Precursors of nitrogenous disinfection by-products in and analysis

Journal of Hazardous Materials 235-236, 1-16 DOI: 10.1016/j.jhazmat.2012.07.017

Citation Report

#	Article	IF	CITATIONS
1	Relative Importance of <i>N</i> -Nitrosodimethylamine Compared to Total <i>N</i> -Nitrosamines in Drinking Waters. Environmental Science & Technology, 2013, 47, 3648-3656.	4.6	66
2	Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China. Environmental Sciences: Processes and Impacts, 2013, 15, 1424.	1.7	51
3	Degradation kinetics and chloropicrin formation during aqueous chlorination of dinoseb. Chemosphere, 2013, 93, 2662-2668.	4.2	20
4	Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination. Journal of Hazardous Materials, 2013, 260, 806-812.	6.5	102
5	Determination of N-nitrosamines and nicotine in air particulate matter samples by pressurised liquid extraction and gas chromatography-ion trap tandem mass spectrometry. Talanta, 2013, 115, 896-901.	2.9	35
6	Characteristics of C-, N-DBPs formation from nitrogen-enriched dissolved organic matter in raw water and treated wastewater effluent. Water Research, 2013, 47, 2729-2741.	5.3	58
7	Intracellular Organic Matter from Cyanobacteria as a Precursor for Carbonaceous and Nitrogenous Disinfection Byproducts. Environmental Science & Technology, 2013, 47, 6332-6340.	4.6	111
8	Relative Contribution of Biomolecules in Bacterial Extracellular Polymeric Substances to Disinfection Byproduct Formation. Environmental Science & Technology, 2013, 47, 9764-9773.	4.6	63
9	Photochemical and Bacterial Transformations of Disinfection By-Product Precursors in Water. Journal of Environmental Quality, 2013, 42, 1589-1595.	1.0	15
10	Removal of halogenated by-products precursors in photocatalysis process enhanced with membrane filtration. Desalination and Water Treatment, 2014, 52, 3698-3707.	1.0	4
11	Gold nanoparticles for the quantification of very low levels of poly-diallyldimethylammonium chloride in river water. Analytical Methods, 2014, 6, 6963.	1.3	14
12	Effects of Combined UV and Chlorine Treatment on the Formation of Trichloronitromethane from Amine Precursors. Environmental Science & amp; Technology, 2014, 48, 2697-2705.	4.6	89
13	Toxicity of Drinking Water Disinfection Byproducts: Cell Cycle Alterations Induced by the Monohaloacetonitriles. Environmental Science & amp; Technology, 2014, 48, 11662-11669.	4.6	59
14	A comparison of carbonaceous, nitrogenous and iodinated disinfection by-products formation potential in different dissolved organic fractions and their reduction in drinking water treatment processes. Separation and Purification Technology, 2014, 133, 82-90.	3.9	34
15	Formation Mechanism of NDMA from Ranitidine, Trimethylamine, and Other Tertiary Amines during Chloramination: A Computational Study. Environmental Science & Technology, 2014, 48, 8653-8663.	4.6	72
16	Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Science of the Total Environment, 2014, 482-483, 241-251.	3.9	318
17	A review of what is an emerging contaminant. Chemistry Central Journal, 2014, 8, 15.	2.6	458
18	Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 2014, 86, 2813-2848.	3.2	740

#	Article	IF	CITATIONS
19	Disinfection by-product formation from the chlorination and chloramination of amines. Journal of Hazardous Materials, 2014, 278, 288-296.	6.5	72
20	Dissolved organic matter fractions and disinfection by-product formation potential from major raw waters in the water-receiving areas of south-to-north water diversion project, China. Desalination and Water Treatment, 2015, 56, 1689-1697.	1.0	13
21	Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides. Scientific Reports, 2015, 5, 14412.	1.6	25
22	The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water. Chemosphere, 2015, 139, 40-46.	4.2	45
23	Characterization, DBPs formation, and mutagenicity of soluble microbial products (SMPs) in wastewater under simulated stressful conditions. Chemical Engineering Journal, 2015, 279, 258-263.	6.6	33
24	Formation Pathways and Trade-Offs between Haloacetamides and Haloacetaldehydes during Combined Chlorination and Chloramination of Lignin Phenols and Natural Waters. Environmental Science & Technology, 2015, 49, 14432-14440.	4.6	77
25	Tracing disinfection byproducts in full-scale desalination plants. Desalination, 2015, 359, 141-148.	4.0	43
26	Compound-Specific Carbon, Nitrogen, and Hydrogen Isotope Analysis of <i>N</i> -Nitrosodimethylamine in Aqueous Solutions. Analytical Chemistry, 2015, 87, 2916-2924.	3.2	28
27	Disinfection byproducts in drinking water and regulatory compliance: A critical review. Frontiers of Environmental Science and Engineering, 2015, 9, 3-15.	3.3	98
28	Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review. Environmental Science and Pollution Research, 2015, 22, 6500-6510.	2.7	181
29	Identification of disinfection by-product precursors from the discharge of a coking wastewater treatment plant. RSC Advances, 2015, 5, 43786-43797.	1.7	17
30	Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 2015, 120, 256-262.	2.9	53
31	Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources. Journal of Hazardous Materials, 2015, 299, 260-279.	6.5	88
32	Tracing Nitrogenous Disinfection Byproducts after Medium Pressure UV Water Treatment by Stable Isotope Labeling and High Resolution Mass Spectrometry. Environmental Science & Technology, 2015, 49, 4458-4465.	4.6	68
33	Characteristics of C-, N-DBPs formation from algal organic matter: Role of molecular weight fractions and impacts of pre-ozonation. Water Research, 2015, 72, 381-390.	5.3	114
34	Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis. Chemosphere, 2015, 121, 84-91.	4.2	100
35	Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter. Chemosphere, 2015, 119, 935-940.	4.2	28
36	Formation of trichloronitromethane and dichloroacetonitrile in natural waters: Precursor characterization, kinetics and interpretation. Journal of Hazardous Materials, 2015, 283, 218-226.	6.5	30

# 37	ARTICLE Effect of Metal Ions on the Formation of Trichloronitromethane during Chlorination of Catechol and Nitrite. Journal of Environmental Quality, 2016, 45, 1933-1940.	IF 1.0	CITATIONS
38	Drinking water treatment response following a Colorado wildfire. Water Research, 2016, 105, 187-198.	5.3	69
39	Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems. Environmental Monitoring and Assessment, 2016, 188, 518.	1.3	38
40	Emerging investigators series: disinfection by-products in mixed chlorine dioxide and chlorine water treatment. Environmental Science: Water Research and Technology, 2016, 2, 838-847.	1.2	20
41	Effect of oxidation on nitro-based pharmaceutical degradation and trichloronitromethane formation. Chemosphere, 2016, 146, 154-161.	4.2	7
42	Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water. Journal of Hazardous Materials, 2016, 308, 411-418.	6.5	62
43	Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors. Chemosphere, 2016, 144, 1988-1995.	4.2	40
44	The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter. Water Research, 2016, 88, 371-379.	5.3	49
45	The formation of haloacetamides and other disinfection by-products from non-nitrogenous low-molecular weight organic acids during chloramination. Chemical Engineering Journal, 2016, 285, 164-171.	6.6	43
46	Disinfection of water in a batch reactor using chloridized silver surfaces. Journal of Water Process Engineering, 2017, 16, 41-49.	2.6	16
47	Effect of feed type and other factors on soluble microbial product production and its disinfection byproduct formation during biological treatment of wastewater organics. Water Science and Technology: Water Supply, 2017, 17, 399-406.	1.0	1
48	Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3). Chemosphere, 2017, 176, 25-31.	4.2	38
49	Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation. Science of the Total Environment, 2017, 587-588, 177-184.	3.9	71
50	THM and HAA formation from NOM in raw and treated surface waters. Water Research, 2017, 112, 226-235.	5.3	120
51	Integration of coagulation and adsorption for removal of N-nitrosodimethylamine (NDMA) precursors from biologically treated municipal wastewater. Environmental Science and Pollution Research, 2017, 24, 12426-12436.	2.7	7
52	Effect of UV Irradiation and UV/Chlorine Processes on Trichloronitromethane Formation During Chlorination of Ronidazole. Clean - Soil, Air, Water, 2017, 45, 1600163.	0.7	8
53	Degradation of nitro-based pharmaceuticals by UV photolysis: Kinetics and simultaneous reduction on halonitromethanes formation potential. Water Research, 2017, 119, 83-90.	5.3	32
54	The shadow of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), in the waterworks and its backwash water reuse. Chemosphere, 2017, 181, 569-578.	4.2	52

CITATION REPORT

#	Article	IF	CITATIONS
55	Degradation kinetics and pathways of haloacetonitriles by the UV/persulfate process. Chemical Engineering Journal, 2017, 320, 478-484.	6.6	57
56	Impact of pre-oxidation using H 2 O 2 and ultraviolet/H 2 O 2 on disinfection byproducts generated from chlor(am)ination of chloramphenicol. Chemical Engineering Journal, 2017, 317, 112-118.	6.6	20
57	Defining the molecular properties of N-nitrosodimethylamine (NDMA) precursors using computational chemistry. Environmental Science: Water Research and Technology, 2017, 3, 502-512.	1.2	9
58	Molecular and Spectroscopic Characterization of Water Extractable Organic Matter from Thermally Altered Soils Reveal Insight into Disinfection Byproduct Precursors. Environmental Science & Technology, 2017, 51, 771-779.	4.6	42
59	Quantification of Total <i>N</i> -Nitrosamine Concentrations in Aqueous Samples via UV-Photolysis and Chemiluminescence Detection of Nitric Oxide. Analytical Chemistry, 2017, 89, 1574-1582.	3.2	33
60	Characterizing Limits of Precision for Dissolved Organic Nitrogen Calculations. Environmental Science and Technology Letters, 2017, 4, 452-456.	3.9	14
61	Carbon, Hydrogen, and Nitrogen Isotope Fractionation Trends in <i>N</i> -Nitrosodimethylamine Reflect the Formation Pathway during Chloramination of Tertiary Amines. Environmental Science & Technology, 2017, 51, 13170-13179.	4.6	16
63	Formation and control of nitrogenous DBPs from Western Australian source waters: Investigating the impacts of high nitrogen and bromide concentrations. Journal of Environmental Sciences, 2017, 58, 102-115.	3.2	34
64	Relationship between THMs/NDMA formation potential and molecular weight of organic compounds for source and treated water in Shanghai, China. Science of the Total Environment, 2017, 605-606, 1-8.	3.9	15
65	Dynamic Changes of Disinfection Byproduct Precursors following Exposures of <i>Microcystis aeruginosa</i> to Wildfire Ash Solutions. Environmental Science & Technology, 2017, 51, 8272-8282.	4.6	22
66	Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study. Journal of Hazardous Materials, 2017, 321, 362-370.	6.5	26
67	Estimating NDMA Formation in a Distribution System Using a Hybrid Genetic Algorithm. Journal - American Water Works Association, 2017, 109, E265.	0.2	8
68	Theoretical Investigation of the Gas-Phase S _N 2 Reactions of Anionic and Neutral Nucleophiles with Chloramines. Journal of Physical Chemistry A, 2018, 122, 3045-3056.	1.1	4
69	Re-Examining the Role of Dichloramine in High-Yield <i>N</i> -Nitrosodimethylamine Formation from <i>N</i> , <i>N</i> -Dimethyl-α-arylamines. Environmental Science and Technology Letters, 2018, 5, 154-159.	3.9	35
70	Potential formation of mutagenicity by low pressure-UV/H ₂ O ₂ during the treatment of nitrate-rich source waters. Environmental Science: Water Research and Technology, 2018, 4, 1252-1261.	1.2	10
71	Impact of ClO2 pre-oxidation on the formation of CX3R-type DBPs from tyrosine-based amino acid precursors during chlorination and chloramination. Chemosphere, 2018, 196, 25-34.	4.2	29
72	Use of differential absorbance to estimate concentrations of chlorinated disinfection by-product in drinking water: Critical review and research needs. Critical Reviews in Environmental Science and Technology, 2018, 48, 210-241.	6.6	18
73	Oxidation of theophylline by Ferrate (VI) and formation of disinfection byproducts during subsequent chlorination. Separation and Purification Technology, 2018, 201, 283-290.	3.9	15

#	Article	IF	CITATIONS
74	Carbonaceous and nitrogenous disinfection byproduct precursor variation during the reversed anaerobic–anoxic–oxic process of a sewage treatment plant. Journal of Environmental Sciences, 2018, 65, 335-346.	3.2	14
75	Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere, 2018, 191, 477-484.	4.2	47
76	Coagulation behaviors of new covalently bound hybrid coagulants (CBHyC) in surface water treatment. Separation and Purification Technology, 2018, 192, 322-328.	3.9	19
77	Occurrence and factors affecting the formation of trihalomethanes, haloacetonitriles and halonitromethanes in outdoor swimming pools treated with trichloroisocyanuric acid. Environmental Science: Water Research and Technology, 2018, 4, 218-225.	1.2	16
78	Sorption and desorption of selected phenyl urea herbicides in laboratory water-sediment systems. IOP Conference Series: Earth and Environmental Science, 0, 191, 012021.	0.2	2
79	Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: A critical review. Water Research, 2018, 147, 112-131.	5.3	108
80	Regulated and emerging disinfection by-products in recycled waters. Science of the Total Environment, 2018, 637-638, 1607-1616.	3.9	59
81	Formation and speciation of chlorinated, brominated, and iodinated haloacetamides in chloraminated iodide-containing waters. Water Research, 2018, 145, 103-112.	5.3	26
82	The contribution of atmospheric particulate matter to the formation of CX3R-type disinfection by-products in rainwater during chlorination. Water Research, 2018, 145, 531-540.	5.3	31
83	Disinfection By-products in Recycled Waters. , 2019, , 135-149.		Ο
84	Fabrication of GO modified PVDF membrane for dissolved organic matter removal: Removal mechanism and antifouling property. Separation and Purification Technology, 2019, 209, 482-490.	3.9	44
84 85	Fabrication of GO modified PVDF membrane for dissolved organic matter removal: Removal mechanism and antifouling property. Separation and Purification Technology, 2019, 209, 482-490. The fates of aromatic protein and soluble microbial product-like organics, as the precursors of dichloroacetonitrile and dichloroacetamide, in drinking water advanced treatment processes. Environmental Science: Water Research and Technology, 2019, 5, 1478-1488.	3.9 1.2	44
	and antifouling property. Separation and Purification Technology, 2019, 209, 482-490. The fates of aromatic protein and soluble microbial product-like organics, as the precursors of dichloroacetamide, in drinking water advanced treatment processes.		
85	and antifouling property. Separation and Purification Technology, 2019, 209, 482-490. The fates of aromatic protein and soluble microbial product-like organics, as the precursors of dichloroacetonitrile and dichloroacetamide, in drinking water advanced treatment processes. Environmental Science: Water Research and Technology, 2019, 5, 1478-1488. Laboratory simulation of postfire effects on conventional drinking water treatment and disinfection	1.2	1
85 86	and antifouling property. Separation and Purification Technology, 2019, 209, 482-490. The fates of aromatic protein and soluble microbial product-like organics, as the precursors of dichloroacetonitrile and dichloroacetamide, in drinking water advanced treatment processes. Environmental Science: Water Research and Technology, 2019, 5, 1478-1488. Laboratory simulation of postfire effects on conventional drinking water treatment and disinfection byproduct formation. AWWA Water Science, 2019, 1, e1155. Using UV/H2O2 pre-oxidation combined with an optimised disinfection scenario to control CX3R-type	1.2 1.0	1
85 86 87	 and antifouling property. Separation and Purification Technology, 2019, 209, 482-490. The fates of aromatic protein and soluble microbial product-like organics, as the precursors of dichloroacetonitrile and dichloroacetamide, in drinking water advanced treatment processes. Environmental Science: Water Research and Technology, 2019, 5, 1478-1488. Laboratory simulation of postfire effects on conventional drinking water treatment and disinfection byproduct formation. AWWA Water Science, 2019, 1, e1155. Using UV/H2O2 pre-oxidation combined with an optimised disinfection scenario to control CX3R-type disinfection by-product formation. Water Research, 2019, 167, 115096. Stable Isotopic Labeling and Nontarget Identification of Nanogram/Liter Amino Contaminants in 	1.2 1.0 5.3	1 6 44
85 86 87 88	 and antifouling property. Separation and Purification Technology, 2019, 209, 482-490. The fates of aromatic protein and soluble microbial product-like organics, as the precursors of dichloroacetonitrile and dichloroacetamide, in drinking water advanced treatment processes. Environmental Science: Water Research and Technology, 2019, 5, 1478-1488. Laboratory simulation of postfire effects on conventional drinking water treatment and disinfection byproduct formation. AWWA Water Science, 2019, 1, e1155. Using UV/H2O2 pre-oxidation combined with an optimised disinfection scenario to control CX3R-type disinfection by-product formation. Water Research, 2019, 167, 115096. Stable Isotopic Labeling and Nontarget Identification of Nanogram/Liter Amino Contaminants in Water. Analytical Chemistry, 2019, 91, 13213-13221. Understanding the behaviour of UV absorbance of natural waters upon chlorination using model 	1.2 1.0 5.3 3.2	1 6 44 20

#	Article	IF	CITATIONS
92	Formation of Brominated Organic Compounds and Molecular Transformations in Dissolved Organic Matter (DOM) after Ballast Water Treatment with Sodium Dichloroisocyanurate Dihydrate (DICD). Environmental Science & Technology, 2019, 53, 8006-8016.	4.6	20
93	Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials. Water Research, 2019, 160, 313-329.	5.3	141
94	Removal of chlorpheniramine and variations of nitrosamine formation potentials in municipal wastewaters by adsorption onto the GO-Fe3O4. Environmental Science and Pollution Research, 2019, 26, 20701-20711.	2.7	12
95	Optimization of CIEL*a*b*/Yxy colour system for colorimetric devices fabricated with gold nanoparticles. Journal of Molecular Structure, 2019, 1191, 271-277.	1.8	6
96	Does Granular Activated Carbon with Chlorination Produce Safer Drinking Water? From Disinfection Byproducts and Total Organic Halogen to Calculated Toxicity. Environmental Science & Technology, 2019, 53, 5987-5999.	4.6	125
97	The formation mechanism of chloropicrin from methylamine during chlorination: a DFT study. Environmental Sciences: Processes and Impacts, 2019, 21, 761-770.	1.7	9
98	Reactions of aliphatic amines with ozone: Kinetics and mechanisms. Water Research, 2019, 157, 514-528.	5.3	74
99	Rapid determination of trace level N-nitrosamine precursors in secondary-treated wastewater by using two dimensional-ion chromatography. Journal of Hazardous Materials, 2019, 368, 452-458.	6.5	12
100	The contribution of biofilm to nitrogenous disinfection by-product formation in full-scale cyclically-operated drinking water biofilters. Water Research, 2019, 155, 403-409.	5.3	16
101	Formation of CX3R-type disinfection by-products during the chlorination of protein: The effect of enzymolysis. Chemical Engineering Journal, 2019, 363, 309-317.	6.6	11
102	Formation of iodinated trihalomethanes during chlorination of amino acid in waters. Chemosphere, 2019, 217, 355-363.	4.2	20
103	Effect of copper corrosion products on the formation and speciation of haloacetamides and haloacetonitriles during chlorination. Separation and Purification Technology, 2019, 211, 467-473.	3.9	12
104	Enhanced removal of organic matter and typical disinfection byproduct precursors in combined iron–carbon micro electrolysis-UBAF process for drinking water pre-treatment. Journal of Environmental Sciences, 2019, 78, 315-327.	3.2	20
105	NDMA formation mechanisms from typical hydrazines and hydrazones during ozonation: A computational study. Journal of Hazardous Materials, 2019, 366, 370-377.	6.5	12
106	Formation of metastable disinfection byproducts during free and combined aspartic acid chlorination: Effect of peptide bonds and impact on toxicity. Water Research, 2020, 168, 115131.	5.3	19
107	Chlorinated effluent organic matter causes higher toxicity than chlorinated natural organic matter by inducing more intracellular reactive oxygen species. Science of the Total Environment, 2020, 701, 134881.	3.9	23
108	Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	13
109	Strengths of correlations with formation of chlorination disinfection byproducts: effects of predictor type and other factors. Environmental Science and Pollution Research, 2020, 27, 5337-5352.	2.7	9

		CITATION RE	PORT	
#	Article		IF	Citations
110	GAC to BAC: Does it make chloraminated drinking water safer?. Water Research, 2020,	172, 115432.	5.3	53
111	Disinfection by-products in drinking water: Occurrence, toxicity and abatement. Environ Pollution, 2020, 267, 115474.	nmental	3.7	149
112	Removal of dissolved organic nitrogen amino acid from aqueous solutions using activat based on date pits. Water Practice and Technology, 2020, 15, 1158-1173.	ed carbon	1.0	3
113	ClO2 pre-oxidation impacts the formation and nitrogen origins of dichloroacetonitrile a dichloroacetamide during subsequent chloramination. Water Research, 2020, 186, 116		5.3	13
114	Covalent organic frameworks as an efficient adsorbent for controlling the formation of disinfection by-products (DBPs) in chlorinated drinking water. Science of the Total Envi 2020, 746, 141138.	ronment,	3.9	10
115	Disinfection Byproducts in Drinking Water: Formation, Characterization, Control Techn Symposium Series, 2020, , 119-142.	ologies. ACS	0.5	2
116	Effects of amines on the formation and photodegradation of DCNM under UV/chlorine Scientific Reports, 2020, 10, 12602.	disinfection.	1.6	10
117	Methods for total organic halogen (TOX) analysis in water: Past, present, and future. Cl Engineering Journal, 2020, 399, 125675.	nemical	6.6	24
118	Reinvestigation of NDMA formation mechanisms from tertiary amines during chloramin study. Environmental Science: Water Research and Technology, 2020, 6, 2078-2088.	ation: a DFT	1.2	3
119	Formation of algal-derived nitrogenous disinfection by-products during chlorination and chloramination. Water Research, 2020, 183, 116047.	ł	5.3	34
120	Assessing the efficacy of dissolved air and flash-pressurized flotations using low energy removal of organic precursors and disinfection byproducts: a pilot-scale study. Environr Science and Pollution Research, 2021, 28, 40598-40607.		2.7	4
121	Novel Chlorination Byproducts of Tryptophan: Initial High-Yield Transformation Product Small Molecule Disinfection Byproducts. Environmental Science and Technology Letters 149-155.	s versus s, 2020, 7,	3.9	26
122	Halogenated semivolatile acetonitriles as chloramination disinfection by-products in wa treatment: a new formation pathway from activated aromatic compounds. Environmen Processes and Impacts, 2020, 22, 653-662.		1.7	7
123	Occurrence of Free Amino Acids in the Source Waters of Zhejiang Province, China, and and Transformation in Drinking Water Systems. Water (Switzerland), 2020, 12, 73.	Their Removal	1.2	8
124	Bibliometric review of research trends on disinfection by-products in drinking water dur 1975–2018. Separation and Purification Technology, 2020, 241, 116741.	ing	3.9	43
125	The occurrence of various types of disinfectant by-products (trihalomethanes, haloacet	ic acids,) Tj ETQq1 1 0.784	1314 rgBT	Qverlock 1
126	Effects of Pre-Oxidation on Haloacetonitrile and Trichloronitromethane Formation durir Subsequent Chlorination of Nitrogenous Organic Compounds. International Journal of Environmental Research and Public Health, 2020, 17, 1046.	lg	1.2	6
127	The formation of disinfection by-products from the chlorination and chloramination of a Chemosphere, 2020, 248, 125940.	amides.	4.2	21

#	Article	IF	CITATIONS
128	Vacuum ultraviolet irradiation for mitigating dissolved organic nitrogen and formation of haloacetonitriles. Environmental Research, 2020, 185, 109454.	3.7	8
129	Impacts of pre-oxidation on the formation of disinfection byproducts from algal organic matter in subsequent chlor(am)ination: A review. Science of the Total Environment, 2021, 754, 141955.	3.9	73
130	Comparative removal efficiencies of natural organic matter by conventional drinking water treatment plants in Zimbabwe and South Africa. Water Environment Research, 2021, 93, 570-581.	1.3	0
131	Ozonation Treatment Increases Chlorophenylacetonitrile Formation in Downstream Chlorination or Chloramination. Environmental Science & amp; Technology, 2021, 55, 3747-3755.	4.6	19
132	Emission of (chlorinated) reclaimed water into a Mediterranean River and its related effects to the dissolved organic matter fingerprint. Science of the Total Environment, 2021, 760, 143881.	3.9	8
133	Role of precursors in the formation of trihalomethanes during chlorination of drinking water and wastewater effluents from a metropolitan region in western India. Journal of Water Process Engineering, 2021, 40, 101928.	2.6	22
134	Formation of nitrogenous disinfection by-products (N-DBPs) in drinking water: emerging concerns and current issue. IOP Conference Series: Earth and Environmental Science, 2021, 801, 012015.	0.2	0
135	Public and private tapwater: Comparative analysis of contaminant exposure and potential risk, Cape Cod, Massachusetts, USA. Environment International, 2021, 152, 106487.	4.8	18
136	Characterization of Dissolved Organic Matter and Its Derived Disinfection Byproduct Formation along the Yangtze River. Environmental Science & amp; Technology, 2021, 55, 12326-12336.	4.6	48
137	Ultrasound-enhanced coagulation for Microcystis aeruginosa removal and disinfection by-product control during subsequent chlorination. Water Research, 2021, 201, 117334.	5.3	15
138	Degradation of Tryptophan by UV Irradiation: Influencing Parameters and Mechanisms. Water (Switzerland), 2021, 13, 2368.	1.2	4
139	Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA. Science of the Total Environment, 2021, 788, 147721.	3.9	17
140	Micropollutant abatement by the UV/chloramine process in potable water reuse: A review. Journal of Hazardous Materials, 2022, 424, 127341.	6.5	35
141	Enhanced formation of dichloroacetamide and dichloroacetonitrile during chloramination of drinking water and model organic matters in the presence of copper corrosion products. Science of the Total Environment, 2021, 785, 147242.	3.9	6
142	Removal of disinfection by-product precursors in drinking water treatment processes: Is fluorescence parallel factor analysis a promising indicator?. Journal of Hazardous Materials, 2021, 418, 126298.	6.5	16
143	Enhanced coagulation for mitigation of disinfection by-product precursors: A review. Advances in Colloid and Interface Science, 2021, 296, 102518.	7.0	27
144	Removal of disinfection by-product precursors by Al-based coagulants: A comparative study on coagulation performance. Journal of Hazardous Materials, 2021, 420, 126558.	6.5	27
145	Formation of nitrogenous disinfection byproducts in MP UV-based water treatments of natural organic matters: The role of nitrate. Water Research, 2021, 204, 117583.	5.3	17

#	ARTICLE	IF	CITATIONS
146	Disinfection: A Trade-Off Between Microbial and Chemical Risks. , 2020, , 211-228.		2
147	New Trends in Disinfection By-Products Formation upon Water Treatment. Journal of Research & Developments in Chemistry, 0, , 1-27.	0.0	23
148	Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: A review. Chemical Engineering Journal, 2022, 430, 133002.	6.6	237
149	Disinfection By-Products Foramtion Potential of Twenty Amino Acids. , 0, , .		0
150	Formation Characteristics of N-Nitrosodimethylamine during Chloramines of PolyDADMAC. Journal of Environmental Protection, 2019, 10, 1602-1611.	0.3	1
151	Removal performance and mechanism of typical amino acids in water by the peroxymonosulfate/Fe3O4 nanoparticles. Water Science and Technology: Water Supply, 0, , .	1.0	0
152	Formation and transformation of halonitromethanes from dimethylamine in the presence of bromide during the UV/chlorine disinfection. Chemosphere, 2022, 291, 132731.	4.2	11
153	Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	26
154	SU KAYNAKLARINDA VE ŞEBEKELERDE ćĖZÜNMÜŞ ORGANİK AZOTUN MEVSİMSEL DEĞİŞİMİ Mühendislik Bilimleri Ve Tasarım Dergisi, 2020, 8, 961-972.	'NİN İZ 0.1	LENMESİ.
155	Reactions of amines with ozone and chlorine: Two novel oxidative methods to evaluate the N-DBP formation potential from dissolved organic nitrogen. Water Research, 2022, 209, 117864.	5.3	15
156	Towards microplastics contribution for membrane biofouling and disinfection by-products precursors: The effect on microbes. Journal of Hazardous Materials, 2022, 426, 127797.	6.5	23
157	Potential risks and approaches to reduce the toxicity of disinfection by-product – A review. Science of the Total Environment, 2022, 822, 153323.	3.9	38
158	Disinfection byproducts in emerging countries. , 2022, , 241-266.		2
159	Insights for booster chlorination strategy based on DBPs control in a large-scale water supply system. Science of the Total Environment, 2022, 833, 155001.	3.9	8
160	Microseira wollei and Phormidium algae more than doubles DBP concentrations and calculated toxicity in drinking water. Water Research, 2022, 216, 118316.	5.3	19
161	Automated headspace solid-phase microextraction-gas chromatography-mass spectrometry of trihalomethane and typical nitrogenous disinfection by-products in water. Journal of Chromatography A, 2022, 1673, 463068.	1.8	7
162	Closing the gap of known and unknown halogenated nitrogenous disinfection byproducts in water: Advanced mass spectrometry techniques. TrAC - Trends in Analytical Chemistry, 2022, 153, 116624.	5.8	5
163	Emerging investigator series: contributions of reactive nitrogen species to transformations of organic compounds in water: a critical review. Environmental Sciences: Processes and Impacts, 2022, 24, 851-869.	1.7	5

CITATION REPORT

#	Article	IF	CITATIONS
164	Comparison of Disinfection By-Product Formation and Distribution during Breakpoint Chlorination and Chlorine-Based Disinfection in Drinking Water. Water (Switzerland), 2022, 14, 1372.	1.2	3
165	Unique On-Site Spinning Sampling of Highly Water-Soluble Organics Using Functionalized Monolithic Sorbents. Environmental Science & Technology, 2022, 56, 8094-8102.	4.6	2
166	Comprehensive Computational Study on Reaction Mechanism of N-Nitroso Dimethyl Amine Formation from Substituted Hydrazine Derivatives During Ozonation. SSRN Electronic Journal, 0, , .	0.4	0
167	NRF2-ARE signaling is responsive to haloacetonitrile-induced oxidative stress in human keratinocytes. Toxicology and Applied Pharmacology, 2022, 450, 116163.	1.3	2
168	Identification of key precursors contributing to the formation of CX3R-type disinfection by-products along the typical full-scale drinking water treatment processes. Journal of Environmental Sciences, 2023, 128, 81-92.	3.2	6
169	Identification of disinfection by-product precursors by natural organic matter fractionation: a review. Environmental Chemistry Letters, 2022, 20, 3861-3882.	8.3	1
170	Comparison of disinfection by-products formed by preoxidation of sulfamethazine by K2FeO4 and O3 and the influence on cytotoxicity and biological toxicity. Frontiers in Chemistry, 0, 10, .	1.8	1
171	Dissolved organic nitrogen derived from wastewater denitrification: Composition and nitrogenous disinfection byproduct formation. Journal of Hazardous Materials, 2022, 440, 129775.	6.5	10
172	Occurrence and modeling of disinfection byproducts in distributed water of a megacity in China: Implications for human health. Science of the Total Environment, 2022, 848, 157674.	3.9	15
173	Formation of brominated halonitromethanes from threonine involving bromide ion during the UV/chlorine disinfection. Journal of Cleaner Production, 2022, 373, 133897.	4.6	10
174	Uv/H2o2/O3 Removal Efficiency and Characterization of Algae-Derived Organic Matter and Odorous Substances. SSRN Electronic Journal, 0, , .	0.4	0
175	Tapwater Exposures, Effects Potential, and Residential Risk Management in Northern Plains Nations. ACS ES&T Water, 2022, 2, 1772-1788.	2.3	6
176	The Changing of Dissolved Organic Matter Based on Its Molecular Weight Through Alum Coagulation and Adsorption Activated Carbon. MATEC Web of Conferences, 2022, 372, 05013.	0.1	0
177	UV/H2O2/O3 removal efficiency and characterization of algae-derived organic matter and odorous substances. Journal of Environmental Chemical Engineering, 2023, 11, 109128.	3.3	1
178	Effects of UV/PS and UV/H ₂ O ₂ on Degradation of Natural Organic Matter and Formation Potential of Haloacetonitriles in Surface Water. Journal of Water and Environment Technology, 2022, 20, 188-200.	0.3	2
179	Chlorination disinfection by-products in Southeast Asia: A review on potential precursor, formation, toxicity assessment, and removal technologies. Chemosphere, 2023, 316, 137817.	4.2	13
180	The occurrence, formation and transformation of disinfection byproducts in the water distribution system: A review. Science of the Total Environment, 2023, 867, 161497.	3.9	13
181	Disinfection of bromide-containing tryptophan water by UV/chlorine: brominated halonitromethane formation, impact factors, and pathways. Environmental Science: Water Research and Technology, 0, , .	1.2	Ο

CITATION REPORT

#	Article	IF	CITATIONS
182	Nitrogen-15 NMR study on the incorporation of nitrogen into aquatic NOM upon chloramination. Aquatic Sciences, 2023, 85, .	0.6	0
183	Impact of prevalent chlorine quenchers on phenolic disinfection byproducts in drinking water and potential reaction mechanisms. Science of the Total Environment, 2023, 871, 161971.	3.9	7
184	Effects of photocatalysis using a photocatalytic concrete board on water qualities and microbial communities in the aquaculture wastewater. Separation and Purification Technology, 2023, 313, 123517.	3.9	1
185	Algae impacted drinking water: Does switching to chloramination produce safer drinking water?. Science of the Total Environment, 2023, 877, 162815.	3.9	3
186	Chlorinated nucleotides and analogs as potential disinfection byproducts in drinking water. Journal of Hazardous Materials, 2023, 452, 131242.	6.5	7
187	Comparison of UV/chloramine disinfection of methylamine water in the absence and presence of bromide: Halonitromethanes formation, toxicity alteration, and reaction mechanisms. Journal of Environmental Chemical Engineering, 2023, 11, 109749.	3.3	5
188	Formation characteristics and acute toxicity assessment of THMs and HAcAms from DOM and its different fractions in source water during chlorination and chloramination. Chemosphere, 2023, 329, 138696.	4.2	4
189	Toxicological aspect of water treated by chlorine-based advanced oxidation processes: A review. Science of the Total Environment, 2023, 878, 163047.	3.9	4
190	Relating algal-derived extracellular and intracellular dissolved organic nitrogen with nitrogenous disinfection by-product formation. Water Research, 2023, 233, 119695.	5.3	2
191	Comprehensive computational study on reaction mechanism of N-Nitroso dimethyl amine formation from substituted hydrazine derivatives during ozonation. Heliyon, 2023, 9, e14511.	1.4	0
192	Removal of carbonaceous and nitrogenous disinfection by-product precursors in biological activated carbon process of drinking water: Is service life a pivotal factor?. Chemical Engineering Journal, 2023, 465, 142875.	6.6	5
193	Effects of phosphate addition on the removal of disinfection by-product formation potentials by biological activated carbon filtration. Science of the Total Environment, 2023, 882, 163534.	3.9	0
194	Overlooked Contribution of the Indole Moiety to the Formation of Haloacetonitrile Disinfection Byproducts. Environmental Science & Technology, 2023, 57, 7074-7085.	4.6	1
217	Availability and Minimization of Nitrogenous Disinfectant By-Products in Drinking Water. , 2024, , 239-262.		0
220	Disinfection by-Products (DBPs) and their Toxicological Risk on Human Wellbeing: A Public Health Concern. , 2024, , 109-133.		0
222	Carbonaceous and nitrogenous disinfection by-products potential formation and removal technologies from the water treatment process: A review. AIP Conference Proceedings, 2024, , .	0.3	0