A Decision Support Framework for Science-Based, Mult Reef Example

Environmental Management 50, 1204-1218 DOI: 10.1007/s00267-012-9941-3

Citation Report

#	Article	IF	CITATIONS
1	The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework. PLoS ONE, 2013, 8, e70766.	2.5	185
2	Comparison of methods for quantifying reef ecosystem services: A case study mapping services for St. Croix, USVI. Ecosystem Services, 2014, 8, 1-15.	5.4	28
3	Structuring social data for the Marine Strategy Framework Directive. Marine Policy, 2014, 45, 1-8.	3.2	8
4	The role of scientific studies in building consensus in environmental decision making: a coral reef example. Environment Systems and Decisions, 2014, 34, 60-87.	3.4	7
5	Forecasting decadal changes in sea surface temperatures and coral bleaching within a Caribbean coral reef. Coral Reefs, 2014, 33, 847-861.	2.2	24
6	Incorporating ecosystem services into ecosystem-based management to deal with complexity: a participative mental model approach. Landscape Ecology, 2014, 29, 1407-1421.	4.2	32
7	Malaria Control in Amerindian Communities of Venezuela. EcoHealth, 2015, 12, 253-266.	2.0	10
8	Developing scientific information to support decisions for sustainable coral reef ecosystem services. Ecological Economics, 2015, 115, 39-50.	5.7	32
9	Climate Change Projected Effects on Coastal Foundation Communities of the Greater Everglades Using a 2060 Scenario: Need for a New Management Paradigm. Environmental Management, 2015, 55, 857-875.	2.7	35
10	Motivations and attitudes to (not) take action for climate change adaptation in protected areas. International Journal of Climate Change Strategies and Management, 2016, 8, 356-374.	2.9	9
11	Estimating the effect of multiple environmental stressors on coral bleaching and mortality. PLoS ONE, 2017, 12, e0175018.	2.5	21
12	Addressing Maladaptive Coping Strategies of Local Communities to Changes in Ecosystem Service Provisions Using the DPSIR Framework. Ecological Economics, 2018, 149, 226-238.	5.7	37
13	Metamodeling-based approach for risk assessment and cost estimation: Application to geological carbon sequestration planning. Computers and Geosciences, 2018, 113, 70-80.	4.2	21
14	Developing qualitative ecosystem service relationships with the Driver-Pressure-State-Impact-Response framework: A case study on Cape Cod, Massachusetts. Ecological Indicators, 2018, 84, 404-415.	6.3	25
15	Adjustive ecological restoration through stakeholder involvement: a case of riparian landscape restoration on privately owned land with public access. Restoration Ecology, 2019, 27, 1073-1083.	2.9	15
16	The interplay between economics, legislative power and social influence examined through a social-ecological framework for marine ecosystems services. Science of the Total Environment, 2019, 651, 1388-1404.	8.0	16
17	What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives. Energies, 2020, 13, 6490.	3.1	2
18	Development of the coral index, a summary of coral reef resilience as a guide for management. Journal of Environmental Management, 2020, 271, 111038.	7.8	18

#	Article	IF	CITATIONS
19	Preservice Elementary Teachers' Socioscientific Reasoning During a Decision-Making Activity in the Context of COVID-19. Science and Education, 0, , .	2.7	5
20	Developing recommendations for coral disease management in Puerto Rico using key informant interviews and participatory mapping. Ocean and Coastal Management, 2023, 236, 106488.	4.4	2
21	The Application of D(A)PSI(W)R(M) Framework to Coral Reef Conservation. Sustainability, 2023, 15, 9133.	3.2	1
22	Evidence Synthesis towards a Holistic Landscape Decision Framework: Insight from the Landscape Decisions Programme. Land, 2023, 12, 1543.	2.9	0