A review of the Magnus effect in aeronautics

Progress in Aerospace Sciences 55, 17-45 DOI: 10.1016/j.paerosci.2012.07.001

Citation Report

#	Article	IF	CITATIONS
1	Discussion on improving Magnus effect of cylinder based on CFD. , 2013, , .		2
2	A novel MAV with treadmill motion of wing. Theoretical and Applied Mechanics Letters, 2013, 3, 062002.	1.3	3
3	Black holes and fundamental fields: Hair, kicks, and a gravitational Magnus effect. Physical Review D, 2014, 90, .	1.6	2
4	Development and validation of a CFD model using ANSYS CFX for aerodynamics simulation of Magnus wind rotor blades. , 2014, , .		6
5	Inverse Magnus effect on a rotating sphere: when and why. Journal of Fluid Mechanics, 2014, 754, .	1.4	41
6	Magnus type wind turbines: Prospectus and challenges in design andÂmodelling. Renewable Energy, 2014, 62, 619-628.	4.3	32
7	Underwater energy harvesting from a turbine hosting ionic polymer metal composites. Smart Materials and Structures, 2014, 23, 085023.	1.8	13
8	Analysis of Unsteady Flow Past a Circular Cylinder Using a Harmonic Balance Method. , 2014, , .		1
9	Preliminary turbulence model validation for flow across rotating cylinders using ANSYS CFX. , 2014, , \cdot		3
10	Design of modified Magnus wind rotors using computational fluid dynamics simulation and multi-response optimization. Journal of Renewable and Sustainable Energy, 2015, 7, 063135.	0.8	5
11	Investigation on the thermophoretic tension force induced by particle rotation. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2525-2529.	1.6	2
12	Noise control by a rotating rod in a rod-airfoil configuration. , 2015, , .		2
13	Numerical Simulation of a Flapping Wing in Ansys-Fluent Based on the Fruit Fly Wing Kinematics. , 2015, , .		0
14	Circulation-controlled high-lift wing for small unmanned aerial vehicle. ROBOMECH Journal, 2015, 2, .	0.9	3
15	On the development of lift and drag in a rotating and translating cylinder. Journal of Fluids and Structures, 2015, 54, 868-885.	1.5	10
16	Numerical Investigation of the Detaching Vortical Flow at Rotating Cylinders with Thom Discs. , 2015, , \cdot		0
17	Flow Control of a Rotating Cylinder by the Use of a Structured Surface: A Visualization of Flow Structures. , 2015, , .		0
18	Curveballs in protoplanetary discs – the effect of the Magnus force on planet formation. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1779-1792.	1.6	5

ATION RED

#	Article	IF	CITATIONS
19	Computational study on novel circulating aerofoils for use in Magnus wind turbine blades. Energy, 2015, 91, 393-403.	4.5	10
20	Computational investigation into the influence of yaw on the aerodynamics of an isolated wheel in free air. International Journal of Computational Science and Engineering, 2016, 13, 333.	0.4	0
21	Flettner Rotor Concept for Marine Applications: A Systematic Study. International Journal of Rotating Machinery, 2016, 2016, 1-12.	0.8	38
22	On the inverse Magnus effect for flow past a rotating cylinder. AIP Conference Proceedings, 2016, , .	0.3	3
23	Dynamics of chiral molecules in gaseous environments: validity of the Magnus effect in microscale systems. RSC Advances, 2016, 6, 35785-35791.	1.7	0
24	High-Speed Rarefied Flow Past a Rotating Cylinder: The Inverse Magnus Effect. AIAA Journal, 2016, 54, 1670-1681.	1.5	19
25	Numerical analysis of Magnus wind turbine. , 2016, , .		2
26	Control of an airborne wind energy system with a Magnus effect. , 2016, , .		4
27	Advances in floating aerogenerators: Present status and future. International Journal of Precision Engineering and Manufacturing, 2016, 17, 1555-1568.	1.1	10
28	A Turbosail profile analysis code based on the panel method. Energy, 2017, 118, 147-155.	4.5	4
29	Drift of suspended ferromagnetic particles due to the Magnus effect. Journal of Applied Physics, 2017, 121, 043912.	1.1	5
30	Dimensionally and Physically Proper Lift, Drag, and Thrust-Related Numbers as Figures of Merit: Normalized Lift, Drag, and Thrust, ηL, ηD, and ηT. Journal of Aerospace Engineering, 2017, 30, 04016091.	0.8	3
31	A flow control technique for noise reduction of a rod-airfoil configuration. Journal of Fluids and Structures, 2017, 69, 293-307.	1.5	16
32	Simulation and analysis of Magnus rotating roll stabilizer at low speed. Ocean Engineering, 2017, 142, 491-500.	1.9	35
33	Exactly solvable model for drift of suspended ferromagnetic particles induced by the Magnus force. Journal of Magnetism and Magnetic Materials, 2017, 443, 89-95.	1.0	6
34	A Magnus Wind Turbine Power Model Based on Direct Solutions Using the Blade Element Momentum Theory and Symbolic Regression. IEEE Transactions on Sustainable Energy, 2017, 8, 425-430.	5.9	24
35	Modeling and control of a Magnus effect-based airborne wind energy system in crosswind maneuvers. IFAC-PapersOnLine, 2017, 50, 13878-13885.	0.5	10
36	Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow. IOP Conference Series: Materials Science and Engineering, 2017, 270, 012003.	0.3	0

#	Article	IF	CITATIONS
37	Techno economic and environmental assessment of Flettner rotors for marine propulsion. Ocean Engineering, 2018, 154, 1-15.	1.9	40
38	Super Lift Coefficient of Co-Flow Jet Circular Cylinder. , 2018, , .		5
39	Comparative Analysis of Floating Aerogenerators. Springer Proceedings in Energy, 2018, , 9-18.	0.2	1
40	Magnus wind turbine: the effect of sandpaper surface roughness on cylinder blades. Acta Mechanica, 2018, 229, 71-85.	1.1	11
41	Lift-Generation and Moving-Wall Flow Control Over a Low Aspect Ratio Airfoil. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	0.8	5
42	Lift Force Generation of a Moving Circular Cylinder with a Strip-Plate Set Downstream in Cruciform Arrangement: Flow Field Improving Using Tip Ends. International Journal of Aeronautical and Space Sciences, 2018, 19, 606-617.	1.0	4
43	An overview of passive and active drag reduction methods for bluff body of road vehicles. International Journal of Engineering and Technology(UAE), 2018, 7, 53.	0.2	1
44	Viscous Crossflow Around a Rotating Circular Cylinder. Russian Aeronautics, 2018, 61, 45-48.	0.1	3
45	Computation of Aerodynamic Forces Under Nonequilibrium Conditions: Flow Past a Spinning Cylinder. AIAA Journal, 2018, 56, 4219-4224.	1.5	3
46	Numerical investigation of lift-force generation on a moving circular cylinder in a uniform flow driven by longitudinal vortex. Journal of Fluids and Structures, 2018, 83, 448-470.	1.5	6
47	Experimental investigation of in-line flow-induced vibration of a rotating circularÂcylinder. Journal of Fluid Mechanics, 2018, 847, 664-699.	1.4	37
48	Computational study of airfoil performance with the incorporation of a moving surface at the leading edge. AIP Conference Proceedings, 2018, , .	0.3	0
49	Net Power Coefficient of Vertical and Horizontal Wind Turbines with Crossflow Runners. Energies, 2018, 11, 110.	1.6	12
50	Three-dimensional numerical investigation of vortex-induced vibration of a rotating circular cylinder in uniform flow. Physics of Fluids, 2018, 30, .	1.6	42
51	High correlation models for small scale Magnus wind turbines. , 2018, , .		2
52	A longitudinal vortex wind turbine: Numerical study. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 180, 213-230.	1.7	4
53	Heat Transfer From a Heated Cylinder Rotating Around Its Axis in Laminar and Turbulent Crossflows of Liquid. Lobachevskii Journal of Mathematics, 2019, 40, 776-781.	0.1	5
54	Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder. Ocean Engineering, 2019, 191, 106505.	1.9	73

#	Article	IF	CITATIONS
55	Experimental determination of the aerodynamic coefficients of spinning bodies. Aeronautical Journal, 2019, 123, 678-705.	1.1	2
56	Note on †Tracking the flight of a spinning football in three dimensions'. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2019, 233, 450-452.	0.4	0
57	Experimental and Numerical Setup for An Airfoil with Rotating Leading-Edge Cylinder Study. , 2019, , .		1
58	A review of dual-spin projectile stability. Defence Technology, 2020, 16, 1-9.	2.1	10
59	Design and analysis of roto – Cylindrical wing for a drone aircraft. Materials Today: Proceedings, 2020, 22, 393-399.	0.9	2
60	Fluid–structure interaction of flexible submerged vegetation stems and kinetic turbine blades. Computational Particle Mechanics, 2020, 7, 839-848.	1.5	16
61	Experimental study of the Magnus effect in cylindrical bodies with 4, 6, 8 and 10 sides. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197, 104065.	1.7	11
62	Magnus Wind Turbine: Finite Element Analysis and Control System. , 2020, , .		4
63	Left Atrial Spinning Ball Thrombus in a Patient with Cardioembolic Stroke: A Case Report. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 105355.	0.7	1
64	Exact and approximate solutions to projectile motion in air incorporating Magnus effect. European Physical Journal Plus, 2020, 135, 1.	1.2	7
65	Performance of a Magnus effect-based cylindrical roll stabilizer on a full-scale Motor-yacht. Ocean Engineering, 2020, 218, 108247.	1.9	14
66	Trajectory deflection of spinning magnetic microparticles: The Magnus effect at the microscale. Journal of Applied Physics, 2020, 127, .	1.1	7
67	Experimental Prototype of High-Efficiency Wind Turbine Based on Magnus Effect. , 2020, , .		7
68	Effects of Mach numbers on Magnus induced surface pressure. Chinese Journal of Aeronautics, 2020, 33, 3058-3072.	2.8	3
69	Study of the reverse Magnus effect on a golf ball and a smooth ball moving through still air. Experiments in Fluids, 2020, 61, 1.	1.1	12
70	Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers. Environmental Science and Pollution Research, 2021, 28, 32695-32707.	2.7	25
71	Study of a New Type of Flettner Rotor in Merchant Ships. Polish Maritime Research, 2021, 28, 28-41.	0.6	8
72	Stabilization of the fluidic pinball with gradient-enriched machine learning control. Journal of Fluid Mechanics, 2021, 917, .	1.4	24

#	Article	IF	CITATIONS
73	Steady lift-force generation on a circular cylinder utilising a longitudinal vortex: Influence of geometrical parameters. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 212, 104612.	1.7	4
74	Effects of spin rate on the surface pressure distribution of a rotating model. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236, 554-566.	0.7	1
75	Flow past a rotating cylinder predicted by a compact Eulerian viscous vorticity method under non-inertial rotating frame. Ocean Engineering, 2021, 230, 108882.	1.9	6
76	Wind assisted propulsion system onboard ships: case study Flettner rotors. Ships and Offshore Structures, 2022, 17, 1616-1627.	0.9	13
77	Turbulent flow simulation of a single-blade Magnus rotor. Advances in Aerodynamics, 2021, 3, .	1.3	0
78	The physics of Magnus gliders. American Journal of Physics, 2021, 89, 843-850.	0.3	1
79	Magnus Antirolling System for Ships at Zero Speed. IEEE Transactions on Transportation Electrification, 2021, 7, 3062-3069.	5.3	5
80	Control of a Magnus Effect-Based Airborne Wind Energy System. Green Energy and Technology, 2018, , 277-301.	0.4	4
81	Configurations, flight mechanisms, and applications of unmanned aerial systems: A review. Progress in Aerospace Sciences, 2020, 121, 100694.	6.3	48
82	Engineering Ideas for Brighter Clouds. Issues in Environmental Science and Technology, 2014, , 131-161.	0.4	3
83	An Innovative Treadmill-Magnus Wind Propulsion System for Naval Ships. Recent Patents on Engineering, 2014, 8, 95-99.	0.3	2
84	Anomaly Detection in the Time Series Data from Fehn Pollux Ship with ECO Flettner Rotor. , 2021, , .		2
85	Darrieus-Magnus Type Wind Turbine: Dynamics and Control. Journal of Computer and Systems Sciences International, 2021, 60, 756-769.	0.2	1
86	The Use of Flettner Rotors in Efficient Ship Design. , 2014, , .		5
87	EXPERIMENTAL STUDY OF MAGNUS EFFECT OVER AN AIRCRAFT WING. International Journal of Research in Engineering and Technology, 2015, 04, 406-414.	0.1	2
88	Numerical Simulation of the Turbulent Flow around an Oval-Sail. Journal of Applied Fluid Mechanics, 2016, 9, 2009-2023.	0.4	4
89	Flow Control for Unmanned Air Vehicles. Annual Review of Fluid Mechanics, 2022, 54, 383-412.	10.8	23
90	Physics-inspired architecture for neural network modeling of forces and torques in particle-laden flows. Computers and Fluids, 2022, 238, 105379.	1.3	22

~			<u> </u>	
	ΙΤΔΤΙ	ON	REPC	D T
\sim	/			

#	Article	IF	CITATIONS
91	2-DOF vortex-induced vibration of rotating circular cylinder in shear flow. Ocean Engineering, 2022, 249, 111003.	1.9	7
92	Intelligent ship anti-rolling control system based on a deep deterministic policy gradient algorithm and the Magnus effect. Physics of Fluids, 2022, 34, .	1.6	15
94	Magnus Effect in Classroom: A New Low Cost Physics Lab. The Physics Educator, 2022, 04, .	0.1	0
95	Roughness effects on the aerodynamic forces and wake flowfield of spinning cylinders. , 2022, , .		0
96	Hydrodynamic simulation for evaluating Magnus anti-rolling devices with varying angles of attack. Ocean Engineering, 2022, 260, 111949.	1.9	6
97	Transition mechanisms in a boundary layer controlled by rotating wall-normal cylindrical roughness elements. Journal of Fluid Mechanics, 2022, 945, .	1.4	4
98	Computational Simulation Methods for the Magnus Lift - Driven Wind Turbines. International Journal of Engineering and Advanced Technology, 2022, 11, 174-181.	0.2	0
99	Fuel Saving Evaluation of a Rotor Ship in Actual Seas. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2022, 35, 29-41.	0.2	0
100	Assisted Propulsion Device of a Semi-Submersible Ship Based on the Magnus Effect. Polish Maritime Research, 2022, 29, 33-46.	0.6	2
101	A parametric study for a flettner rotor in standalone condition using CFD. International Journal of Naval Architecture and Ocean Engineering, 2022, 14, 100493.	1.0	5
102	Machine-learned control-oriented flow estimation for multi-actuator multi-sensor systems exemplified for the fluidic pinball. Journal of Fluid Mechanics, 2022, 952, .	1.4	3
103	Numerical and Experimental Analysis of Drag and Lift Forces on a Bullet Head. Aerospace, 2022, 9, 816.	1.1	4
104	Flow control around a pitching oscillation circular cylinder using a dielectric barrier discharge plasma actuator. Journal Physics D: Applied Physics, 2023, 56, 125202.	1.3	3
105	Numerical Analysis of the Magnus Effect on the Forces Past an Axisymmetric Body at High Incidence. Aerospace, 2023, 10, 163.	1.1	1
106	Application of Polymer Resin to the Surface of Fabrics in the Manufacture of Aircraft Parts. Russian Aeronautics, 2022, 65, 219-223.	0.1	1
107	Large-Scale direct numerical simulations of turbulence using CPUs and modern Fortran. International Journal of High Performance Computing Applications, 2023, 37, 487-502.	2.4	3
111	Flettner-rotor-powered VTOLâ \in Ms theoretical performances. , 2023, , .		0
116	Interactions Between Particles andÂSurfaces. Springer Series in Advanced Manufacturing, 2024, , 173-201.	0.2	0

			CITATION RE	PORT	
#	Article			IF	CITATIONS
120	Experimental Analysis on Pitching Moment for Embedment Cylinder to Flat Plate High Platform Station. Lecture Notes in Mechanical Engineering, 2024, , 197-209.	Altitude		0.3	0
121	Near Real Time Prediction of Vibration in 3D Printed Flettner Rotor Demonstrator. , 202	23,,.			0
126	Wairua 2 Land Speed Vehicle Downforce: Moving Surface Boundary Layer Control Airfo Conventional Airfoils. , 2024, , .	oils vs.			0