A systems approach identifies HIPK2 as a key regulator

Nature Medicine 18, 580-588

DOI: 10.1038/nm.2685

Citation Report

#	Article	IF	CITATIONS
1	Fibrogenic cell reversion underlies fibrosis regression in liver. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9230-9231.	3.3	44
2	New target in kidney fibrosis identified by systems approach. Nature Reviews Nephrology, 2012, 8, 254-254.	4.1	0
3	Posttranslational modifications regulate HIPK2, a driver of proliferative diseases. Journal of Molecular Medicine, 2013, 91, 1051-1058.	1.7	38
4	The primary glomerulonephritides: a systems biology approach. Nature Reviews Nephrology, 2013, 9, 500-512.	4.1	21
5	Vascular Complications of Diabetes: Mechanisms of Injury and Protective Factors. Cell Metabolism, 2013, 17, 20-33.	7.2	590
6	Therapy for Fibrotic Diseases: Nearing the Starting Line. Science Translational Medicine, 2013, 5, 167sr1.	5.8	546
7	Molecular targets for treatment of kidney fibrosis. Journal of Molecular Medicine, 2013, 91, 549-559.	1.7	71
8	Targeting the epithelial cells in fibrosis: a new concept for an old disease. Drug Discovery Today, 2013, 18, 582-591.	3.2	9
9	The role of promoter hypermethylation in fibroblast activation and fibrogenesis. Journal of Pathology, 2013, 229, 264-273.	2.1	81
10	Toward a systemsâ€level understanding of the Hedgehog signaling pathway: defining the complex, robust, and fragile. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 83-100.	6.6	9
11	Rapamycin-induced modulation of miRNA expression is associated with amelioration of HIV-associated nephropathy (HIVAN). Experimental Cell Research, 2013, 319, 2073-2080.	1.2	16
12	MicroRNAs in HIV-associated nephropathy (HIVAN). Experimental and Molecular Pathology, 2013, 94, 65-72.	0.9	14
13	Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert Opinion on Drug Discovery, 2013, 8, 879-895.	2.5	28
14	Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase. Journal of the American Society of Nephrology: JASN, 2013, 24, 801-811.	3.0	46
15	Autophosphorylation and Pin1 binding coordinate DNA damage-induced HIPK2 activation and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4203-E4212.	3.3	42
16	Homeodomainâ€interacting protein kinase2 in human idiopathic pulmonary fibrosis. Journal of Cellular Physiology, 2013, 228, 235-241.	2.0	26
17	Activation of the Interleukin-4/Signal Transducer and Activator of Transcription 6 Signaling Pathway and Homeodomain-Interacting Protein Kinase 2 Production by Tonsillar Mononuclear Cells in IgA Nephropathy. American Journal of Nephrology, 2013, 38, 321-332.	1.4	27
18	Transcriptional Corepressors HIPK1 and HIPK2 Control Angiogenesis Via TGF-β–TAK1–Dependent Mechanism. PLoS Biology, 2013, 11, e1001527.	2.6	50

#	Article	IF	CITATIONS
19	Homeodomain interacting protein kinase (HPKâ€1) is required in the soma for robust germline proliferation in <i>C. elegans</i> . Developmental Dynamics, 2013, 242, 1250-1261.	0.8	15
20	Deletion of podocyte STAT3 mitigates the entire spectrum of HIV-1-associated nephropathy. Aids, 2013, 27, 1091-1098.	1.0	36
21	Renoprotective mechanisms of pirfenidone in hypertension-induced renal injury: through anti-fibrotic and anti-oxidative stress pathways. Biomedical Research, 2013, 34, 309-319.	0.3	22
22	A Bioinformatics Approach Identifies Signal Transducer and Activator of Transcription-3 and Checkpoint Kinase 1 as Upstream Regulators of Kidney Injury Molecule-1 after Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 105-118.	3.0	57
23	Role of HIPK2 in kidney fibrosis. Kidney International Supplements, 2014, 4, 97-101.	4.6	26
24	How can genetics and epigenetics help the nephrologist improve the diagnosis and treatment of chronic kidney disease patients?. Nephrology Dialysis Transplantation, 2014, 29, 972-980.	0.4	13
25	Induction of Retinol Dehydrogenase 9 Expression in Podocytes Attenuates Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 1933-1941.	3.0	14
26	HIPK2 modification code for cell death and survival. Molecular and Cellular Oncology, 2014, 1, e955999.	0.3	18
27	Advances in the pathogenesis of HIV-associated kidney diseases. Kidney International, 2014, 86, 266-274.	2.6	46
28	Unilateral ureteral obstruction: beyond obstruction. International Urology and Nephrology, 2014, 46, 765-776.	0.6	157
29	Metabolomics-proteomics profiles delineate metabolic changes in kidney fibrosis disease. Proteomics, 2015, 15, 3699-3710.	1.3	31
30	Nodes with high centrality in protein interaction networks are responsible for driving signaling pathways in diabetic nephropathy. PeerJ, 2015, 3, e1284.	0.9	38
31	Sorafenib Ameliorates Renal Fibrosis through Inhibition of TGF-Î ² -Induced Epithelial-Mesenchymal Transition. PLoS ONE, 2015, 10, e0117757.	1.1	24
32	HIPK2 is a new drug target for anti-fibrosis therapy in kidney disease. Frontiers in Physiology, 2015, 6, 132.	1.3	21
33	WSB1 promotes tumor metastasis by inducing pVHL degradation. Genes and Development, 2015, 29, 2244-2257.	2.7	52
34	miR-141 regulates TGF-β1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells. International Journal of Molecular Medicine, 2015, 35, 311-318.	1.8	70
35	Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scandinavian Journal of Gastroenterology, 2015, 50, 53-65.	0.6	126
36	Activation of non-canonical TGF-β1 signaling indicates an autoimmune mechanism for bone marrow fibrosis in primary myelofibrosis. Blood Cells, Molecules, and Diseases, 2015, 54, 234-241.	0.6	31

#	Article	IF	CITATIONS
37	Proteomic biomarkers in kidney disease: issues in development and implementation. Nature Reviews Nephrology, 2015, 11, 221-232.	4.1	101
38	Effects of cell-type-specific expression of a pan-caspase inhibitor on renal fibrogenesis. Clinical and Experimental Nephrology, 2015, 19, 350-358.	0.7	3
39	Renal Allograft Fibrosis: Biology and Therapeutic Targets. American Journal of Transplantation, 2015, 15, 863-886.	2.6	81
40	RTN1 mediates progression of kidney disease by inducing ER stress. Nature Communications, 2015, 6, 7841.	5.8	80
41	MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Annals of the New York Academy of Sciences, 2015, 1353, 72-88.	1.8	137
42	Body fluid peptide and protein signatures in diabetic kidney diseases. Nephrology Dialysis Transplantation, 2015, 30, iv43-iv53.	0.4	7
43	Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nature Reviews Drug Discovery, 2015, 14, 693-720.	21.5	181
44	Defining nephrotic syndrome from an integrative genomics perspective. Pediatric Nephrology, 2015, 30, 51-63.	0.9	23
45	Inhibition of the processing of miR-25 by HIPK2-Phosphorylated-MeCP2 induces NOX4 in early diabetic nephropathy. Scientific Reports, 2016, 6, 38789.	1.6	40
46	Transforming growth factor β-related genes in human retinal pigment epithelial cells after tacrolimus treatment. Pharmacological Reports, 2016, 68, 969-974.	1.5	5
47	Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4976-4981.	3.3	249
48	A high affinity kidney targeting by chitobionic acid-conjugated polysorbitol gene transporter alleviates unilateral ureteral obstruction in rats. Biomaterials, 2016, 102, 43-57.	5.7	7
49	Hypoxia: The Force that Drives Chronic Kidney Disease. Clinical Medicine and Research, 2016, 14, 15-39.	0.4	115
50	A Novel Inhibitor of Homeodomain Interacting Protein Kinase 2 Mitigates Kidney Fibrosis through Inhibition of the TGF-β1/Smad3 Pathway. Journal of the American Society of Nephrology: JASN, 2017, 28, 2133-2143.	3.0	43
51	A metabolite-GWAS (mGWAS) approach to unveil chronic kidney disease progression. Kidney International, 2017, 91, 1274-1276.	2.6	11
52	Knockdown of HIPK2 attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1. Biomedicine and Pharmacotherapy, 2017, 85, 575-581.	2.5	12
53	The antihelmenthic phosphate niclosamide impedes renal fibrosis by inhibiting homeodomain-interacting protein kinase 2 expression. Kidney International, 2017, 92, 612-624.	2.6	36
54	Role of Homeodomain-Interacting Protein Kinase 2 in the Pathogenesis of Tissue Fibrosis in Keloid-Derived Keratinocytes. Annals of Plastic Surgery, 2017, 79, 546-551.	0.5	10

		Citation Report		
#	Article		IF	CITATIONS
55	Crosstalk between NRF2 and HIPK2 shapes cytoprotective responses. Oncogene, 2017, 3	5, 6204-6212.	2.6	75
56	Homeodomain interacting protein kinase promotes tumorigenesis and metastatic cell beh Disease Models and Mechanisms, 2018, 11, .	avior. DMM	1.2	20
57	Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. Journal of Clini Endocrinology and Metabolism, 2017, 102, 4343-4410.	cal	1.8	323
58	HIPK2 inhibits cell metastasis and improves chemosensitivity in esophageal squamous cell Experimental and Therapeutic Medicine, 2017, 15, 1113-1118.	carcinoma.	0.8	10
59	Homeodomain-Interacting Protein Kinases. Current Topics in Developmental Biology, 2013	7, 123, 73-103.	1.0	56
60	HIPK2 polymorphisms rs2058265, rs6464214, and rs7456421 were associated with kidne Chinese males not females. Gene, 2018, 653, 51-56.	y stone disease in	1.0	8
61	Novel RAS Inhibitors Poricoic Acid ZG and Poricoic Acid ZH Attenuate Renal Fibrosis via a V Pathway and Targeted Phosphorylation of smad3 Signaling. Journal of Agricultural and Foo Chemistry, 2018, 66, 1828-1842.		2.4	115
62	PGC-1α ameliorates kidney fibrosis in mice with diabetic kidney disease through an antiox mechanism. Molecular Medicine Reports, 2018, 17, 4490-4498.	idative	1.1	35
63	Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of it Biomedicine and Pharmacotherapy, 2018, 101, 670-681.	s treatment.	2.5	250
64	Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Rese Clinical Practice, 2018, 37, 197-209.	arch and	0.9	47
65	Update on the Regulation of HIPK1, HIPK2 and HIPK3 Protein Kinases by microRNAs. MicroRNA (Shariqah,) Tj ETQq 0.6 0 rgBT (Overloc 31			BT /Overlock 31
66	Targeting TGF-Î ² Signaling in Kidney Fibrosis. International Journal of Molecular Sciences, 2	.018, 19, 2532.	1.8	164
67	eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling n Nucleic Acids Research, 2018, 46, W171-W179.	etworks.	6.5	127
68	A dual role of miRâ€⊋2 in rhabdomyolysisâ€induced acute kidney injury. Acta Physiologica	, 2018, 224, e13102.	1.8	12
69	Pathogenesis of Microvascular Complications. Endocrinology, 2018, , 1-42.		0.1	0
70	Molecular Mechanisms of Injury in HIV-Associated Nephropathy. Frontiers in Medicine, 201	18, 5, 177.	1.2	26
71	Cellular and molecular mechanisms of kidney fibrosis. Molecular Aspects of Medicine, 201	9, 65, 16-36.	2.7	289
72	Integrated use of bioinformatic resources reveals that co-targeting of histone deacetylase. SRC inhibits epithelial-mesenchymal transition in cancer. Briefings in Bioinformatics, 2019	s, IKBK and , 20, 717-731.	3.2	20

#	Article	IF	CITATIONS
73	IRF6 and TAK1 coordinately promote the activation of HIPK2 to stimulate apoptosis during palate fusion. Science Signaling, 2019, 12, .	1.6	12
74	The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. Journal of Biological Chemistry, 2019, 294, 13545-13559.	1.6	22
75	Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia. Experimental Hematology, 2019, 79, 16-25.e3.	0.2	8
76	Cardiomyocyte Homeodomain-Interacting Protein Kinase 2 Maintains Basal Cardiac Function via Extracellular Signal-Regulated Kinase Signaling. Circulation, 2019, 140, 1820-1833.	1.6	21
77	EGFR drives the progression of AKI to CKD through HIPK2 overexpression. Theranostics, 2019, 9, 2712-2726.	4.6	61
78	Identification of microRNA-mRNA networks involved in cisplatin-induced renal tubular epithelial cells injury. European Journal of Pharmacology, 2019, 851, 1-12.	1.7	18
79	Impact of genetic variant of HIPK2 on the risk of severe radiation pneumonitis in lung cancer patients treated with radiation therapy. Radiation Oncology, 2020, 15, 9.	1.2	13
80	HIPK2 overexpression relieves hypoxia/reoxygenation-induced apoptosis and oxidative damage of cardiomyocytes through enhancement of the Nrf2/ARE signaling pathway. Chemico-Biological Interactions, 2020, 316, 108922.	1.7	16
81	Novel targets to cure primary myelofibrosis from studies on <i>Gata1</i> ^{low} mice. IUBMB Life, 2020, 72, 131-141.	1.5	5
82	Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes. Frontiers in Immunology, 2020, 11, 2131.	2.2	6
83	Role of SIRT1 in HIV-associated kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F335-F344.	1.3	13
84	Multi-scale models of lung fibrosis. Matrix Biology, 2020, 91-92, 35-50.	1.5	15
85	Aging Suppresses Sphingosine-1-Phosphate Chaperone ApoM in Circulation Resulting in Maladaptive Organ Repair. Developmental Cell, 2020, 53, 677-690.e4.	3.1	25
86	Sequential Wnt Agonist Then Antagonist Treatment Accelerates Tissue Repair and Minimizes Fibrosis. IScience, 2020, 23, 101047.	1.9	9
87	An Alternative Splice Variant of HIPK2 with Intron Retention Contributes to Cytokinesis. Cells, 2020, 9, 484.	1.8	13
88	Glomerular Transcriptome Profiles in Focal Glomerulosclerosis: New Genes and Pathways for Steroid Resistance. American Journal of Nephrology, 2020, 51, 442-452.	1.4	6
89	The nutrient sensor OGT regulates Hipk stability and tumorigenic-like activities in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2004-2013.	3.3	19
90	Bioinformatics toolbox for exploring protein phosphorylation network. Briefings in Bioinformatics, 2021, 22, .	3.2	7

#	Article	IF	CITATIONS
91	Amygdalin alleviates renal injury by suppressing inflammation, oxidative stress and fibrosis in streptozotocin-induced diabetic rats. Life Sciences, 2021, 265, 118835.	2.0	21
92	Diabetic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166044.	1.8	81
93	HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
94	Inhibition of HIPK2 Alleviates Thoracic Aortic Disease in Mice With Progressively Severe Marfan Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2483-2493.	1.1	4
95	Tubular HIPK2 is a key contributor to renal fibrosis. JCI Insight, 2020, 5, .	2.3	14
96	Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. Journal of Clinical Investigation, 2015, 125, 208-221.	3.9	62
97	TSS-Seq analysis of low pH-induced gene expression in intercalated cells in the renal collecting duct. PLoS ONE, 2017, 12, e0184185.	1.1	4
98	Exosomal miR-19a from adipose-derived stem cells suppresses differentiation of corneal keratocytes into myofibroblasts. Aging, 2020, 12, 4093-4110.	1.4	13
99	Homeodomain-interacting protein kinase 2 (HIPK2): a promising target for anti-cancer therapies. Oncotarget, 2017, 8, 20452-20461.	0.8	48
100	Multistep virtual screening based identification of homeodomain-interacting protein kinase 2 inhibitors: An opportunity for treating Chronic Kidney Disease. Chemometrics and Intelligent Laboratory Systems, 2021, 219, 104440.	1.8	1
102	Pathogenesis of Microvascular Complications. Endocrinology, 2018, , 161-201.	0.1	0
103	Pathogenesis of Microvascular Complications. Endocrinology, 2019, , 1-41.	0.1	0
104	Perturbation of HSP Network in MCF-7 Breast Cancer Cell Line Triggers Inducible HSP70 Expression and Leads to Tumor Suppression. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1051-1060.	0.9	8
105	Pathogenesis of Microvascular Complications. Endocrinology, 2020, , 161-201.	0.1	0
106	Central Nodes in Protein Interaction Networks Drive Critical Functions in Transforming Growth Factor Beta-1 Stimulated Kidney Cells. Cell Journal, 2017, 18, 514-531.	0.2	7
107	HIPK2 Cooperates with KRAS Signaling and Associates with Colorectal Cancer Progression. Molecular Cancer Research, 2022, 20, 686-698.	1.5	5
108	MicroRNA-193b-3p reduces oxidative stress and mitochondrial damage in rats with cerebral ischemia-reperfusion injury via the seven in absentia homolog 1/Jun N-terminal kinase pathway. Bioengineered, 2022, 13, 6942-6954.	1.4	5
109	HIPK2 directs cell type–specific regulation of STAT3 transcriptional activity in Th17 cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117112119.	3.3	2

#	Article	IF	CITATIONS
114	Knockdown of HIPK2 attenuates angiotensin II-induced cardiac fibrosis in cardiac fibroblasts. Journal of Cardiovascular Pharmacology, 2022, Publish Ahead of Print, .	0.8	3
115	Identification of selective homeodomain interacting protein kinase 2 inhibitors, a potential treatment for renal fibrosis. Bioorganic Chemistry, 2022, 126, 105866.	2.0	3
116	Emerging role of tumor suppressor p53 in acute and chronic kidney diseases. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	16
117	SIRT6 overexpression retards renal interstitial fibrosis through targeting HIPK2 in chronic kidney disease. Frontiers in Pharmacology, 0, 13, .	1.6	5
119	Inhibition of HIPK2 protects stress-induced pathological cardiac remodeling. EBioMedicine, 2022, 85, 104274.	2.7	9
120	ASH2L Aggravates Fibrosis and Inflammation through HIPK2 in High Glucose-Induced Glomerular Mesangial Cells. Genes, 2022, 13, 2244.	1.0	5
121	Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Progress in Retinal and Eye Research, 2023, 94, 101151.	7.3	2
122	HIPK2 as a Novel Regulator of Fibrosis. Cancers, 2023, 15, 1059.	1.7	7
123	Low dose Taxol ameliorated renal fibrosis in mice with diabetic kidney disease by downregulation of HIPK2. Life Sciences, 2023, 320, 121540.	2.0	1
124	Recent advances in the development of HIPK2 inhibitors as anti-renal fibrosis agents. Future Medicinal Chemistry, 2023, 15, 453-465.	1.1	1