Mass spectrometry-based proteomics: existing capabili

Chemical Society Reviews 41, 3912 DOI: 10.1039/c2cs15331a

Citation Report

#	Article	IF	CITATIONS
1	The Proteomics Big Challenge for Biomarkers and New Drug-Targets Discovery. International Journal of Molecular Sciences, 2012, 13, 13926-13948.	1.8	56
2	Ion Mobility Mass Spectrometry of Peptide Ions: Effects of Drift Gas and Calibration Strategies. Analytical Chemistry, 2012, 84, 7124-7130.	3.2	281
3	Priming against environmental challenges and proteomics in plants: Update and agricultural perspectives. Frontiers in Plant Science, 2012, 3, 216.	1.7	92
4	Organelle proteomics in skeletal muscle biology. Journal of Integrated OMICS, 2012, 2, .	0.5	7
6	Applications of Mass Spectrometry in Proteomics. Australian Journal of Chemistry, 2013, 66, 721.	0.5	30
7	Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chemical Society Reviews, 2013, 42, 8517.	18.7	146
8	Optimized Nonlinear Gradients for Reversed-Phase Liquid Chromatography in Shotgun Proteomics. Analytical Chemistry, 2013, 85, 7777-7785.	3.2	39
9	Quantitative Proteomics in Development of Disease Protein Biomarkers. , 2013, , 259-278.		20
10	On-Line Electrochemical Reduction of Disulfide Bonds: Improved FTICR-CID and -ETD Coverage of Oxytocin and Hepcidin. Journal of the American Society for Mass Spectrometry, 2013, 24, 1980-1987.	1.2	25
11	Development of Blood Biomarkers for Drug-Induced Liver Injury: An Evaluation of Their Potential for Risk Assessment and Diagnostics. Molecular Diagnosis and Therapy, 2013, 17, 343-354.	1.6	40
12	Proteomics of nonmodel plant species. Proteomics, 2013, 13, 663-673.	1.3	50
13	High specific phosphopeptides enrichment by titanium silicalite with post-treatment of desilication. Analytical Methods, 2013, 5, 2939.	1.3	5
14	The progress of proteomic approaches in searching for cancer biomarkers. New Biotechnology, 2013, 30, 319-326.	2.4	16
15	Recent advances in the combination of capillary electrophoresis with mass spectrometry: From element to single $\hat{a}\in$ cell analysis. Electrophoresis, 2013, 34, 70-85.	1.3	70
16	2D gels still have a niche in proteomics. Journal of Proteomics, 2013, 88, 4-13.	1.2	154
17	Conformational States of Macromolecular Assemblies Explored by Integrative Structure Calculation. Structure, 2013, 21, 1500-1508.	1.6	29
18	Regulation of developmental processes: insights from mass spectrometryâ€based proteomics. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 723-734.	5.9	5
19	Strategies for biomarker discovery in fibrotic disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1079-1087.	1.8	14

#	Article	IF	CITATIONS
20	High sensitivity capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for the rapid analysis of complex proteomes. Current Opinion in Chemical Biology, 2013, 17, 795-800.	2.8	28
21	Fluxomics – connecting â€~omics analysis and phenotypes. Environmental Microbiology, 2013, 15, 1901-1916.	1.8	103
22	Protein Analysis by Shotgun/Bottom-up Proteomics. Chemical Reviews, 2013, 113, 2343-2394.	23.0	1,171
23	Protein Digestion: An Overview of the Available Techniques and Recent Developments. Journal of Proteome Research, 2013, 12, 1067-1077.	1.8	195
24	Advances in ultrasensitive mass spectrometry of organic molecules. Chemical Society Reviews, 2013, 42, 5299.	18.7	61
25	Systems metabolic engineering in an industrial setting. Applied Microbiology and Biotechnology, 2013, 97, 2319-2326.	1.7	24
26	From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances, 2013, 31, 764-788.	6.0	139
27	Sensitivity and specificity: twin goals of proteomics assays. Can they be combined?. Expert Review of Proteomics, 2013, 10, 135-149.	1.3	56
28	Biotechnology advances: A perspective on the diagnosis and research of Rabies Virus. Biologicals, 2013, 41, 217-223.	0.5	15
29	Evaluation and Optimization of Mass Spectrometric Settings during Data-dependent Acquisition Mode: Focus on LTQ-Orbitrap Mass Analyzers. Journal of Proteome Research, 2013, 12, 3071-3086.	1.8	148
30	Stable Isotope Metabolic Labeling-based Quantitative Phosphoproteomic Analysis of Arabidopsis Mutants Reveals Ethylene-regulated Time-dependent Phosphoproteins and Putative Substrates of Constitutive Triple Response 1 Kinase. Molecular and Cellular Proteomics, 2013, 12, 3559-3582.	2.5	58
31	Microfluidic Platforms for Single-Cell Protein Analysis. Journal of the Association for Laboratory Automation, 2013, 18, 446-454.	2.8	31
32	Protein Target Quantification Decision Tree. International Journal of Proteomics, 2013, 2013, 1-8.	2.0	12
33	Proteomic profiling of the contractile apparatus from skeletal muscle. Expert Review of Proteomics, 2013, 10, 239-257.	1.3	32
34	Comparative and Quantitative Global Proteomics Approaches: An Overview. Proteomes, 2013, 1, 180-218.	1.7	55
35	Proteomics Techniques for the Detection of Translated Pseudogenes. Methods in Molecular Biology, 2014, 1167, 187-195.	0.4	6
36	Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics. Expert Review of Proteomics, 2014, 11, 675-684.	1.3	29
37	Proteomic Profiling of the Dystrophin-Deficient <i>mdx</i> Phenocopy of Dystrophinopathy-Associated Cardiomyopathy. BioMed Research International, 2014, 2014, 1-15.	0.9	18

		CITATION REPORT		
#	Article		IF	Citations
38	Application of Proteomics and Peptidomics to COPD. BioMed Research International, 2	014, 2014, 1-8.	0.9	31
39	Lowâ€mobilityâ€pass filter between atmospheric pressure chemical ionization and elect sources and a single quadrupole mass spectrometer: computational models and measu Communications in Mass Spectrometry, 2014, 28, 135-142.	trospray ionization rements. Rapid	0.7	1
41	Development of a Method for Absolute Quantification of Equine Acute Phase Proteins I Concatenated Peptide Standards and Selected Reaction Monitoring. Journal of Proteon 2014, 13, 5635-5647.		1.8	12
42	Proteomics, genomics and transcriptomics: their emerging roles in the discovery and va colorectal cancer biomarkers. Expert Review of Proteomics, 2014, 11, 179-205.	lidation of	1.3	31
43	An osmolyte-based micro-volume ultrafiltration technique. Lab on A Chip, 2014, 14, 45	59-4566.	3.1	5
44	GradientOptimizer: An openâ€source graphical environment for calculating optimized § reversedâ€phase liquid chromatography. Proteomics, 2014, 14, 1464-1466.	gradients in	1.3	5
45	Shotgun Proteomics. Methods in Molecular Biology, 2014, , .		0.4	6
46	New Insight into Neurodegeneration: the Role of Proteomics. Molecular Neurobiology, 1181-1199.	2014, 49,	1.9	18
47	Proteomic Approach to Investigate Pathogenicity and Metabolism of Methicillin-Resista Staphylococcus aureus. Methods in Molecular Biology, 2014, 1085, 231-250.	nt	0.4	2
48	Mass Spectrometry for Proteomics-Based Investigation. Advances in Experimental Medi Biology, 2014, 806, 1-32.	cine and	0.8	16
49	Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biot Bioprocess Engineering, 2014, 19, 553-567.	echnology and	1.4	145
50	Proteomic profiling of the tumor microenvironment: recent insights and the search for Genome Medicine, 2014, 6, 12.	biomarkers.	3.6	26
51	Gas-phase acid-base properties of homocysteine, homoserine, 5-mercaptonorvaline, and 5-hydroxynorvaline from the extended kinetic method. International Journal of Mass Sp 2014, 369, 71-80.		0.7	8
52	Qualitative and Quantitative Characterization of Plasma Proteins When Incorporating T Wave Ion Mobility into a Liquid Chromatography–Mass Spectrometry Workflow for E Discovery: Use of Product Ion Quantitation As an Alternative Data Analysis Tool for Lab Quantitation. Analytical Chemistry, 2014, 86, 1972-1979.	Biomarker	3.2	21
53	Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Qua Electrophoresis in Capillaries. Analytical Chemistry, 2014, 86, 6723-6729.	ntitative Zone	3.2	17
54	Automated Data Extraction from <i>In Situ</i> Protein-Stable Isotope Probing Studies. Proteome Research, 2014, 13, 1200-1210.	Journal of	1.8	20
55	Investigations of the Mechanism of the "Proline Effect―in Tandem Mass Spectrom "Pipecolic Acid Effect― Journal of the American Society for Mass Spectrometry, 20		1.2	24
56	Discovery of modulators of HIV-1 infection from the human peptidome. Nature Reviews 2014, 12, 715-722.	Microbiology,	13.6	36

#	Article	IF	CITATIONS
57	How chemistry supports cell biology: the chemical toolbox at your service. Trends in Cell Biology, 2014, 24, 751-760.	3.6	30
58	Capillary Zone Electrophoresis–Electrospray Ionization-Tandem Mass Spectrometry for Top-Down Characterization of the Mycobacterium marinum Secretome. Analytical Chemistry, 2014, 86, 4873-4878.	3.2	48
59	Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations. Analytical Chemistry, 2014, 86, 9162-9168.	3.2	62
60	Toward high spatial resolution sampling and characterization of biological tissue surfaces using mass spectrometry. Analytical and Bioanalytical Chemistry, 2014, 406, 4053-4061.	1.9	12
61	MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra. Journal of Proteome Research, 2014, 13, 3679-3684.	1.8	416
62	Microfluidics-Based Single-Cell Functional Proteomics for Fundamental and Applied Biomedical Applications. Annual Review of Analytical Chemistry, 2014, 7, 275-295.	2.8	65
63	High-Throughput Proteomics. Annual Review of Analytical Chemistry, 2014, 7, 427-454.	2.8	213
64	Streamlining Bottom-Up Protein Identification Based on Selective Ultraviolet Photodissociation (UVPD) of Chromophore-Tagged Histidine- and Tyrosine-Containing Peptides. Analytical Chemistry, 2014, 86, 6237-6244.	3.2	15
65	Protein Molecular Data from Ancient (>1 million years old) Fossil Material: Pitfalls, Possibilities and Grand Challenges. Analytical Chemistry, 2014, 86, 6731-6740.	3.2	22
66	Pseudogenes. Methods in Molecular Biology, 2014, 1167, v.	0.4	5
67	A "plug-and-use―approach towards facile fabrication of capillary columns for high performance nanoflow liquid chromatography. Journal of Chromatography A, 2014, 1325, 109-114.	1.8	18
68	Comparative proteomic analysis of the contractile-protein-depleted fraction from normal versus dystrophic skeletal muscle. Analytical Biochemistry, 2014, 446, 108-115.	1.1	36
69	Bionanoconjugation for Proteomics applications — An overview. Biotechnology Advances, 2014, 32, 952-970.	6.0	19
70	Neuro-proteomics and Neuro-systems Biology in the Quest of TBI Biomarker Discovery. , 2014, , 3-41.		1
71	Ultraviolet photodissociation of protonated, fixed charge, and charge-reduced peptides. International Journal of Mass Spectrometry, 2015, 390, 81-90.	0.7	12
73	Digestion, Purification, and Enrichment of Protein Samples for Mass Spectrometry. Current Protocols in Chemical Biology, 2015, 7, 201-222.	1.7	20
74	Green strategy from waste to value-added-chemical production: efficient biosynthesis of 6-hydroxy-3-succinoyl-pyridine by an engineered biocatalyst. Scientific Reports, 2014, 4, 5397.	1.6	42
75	Identifi cation and Enumeration of Probiotics. , 2015, , 111-122.		Ο

#	Article	IF	CITATIONS
76	Utility of mass spectrometry for the diagnosis of the unstable coronary plaque. Global Cardiology Science & Practice, 2015, 2015, 25.	0.3	4
77	Proteomics in Rheumatoid Arthritis Research. Immune Network, 2015, 15, 177.	1.6	30
78	Turnover Rates of Hepatic Collagen and Circulating Collagen-Associated Proteins in Humans with Chronic Liver Disease. PLoS ONE, 2015, 10, e0123311.	1.1	46
79	Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 2015, 6, 537.	1.7	226
80	Potential Peripartum Markers of Infectious-Inflammatory Complications in Spontaneous Preterm Birth. BioMed Research International, 2015, 2015, 1-13.	0.9	9
82	Informatics for Mass Spectrometry-Based Protein Characterization. ACS Symposium Series, 2015, , 189-225.	0.5	0
83	Wavelet-Based Peak Detection and a New Charge Inference Procedure for MS/MS Implemented in ProteoWizard's msConvert. Journal of Proteome Research, 2015, 14, 1299-1307.	1.8	38
84	Photoaffinity Probes for Identification of Carbohydrateâ€Binding Proteins. Asian Journal of Organic Chemistry, 2015, 4, 116-126.	1.3	22
85	Protein Biomarkers for Detecting Cancer. , 2015, , 331-346.e5.		0
86	A simple MALDI plate functionalization by Vmh2 hydrophobin for serial multi-enzymatic protein digestions. Analytical and Bioanalytical Chemistry, 2015, 407, 487-496.	1.9	29
87	Dynamic Proteomics. Methods in Enzymology, 2015, 561, 219-276.	0.4	57
88	Highly sensitive ligand-binding assays in pre-clinical and clinical applications: immuno-PCR and other emerging techniques. Analyst, The, 2015, 140, 6175-6194.	1.7	41
89	Dereplicating and Spatial Mapping of Secondary Metabolites from Fungal Cultures <i>in Situ</i> . Journal of Natural Products, 2015, 78, 1926-1936.	1.5	46
90	Oligonucleotide aptamers: emerging affinity probes for bioanalytical mass spectrometry and biomarker discovery. Analytical Methods, 2015, 7, 7416-7430.	1.3	8
91	Tandem Mass Spectroscopy in Diagnosis and Clinical Research. Indian Journal of Clinical Biochemistry, 2015, 30, 121-123.	0.9	23
92	Quantitation of protein post-translational modifications using isobaric tandem mass tags. Bioanalysis, 2015, 7, 383-400.	0.6	14
94	Proteomic profiling of protein corona formed on the surface of nanomaterial. Science China Chemistry, 2015, 58, 780-792.	4.2	13
95	Challenges and developments in protein identification using mass spectrometry. TrAC - Trends in Analytical Chemistry, 2015, 69, 76-87.	5.8	22

#	Article	IF	Citations
" 96	Proteomics discovery of radioresistant cancer biomarkers for radiotherapy. Cancer Letters, 2015, 369, 289-297.	3.2	21
97	Fishing the PTM proteome with chemical approaches using functional solid phases. Chemical Society Reviews, 2015, 44, 8260-8287.	18.7	70
98	A Symbolic Regression Based Scoring System Improving Peptide Identifications for MS Amanda. , 2015, , .		0
99	Biomarkers of An Autoimmune Skin Disease—Psoriasis. Genomics, Proteomics and Bioinformatics, 2015, 13, 224-233.	3.0	82
100	Optomechanics to the rescue. Nature Nanotechnology, 2015, 10, 738-739.	15.6	7
101	Pepsin immobilization on an aldehyde-modified polymethacrylate monolith and its application for protein analysis. Journal of Bioscience and Bioengineering, 2015, 119, 505-510.	1.1	17
102	Amphioxus as a model for investigating evolution of the vertebrate immune system. Developmental and Comparative Immunology, 2015, 48, 297-305.	1.0	36
103	Comparative profiling of the sperm proteome. Proteomics, 2015, 15, 632-648.	1.3	29
104	Re-print of "Gas-phase acid–base properties of homocysteine, homoserine, 5-mercaptonorvaline and 5-hydroxynorvaline from the extended kinetic method― International Journal of Mass Spectrometry, 2015, 377, 73-83.	0.7	0
106	Recent advances in mass spectrometry-based proteomics of gastric cancer. World Journal of Gastroenterology, 2016, 22, 8283.	1.4	18
107	Mass Spectrometric Immunoassays in Characterization of Clinically Significant Proteoforms. Proteomes, 2016, 4, 13.	1.7	29
108	CE-MS for Clinical Proteomics and Metabolomics: Strategies and Applications. , 2016, , 315-343.		1
109	Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression. Energy and Environmental Science, 2016, 9, 2392-2399.	15.6	143
110	Statistical Examination of the <i>a</i> and <i>a</i> + 1 Fragment lons from 193Ânm Ultraviolet Photodissociation Reveals Local Hydrogen Bonding Interactions. Journal of the American Society for Mass Spectrometry, 2016, 27, 1443-1453.	1.2	15
111	(E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 709-718.	1.2	18
112	Gadolinium oxide: Exclusive selectivity and sensitivity in the enrichment of phosphorylated biomolecules. Journal of Separation Science, 2016, 39, 4175-4182.	1.3	6
113	Changes in cellular glycosylation of leukemia cells upon treatment with acridone derivatives yield insight into drug action. Proteomics, 2016, 16, 2977-2988.	1.3	8
114	Mass Spectrometric and Functional Aspects of Drug–Protein Conjugation. Chemical Research in Toxicology, 2016, 29, 1912-1935.	1.7	48

#	Article	IF	CITATIONS
115	Biomarker discovery in mass spectrometryâ€based urinary proteomics. Proteomics - Clinical Applications, 2016, 10, 358-370.	0.8	110
116	Radiation-induced erectile dysfunction: Recent advances and future directions. Advances in Radiation Oncology, 2016, 1, 161-169.	0.6	50
117	Impact of Amidination on Peptide Fragmentation and Identification in Shotgun Proteomics. Journal of Proteome Research, 2016, 15, 3656-3665.	1.8	8
118	Label-Free Relative Quantitation of Isobaric and Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron Resonance Top-Down MS/MS. Journal of Proteome Research, 2016, 15, 3196-3203.	1.8	27
119	Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators. Nature Communications, 2016, 7, 13452.	5.8	91
120	Translational Biomedical Informatics. Advances in Experimental Medicine and Biology, 2016, , .	0.8	1
121	Computational Methods in Mass Spectrometry-Based Proteomics. Advances in Experimental Medicine and Biology, 2016, 939, 63-89.	0.8	12
122	Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches. Journal of Pharmaceutical and Biomedical Analysis, 2016, 127, 94-100.	1.4	16
123	Quantitative proteomic analysis of Dunaliella salina upon acute arsenate exposure. Chemosphere, 2016, 145, 112-118.	4.2	31
124	Ion Activation Methods for Peptides and Proteins. Analytical Chemistry, 2016, 88, 30-51.	3.2	177
125	Integration of Ultraviolet Photodissociation with Proton Transfer Reactions and Ion Parking for Analysis of Intact Proteins. Analytical Chemistry, 2016, 88, 1008-1016.	3.2	32
126	Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. Journal of Separation Science, 2016, 39, 198-211.	1.3	65
127	Comparison of MALDI-TOF MS and AFLP for strain typing of ESBL-producing Escherichia coli. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 829-838.	1.3	14
128	Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay. Analytical Chemistry, 2016, 88, 1083-1087.	3.2	29
129	Neural Stem Cells (NSCs) and Proteomics. Molecular and Cellular Proteomics, 2016, 15, 344-354.	2.5	39
130	Significant variations in alternative splicing patterns and expression profiles between human-mouse orthologs in early embryos. Science China Life Sciences, 2017, 60, 178-188.	2.3	11
131	Peptide retention time prediction. Mass Spectrometry Reviews, 2017, 36, 615-623.	2.8	66
132	Room-temperature synthesis of core–shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins. Chemical Communications, 2017, 53, 3649-3652.	2.2	144

#	Article	IF	CITATIONS
133	Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells. Methods in Molecular Biology, 2017, 1603, 195-208.	0.4	4
134	Heterologous Protein Production in CHO Cells. Methods in Molecular Biology, 2017, , .	0.4	2
135	Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift. Journal of Proteome Research, 2017, 16, 2339-2358.	1.8	17
136	Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future. Chemical Research in Toxicology, 2017, 30, 332-366.	1.7	89
137	Opportunities and challenges for the discovery and validation of proteomic biomarkers for common arthritic diseases. Biomarkers in Medicine, 2017, 11, 877-892.	0.6	5
138	The Peptidome Comes of Age: Mass Spectrometry-Based Characterization of the Circulating Cancer Peptidome. The Enzymes, 2017, 42, 27-64.	0.7	22
139	Proteomics-Based Tools for Evaluation of Cell-Free Protein Synthesis. Analytical Chemistry, 2017, 89, 11443-11451.	3.2	21
140	Detection of Alkynes via Click Chemistry with a Brominated Coumarin Azide by Simultaneous Fluorescence and Isotopic Signatures in Mass Spectrometry. Bioconjugate Chemistry, 2017, 28, 2302-2309.	1.8	18
141	Combining Genomics To Identify the Pathways of Post-Transcriptional Nongenotoxic Signaling and Energy Homeostasis in Livers of Rats Treated with the Pregnane X Receptor Agonist, Pregnenolone Carbonitrile. Journal of Proteome Research, 2017, 16, 3634-3645.	1.8	4
142	Studying Protein–Protein Interactions by Biotin AP-Tagged Pulldown and LTQ-Orbitrap Mass Spectrometry. Methods in Molecular Biology, 2017, 1647, 129-138.	0.4	Ο
143	Mass spectrometric identification of dystrophin, the protein product of the Duchenne muscular dystrophy gene, in distinct muscle surface membranes. International Journal of Molecular Medicine, 2017, 40, 1078-1088.	1.8	14
144	Peptide Sequencing Directly on Solid Surfaces Using MALDI Mass Spectrometry. Scientific Reports, 2017, 7, 17811.	1.6	4
145	Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape. Frontiers in Plant Science, 2017, 8, 652.	1.7	60
146	Proteomics and Metabolomics in Relation to Meat Quality. , 2017, , 221-245.		4
147	MS–MS and MS n â~†. , 2017, , 936-941.		2
148	Construction and characterization of the Korean whole saliva proteome to determine ethnic differences in human saliva proteome. PLoS ONE, 2017, 12, e0181765.	1.1	11
149	Sample preparation in foodomic analyses. Electrophoresis, 2018, 39, 1527-1542.	1.3	17
150	Porous polydimethylsiloxane monolith for protein digestion. Journal of Materials Chemistry B, 2018, 6, 824-829.	2.9	6

ARTICLE IF CITATIONS Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality 151 7.8 42 and safety. Trends in Food Science and Technology, 2018, 77, 100-119. Cost-effective generation of precise label-free quantitative proteomes in high-throughput by microLC 1.6 and data-independent acquisition. Scientific Reports, 2018, 8, 4346. Bacterial Anaerobic Synthesis Gas (Syngas) and CO 2 + H 2 Fermentation. Advances in Applied 153 1.3 118 Microbiology, 2018, 103, 143-221. Comparative DICE Proteomics. Methods in Molecular Biology, 2018, 1664, 17-24. 154 Comparative 3-Sample DIGE Analysis of Skeletal Muscles. Methods in Molecular Biology, 2018, 1664, 155 0.4 3 93-108. Analysis of the peptides detected in atopic dermatitis and various inflammatory diseases 3.6 patients-derived sera. International Journal of Biological Macromolecules, 2018, 106, 1052-1061. Chromatographic separation strategies for precision mass spectrometry to study protein-protein interactions and protein phosphorylation. Journal of Chromatography B: Analytical Technologies in 157 1.2 15 the Biomedical and Life Sciences, 2018, 1102-1103, 96-108. Palmitate-Induced Insulin Hypersecretion and Later Secretory Decline Associated with Changes in Protein Expression Patterns in Human Pancreatic Islets. Journal of Proteome Research, 2018, 17, 1.8 3824-3836. Ultra-High Pressure (>30,000 psi) Packing of Capillary Columns Enhancing Depth of Shotgun 159 3.2 62 Proteomic Analyses. Analytical Chemistry, 2018, 90, 11503-11508. The Expression Pattern of the Phosphoproteome Is Significantly Changed During the Growth Phases 1.8 of Recombinant CHO Cell Culture. Biotechnology Journal, 2018, 13, e1700221 Enzyme-containing spin membranes for rapid digestion and characterization of single proteins. 161 1.7 6 Analyst, The, 2018, 143, 3907-3917. Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of <1000 mammalian cells. Chemical Science, 2018, 9, 6944-6951. 3.7 Proteomics of $\langle i \rangle$ Pseudomonas aeruginosa $\langle i \rangle$: the increasing role of post-translational 163 1.3 13 modifications. Expert Review of Proteomics, 2018, 15, 757-772. Post-translational quantitation by SRM/MRM: applications in cardiology. Expert Review of Proteomics, 164 1.3 2018, 15, 477-502 165 Proteome Informatics., 2019,, 60-75. 0 Prospective Application of Activity-Based Proteomic Profiling in Vision Research-Potential Unique Insights into Ocular Protease Biology and Pathology. International Journal of Molecular Sciences, 1.8 2019, 20, 3855. Mass Spectrometry for Proteomics-Based Investigation. Advances in Experimental Medicine and 167 0.8 18 Biology, 2019, 1140, 1-26. Regorafenib Prior to Selective Internal Radiation Therapy Using 90Y-Resin Microspheres for Refractory Metastatic Colorectal Cancer Liver Metastases: Analysis of Safety, Dosimetry, and 1.3 Molecular Markers. Frontiers in Oncology, 2019, 9, 624.

#	Article	IF	CITATIONS
169	Improved Sensitivity for Protein Turnover Quantification by Monitoring Immonium Ion Isotopologue Abundance. Analytical Chemistry, 2019, 91, 9732-9740.	3.2	14
170	Simple 3D printed stainless steel microreactors for online mass spectrometric analysis. Heliyon, 2019, 5, e02002.	1.4	10
172	High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform. Analytical Chemistry, 2019, 91, 13119-13127.	3.2	156
173	Quantitative profiling of CD13 on single acute myeloid leukemia cells by super-resolution imaging and its implication in targeted drug susceptibility assessment. Nanoscale, 2019, 11, 1737-1744.	2.8	11
174	Mass spectrometryâ€based proteomics reveals the distinct nature of the skin proteomes of photoaged compared to intrinsically aged skin. International Journal of Cosmetic Science, 2019, 41, 118-131.	1.2	10
175	Increased growth rate and productivity following stable depletion of miR-7 in a mAb producing CHO cell line causes an increase in proteins associated with the Akt pathway and ribosome biogenesis. Journal of Proteomics, 2019, 195, 23-32.	1.2	12
176	Differentiation of selectively labeled peptides using solid-state nanopores. Nanoscale, 2019, 11, 2510-2520.	2.8	20
177	Automated Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatography System Enables In-Depth Proteome and Phosphoproteome Profiling of Nanoscale Samples. Analytical Chemistry, 2019, 91, 9707-9715.	3.2	36
178	Application of a Sensitive and Reproducible Label-Free Proteomic Approach to Explore the Proteome of Individual Meiotic-Phase Barley Anthers. Frontiers in Plant Science, 2019, 10, 393.	1.7	12
179	Quantification below the LLOQ in regulated LC–MS/MS assays: a review of bioanalytical considerations and cautions. Bioanalysis, 2019, 11, 797-814.	0.6	10
180	Solid phase syntheses of peptoid like arylureido compounds and sequencing of isobars without molecular encoding. Organic and Biomolecular Chemistry, 2019, 17, 4204-4207.	1.5	2
181	Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. Journal of Neurochemistry, 2019, 151, 397-416.	2.1	34
182	Implementation of normalized retention time (iRT) for bottom-up proteomic analysis of the aminoglycoside phosphotransferase enzyme facilitating method distribution. Analytical and Bioanalytical Chemistry, 2019, 411, 4701-4708.	1.9	1
183	Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses. Analytical and Bioanalytical Chemistry, 2019, 411, 5363-5372.	1.9	13
184	Sample Multiplexing Strategies in Quantitative Proteomics. Analytical Chemistry, 2019, 91, 178-189.	3.2	50
186	Lysâ€Sequencer: An algorithm for de novo sequencing of peptides by paired single residue transposed Lys and Lysâ€N digestion coupled with highâ€resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8574.	0.7	0
187	Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein. Talanta, 2020, 206, 120171.	2.9	16
188	Quantitative proteomics in development of disease protein biomarkers. , 2020, , 261-288.		3

#	Article	IF	CITATIONS
189	Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nature Communications, 2020, 11, 157.	5.8	218
191	Serum Protein Changes in Pediatric Sepsis Patients Identified With an Aptamer-Based Multiplexed Proteomic Approach. Critical Care Medicine, 2020, 48, e48-e57.	0.4	6
192	Proteomic Analysis of Chr 18 Proteins Using 2D Fractionation. Journal of Proteome Research, 2020, 19, 4901-4906.	1.8	6
193	Molecular Surgery: Proteomics of a Rare Genetic Disease Gives Insight into Common Causes of Blindness. IScience, 2020, 23, 101667.	1.9	9
194	Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. International Journal of Molecular Sciences, 2020, 21, 9162.	1.8	19
197	High-Throughput Single-Cell Immunoassay in the Cellular Native Environment Using Online Desalting Dual-Spray Mass Spectrometry. Analytical Chemistry, 2020, 92, 15854-15861.	3.2	19
198	Finding a Needle in a Haystack. JACC Basic To Translational Science, 2020, 5, 1043-1053.	1.9	15
199	EnvCNN: A Convolutional Neural Network Model for Evaluating Isotopic Envelopes in Top-Down Mass-Spectral Deconvolution. Analytical Chemistry, 2020, 92, 7778-7785.	3.2	7
200	lsobaric Labeling Strategy Utilizing 4-Plex <i>N</i> , <i>N</i> -Dimethyl Leucine (DiLeu) Tags Reveals Proteomic Changes Induced by Chemotherapy in Cerebrospinal Fluid of Children with B-Cell Acute Lymphoblastic Leukemia. Journal of Proteome Research, 2020, 19, 2606-2616.	1.8	7
201	Enabling nanopore technology for sensing individual amino acids by a derivatization strategy. Journal of Materials Chemistry B, 2020, 8, 6792-6797.	2.9	20
202	Mass Spectrometry of Heavy Analytes and Large Biological Aggregates by Monitoring Changes in the Quality Factor of Nanomechanical Resonators in Air. ACS Sensors, 2020, 5, 2128-2135.	4.0	16
203	<i>In Situ</i> Fluorescence Imaging of the Levels of Glycosylation and Phosphorylation by a MOF-Based Nanoprobe in Depressed Mice. Analytical Chemistry, 2020, 92, 3716-3721.	3.2	25
204	Analytical challenges and advancements in bioanalysis of therapeutic proteins. Bioanalysis, 2020, 12, 207-209.	0.6	1
205	Single-cell analysis targeting the proteome. Nature Reviews Chemistry, 2020, 4, 143-158.	13.8	157
206	Beyond mass spectrometry, the next step in proteomics. Science Advances, 2020, 6, eaax8978.	4.7	208
207	Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chemical Reviews, 2020, 120, 4355-4454.	23.0	149
208	KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy, 2021, 17, 903-924.	4.3	42
209	Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosensors and Bioelectronics, 2021, 171, 112712.	5.3	56

#	Article	IF	CITATIONS
210	Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell. Chemical Science, 2021, 12, 1001-1006.	3.7	165
211	Biological Nanopore Approach for Singleâ€Molecule Protein Sequencing. Angewandte Chemie - International Edition, 2021, 60, 14738-14749.	7.2	106
212	Biological Nanopore Approach for Singleâ€Molecule Protein Sequencing. Angewandte Chemie, 2021, 133, 14862-14873.	1.6	37
213	Foodomics: A new approach in food quality and safety. Trends in Food Science and Technology, 2021, 108, 49-57.	7.8	68
214	Proteomic Approaches for Advancing the Understanding and Application of Oleaginous Bacteria for Bioconversion of Lignin to Lipids. ACS Symposium Series, 2021, , 61-96.	0.5	3
215	Label-Free Proteomics of Quantity-Limited Samples Using Ion Mobility-Assisted Data-Independent Acquisition Mass Spectrometry. Methods in Molecular Biology, 2021, 2228, 327-339.	0.4	4
216	Multiomics approach for precision wellness. , 2021, , 147-180.		0
217	Protein-gene Expression Nexus: Comprehensive characterization of human cancer cell lines with proteogenomic analysis. Computational and Structural Biotechnology Journal, 2021, 19, 4759-4769.	1.9	4
218	N-terminomics $\hat{a} \in \hat{a}$ its past and recent advancements. Journal of Proteomics, 2021, 233, 104089.	1.2	25
219	Editorial: Multimodal and Integrative Analysis of Single-Cell or Bulk Sequencing Data. Frontiers in Genetics, 2021, 12, 658185.	1.1	0
221	Robust Microflow LC-MS/MS for Proteome Analysis: 38†000 Runs and Counting. Analytical Chemistry, 2021, 93, 3686-3690.	3.2	36
222	Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine. Briefings in Bioinformatics, 2021, 22, .	3.2	31
223	Plasma Protein Profiling by Proximity Extension Assay Technology Reveals Novel Biomarkers of Traumatic Brain Injury—A Pilot Study. journal of applied laboratory medicine, The, 2021, 6, 1165-1178.	0.6	4
224	Proteomic Analysis Revealed the Characteristics of Key Proteins Involved in the Regulation of Inflammatory Response, Leukocyte Transendothelial Migration, Phagocytosis, and Immune Process during Early Lung Blast Injury. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	1.9	4
225	MS Amanda 2.0: Advancements in the standalone implementation. Rapid Communications in Mass Spectrometry, 2021, 35, e9088.	0.7	12
226	Comparison of two multiplexed technologies for profiling >1,000 serum proteins that may associate with tumor burden. F1000Research, 2021, 10, 509.	0.8	6
227	Ultrasensitive NanoLC-MS of Subnanogram Protein Samples Using Second Generation Micropillar Array LC Technology with Orbitrap Exploris 480 and FAIMS PRO. Analytical Chemistry, 2021, 93, 8704-8710.	3.2	49
228	Identification of 7â€ ⁻ 000–9â€ ⁻ 000 Proteins from Cell Lines and Tissues by Single-Shot Microflow LC–MS/MS. Analytical Chemistry, 2021, 93, 8687-8692.	3.2	25

#	Article	IF	CITATIONS
229	Analysing Complex Oral Protein Samples: Complete Workflow and Case Analysis of Salivary Pellicles. Journal of Clinical Medicine, 2021, 10, 2801.	1.0	1
230	Exploring the aging effect of the anticancer drugs doxorubicin and mitoxantrone on cardiac mitochondrial proteome using a murine model. Toxicology, 2021, 459, 152852.	2.0	15
231	Sketched Stochastic Dictionary Learning for largeâ€scale data and application to highâ€throughput mass spectrometry. Statistical Analysis and Data Mining, 0, , .	1.4	2
232	N-Terminomics Strategies for Protease Substrates Profiling. Molecules, 2021, 26, 4699.	1.7	11
233	Quantification of magic angle spinning dynamic nuclear polarization NMR spectra. Journal of Magnetic Resonance, 2021, 329, 107030.	1.2	6
234	Application of Proteomics in Cancer: Recent Trends and Approaches for Biomarkers Discovery. Frontiers in Medicine, 2021, 8, 747333.	1.2	84
235	Multimodal regulation of encystation in Giardia duodenalis revealed by deep proteomics. International Journal for Parasitology, 2021, 51, 809-824.	1.3	7
236	Uncovering the Depths of the Human Proteome: Antibody-based Technologies for Ultrasensitive Multiplexed Protein Detection and Quantification. Molecular and Cellular Proteomics, 2021, 20, 100155.	2.5	36
237	A systematic review of the proteomic profile of in vivo acquired enamel pellicle on permanent teeth. Journal of Dentistry, 2021, 113, 103799.	1.7	3
238	A novel ratiometric MALDI-MS quantitation strategy for alkaline phosphatase activity with a homogeneous reaction and a tunable dynamic range. Chemical Communications, 2021, 57, 8885-8888.	2.2	2
239	Global phosphoproteomic study of high/low specific productivity industrially relevant mAb producing recombinant CHO cell lines. Current Research in Biotechnology, 2021, 3, 49-56.	1.9	4
240	An Overview of Proteomics and Related Nanomaterials. Nanostructure Science and Technology, 2021, , 1-35.	0.1	0
241	Nanoporeâ€Based Protein Sequencing Using Biopores: Current Achievements and Open Challenges. Small Methods, 2020, 4, 1900595.	4.6	55
242	Quantifying Small Molecule-Induced Changes in Cellular Protein Expression and Posttranslational Modifications Using Isobaric Mass Tags. Methods in Molecular Biology, 2014, 1156, 431-443.	0.4	1
243	Proteomics in Duckweeds. Compendium of Plant Genomes, 2020, , 137-141.	0.3	1
244	Recent advances in mesoporous materials for sample preparation in proteomics research. TrAC - Trends in Analytical Chemistry, 2018, 99, 88-100.	5.8	50
248	Neuro-proteomics and Neuro-systems Biology in the Quest of TBI Biomarker Discovery. , 2014, , 21-59.		2
249	Mass Spectrometry for Proteomics and Recent Developments in ESI, MALDI and other Ionization Methodologies. Current Proteomics, 2019, 16, 267-276.	0.1	3

#	ARTICLE	IF	CITATIONS
250	The Use of Proteomics in Assisted Reproduction. In Vivo, 2017, 31, 267-283.	0.6	16
252	Proteomics and Islet Research. , 2013, , 1-31.		0
253	The Double Face of Bacteria and the Ambiguous Role of Some Probiotics. , 2014, , 204-222.		0
254	Proteomics Proteomics and Islet Research. , 2015, , 1131-1163.		0
255	FOXP3+ Treg Cells and Systems Biology Approaches to Studying Their Function. Translational Bioinformatics, 2015, , 73-93.	0.0	0
256	METHODOLOGICAL ASPECTS OF IDENTIFICATION OF TISSUE-SPECIFIC PROTEINS AND PEPTIDES FORMING THE CORRECTIVE PROPERTIES OF INNOVATIVE MEAT PRODUCTS. Teoriâ I Praktika Pererabotki Mâsa, 2018, 3, 36-55.	0.2	3
257	Techniques/Tools to Study Epigenetic Biomarkers in Human Cancer Detection. , 2019, , 327-351.		0
258	White Box vs. Black Box Modeling: On the Performance of Deep Learning, Random Forests, and Symbolic Regression in Solving Regression Problems. Lecture Notes in Computer Science, 2020, , 288-295.	1.0	1
259	Current Status and Future Prospects of Biomarker Strategy for Drug Development. Japanese Journal of Clinical Pharmacology and Therapeutics, 2020, 51, 151-160.	0.1	0
260	Serum integrative omics reveals the landscape of human diabetic kidney disease. Molecular Metabolism, 2021, 54, 101367.	3.0	20
261	Proteomic profiling of bladder cancer for precision medicine in the clinical setting: A review for the busy urologist. Investigative and Clinical Urology, 2020, 61, 539.	1.0	3
262	Impact of Gut Microbiota on Host byÂExploring Proteomics. , 2020, , 229-250.		1
263	Selected Reaction Monitoring Mass Spectrometry. , 2020, , 53-88.		4
264	Metagenomics Analyses: A Qualitative Assessment Tool for Applications in Forensic Sciences. , 2020, , 69-89.		0
266	Multiplexed Protein Biomarker Detection with Microfluidic Electrochemical Immunoarrays. Methods in Molecular Biology, 2021, 2237, 69-82.	0.4	2
267	Pharmaceutical Advances and Proteomics Researches. Iranian Journal of Pharmaceutical Research, 2019, 18, 51-67.	0.3	1
268	Toxicogenomics: A Primer for Toxicologic Pathologists. , 2022, , 491-543.		0
269	Resolving measurement of large (~ÂGDa) chemical/biomolecule complexes with multimode nanomechanical resonators. Sensors and Actuators B: Chemical, 2022, 353, 131062.	4.0	13

#	Article	IF	Citations
270	Re-exploring α-Cyano-4-Hydroxycinnamic Acid as a Reactive Matrix for Selective Detection of Glutathione via MALDI-MS. Journal of the American Society for Mass Spectrometry, 2021, 32, 2837-2841.	1.2	2
271	Collision energies: Optimization strategies for bottomâ€up proteomics. Mass Spectrometry Reviews, 2023, 42, 1261-1299.	2.8	13
272	A Review: Protein Identification by LC-MS: Principles, Instrumentation, and Applications. Iraqi Journal of Science, 0, , 2448-2466.	0.3	1
274	Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry. Nature Communications, 2022, 13, 37.	5.8	85
277	Recent Strategies for Using Monolithic Materials in Glycoprotein and Glycopeptide Analysis. Separations, 2022, 9, 44.	1.1	6
278	Modifying the pH sensitivity of OmpG nanopore for improved detection at acidic pH. Biophysical Journal, 2022, , .	0.2	2
280	A Rapid LC-MS/MS-PRM Assay for Serologic Quantification of Sialylated O-HPX Glycoforms in Patients with Liver Fibrosis. Molecules, 2022, 27, 2213.	1.7	2
281	A recent update on smallâ€molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometryâ€based proteomic analysis. FEBS Journal, 2023, 290, 2845-2864.	2.2	21
282	Isolation Methods Influence the Protein Corona Composition on Gold-Coated Iron Oxide Nanoparticles. Analytical Chemistry, 2022, 94, 4737-4746.	3.2	8
283	Advances in protein analysis in single live cells: Principle, instrumentation and applications. TrAC - Trends in Analytical Chemistry, 2022, 152, 116619.	5.8	6
284	Integration of a high duty cycle SLIM mobility filter with a triple quadrupole mass spectrometer for targeted quantitative analysis. International Journal of Mass Spectrometry, 2022, 475, 116832.	0.7	6
285	SOMAmer reagents and the SomaScan platform: Chemically modified aptamers and their applications in therapeutics, diagnostics, and proteomics. , 2022, , 171-260.		6
286	Single Molecule-Level Detection via Liposome-Based Signal Amplification Mass Spectrometry Counting Assay. Analytical Chemistry, 2022, 94, 6120-6129.	3.2	8
287	Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. EBioMedicine, 2022, 79, 104001.	2.7	54
291	Clinical applications of plasma proteomics and peptidomics: Towards precision medicine. Proteomics - Clinical Applications, 2022, 16, e2100097.	0.8	20
292	Achievable accuracy of resonating nanomechanical systems for mass sensing of larger analytes in GDa range. International Journal of Mechanical Sciences, 2022, 224, 107353.	3.6	8
293	Omics technologies for high-throughput-screening of cell–biomaterial interactions. Molecular Omics, 2022, 18, 591-615.	1.4	7
294	OMICs Technologies for Natural Compounds-based Drug Development. Current Topics in Medicinal Chemistry, 2022, 22, 1751-1765.	1.0	8

#	Article	IF	CITATIONS
296	Comparative Proteomic Assessment of Normal vs. Polyhydramnios Amniotic Fluid Based on Computational Analysis. Biomedicines, 2022, 10, 1821.	1.4	0
297	Single-Cell Proteome Profiling of Neuronal Cells. Neuromethods, 2022, , 51-62.	0.2	Ο
298	Nanohydrophobic Interaction Chromatography Coupled to Ultraviolet Photodissociation Mass Spectrometry for the Analysis of Intact Proteins in Low Charge States. Journal of Proteome Research, 2022, 21, 2493-2503.	1.8	4
299	Robust Capillary- and Micro-Flow Liquid Chromatography–Tandem Mass Spectrometry Methods for High-Throughput Proteome Profiling. Journal of Proteome Research, 2022, 21, 2472-2480.	1.8	5
300	Discovery top-down proteomics in symbiotic soybean root nodules. Frontiers in Analytical Science, 0, 2, .	1.1	2
301	Proteomic evaluation of nanotoxicity in aquatic organisms: A review. Proteomics, 2022, 22, .	1.3	1
302	Segmented MS/MS acquisition of a1 ion-based strategy for in-depth proteome quantitation. Analytica Chimica Acta, 2022, , 340491.	2.6	1
303	On the potential of micro-flow LC-MS/MS in proteomics. Expert Review of Proteomics, 2022, 19, 153-164.	1.3	19
304	Phosphoproteome Analysis Using Two-Dimensional Electrophoresis Coupled with Chemical Dephosphorylation. Foods, 2022, 11, 3119.	1.9	3
305	Calling the amino acid sequence of a protein/peptide from the nanospectrum produced by a sub-nanometer diameter pore. Scientific Reports, 2022, 12, .	1.6	3
306	Plasma proteomics identify potential severity biomarkers from COVIDâ€19 associated network. Proteomics - Clinical Applications, 2023, 17, .	0.8	7
307	The enigmatic clock of dinoflagellates, is it unique?. Frontiers in Microbiology, 0, 13, .	1.5	1
309	Capillary Vibrating Sharp-Edge Spray Ionization Augments Field-Free Ionization Techniques to Promote Conformer Preservation in the Gas-Phase for Intractable Biomolecular Ions. Journal of Physical Chemistry B, 2022, 126, 8970-8984.	1.2	2
310	Comparative 3-Sample 2D-DIGE Analysis of Skeletal Muscles. Methods in Molecular Biology, 2023, , 127-146.	0.4	4
311	Monitoring and modelling the dynamics of the cellular glycolysis pathway: A review and future perspectives. Molecular Metabolism, 2022, 66, 101635.	3.0	12
312	Two-CyDye-Based 2D-DICE Analysis of Aged Human Muscle Biopsy Specimens. Methods in Molecular Biology, 2023, , 265-289.	0.4	3
313	Label-free quantitative proteomics and stress responses in pigs—The case of short or long road transportation. PLoS ONE, 2022, 17, e0277950.	1.1	2
314	Plasma proteomic profiling in postural orthostatic tachycardia syndrome (POTS) reveals new disease pathways. Scientific Reports, 2022, 12, .	1.6	9

CITATION REPORT ARTICLE IF CITATIONS Label-free designed nanomaterials enrichment and separation techniques for phosphoproteomics 2.4 1 based on mass spectrometry. Frontiers in Nanotechnology, 0, 4, . Protein adsorption by nanomechanical mass spectrometry: Beyond the real-time molecular weighting. 1.6 Frontiers in Molecular Biosciences, 0, 9, . Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. 1.7 3 Proteomes, 2023, 11, 2. Single-molecule fluorescence methods for protein biomarker analysis. Analytical and Bioanalytical 1.9 Chemistry, 2023, 415, 3655-3669. Applications of Mass Spectrometry in Dentistry. Biomedicines, 2023, 11, 286. 1.4 0 In-Depth Blood Proteome Profiling by Extensive Fractionation and Multiplexed Quantitative Mass Spectrometry. Methods in Molecular Biology, 2023, , 109-125. 0.4 Integrated mass spectrometry strategy for functional protein complex discovery and structural 2.8 3 characterization. Current Opinion in Chemical Biology, 2023, 74, 102305. MALDI-TOF/MS Profiling of Whole Saliva and Gingival Crevicular Fluid in Patients with the Invisalign System and Fixed Orthodontic Appliances. International Journal of Environmental Research and Public 1.2 Health, 2023, 20, 3252. Proteomic profiling and its applications in cancer research., 2023, , 121-153. 0 Proteomics: Application of next-generation proteomics in cancer research., 2023, , 55-76. Proteomics: A modern tool for identifying therapeutic targets in different types of carcinomas. , 2023, 0 , 333-362. Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques. Drug Delivery, 2023, 30, Quantitative proteomics analysis of COVID-19 patients: Fetuin-A and tetranectin as potential 1.4 2 modulators of innate immune responses. Heliyon, 2023, 9, e15224. Proteomics and Protein Biomarkers in Cancer Metastasis., 2023, , 1-34. Liquid chromatography in proteomics research., 2023, , 331-356. 0 Tandem mass spectrometry for Structural characterization of marine natural products with selective exemplary case studies. Studies in Natural Products Chemistry, 2023, , 421-441. Applications and Future Perspectives of Computational Approaches in Livestock Animals., 2023,, 0 279-309. Decoding cancer insights: recent progress and strategies in proteomics for biomarker discovery.

Journal of Proteins and Proteomics, 2024, 15, 67-87.

#

315

317

319

321

323

324

325

327

329

331

334

341

#	Article	IF	CITATIONS
346	Paradigms of omics in bioinformatics for accelerating current trends and prospects of stem cell research. , 2024, , 187-201.		0
348	Protocols for label-free LC-MS/MS proteomic analysis. , 2024, , 141-161.		0