Inactivating<i>KISS1</i>Mutation and Hypogonadotrop

New England Journal of Medicine 366, 629-635

DOI: 10.1056/nejmoa1111184

Citation Report

#	Article	IF	CITATIONS
1	Prevalence of alcoholism among ward patients in a veterans administration hospital Journal of Studies on Alcohol and Drugs, 1975, 36, 1458-1467.	2.3	47
2	Distribution of Gene Mutations Associated with Familial Normosmic Idiopathic Hypogonadotropic Hypogonadism. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2012, 4, 121-126.	0.9	28
3	A potential mechanism for the sexual dimorphism in the onset of puberty and incidence of idiopathic central precocious puberty in children: sex-specific kisspeptin as an integrator of puberty signals. Frontiers in Endocrinology, 2012, 3, 149.	3.5	37
4	Role for kisspeptin/neurokinin B/dynorphin (KNDy) neurons in cutaneous vasodilatation and the estrogen modulation of body temperature. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19846-19851.	7.1	154
5	Arcuate Kisspeptin/Neurokinin B/Dynorphin (KNDy) Neurons Mediate the Estrogen Suppression of Gonadotropin Secretion and Body Weight. Endocrinology, 2012, 153, 2800-2812.	2.8	162
6	Prenatal Exposure to Low Levels of Androgen Accelerates Female Puberty Onset and Reproductive Senescence in Mice. Endocrinology, 2012, 153, 4522-4532.	2.8	47
7	Low Degree of Overlap Between Kisspeptin, Neurokinin B, and Dynorphin Immunoreactivities in the Infundibular Nucleus of Young Male Human Subjects Challenges the KNDy Neuron Concept. Endocrinology, 2012, 153, 4978-4989.	2.8	103
8	A novel severe N-terminal splice site KISS1R gene mutation causes hypogonadotropic hypogonadism but enables a normal development of neonatal external genitalia. European Journal of Endocrinology, 2012, 167, 209-216.	3.7	20
9	Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. Journal of Clinical Investigation, 2012, 122, 3791-3795.	8.2	147
10	Kisspeptins in human reproduction—future therapeutic potential. Journal of Assisted Reproduction and Genetics, 2012, 29, 999-1011.	2.5	8
11	Overview of the impact of kisspeptin on reproductive function. Annales D'Endocrinologie, 2012, 73, 448-458.	1.4	16
12	Applying Gene Silencing Technology to Contraception. Reproduction in Domestic Animals, 2012, 47, 381-386.	1.4	9
13	ENDOCRINOLOGY AND ADOLESCENCE: Deciphering puberty: novel partners, novel mechanisms. European Journal of Endocrinology, 2012, 167, 733-747.	3.7	55
14	KiSS1 and its G-protein-coupled receptor GPR54 in cancer development and metastasis. Cancer and Metastasis Reviews, 2012, 31, 585-591.	5.9	28
15	Kisspeptin-10 stimulation of gonadotrophin secretion in women is modulated by sex steroid feedback. Human Reproduction, 2012, 27, 3552-3559.	0.9	51
16	Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiological Reviews, 2012, 92, 1235-1316.	28.8	635
17	Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and) Tj ETQqC Neuroendocrinology, 2013, 34, 211-227.	0 0 0 rgBT 5.2	/Overlock 10 235
18	Leptin signaling and circuits in puberty and fertility. Cellular and Molecular Life Sciences, 2013, 70, 841-862.	5.4	142

#	Article	IF	CITATIONS
19	Current and future applications of GnRH, kisspeptin and neurokinin B analogues. Nature Reviews Endocrinology, 2013, 9, 451-466.	9.6	92
20	Reproductive neuropeptides: Prevalence of GnRH and KNDy neural signalling components in a model avian, gallus gallus. General and Comparative Endocrinology, 2013, 190, 134-143.	1.8	16
22	Keeping Puberty on Time. Current Topics in Developmental Biology, 2013, 105, 299-329.	2.2	38
23	Twice-Daily Subcutaneous Injection of Kisspeptin-54 Does Not Abolish Menstrual Cyclicity in Healthy Female Volunteers. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4464-4474.	3.6	30
24	Effects of Kisspeptin on Hormone Secretion in Humans. Advances in Experimental Medicine and Biology, 2013, 784, 89-112.	1.6	18
25	Molecular Biology of the Kisspeptin Receptor: Signaling, Function, and Mutations. Advances in Experimental Medicine and Biology, 2013, 784, 133-158.	1.6	11
26	Ovarian Regulation of Kisspeptin Neurones in the Arcuate Nucleus of the Rhesus Monkey (<i>Macaca) Tj ETQq0</i>	0 0 rgBT /	Ovgrlock 10 T
27	A system biology approach to identify regulatory pathways underlying the neuroendocrine control of female puberty in rats and nonhuman primates. Hormones and Behavior, 2013, 64, 175-186.	2.1	43
28	Genetic dissection of puberty in mice. Experimental Physiology, 2013, 98, 1528-1534.	2.0	11
29	Nuclear Receptor LRH-1 Induces the Reproductive Neuropeptide Kisspeptin in the Hypothalamus. Molecular Endocrinology, 2013, 27, 598-605.	3.7	30
30	Effects of estradiol on kisspeptin neurons during puberty. Frontiers in Neuroendocrinology, 2013, 34, 120-131.	5.2	31
31	Stress Regulation of Kisspeptin in the Modulation of Reproductive Function. Advances in Experimental Medicine and Biology, 2013, 784, 431-454.	1.6	17
32	Kisspeptin and Puberty in Mammals. Advances in Experimental Medicine and Biology, 2013, 784, 253-273.	1.6	84
33	Interactions Between Kisspeptins and Neurokinin B. Advances in Experimental Medicine and Biology, 2013, 784, 325-347.	1.6	54
34	The genetic basis of female reproductive disorders: Etiology and clinical testing. Molecular and Cellular Endocrinology, 2013, 370, 138-148.	3.2	44
35	Kisspeptin and Clinical Disorders. Advances in Experimental Medicine and Biology, 2013, 784, 187-199.	1.6	28
36	The Kiss1 system and polycystic ovary syndrome: lessons from physiology and putative pathophysiologic implications. Fertility and Sterility, 2013, 100, 12-22.	1.0	39
37	Approach to the Patient With Hypogonadotropic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 1781-1788.	3.6	135

#	ARTICLE	IF	CITATIONS
38	Kisspeptin is providing new insights into the control of reproduction. Clinical Medicine, 2013, 13, 547-548.	1.9	1
39	Afferent Neuronal Control of Type-I Gonadotropin Releasing Hormone Neurons in the Human. Frontiers in Endocrinology, 2013, 4, 130.	3 . 5	32
40	Does Kisspeptin Signaling have a Role in the Testes?. Frontiers in Endocrinology, 2013, 4, 198.	3.5	51
41	Development and Aging of the Kisspeptin–GPR54 System in the Mammalian Brain: What are the Impacts on Female Reproductive Function?. Frontiers in Endocrinology, 2013, 4, 22.	3.5	21
42	PRR Repeats in the Intracellular Domain of KISS1R Are Important for Its Export to Cell Membrane. Molecular Endocrinology, 2013, 27, 1004-1014.	3.7	18
43	Delayed Puberty but Normal Fertility in Mice With Selective Deletion of Insulin Receptors From Kiss1 Cells. Endocrinology, 2013, 154, 1337-1348.	2.8	94
44	Releasing the Brake on Puberty. New England Journal of Medicine, 2013, 368, 2513-2515.	27.0	23
45	Shift in Kiss1 Cell Activity Requires Estrogen Receptor α. Journal of Neuroscience, 2013, 33, 2807-2820.	3.6	74
46	Use of genetic models of idiopathic hypogonadotrophic hypogonadism in mice and men to understand the mechanisms of disease. Experimental Physiology, 2013, 98, 1522-1527.	2.0	11
47	The Effects of Kisspeptin in Human Reproductive Function – Therapeutic Implications. Current Drug Targets, 2013, 14, 365-371.	2.1	2
48	Two Families with Normosmic Congenital Hypogonadotropic Hypogonadism and Biallelic Mutations in KISS1R (KISS1 Receptor): Clinical Evaluation and Molecular Characterization of a Novel Mutation. PLoS ONE, 2013, 8, e53896.	2.5	38
49	Congenital Hypogonadotropic Hypogonadism during Childhood: Presentation and Genetic Analyses in 46 Boys. PLoS ONE, 2013, 8, e77827.	2.5	25
50	Effects of the Hormone Kisspeptin on Reproductive Hormone Release in Humans. Advances in Biology, 2014, 2014, 1-10.	1.2	6
52	Increasing LH Pulsatility in Women With Hypothalamic Amenorrhoea Using Intravenous Infusion of Kisspeptin-54. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E953-E961.	3.6	112
53	Implantation Failure in Female Kiss $1\hat{a}^2/\hat{a}^2$ Mice Is Independent of Their Hypogonadic State and Can Be Partially Rescued by Leukemia Inhibitory Factor. Endocrinology, 2014, 155, 3065-3078.	2.8	61
54	Murine Arcuate Nucleus Kisspeptin Neurons Communicate with GnRH Neurons <i>In Utero</i> . Journal of Neuroscience, 2014, 34, 3756-3766.	3.6	70
55	Identification of a Novel Kisspeptin with High Gonadotrophin Stimulatory Activity in the Dog. Neuroendocrinology, 2014, 99, 178-189.	2. 5	24
56	Exogenous Kisspeptin Administration as a Probe of GnRH Neuronal Function in Patients With Idiopathic Hypogonadotropic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2762-E2771.	3.6	28

#	Article	IF	CITATIONS
57	Haploinsufficiency of Dmxl2, Encoding a Synaptic Protein, Causes Infertility Associated with a Loss of GnRH Neurons in Mouse. PLoS Biology, 2014, 12, e1001952.	5.6	66
58	Disrupted Kisspeptin Signaling in GnRH Neurons Leads to Hypogonadotrophic Hypogonadism. Molecular Endocrinology, 2014, 28, 225-238.	3.7	91
59	The Hypothalamo-Pituitary Unit, Testis, and Male Accessory Organs. , 2014, , 272-286.e8.		1
60	Neuroanatomy of the Human Hypothalamic Kisspeptin System. Neuroendocrinology, 2014, 99, 33-48.	2.5	73
61	The Role of Neurokinin B Signalling in Reproductive Neuroendocrinology. Neuroendocrinology, 2014, 99, 7-17.	2.5	56
62	Control of the GnRH Pulse Generator. , 2014, , 311-323.		0
63	<i>MKRN3</i> Mutations in Familial Central Precocious Puberty. Hormone Research in Paediatrics, 2014, 82, 122-126.	1.8	59
64	Pathology or Normal Variant: What Constitutes a Delay in Puberty?. Hormone Research in Paediatrics, 2014, 82, 213-221.	1.8	23
65	Reproduction, Smell, and Neurodevelopmental Disorders: Genetic Defects in Different Hypogonadotropic Hypogonadal Syndromes. Frontiers in Endocrinology, 2014, 5, 109.	3.5	111
66	Effects and Therapeutic Potentials of Kisspeptin Analogs: Regulation of the Hypothalamic-Pituitary-Gonadal Axis. Neuroendocrinology, 2014, 99, 49-60.	2.5	21
67	MOLECULAR EVOLUTION OF GPCRS: Kisspeptin/kisspeptin receptors. Journal of Molecular Endocrinology, 2014, 52, T101-T117.	2.5	95
68	A Novel Mutation in SOX2 Causes Hypogonadotropic Hypogonadism with Mild Ocular Malformation. Hormone Research in Paediatrics, 2014, 81, 133-138.	1.8	15
69	Precocious puberty. Current Opinion in Obstetrics and Gynecology, 2014, 26, 332-338.	2.0	32
70	Minireview: Metabolic control of the reproductive physiology: Insights from genetic mouse models. Hormones and Behavior, 2014, 66, 7-14.	2.1	16
71	Genetics of congenital hypogonadotropic hypogonadism in Denmark. European Journal of Medical Genetics, 2014, 57, 345-348.	1.3	30
73	The relationship between gut and adipose hormones, and reproduction. Human Reproduction Update, 2014, 20, 153-174.	10.8	115
74	<scp>KNDy</scp> neuron as a gatekeeper of puberty onset. Journal of Obstetrics and Gynaecology Research, 2014, 40, 1518-1526.	1.3	24
75	Research Resource: Gene Profiling of G Protein–Coupled Receptors in the Arcuate Nucleus of the Female. Molecular Endocrinology, 2014, 28, 1362-1380.	3.7	21

#	Article	IF	CITATIONS
76	A critical view of the use of genetic tools to unveil neural circuits: the case of leptin action in reproduction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R1-R9.	1.8	15
77	Hypogonadotropic hypogonadism: new identification of testicular blood flow and varicocele after treatment with gonadotropins. Fertility and Sterility, 2014, 102, 700-704.e1.	1.0	2
78	Neuroendocrinology of Reproduction. , 2014, , 3-26.e8.		3
79	Congenital hypogonadotropic hypogonadism and Kallmann syndrome as models for studying hormonal regulation of human testicular endocrine functions. Annales D'Endocrinologie, 2014, 75, 79-87.	1.4	15
80	Chemical identity of hypothalamic neurons engaged by leptin in reproductive control. Journal of Chemical Neuroanatomy, 2014, 61-62, 233-238.	2.1	30
81	Activation of the olfactory system in response to male odors in female prepubertal mice. Behavioural Brain Research, 2014, 271, 30-38.	2.2	15
82	Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. Journal of Clinical Investigation, 2014, 124, 3075-3079.	8.2	152
83	Genetics of Hypogonadotropic Hypogonadism. Endocrine Development, 2016, 29, 36-49.	1.3	49
84	Sexual Precocity - Genetic Bases of Central Precocious Puberty and Autonomous Gonadal Activation. Endocrine Development, 2016, 29, 50-71.	1.3	26
85	Therapeutic Neuroendocrine Agonist and Antagonist Analogs of Hypothalamic Neuropeptides as Modulators of the Hypothalamic-Pituitary-Gonadal Axis. Endocrine Development, 2016, 30, 106-129.	1.3	22
86	Gene Targeting in Neuroendocrinology. , 2015, 5, 1645-1676.		17
87	12. Approach to the Patient With Hypogonadotropic Hypogonadism. , 2015, , 173-187.		0
88	Pubertal Onset in Girls is Strongly Influenced by Genetic Variation Affecting FSH Action. Scientific Reports, 2014, 4, 6412.	3.3	29
90	Endocrine Metabolism V., 2015,, 589-606.		1
91	Central estrogen action sites involved in prepubertal restraint of pulsatile luteinizing hormone release in female rats. Journal of Reproduction and Development, 2015, 61, 351-359.	1.4	11
92	Comprehensive Review on Kisspeptin and Its Role in Reproductive Disorders. Endocrinology and Metabolism, 2015, 30, 124.	3.0	126
93	A Multi-Oscillatory Circadian System Times Female Reproduction. Frontiers in Endocrinology, 2015, 6, 157.	3.5	43
94	Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period. PLoS ONE, 2015, 10, e0121974.	2.5	45

#	Article	IF	CITATIONS
95	Circulating MKRN3 Levels Decline Prior to Pubertal Onset and Through Puberty: A Longitudinal Study of Healthy Girls. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1920-1926.	3.6	67
96	KISS1R: Hallmarks of an Effective Regulator of the Neuroendocrine Axis. Neuroendocrinology, 2015, 101, 193-210.	2.5	26
97	Amenorreas. EMC - GinecologÃa-Obstetricia, 2015, 51, 1-17.	0.0	0
98	Shaping the Reproductive System: Role of Semaphorins in Gonadotropin-Releasing Hormone Development and Function. Neuroendocrinology, 2015, 102, 200-215.	2.5	20
99	The Frequency of KISS1 Inactivating Mutation at Male Hypogonadotropic Hypogonadizm and Its Relationship with Hypothalamic- Pituitary- Gonad Axis. Gulhane Medical Journal, 2015, 57, 57.	0.2	0
100	Congenital Hypogonadotropic Hypogonadism: A Trait Shared by Several Complex Neurodevelopmental Disorders. Endocrine Development, 2016, 29, 72-86.	1.3	9
101	Gene Networks, Epigenetics and the Control of Female Puberty. Research and Perspectives in Endocrine Interactions, 2015, , 97-119.	0.2	1
102	Gonadotropic Axis Deficiency: A Neurodevelopmental Disorder. Research and Perspectives in Endocrine Interactions, 2015, , 155-162.	0.2	1
103	Triallelic digenic mutation in the <i>prokineticin 2 </i> and <i>GNRH </i> receptor genes in two brothers with normosmic congenital hypogonadotropic hypogonadism. Endocrine Research, 2015, 40, 166-171.	1.2	7
104	Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: A study carried out in ex vivo testes. General and Comparative Endocrinology, 2015, 211, 81-91.	1.8	32
105	Significance of serum neurokinin B and kisspeptin levels in the differential diagnosis of premature thelarche and idiopathic central precocious puberty. Peptides, 2015, 64, 29-33.	2.4	21
106	Puberty in the Sheep. , 2015, , 1441-1485.		27
107	Chronic Oestradiol Reduces the Dendritic Spine Density of <scp>KND</scp> y (Kisspeptin/Neurokinin) Tj ETQq0 C Protein Transgenic Mice. Journal of Neuroendocrinology, 2015, 27, 253-263.	0 rgBT /C 2.6	overlock 10 Tf 19
108	Lack of Pulse and Surge Modes and Glutamatergic Stimulation of Luteinising Hormone Release in <i>Kiss1</i> Knockout Rats. Journal of Neuroendocrinology, 2015, 27, 187-197.	2.6	103
109	KISS1 can be used as a novel target for developing a DNA immunocastration vaccine in ram lambs. Vaccine, 2015, 33, 777-782.	3.8	22
110	Identification of Hypothalamic Arcuate Nucleus-Specific Enhancer Region of Kiss1 Gene in Mice. Molecular Endocrinology, 2015, 29, 121-129.	3.7	16
111	Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human. Frontiers in Neuroscience, 2015, 9, 29.	2.8	66
112	Mutations in KISS1 are not responsible for idiopathic hypogonadotropic hypogonadism in Chinese patients. Journal of Assisted Reproduction and Genetics, 2015, 32, 375-378.	2.5	1

#	Article	IF	CITATIONS
113	European Consensus Statement on congenital hypogonadotropic hypogonadismâ€"pathogenesis, diagnosis and treatment. Nature Reviews Endocrinology, 2015, 11, 547-564.	9.6	664
114	Puberty in Mice and Rats. , 2015, , 1395-1439.		43
115	Puberty in Non-human Primates and Man., 2015, , 1487-1536.		22
116	Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics―Era. Endocrine Reviews, 2015, 36, 603-621.	20.1	69
117	Direct comparison of the effects of intravenous kisspeptin-10, kisspeptin-54 and GnRH on gonadotrophin secretion in healthy men. Human Reproduction, 2015, 30, 1934-1941.	0.9	42
118	Does salt have a permissive role in the induction of puberty?. Medical Hypotheses, 2015, 85, 463-467.	1.5	7
119	Potential Clinical Use of Kisspeptin. Neuroendocrinology, 2015, 102, 238-245.	2.5	21
120	Normosmic idiopathic hypogonadotropic hypogonadism due to a novel homozygous nonsense c.C969A (p.Y323X) mutation in the $<$ i $><$ scp $>$ KlSS $<$ Jscp $>$ 1R $<$ Ji $>$ gene in three unrelated families. Clinical Endocrinology, 2015, 82, 429-438.	2.4	16
121	Daily successive changes in reproductive gene expression and neuronal activation in the brains of pubertal female mice. Molecular and Cellular Endocrinology, 2015, 401, 84-97.	3.2	58
123	Epigenetic regulation of female puberty. Frontiers in Neuroendocrinology, 2015, 36, 90-107.	5.2	108
124	Endocrinology of Fetal Development. , 2016, , 849-892.		5
125	The Changes of Serum Leptin and Kisspeptin Levels in Chinese Children and Adolescents in Different Pubertal Stages. International Journal of Endocrinology, 2016, 2016, 1-11.	1.5	18
126	The role of kisspeptin and RFRP in the circadian control of female reproduction. Molecular and Cellular Endocrinology, 2016, 438, 89-99.	3.2	14
127	Surgeâ€Like Luteinising Hormone Secretion Induced by Retrochiasmatic Area <scp>NK</scp> 3R Activation is Mediated Primarily by Arcuate Kisspeptin Neurones in the Ewe. Journal of Neuroendocrinology, 2016, 28, .	2.6	16
128	Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics―Era. Endocrine Reviews, 2016, 2016, 4-22.	20.1	33
130	Epigenetic Regulation of the GnRH and Kiss1 Genes. Epigenetics and Human Health, 2016, , 243-264.	0.2	0
131	Prevalence of <i> KISS1 Receptor </i> mutations in a series of 603 patients with normosmic congenital hypogonadotrophic hypogonadism and characterization of novel mutations: a single-centre study. Human Reproduction, 2016, 31, 1363-1374.	0.9	47
133	Estrogen Stimulation of Kiss1 Expression in the Medial Amygdala Involves Estrogen Receptor-α But Not Estrogen Receptor-Ĵ2. Endocrinology, 2016, 157, 4021-4031.	2.8	45

#	ARTICLE	IF	CITATIONS
134	Prepubertal exposure to an oestrogenic mycotoxin zearalenone induces central precocious puberty in immature female rats through the mechanism of premature activation of hypothalamic kisspeptin-GPR54 signaling. Molecular and Cellular Endocrinology, 2016, 437, 62-74.	3.2	47
135	Maturation and Physiology of Hypothalamic Regulation of the Gonadal Axis., 2016,, 1-11.		2
136	Metabolism and Energy Expenditure, But Not Feeding or Glucose Tolerance, Are Impaired in Young Kiss1r KO Female Mice. Endocrinology, 2016, 157, 4192-4199.	2.8	43
137	Interactions Between Neurokinin B and Kisspeptin in Mediating Estrogen Feedback in Healthy Women. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4628-4636.	3.6	40
138	The roles of kisspeptin revisited: inside and outside the hypothalamus. Journal of Reproduction and Development, 2016, 62, 537-545.	1.4	47
139	Ablation of KNDy Neurons Results in Hypogonadotropic Hypogonadism and Amplifies the Steroid-Induced LH Surge in Female Rats. Endocrinology, 2016, 157, 2015-2027.	2.8	58
140	Kisspeptin across the human lifespan:evidence from animal studies and beyond. Journal of Endocrinology, 2016, 229, R83-R98.	2.6	42
141	ERα in Tac2 Neurons Regulates Puberty Onset in Female Mice. Endocrinology, 2016, 157, 1555-1565.	2.8	36
142	Pubertal development and regulation. Lancet Diabetes and Endocrinology, the, 2016, 4, 254-264.	11.4	400
143	Spontaneous endogenous pulsatile release of kisspeptin is temporally coupled with luteinizing hormone in healthy women. Fertility and Sterility, 2016, 105, 1345-1350.e2.	1.0	32
144	Molecular and Epigenetic Mechanism Regulating Hypothalamic <i>Kiss1</i> Gene Expression in Mammals. Neuroendocrinology, 2016, 103, 640-649.	2.5	24
145	MANAGEMENT OF ENDOCRINE DISEASE: Reversible hypogonadotropic hypogonadism. European Journal of Endocrinology, 2016, 174, R267-R274.	3.7	66
146	Molecular characterization of kisspeptin gene and effect of nano–encapsulted kisspeptin-10 on reproductive maturation in Catla catla. Domestic Animal Endocrinology, 2016, 56, 36-47.	1.6	43
147	Kisspeptin as a therapeutic target in reproduction. Expert Opinion on Therapeutic Targets, 2016, 20, 567-575.	3.4	10
148	The relation of urinary bisphenol A with kisspeptin in girls diagnosed with central precocious puberty and premature thelarche. Journal of Pediatric Endocrinology and Metabolism, 2016, 29, 337-41.	0.9	15
149	Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nature Reviews Urology, 2016, 13, 21-32.	3.8	42
150	Neuroendocrine Control of Puberty. , 2016, , 21-30.		0
151	Early Puberty., 2016,,.		2

#	Article	IF	CITATIONS
152	Fetal and Neonatal Endocrinology. , 2016, , 2499-2529.e9.		2
153	Delayed Puberty. , 2016, , 2142-2154.e4.		2
154	Gonadotropin-Releasing Hormones. , 2016, , 2003-2022.e7.		1
155	Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Structure and Function, 2016, 221, 2035-2047.	2.3	66
156	Genetic analysis of the reproductive axis in fish using genome-editing nucleases. Science Bulletin, 2017, 62, 302-308.	9.0	13
157	Molecular and Genetic Aspects of Congenital Isolated Hypogonadotropic Hypogonadism. Endocrinology and Metabolism Clinics of North America, 2017, 46, 283-303.	3.2	35
158	Congenital Hypogonadotropic Hypogonadism in Males: Clinical Features and Pathophysiology. Contemporary Endocrinology, 2017, , 95-126.	0.1	0
159	Investigational and experimental GnRH analogs and associated neurotransmitters. Expert Opinion on Investigational Drugs, 2017, 26, 661-667.	4.1	10
160	The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nature Reviews Endocrinology, 2017, 13, 521-535.	9.6	87
161	Normal and Delayed Puberty. , 2017, , 73-93.		0
162	Long-Term Neonatal Estrogen Exposure Causes Irreversible Inhibition of LH Pulses by Suppressing Arcuate Kisspeptin Expression via Estrogen Receptors \hat{l}_{\pm} and \hat{l}_{\pm} in Female Rodents. Endocrinology, 2017, 158, 2918-2929.	2.8	14
163	Effect of androgen on Kiss1 expression and luteinizing hormone release in female rats. Journal of Endocrinology, 2017, 233, 281-292.	2.6	23
164	Characterization, molecular docking, dynamics simulation and metadynamics of kisspeptin receptor with kisspeptin. International Journal of Biological Macromolecules, 2017, 101, 241-253.	7.5	24
165	Dynamic Regulation of Hypothalamic DMXL2, KISS1, and RFRP Expression During Postnatal Development in Non-Human Primates. Molecular Neurobiology, 2017, 54, 8447-8457.	4.0	9
166	Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Human Reproduction Update, 2017, 23, 737-763.	10.8	85
167	Control of GnRH Secretion. Endocrinology, 2017, , 3-33.	0.1	1
168	Neurokinin 3 receptor antagonism decreases gonadotropin and testosterone secretion in healthy men. Clinical Endocrinology, 2017, 87, 748-756.	2.4	22
170	Gonadotrophin Hormones. , 2017, , 203-250.		0

#	ARTICLE	IF	CITATIONS
171	Daily rhythms count for female fertility. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 505-519.	4.7	23
172	Two Frameshift Mutations in MKRN3 in Turkish Patients with Familial Central Precocious Puberty. Hormone Research in Paediatrics, 2017, 87, 405-411.	1.8	21
173	Expanding the role of tachykinins in the neuroendocrine control of reproduction. Reproduction, 2017, 153, R1-R14.	2.6	45
174	Isolated GNRH deficiency: genotypic and phenotypic characteristics of the genetically heterogeneous Greek population. European Journal of Endocrinology, 2017, 176, L1-L5.	3.7	9
175	Effects of Selective Deletion of Tyrosine Hydroxylase from Kisspeptin Cells on Puberty and Reproduction in Male and Female Mice. ENeuro, 2017, 4, ENEURO.0150-17.2017.	1.9	27
176	The Gonadal Axis: A Life Perspective. , 2017, , 3-58.		5
177	Regulation and Possible Functions of Kisspeptin in the Medial Amygdala. Frontiers in Endocrinology, 2017, 8, 191.	3.5	23
178	Mechanistic insights into the more potent effect of KP-54 compared to KP-10 in vivo. PLoS ONE, 2017, 12, e0176821.	2.5	35
179	The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil. PLoS ONE, 2017, 12, e0172507.	2.5	6
180	The Role of Kisspeptin in Female Reproduction. International Journal of Endocrinology and Metabolism, 2017, In Press, e44337.	1.0	38
181	Delayed Puberty and Hypogonadism; Female. , 2018, , 162-170.		0
183	Continuous Kisspeptin Restores Luteinizing Hormone Pulsatility Following Cessation by a Neurokinin B Antagonist in Female Sheep. Endocrinology, 2018, 159, 639-646.	2.8	27
184	Coâ€expression of the calcitonin receptor gene in the hypothalamic kisspeptin neurons in female rats. Reproductive Medicine and Biology, 2018, 17, 164-172.	2.4	16
185	The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond― Unresolved questions, challenges and future directions for the field. Journal of Neuroendocrinology, 2018, 30, e12600.	2.6	12
186	Intrinsic links among sex, emotion, and reproduction. Cellular and Molecular Life Sciences, 2018, 75, 2197-2210.	5.4	23
187	Light-sheet microscopy with attenuation-compensated propagation-invariant beams. Science Advances, 2018, 4, eaar4817.	10.3	76
188	Three-dimensional imaging of KNDy neurons in the mammalian brain using optical tissue clearing and multiple-label immunocytochemistry. Scientific Reports, 2018, 8, 2242.	3.3	15
189	GENETICS IN ENDOCRINOLOGY: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. European Journal of Endocrinology, 2018, 178, R55-R80.	3.7	128

#	Article	IF	CITATIONS
190	The kisspeptin receptor: A key G-protein-coupled receptor in the control of the reproductive axis. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 107-123.	4.7	36
191	Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty. Nature Communications, 2018, 9, 57.	12.8	58
193	Stimulation of growth hormone by kisspeptin antagonists in ewes. Journal of Endocrinology, 2018, 237, 165-173.	2.6	5
194	Neurokinin 3 Receptor Antagonism Reveals Roles for Neurokinin B in the Regulation of Gonadotropin Secretion and Hot Flashes in Postmenopausal Women. Neuroendocrinology, 2018, 106, 148-157.	2.5	55
195	Neurokinin B Regulates Gonadotropin Secretion, Ovarian Follicle Growth, and the Timing of Ovulation in Healthy Women. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 95-104.	3.6	43
196	The Genetic Basis of Delayed Puberty. Neuroendocrinology, 2018, 106, 283-291.	2.5	40
197	Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism. Metabolism: Clinical and Experimental, 2018, 86, 124-134.	3.4	132
198	Update on the Genetics of Idiopathic Hypogonadotropic Hypogonadism. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2017, 9, 113-122.	0.9	72
200	Complete Kisspeptin Receptor Inactivation Does Not Impede Exogenous GnRH-Induced LH Surge in Humans. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4482-4490.	3.6	5
201	The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. Journal of Reproduction and Development, 2018, 64, 469-476.	1.4	32
202	Kisspeptin/GPR54 System: What Do We Know About Its Role in Human Reproduction?. Cellular Physiology and Biochemistry, 2018, 49, 1259-1276.	1.6	83
203	Estradiol-Dependent and -Independent Stimulation of Kiss1 Expression in the Amygdala, BNST, and Lateral Septum of Mice. Endocrinology, 2018, 159, 3389-3402.	2.8	16
204	The role of kisspeptin/neurokinin B/dynorphin neurons in pathomechanism of vasomotor symptoms in postmenopausal women: from physiology to potential therapeutic applications. Gynecological Endocrinology, 2018, 34, 913-919.	1.7	16
205	Kisspeptin Receptor GPR54 Promotes Adipocyte Differentiation and Fat Accumulation in Mice. Frontiers in Physiology, 2018, 9, 209.	2.8	16
206	Kisspeptin/Kisspeptin Receptor System in the Ovary. Frontiers in Endocrinology, 2017, 8, 365.	3.5	90
207	Genes underlying delayed puberty. Molecular and Cellular Endocrinology, 2018, 476, 119-128.	3.2	18
208	Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiological Reviews, 2018, 98, 2349-2380.	28.8	50
209	Regulation of GnRH pulsatility in ewes. Reproduction, 2018, 156, R83-R99.	2.6	39

#	Article	IF	CITATIONS
210	Neuroendocrinology of Reproduction. , 2019, , 1-24.e8.		7
211	Neuroendocrine Control of the Menstrual Cycle. , 2019, , 149-166.e5.		19
212	Hypothalamo-Pituitary Unit, Testis, and Male Accessory Organs. , 2019, , 285-300.e8.		7
214	Pubertal orchestration of hormones and testis in primates. Molecular Reproduction and Development, 2019, 86, 1505-1530.	2.0	14
215	Lower circulating kisspeptin and primary hypogonadism in men with type 2 diabetes. Endocrinology, Diabetes and Metabolism, 2019, 2, e00070.	2.4	4
216	Kisspeptin Role in Functional Hypothalamic Amenorrhea. ISGE Series, 2019, , 27-42.	0.2	0
217	Delayed Puberty—Phenotypic Diversity, Molecular Genetic Mechanisms, and Recent Discoveries. Endocrine Reviews, 2019, 40, 1285-1317.	20.1	81
218	Hypothalamic Reproductive Endocrine Pulse Generator Activity Independent of Neurokinin B and Dynorphin Signaling. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4304-4318.	3.6	26
219	<i>Ad libitum</i> feeding triggers puberty onset associated with increases in arcuate <i>Kiss1</i> and <i>Pdyn</i> expression in growth-retarded rats. Journal of Reproduction and Development, 2019, 65, 397-406.	1.4	14
220	EAP1 regulation of GnRH promoter activity is important for human pubertal timing. Human Molecular Genetics, 2019, 28, 1357-1368.	2.9	29
221	Somatostatin-Somatostatin Receptor 2 Signaling Mediates LH Pulse Suppression in Lactating Rats. Endocrinology, 2019, 160, 473-483.	2.8	13
222	Central Mechanism Controlling Pubertal Onset in Mammals: A Triggering Role of Kisspeptin. Frontiers in Endocrinology, 2019, 10, 312.	3.5	55
223	Review of the Literature on Current Changes in the Timing of Pubertal Development and the Incomplete Forms of Early Puberty. Frontiers in Pediatrics, 2019, 7, 147.	1.9	69
224	Paediatric and adult-onset male hypogonadism. Nature Reviews Disease Primers, 2019, 5, 38.	30.5	153
225	Predictive value of serum kisspeptin concentration at 14 and 21 days after frozen–thawed embryo transfer. Reproductive BioMedicine Online, 2019, 39, 161-167.	2.4	8
226	Congenital Hypogonadotropic Hypogonadism (Isolated GnRH Deficiency). Contemporary Endocrinology, 2019, , 229-250.	0.1	3
227	Genetics of Delayed Puberty. Contemporary Endocrinology, 2019, , 251-268.	0.1	1
228	Deregulation of miR-324/KISS1/kisspeptin in early ectopic pregnancy: mechanistic findings with clinical and diagnostic implications. American Journal of Obstetrics and Gynecology, 2019, 220, 480.e1-480.e17.	1.3	21

#	Article	IF	CITATIONS
229	Emerging Genetic and Epigenetic Mechanisms Underlying Pubertal Maturation in Adolescence. Journal of Research on Adolescence, 2019, 29, 54-79.	3.7	39
230	Pituitary Disorders of Childhood. Contemporary Endocrinology, 2019, , .	0.1	2
231	The Emerging Role of Chromatin Remodeling Factors in Female Pubertal Development. Neuroendocrinology, 2019, 109, 208-217.	2.5	16
232	Experimental obesity and diabetes reduce male fertility: Potential involvement of hypothalamic Kiss-1, pituitary nitric oxide, serum vaspin and visfatin. Pathophysiology, 2019, 26, 181-189.	2.2	13
233	KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resistance Updates, 2019, 42, 12-21.	14.4	19
234	Serum Makorin ring finger protein 3 values for predicting Central precocious puberty in girls. Gynecological Endocrinology, 2019, 35, 732-736.	1.7	10
235	Neuropeptide Control of Puberty: Beyond Kisspeptins. Seminars in Reproductive Medicine, 2019, 37, 155-165.	1.1	8
236	Clinical Translational Studies of Kisspeptin and Neurokinin B. Seminars in Reproductive Medicine, 2019, 37, 119-124.	1.1	11
237	Does the KNDy Model for the Control of Gonadotropin-Releasing Hormone Pulses Apply to Monkeys and Humans?. Seminars in Reproductive Medicine, 2019, 37, 071-083.	1.1	23
238	Kisspeptin as a Behavioral Hormone. Seminars in Reproductive Medicine, 2019, 37, 056-063.	1.1	14
239	The Roles of the Amygdala Kisspeptin System. Seminars in Reproductive Medicine, 2019, 37, 064-070.	1.1	7
240	The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Scientific Reports, 2019, 9, 17033.	3.3	12
241	A TAC3 Missense Variant in a Domestic Shorthair Cat with Testicular Hypoplasia and Persistent Primary Dentition. Genes, 2019, 10, 806.	2.4	4
242	Estrogen signaling in arcuate Kiss1 neurons suppresses a sex-dependent female circuit promoting dense strong bones. Nature Communications, 2019, 10, 163.	12.8	66
243	Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Human Reproduction Update, 2019, 25, 326-343.	10.8	60
244	Physiology of puberty in boys and girls and pathological disorders affecting its onset. Journal of Adolescence, 2019, 71, 63-71.	2.4	40
245	Understanding the functions of kisspeptin and kisspeptin receptor (Kiss $1R$) from clinical case studies. Peptides, 2019, 120, 170019.	2.4	15
246	Medial Amygdala <i>Kiss1</i> Neurons Mediate Female Pheromone Stimulation of Luteinizing Hormone in Male Mice. Neuroendocrinology, 2019, 108, 172-189.	2.5	27

#	Article	IF	CITATIONS
247	Leptin regulates neuropeptides associated with food intake and GnRH secretion. Annales D'Endocrinologie, 2019, 80, 38-46.	1.4	34
248	Identification of ROBO1/2 and SCEL as candidate genes in Kallmann syndrome with emerging bioinformatic analysis. Endocrine, 2020, 67, 224-232.	2.3	7
249	Hypothalamic and Pituitary Disorders Affecting the Fetus and Neonate., 2020,, 709-734.		1
250	The role of the hypothalamus and pituitary epigenomes in central activation of the reproductive axis at puberty. Molecular and Cellular Endocrinology, 2020, 518, 111031.	3.2	24
251	The KiSS-1/GPR54 system: Essential roles in physiological homeostasis and cancer biology. Genes and Diseases, 2022, 9, 28-40.	3.4	16
252	Analogues of hypothalamic/pituitary/gonadal hormone regulators for the management pubertal disorders. Current Opinion in Endocrine and Metabolic Research, 2020, 14, 169-178.	1.4	0
253	Next-generation sequencing approach in the diagnosis of delayed puberty. Current Opinion in Endocrine and Metabolic Research, 2020, 14, 59-64.	1.4	2
254	Progression and dormancy in metastatic thyroid cancer: concepts and clinical implications. Endocrine, 2020, 70, 24-35.	2.3	13
255	Delayed and Precocious Puberty: Genetic Underpinnings and Treatments. Endocrinology and Metabolism Clinics of North America, 2020, 49, 741-757.	3.2	10
256	Variants in the Kisspeptin-GnRH Pathway Modulate the Hormonal Profile and Reproductive Outcomes. DNA and Cell Biology, 2020, 39, 1012-1022.	1.9	3
257	Testosterone Supplementation Rescues Spermatogenesis and In Vitro Fertilizing Ability of Sperm in <i>Kiss1</i> Knockout Mice. Endocrinology, 2020, 161, .	2.8	17
258	Kisspeptin and neurokinin B interactions in modulating gonadotropin secretion in women with polycystic ovary syndrome. Human Reproduction, 2020, 35, 1421-1431.	0.9	32
259	KISS1 in metastatic cancer research and treatment: potential and paradoxes. Cancer and Metastasis Reviews, 2020, 39, 739-754.	5.9	20
260	Expression of genes for Kisspeptin (<i>KISS1</i>), Neurokinin B (<i>TAC3</i>), Prodynorphin () Tj ETQq1 1 Physiological Reports, 2020, 8, e14399.	0.784314 rgB ²	T /Overlock 11
261	Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Molecular and Cellular Endocrinology, 2020, 507, 110778.	3.2	40
262	The effect of excess body fat on female and male reproduction. Metabolism: Clinical and Experimental, 2020, 107, 154193.	3.4	52
263	The choreography of puberty: Evidence from sheep and other agriculturally important species. Current Opinion in Endocrine and Metabolic Research, 2020, 14, 104-111.	1.4	3
264	Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clinical and Experimental Metastasis, 2020, 37, 209-223.	3.3	11

#	Article	IF	CITATIONS
265	The gonadotropin-releasing hormones: Lessons from fish. General and Comparative Endocrinology, 2020, 291, 113422.	1.8	68
266	Retinoblastoma binding protein 7 is involved in <i>Kiss1</i> mRNA upregulation in rodents. Journal of Reproduction and Development, 2020, 66, 125-133.	1.4	4
267	Kisspeptin and Testicular Functionâ€"Is It Necessary?. International Journal of Molecular Sciences, 2020, 21, 2958.	4.1	27
268	Conditional kisspeptin neuron-specific <i>Kiss1</i> knockout with newly generated <i>Kiss1</i> -floxed and <i>Kiss1</i> -Cre mice replicates a hypogonadal phenotype of global <i>Kiss1</i> knockout mice. Journal of Reproduction and Development, 2020, 66, 359-367.	1.4	21
269	Using Kisspeptin to Predict Pubertal Outcomes for Youth With Pubertal Delay. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2717-e2725.	3.6	32
270	Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Human Genetics, 2021, 140, 77-111.	3.8	124
271	The abnormal expression of kisspeptin regulates pro-inflammatory cytokines, cell viability and apoptosis of macrophages in hyperandrogenism induced by testosterone. Gynecological Endocrinology, 2021, 37, 72-77.	1.7	4
272	Gonadotropin-releasing hormone analogs: Mechanisms of action and clinical applications in female reproduction. Frontiers in Neuroendocrinology, 2021, 60, 100876.	5.2	11
273	Hypothalamo-Pituitary axis and puberty. Molecular and Cellular Endocrinology, 2021, 520, 111094.	3.2	58
274	Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nature Reviews Endocrinology, 2021, 17, 97-113.	9.6	63
275	Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Human Reproduction Update, 2021, 27, 154-189.	10.8	122
276	A review of hypogonadotropic hypogonadism cases followed up in our clinic in the last decade. Urologia, 2021, 88, 50-55.	0.7	7
277	The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 275-296.	1.8	8
278	Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	80
279	Kisspeptin: From Bench to Bedside. , 2022, , 139-154.		1
280	Leptin and inflammatory factors play a synergistic role in the regulation of reproduction in male mice through hypothalamic kisspeptin-mediated energy balance. Reproductive Biology and Endocrinology, 2021, 19, 12.	3.3	13
281	Loss-of-function variants in SEMA3F and PLXNA3 encoding semaphorin-3F and its receptor plexin-A3 respectively cause idiopathic hypogonadotropic hypogonadism. Genetics in Medicine, 2021, 23, 1008-1016.	2.4	19
282	Genetics of hypogonadotropic hypogonadism. Translational Andrology and Urology, 2021, 10, 1401-1409.	1.4	8

#	ARTICLE	IF	Citations
283	Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. General and Comparative Endocrinology, 2022, 315, 113755.	1.8	25
284	The Relationship Between Bone and Reproductive Hormones Beyond Estrogens and Androgens. Endocrine Reviews, 2021, 42, 691-719.	20.1	41
285	Central precocious puberty: Recent advances in understanding the aetiology and in the clinical approach. Clinical Endocrinology, 2021, 95, 542-555.	2.4	39
286	Emerging roles for kisspeptin in metabolism. Journal of Physiology, 2022, 600, 1079-1088.	2.9	11
287	Biological clock and heredity in pubertal timing: what is new?. Minerva Pediatrics, 2021, , .	0.4	2
288	Hypogonadism in male and female: which is the best treatment?. Minerva Pediatrics, 2022, 73, .	0.4	1
289	Hypothalamic neurokinin signalling and its application in reproductive medicine., 2022, 230, 107960.		10
290	The KiNG of reproduction: Kisspeptin/ nNOS interactions shaping hypothalamic GnRH release. Molecular and Cellular Endocrinology, 2021, 532, 111302.	3.2	12
291	Inhibiting Kiss1 Neurons With Kappa Opioid Receptor Agonists to Treat Polycystic Ovary Syndrome and Vasomotor Symptoms. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e328-e347.	3.6	13
292	Clinical Potential of Kisspeptin in Reproductive Health. Trends in Molecular Medicine, 2021, 27, 807-823.	6.7	25
293	Kiss1 is differentially regulated in male and female mice by the homeodomain transcription factor VAX1. Molecular and Cellular Endocrinology, 2021, 534, 111358.	3.2	6
294	Genetics of hypogonadotropic Hypogonadism—Human and mouse genes, inheritance, oligogenicity, and genetic counseling. Molecular and Cellular Endocrinology, 2021, 534, 111334.	3.2	13
295	The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. International Journal of Molecular Sciences, 2021, 22, 9425.	4.1	18
296	Kisspeptin Neurons and Estrogen–Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction. International Journal of Molecular Sciences, 2021, 22, 9229.	4.1	36
297	Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Frontiers in Endocrinology, 2021, 12, 724632.	3 . 5	37
298	Seasonal expression and distribution of kisspeptin1 (kiss1) in the ovary and testis of freshwater catfish, Clarias batrachus: A putative role in steroidogenesis. Acta Histochemica, 2021, 123, 151766.	1.8	6
299	A dual kisspeptin-GnRH immunogen for reproductive immunosterilization. Vaccine, 2021, 39, 6437-6448.	3.8	1
300	Metabolic actions of kisspeptin signaling: Effects on body weight, energy expenditure, and feeding. , 2022, 231, 107974.		14

#	ARTICLE	IF	CITATIONS
301	Neurokinin 3 Receptor Antagonists Compared With Serotonin Norepinephrine Reuptake Inhibitors for Non-Hormonal Treatment of Menopausal Hot Flushes: A Systematic Qualitative Review. Advances in Therapy, 2021, 38, 5025-5045.	2.9	17
302	Intermittent fasting ameliorates di-(2-ethylhexyl) phthalate-induced precocious puberty in female rats: A study of the hypothalamic–pituitary–gonadal axis. Reproductive Biology, 2021, 21, 100513.	1.9	5
303	Kisspeptin, Neurokinin B, and Dynorphin Expression during Pubertal Development in Female Sheep. Biology, 2021, 10, 988.	2.8	6
304	Gametogenic and steroidogenic action of kisspeptin-10 in the Asian catfish, Clarias batrachus: Putative underlying mechanistic cascade. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 256, 110642.	1.6	8
305	GPCR's and Endocrinology. , 2021, , .		1
306	The Traditional Chinese Medicine Fuyou Formula Alleviates Precocious Puberty by Inhibiting GPR54/GnRH in the Hypothalamus. Frontiers in Pharmacology, 2020, 11, 596525.	3.5	8
307	Pituitary Physiology and Diagnostic Evaluation. , 2016, , 176-231.		17
308	Kisspeptin, gonadotrophinâ€releasing hormone and oestrogen receptor α colocalise with neuronal nitric oxide synthase neurones in prepubertal female sheep. Journal of Neuroendocrinology, 2018, 30, e12560.	2.6	8
309	Emerging Roles of Kisspeptin in Sexual and Emotional Brain Processing. Neuroendocrinology, 2018, 106, 195-202.	2.5	33
310	Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. Journal of Clinical Investigation, 2014, 124, 3667-3677.	8.2	140
311	Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics―Era. Endocrine Reviews, 2016, 2016, 4-22.	20.1	41
312	Leptin Signaling in Kiss1 Neurons Arises after Pubertal Development. PLoS ONE, 2013, 8, e58698.	2.5	120
313	Furin Is the Major Proprotein Convertase Required for KISS1-to-Kisspeptin Processing. PLoS ONE, 2014, 9, e84958.	2.5	21
314	Kisspeptins Modulate the Biology of Multiple Populations of Gonadotropin-Releasing Hormone Neurons during Embryogenesis and Adulthood in Zebrafish (Danio rerio). PLoS ONE, 2014, 9, e104330.	2.5	27
315	Next-generation sequencing refines the genetic architecture of Greek GnRH-deficient patients. Endocrine Connections, 2019, 8, 468-480.	1.9	16
316	Novel insights into the metabolic action of Kiss1 neurons. Endocrine Connections, 2020, 9, R124-R133.	1.9	17
317	Normosmic idiopathic hypogonadotrophic hypogonadism due to a rare KISS1R gene mutation. Endocrinology, Diabetes and Metabolism Case Reports, 2018, 2018, .	0.5	6
318	Undernutrition reduces kisspeptin and neurokinin B expression in castrated male sheep. Reproduction and Fertility, 2020, $1,21-33$.	1.8	10

#	ARTICLE	IF	Citations
319	Etiopathogenetic aspects of central (hypogonadotropic) hypogonadism in female. Medical Herald of the South of Russia, 2019, 10, 15-27.	0.4	3
320	Gonadotropin-releasing hormone analog therapeutics. Minerva Ginecologica, 2018, 70, 497-515.	0.8	21
321	Plasma Kisspeptin Levels in Newborn Infants with Breast Enlargement. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2015, 7, 192-196.	0.9	7
322	Idiopathic Hypogonadotropic Hypogonadism Caused by Inactivating Mutations in SRA1. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2016, 8, 125-134.	0.9	30
323	Three Siblings with Idiopathic Hypogonadotropic Hypogonadism in a Nonconsanguineous Family: A Novel <i>KISS1R/GPR54</i> Loss-of-Function Mutation. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2019, 11, 444-448.	0.9	5
324	Minipuberty of human infancy – A window of opportunity to evaluate hypogonadism and differences of sex development?. Annals of Pediatric Endocrinology and Metabolism, 2020, 25, 84-91.	2.3	35
325	Deletion of (i) Stim 1 (i) in Hypothalamic Arcuate Nucleus Kiss 1 Neurons Potentiates Synchronous GCaMP Activity and Protects against Diet-Induced Obesity. Journal of Neuroscience, 2021, 41, 9688-9701.	3.6	10
326	Genetics of pubertal delay. Clinical Endocrinology, 2022, 97, 473-482.	2.4	11
327	Le contrÃ1e génétique de l'initiation de la puberté. Bulletin De L'Academie Nationale De Medecine, 2012, 196, 327-343.	0.0	0
328	KISSPEPTIN SYSTEM: A Multi-Homeostatic System. IOSR Journal of Pharmacy and Biological Sciences, 2013, 5, 87-101.	0.1	1
329	ContrÃ1e neuroendocrinien de la puberté., 2014,, 29-40.		1
330	Delayed Puberty and Hypogonadism, Maleâ~†., 2016, , .		O
331	Idiopathic Hypogonadotropic Hypogonadismâ€" An Update on the Aetiopathogenesis, Management of IHH in Both Males and Femalesâ€"An Exhaustive Review. Advances in Sexual Medicine, 2016, 06, 50-78.	0.4	0
332	Control of GnRH Secretion. Endocrinology, 2016, , 1-31.	0.1	0
333	Central regulatory mechanisms of female reproduction. Gonadotropin-inhibitory hormone: discovery, mechanism of action (a review). Russian Journal of Human Reproduction, 2018, 24, 13.	0.3	1
335	Genetic and Epigenetic Control of Puberty. , 2019, , 126-136.		3
336	Neuroendocrine Role of Kisspeptin-Neurokinin B-Dynorphin Pathway in Male Fertility and its Correlation with Melatonin. The Neuroscience Journal of Shefaye Khatam, 2019, 7, 74-90.	0.4	0
337	Epigenetic Regulation of the GnRH and Kiss1 Genes: Developmental Perspectives. Masterclass in Neuroendocrinology, 2020, , 237-264.	0.1	O

#	Article	IF	CITATIONS
338	Genetic Syndromes of Hypothalamic Dysfunction. Contemporary Endocrinology, 2021, , 293-343.	0.1	0
340	Cellular and molecular mechanisms regulating the KNDy neuronal activities to generate and modulate GnRH pulse in mammals. Frontiers in Neuroendocrinology, 2022, 64, 100968.	5.2	18
341	Genetics of congenital central hypogonadism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2022, 36, 101599.	4.7	7
342	Kiss1 expression in the hypothalamic arcuate nucleus is lower in dairy cows of reduced fertility. Biology of Reproduction, 2022, 106, 802-813.	2.7	3
343	Neuropeptides as regulators of the hypothalamus-pituitary-gonadal (HPG) axis activity and their putative roles in stress-induced fertility disorders. Neuropeptides, 2022, 91, 102216.	2.2	14
344	Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure. Human Reproduction, 2022, 37, 806-821.	0.9	12
345	Mouse Cre drivers: Tools for studying disorders of the human female neuroendocrine-reproductive axis. Biology of Reproduction, 2022, , .	2.7	0
346	Neuroendocrine control of gonadotropinâ€releasing hormone: Pulsatile and surge modes of secretion. Journal of Neuroendocrinology, 2022, 34, e13094.	2.6	50
347	Inverse age-related changes between hypothalamic NPY and KISS1 gene expression during pubertal initiation in male rhesus monkey. Reproductive Biology, 2022, 22, 100599.	1.9	6
348	Congenital hypogonadotropic hypogonadism complicated by neuroblastoma. Clinical Pediatric Endocrinology, 2022, , .	0.8	O
349	Kisspeptin Overcomes GnRH Neuronal Suppression Secondary to Hyperprolactinemia in Humans. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3515-e3525.	3.6	13
350	Sexual Dimorphism in Kisspeptin Signaling. Cells, 2022, 11, 1146.	4.1	9
351	Puberty Induction in Adolescent Males: Current Practice. Cureus, 2022, 14, e23864.	0.5	0
352	Genetic Etiology of Idiopathic Hypogonadotropic Hypogonadism. Endocrines, 2022, 3, 1-15.	1.0	3
353	The Genetic Backdrop of Hypogonadotropic Hypogonadism. International Journal of Molecular Sciences, 2021, 22, 13241.	4.1	3
354	Review of human genetic and clinical studies directly relevant to GnRH signalling. Journal of Neuroendocrinology, 2022, 34, e13080.	2.6	5
356	Developmental sex differences in the peri-pubertal pattern of hypothalamic reproductive gene expression, including Kiss1 and Tac2, may contribute to sex differences in puberty onset. Molecular and Cellular Endocrinology, 2022, 551, 111654.	3.2	3
357	Putative Role of the Kisspeptin/Kiss1R System in Promoting Hypothalamic GnRH Release, Pubertal Maturation, and Regulation of Ovulation Considering the Central Reproductive Axis. Fertility & Reproduction, 2022, 04, 36-44.	0.1	0

#	ARTICLE	IF	CITATIONS
358	Advances in clinical applications of kisspeptin-GnRH pathway in female reproduction. Reproductive Biology and Endocrinology, 2022, 20, .	3.3	14
359	Genetic causes of central precocious puberty. Clinical Pediatric Endocrinology, 2022, 31, 101-109.	0.8	5
360	Hypothalamic Kisspeptin Neurons Regulates Energy Metabolism and Reproduction Under Chronic Stress. Frontiers in Endocrinology, 2022, 13, .	3.5	1
362	Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Frontiers in Neuroscience, 0, 16 , .	2.8	24
363	Anxiety and Depression: What Do We Know of Neuropeptides?. Behavioral Sciences (Basel,) Tj ETQq0 0 0 rgBT /C	Overlock 1	0 Тf 50 582 ^г
364	Estrogen differentially regulates transcriptional landscapes of preoptic and arcuate kisspeptin neuron populations. Frontiers in Endocrinology, 0, 13, .	3.5	12
365	Hypothalamic Overexpression of Makorin Ring Finger Protein 3 Results in Delayed Puberty in Female Mice. Endocrinology, 2022, 163, .	2.8	5
366	The role of Kisspeptin signaling in Oocyte maturation. Frontiers in Endocrinology, 0, 13, .	3.5	3
367	The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocrine Reviews, 2023, 44, 193-221.	20.1	18
368	Endocrine metabolism V: reproductive system. , 2023, , 675-693.		0
369	Invited review: Translating kisspeptin and neurokinin B biology into new therapies for reproductive health. Journal of Neuroendocrinology, 2022, 34, .	2.6	6
370	$\mbox{NOS1}$ mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Science Translational Medicine, 2022, 14, .	12.4	15
371	Novel Insight into the Role of the Kiss1/GPR54 System in Energy Metabolism in Major Metabolic Organs. Cells, 2022, 11, 3148.	4.1	3
372	Serum kisspeptin levels mainly depend on ovarian expression of Kiss1 mRNA in female rats. Frontiers in Physiology, $0,13,.$	2.8	2
373	Kisspeptin-neuron control of LH pulsatility and ovulation. Frontiers in Endocrinology, $0,13,.$	3.5	9
374	The molecular phenotype of kisspeptin neurons in the medial amygdala of female mice. Frontiers in Endocrinology, $0,14,.$	3.5	2
375	Circadian and kisspeptin regulation of the preovulatory surge. Peptides, 2023, 163, 170981.	2.4	4
376	Gonadotrophin Hormones., 2022,, 209-255.		0

#	ARTICLE	IF	CITATIONS
377	Genetic variants of Gâ€protein coupled receptors associated with pubertal disorders. Reproductive Medicine and Biology, 2023, 22, .	2.4	2
378	Dissecting the KNDy hypothesis: KNDy neuron-derived kisspeptins are dispensable for puberty but essential for preserved female fertility and gonadotropin pulsatility. Metabolism: Clinical and Experimental, 2023, 144, 155556.	3.4	5
379	Models and Biomarkers for Ovarian Ageing. Sub-Cellular Biochemistry, 2023, , 185-199.	2.4	1
380	<scp>KNDy</scp> neurones and <scp>GnRH</scp> / <scp>LH</scp> pulse generation: Current understanding and future aspects. Journal of Neuroendocrinology, 2023, 35, .	2.6	2
381	Single neonatal estrogen implant sterilizes female animals by decreasing hypothalamic KISS1 expression. Scientific Reports, 2023, 13 , .	3.3	0
382	Sex difference in developmental changes in visualized <i>Kiss1</i> neurons in newly generated <i>Kiss1-Cre</i> rats. Journal of Reproduction and Development, 2023, 69, 227-238.	1.4	1
383	The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocrine Reviews, 0, , .	20.1	2
384	The role of polymorphic variants of the kisspeptin gene in the pathogenesis of ovarian insufficiency in patients with type 1 diabetes mellitus, genital endometriosis and combination of these diseases. Journal of Obstetrics and Women's Diseases, 2023, 72, 25-36.	0.2	0
385	Clustering of multi-tissue transcriptomes in gilts with normal cyclicity or delayed puberty reveals genes related to pubertal development. Biology of Reproduction, 2024, 110, 261-274.	2.7	0
386	The effect of NK3-Saporin injection within the arcuate nucleus on puberty, the LH surge, and the response to Senktide in female sheep. Biology of Reproduction, 2024, 110, 275-287.	2.7	0
387	Human-specific epigenomic states in spermatogenesis. Computational and Structural Biotechnology Journal, 2024, 23, 577-588.	4.1	0
388	Genetic and epigenetic aspects of the KISS1 and KISS1R genes in pubertal development and central precocious puberty: A review. Precision and Future Medicine, 2023, 7, 137-146.	1.6	0
389	Arcuate Nucleus of the Hypothalamus: Anatomy, Physiology, and Diseases. Experimental Neurobiology, 2023, 32, 371-386.	1.6	0
391	Early life adversity accelerates hypothalamic drive of pubertal timing in female rats with associated enhanced acoustic startle. Hormones and Behavior, 2024, 159, 105478.	2.1	0
392	Primary cilia and gonadotropin-releasing hormone neurons. Current Opinion in Endocrine and Metabolic Research, 2024, 34, 100504.	1.4	0
393	Novel biomarkers in Polycystic Ovary Syndrome. Research Journal of Pharmacy and Technology, 2024, , 439-442.	0.8	0
394	Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. Endocrine Reviews, 0, , .	20.1	0