-driven photocatalytic performance. Journal of Materials Science, 2023, 58, 186-198.	1.7	1
632	Strong metal–support interactions between atomically dispersed Ru and CrO _{<i>x</i>} for improved durability of chlorobenzene oxidation. RSC Advances, 2023, 13, 3255-3264.	1.7	1
633	High-efficiency, visible-light-induced direct dehydrogenative phosphonylation by bismuth quantum dots under ambient conditions. Catalysis Science and Technology, 2023, 13, 1501-1511.	2.1	2
634	Fabrication of direct Z-scheme Cu2O@V-CN (octa) heterojunction with exposed (1 1 1) lattice planes and nitrogen-rich vacancies for rapid sterilization. Journal of Colloid and Interface Science, 2023, 645, 251-265.	5.0	4
635	Electrodeposited copper oxides with a suppressed interfacial amorphous phase using mixed-crystalline ITO and their enhanced photoelectrochemical performances. Journal of Energy Chemistry, 2023, 82, 277-286.	7.1	3
636	Enhanced room-temperature NH3 sensing properties of Cu2O concave octahedron/CNTs heterostructured hybrid via efficient charge transfer. Sensors and Actuators B: Chemical, 2023, 385, 133724.	4.0	5
637	Morphology-dependent activation of hydrogen peroxide with Cu2O for tetracycline hydrochloride degradation in bicarbonate aqueous solution. Journal of Environmental Sciences, 2024, 137, 567-579.	3.2	1
638	Photocatalytic Aryl Sulfide Oxidation Using 4-Nitrophenylacetylene-Modified Cu ₂ O Crystals. ACS Applied Materials & Interfaces, 2023, 15, 11662-11669.	4.0	9
639	Enhanced CO ₂ Reduction to Ethylene with Hollow Cu ₂ O Structure by Facet-Controlled Etching. Nano, 0, , .	0.5	0
640	Enriching the Local Concentration of CO Intermediates on Cu Cavities for the Electrocatalytic Reduction of CO ₂ to C ₂₊ Products. ACS Applied Materials & Interfaces, 2023, 15, 16673-16679.	4.0	11
641	Cation exchange synthesis of hollow-structured cadmium sulfide for efficient visible-light-driven photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 26757-26767.	3.8	3
642	Size- and facet-dependent photoelectrochemical properties of Cu ₂ O crystals. Journal of Materials Chemistry C, 2023, 11, 5857-5866.	2.7	8

Nucleation and Crystal Shape Engineering. , 2014, , 262-295.