Underwater Data Collection Using Robotic Sensor Netw

IEEE Journal on Selected Areas in Communications 30, 899-911 DOI: 10.1109/jsac.2012.120606

Citation Report

#	Article	IF	CITATIONS
1	Robust minimum energy wireless routing for underwater acoustic communication networks. , 2012, , .		3
2	On non-causal side information at the encoder. , 2012, , .		4
3	A new node coordination scheme for data gathering in underwater acoustic sensor networks using autonomous underwater vehicle. , 2013, , .		7
4	Squared error distortion metrics for motion planning in robotic sensor networks. , 2013, , .		9
5	AEERP., 2013,,.		35
6	Recent Trends in Underwater Acoustic Communications. Marine Technology Society Journal, 2013, 47, 45-50.	0.4	30
7	Adaptive Decentralized Control of Mobile Underwater Sensor Networks and Robots for Modeling Underwater Phenomena. Journal of Sensor and Actuator Networks, 2014, 3, 113-149.	3.9	5
8	Cascaded Optimization of Aircraft Trajectories for Persistent Data Ferrying. Journal of Aerospace Information Systems, 2014, 11, 807-820.	1.4	8
9	A novel fuzzy control algorithm for three-dimensional AUV path planning based on sonar model. Journal of Intelligent and Fuzzy Systems, 2014, 26, 2913-2926.	1.4	23
10	Time-optimal path planning in dynamic flows using level set equations: theory and schemes. Ocean Dynamics, 2014, 64, 1373-1397.	2.2	114
11	Toward controlling perturbations in robotic sensor networks. Proceedings of SPIE, 2014, , .	0.8	0
12	On the impossibility of blind deconvolution for geometrically decaying subspace sparse signals. , 2014, , ,		1
13	On source-channel coding over Gaussian sensor networks for path planning. , 2014, , .		1
14	Surveillance in an abruptly changing world via multiarmed bandits. , 2014, , .		19
15	Rollout Algorithms for Data Storage- and Energy-Aware Data Retrieval Using Autonomous Underwater Vehicles. , 2014, , .		13
16	Cooperatively Mapping of the Underwater Acoustic Channel by Robot Swarms. , 2014, , .		9
17	Active target detection with navigation costs: A randomized benchmark. , 2014, , .		2
18	Maximizing the value of sensed information in underwater wireless sensor networks via an autonomous underwater vehicle. , 2014, , .		70

ATION REDO

IF ARTICLE CITATIONS # Source-channel coding over Gaussian sensor networks with active sensing., 2014,,. 19 2 Unifying multi-goal path planning for autonomous data collection., 2014, , . 24 Balance Transmission Mechanism in Underwater Acoustic Sensor Networks. International Journal of 21 2.2 56 Distributed Sensor Networks, 2015, 11, 429340. Underwater Sensor Network Applications: A Comprehensive Survey. International Journal of 264 Distributed Sensor Networks, 2015, 11, 896832. Reliability and delay in AUV navigation using EM wave based underwater sensor network with shadow 23 1 fading., 2015,,. A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks. Sensors, 2015, 15, 3.8 19331-19350. Adaptive Data Collection in Sparse Underwater Sensor Networks Using Mobile Elements. Lecture 25 1.3 1 Notes in Computer Science, 2015, , 57-65. Analysis of target detection via matrix completion., 2015,,. 26 27 Tour Planning for AUV Data Gathering in Underwater Wireless., 2015, , . 6 Autonomy levels versus communication in an underwater environment., 2015,,. Reliability and delay analysis of AUV navigation system using EM wave based underwater sensor 29 1 network. , 2015, , . A Novel Network Topology in Underwater Visible Light Sensor Networks., 2015,,. Scheduling multiple mobile sinks in Underwater Sensor Networks., 2015,,. $\mathbf{31}$ 14 Distributed Data Fusion for Multirobot Search. IEEE Transactions on Robotics, 2015, 31, 55-66. Energy Detection for MIMO Decision Fusion in Underwater Sensor Networks. IEEE Sensors Journal, 33 4.7 43 2015, 15, 1630-1640. Coactive learning with a human expert for robotic information gathering., 2015,,. The verifier bee: A path planner for drone-based secure location verification., 2015, , . 35 9 Structured sparse methods for active ocean observation systems with communication constraints., 2015, 53, 88-96.

#	Article	IF	CITATIONS
37	Self-organizing map-based solution for the Orienteering problem with neighborhoods. , 2016, , .		22
38	Fast Link Scheduling Policies for Persistent Data Ferrying. Journal of Aerospace Information Systems, 2016, 13, 433-449.	1.4	1
39	Time-varying narrowband channel estimation: Exploiting low-rank and sparsity via bilinear representation. , 2016, , .		3
40	Efficient Terrain Driven Coral Coverage Using Gaussian Processes for Mosaic Synthesis. , 2016, , .		14
41	Underwater acoustic communication using orthogonal signal division multiplexing scheme with time diversity. Japanese Journal of Applied Physics, 2016, 55, 037301.	1.5	11
42	Analyzing the multi hop connectivity performance in Brownian underwater wireless sensor networks. , 2016, , .		0
43	Cyber-Maritime Cycle: Autonomy of Marine Robots for Ocean Sensing. Foundations and Trends in Robotics, 2016, 5, 1-115.	6.9	16
44	A multihop data-gathering scheme using multiple AUVs in hierarchical underwater sensor networks. , 2016, , .		3
45	Distributed Scheduling of Network Connectivity Using Mobile Access Point Robots. IEEE Transactions on Robotics, 2016, 32, 1333-1346.	10.3	9
46	Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. IEEE Transactions on Robotics, 2016, 32, 1498-1511.	10.3	339
47	Multiple Mobile Robot Systems. Springer Handbooks, 2016, , 1335-1384.	0.6	100
48	Mobile data collection paths for node cooperative underwater acoustic sensor networks. , 2016, , .		6
49	Dynamic Node Cooperation in an Underwater Data Collection Network. IEEE Sensors Journal, 2016, 16, 4127-4136.	4.7	30
50	Power-Distortion Metrics for Path Planning Over Gaussian Sensor Networks. IEEE Transactions on Communications, 2016, 64, 1220-1231.	7.8	3
51	An Optimization Framework for Mobile Data Collection in Energy-Harvesting Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 2016, 15, 2969-2986.	5.8	54
52	Autonomous Data Collection With Limited Time for Underwater Vehicles. IEEE Robotics and Automation Letters, 2017, 2, 112-119.	5.1	19
53	A low cost remotely operated vehicle for underwater surveillance — A complete experimental platform. , 2017, , .		0
54	3D Dubins curves based path programming for mobile sink in underwater sensor networks. Electronics Letters, 2017, 53, 48-50.	1.0	6

		CITATION REPORT		
#	ARTICLE Structured estimation of time-varying narrowband wireless communication channels. , 2	2017	IF	CITATIONS
56	Data gathering problem with the data importance consideration in Underwater Wireless Networks. Journal of Network and Computer Applications, 2017, 78, 300-312.	s Sensor	9.1	57
57	Persistent surveillance of events with unknown, time-varying statistics. , 2017, , .			2
58	Probabilistic Neighborhood Location-Point Covering Set-Based Data Collection Algorith Obstacle Avoidance for Three-Dimensional Underwater Acoustic Sensor Networks. IEEE 24785-24796.	n With Access, 2017, 5,	4.2	18
59	Optimal path selection for mobile robots based on energy consumption assessment of terrain surface. , 2017, , .	different		2
60	Joint Mobile Data Collection and Wireless Energy Transfer in Wireless Rechargeable Sen Networks. Sensors, 2017, 17, 1881.	sor	3.8	31
61	Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Usin Curves â€. Sensors, 2017, 17, 1607.	g 3D Dubins	3.8	48
62	Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acous Networks. Sensors, 2017, 17, 316.	tic Sensor	3.8	17
63	AUV Based Data-Gathering Protocol for the Lifetime Extension of Underwater Acoustic S Networks. IEICE Transactions on Fundamentals of Electronics, Communications and Co Sciences, 2017, E100.A, 1596-1600.	Sensor mputer	0.3	5
64	Collaborative Sampling Using Heterogeneous Marine Robots Driven by Visual Cues. , 20	17,,.		11
65	Energy-Efficient Data Collection Over AUV-Assisted Underwater Acoustic Sensor Netwo Systems Journal, 2018, 12, 3519-3530.	rk. IEEE	4.6	119
66	Motion Parameter Capturing of Multiple Mobile Targets in Robotic Sensor Networks. IEI 6, 24375-24390.	EE Access, 2018,	4.2	11
67	Autonomous Data Collection Using a Self-Organizing Map. IEEE Transactions on Neural Learning Systems, 2018, 29, 1703-1715.	Networks and	11.3	56
68	Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Se Networks. IEEE Transactions on Mobile Computing, 2018, 17, 404-418.	nsor	5.8	103
69	An Optimized Fuzzy Control Algorithm for Three-Dimensional AUV Path Planning. Intern Journal of Fuzzy Systems, 2018, 20, 597-610.	ational	4.0	67
70	Formally Correct Composition of Coordinated Behaviors Using Control Barrier Certificat	res. , 2018, , .		44
71	Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mc Sensors, 2018, 18, 252.	bile Relay.	3.8	14
72	3-Dimensional Path Planning for Autonomous Underwater Vehicle. , 2018, , .			4

#	Article	IF	CITATIONS
73	HAS4: A Heuristic Adaptive Sink Sensor Set Selection for Underwater AUV-Aid Data Gathering Algorithm. Sensors, 2018, 18, 4110.	3.8	16
74	Bilinear Matrix Factorization Methods for Time-Varying Narrowband Channel Estimation: Exploiting Sparsity and Rank. IEEE Transactions on Signal Processing, 2018, 66, 6062-6075.	5.3	13
75	Robot ecology: Constraint-based control design for long duration autonomy. Annual Reviews in Control, 2018, 46, 1-7.	7.9	50
76	Leader-Follower Formation Control of UUVs with Model Uncertainties, Current Disturbances, and Unstable Communication. Sensors, 2018, 18, 662.	3.8	34
77	Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions. Sensors, 2018, 18, 425.	3.8	33
78	Data-Gathering Protocol-Based AUV Path-Planning for Long-Duration Cooperation in Underwater Acoustic Sensor Networks. IEEE Sensors Journal, 2018, 18, 8902-8912.	4.7	39
79	A novel gradient climbing control for seeking the best communication point for data collection from a seabed platform using a single unmanned surface vehicle. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 751-759.	2.6	1
80	Data Collection Scheme for Underwater Sensor Cloud System Based on Fog Computing. Lecture Notes in Computer Science, 2019, , 149-159.	1.3	1
81	Optimized design of an autonomous underwater vehicle, for exploration in the Caribbean Sea. Ocean Engineering, 2019, 187, 106184.	4.3	21
82	Distance-Penalized Active Learning via Markov Decision Processes. , 2019, , .		2
82 83	Distance-Penalized Active Learning via Markov Decision Processes. , 2019, , . Optimal 3D trajectory planning for AUVs using ocean general circulation models. Ocean Engineering, 2019, 188, 106266.	4.3	2
82 83 84	Distance-Penalized Active Learning via Markov Decision Processes. , 2019, , . Optimal 3D trajectory planning for AUVs using ocean general circulation models. Ocean Engineering, 2019, 188, 106266. Localization and Data Collection in AUV-Aided Underwater Sensor Networks: Challenges and Opportunities. IEEE Network, 2019, 33, 86-93.	4.3 6.9	2 11 34
82 83 84 85	Distance-Penalized Active Learning via Markov Decision Processes. , 2019, , . Optimal 3D trajectory planning for AUVs using ocean general circulation models. Ocean Engineering, 2019, 188, 106266. Localization and Data Collection in AUV-Aided Underwater Sensor Networks: Challenges and Opportunities. IEEE Network, 2019, 33, 86-93. Research and Application of Multi-Node Communication and Energy Consumption Prediction Control in Underwater Acoustic Network. IEEE Access, 2019, 7, 41220-41229.	4.3 6.9 4.2	2 11 34 8
82 83 84 85 86	Distance-Penalized Active Learning via Markov Decision Processes. , 2019, , . Optimal 3D trajectory planning for AUVs using ocean general circulation models. Ocean Engineering, 2019, 188, 106266. Localization and Data Collection in AUV-Aided Underwater Sensor Networks: Challenges and Opportunities. IEEE Network, 2019, 33, 86-93. Research and Application of Multi-Node Communication and Energy Consumption Prediction Control in Underwater Acoustic Network. IEEE Access, 2019, 7, 41220-41229. Delay and Queue Aware Adaptive Scheduling-Based MAC Protocol for Underwater Acoustic Sensor Networks. IEEE Access, 2019, 7, 56263-56275.	4.3 6.9 4.2 4.2	2 11 34 8 30
82 83 84 85 86 87	Distance-Penalized Active Learning via Markov Decision Processes. , 2019, , . Optimal 3D trajectory planning for AUVs using ocean general circulation models. Ocean Engineering, 2019, 188, 106266. Localization and Data Collection in AUV-Aided Underwater Sensor Networks: Challenges and Opportunities. IEEE Network, 2019, 33, 86-93. Research and Application of Multi-Node Communication and Energy Consumption Prediction Control in Underwater Acoustic Network. IEEE Access, 2019, 7, 41220-41229. Delay and Queue Aware Adaptive Scheduling- Based MAC Protocol for Underwater Acoustic Sensor Networks. IEEE Access, 2019, 7, 56263-56275. Cooperative motion parameter estimation using RSS measurements in robotic sensor networks. Journal of Network and Computer Applications, 2019, 136, 57-70.	 4.3 6.9 4.2 4.2 9.1 	2 11 34 8 30 13
82 83 84 85 86 87 88	Distance-Penalized Active Learning via Markov Decision Processes. , 2019, , . Optimal 3D trajectory planning for AUVs using ocean general circulation models. Ocean Engineering, 2019, 188, 106266. Localization and Data Collection in AUV-Aided Underwater Sensor Networks: Challenges and Opportunities. IEEE Network, 2019, 33, 86-93. Research and Application of Multi-Node Communication and Energy Consumption Prediction Control in Underwater Acoustic Network. IEEE Access, 2019, 7, 41220-41229. Delay and Queue Aware Adaptive Scheduling-Based MAC Protocol for Underwater Acoustic Sensor Networks. IEEE Access, 2019, 7, 56263-56275. Cooperative motion parameter estimation using RSS measurements in robotic sensor networks. Journal of Network and Computer Applications, 2019, 136, 57-70. Data Freshness Based AUV Path Planning for UWSN in the Internet of Underwater Things. , 2019,	 4.3 6.9 4.2 4.2 9.1 	2 11 34 8 30 13 20
82 83 84 85 86 87 88 88	Distance-Penalized Active Learning via Markov Decision Processes. , 2019, , . Optimal 3D trajectory planning for AUVs using ocean general circulation models. Ocean Engineering, 2019, 188, 106266. Localization and Data Collection in AUV-Aided Underwater Sensor Networks: Challenges and Opportunities. IEEE Network, 2019, 33, 86-93. Research and Application of Multi-Node Communication and Energy Consumption Prediction Control in Underwater Acoustic Network. IEEE Access, 2019, 7, 41220-41229. Delay and Queue Aware Adaptive Scheduling- Based MAC Protocol for Underwater Acoustic Sensor Networks. IEEE Access, 2019, 7, 56263-56275. Cooperative motion parameter estimation using RSS measurements in robotic sensor networks. Journal of Network and Computer Applications, 2019, 136, 57-70. Data Freshness Based AUV Path Planning for UWSN in the Internet of Underwater Things. , 2019, , . On the Trade-Off Between Communication and Execution Overhead for Control of Multi-Agent Systems. , 2019, , .	 4.3 6.9 4.2 4.2 9.1 	2 11 34 8 30 13 20 0

#	Article	IF	CITATIONS
91	Stabilisation of a relative equilibrium of an underactuated AUV on <i>SE</i> (3). International Journal of Control, 2019, 92, 1883-1902.	1.9	4
92	Data collection from underwater acoustic sensor networks based on optimization algorithms. Computing (Vienna/New York), 2020, 102, 83-104.	4.8	8
93	Delay/Disruption Tolerant Networking. Springer Briefs in Electrical and Computer Engineering, 2020, , 55-62.	0.5	0
94	Path-Planning Analysis of AUV-Aided Mobile Data Collection in UWA Cooperative Sensor Networks. , 2020, , .		6
95	Generalized probability density function and applications to the experimental data in electrical circuits and systems. International Journal of Circuit Theory and Applications, 2020, 48, 2266-2279.	2.0	2
96	Energy Optimisation through Path Selection for Underwater Wireless Sensor Networks. , 2020, , .		4
97	AUV-Aided Energy-Efficient Data Collection in Underwater Acoustic Sensor Networks. IEEE Internet of Things Journal, 2020, 7, 10010-10022.	8.7	105
98	Value-Based Hierarchical Information Collection for AUV-Enabled Internet of Underwater Things. IEEE Internet of Things Journal, 2020, 7, 9870-9883.	8.7	53
99	Energy-Efficient Data Collection Using Autonomous Underwater Glider: A Reinforcement Learning Formulation. Sensors, 2020, 20, 3758.	3.8	7
100	DCN-MAC: A Dynamic Channel Negotiation MAC Mechanism for Underwater Acoustic Sensor Networks. Sensors, 2020, 20, 406.	3.8	11
101	Wearable sensor networks for patient health monitoring: challenges, applications, future directions, and acoustic sensor challenges. , 2021, , 189-221.		6
102	Channel Distribution and Noise Characteristics of Distributed Acoustic Sensing Underwater Communications. IEEE Sensors Journal, 2021, , 1-1.	4.7	5
103	Routing Protocol Design Issues and Challenges in Underwater Wireless Sensor Network. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 1-15.	0.4	7
104	Time-Difference-of-Arrival-Based Localization Methods of Underwater Mobile Nodes Using Multiple Surface Beacons. IEEE Access, 2021, 9, 31712-31725.	4.2	27
105	A systematic literature review on mobility in terrestrial and underwater wireless sensor networks. International Journal of Communication Systems, 2021, 34, e4799.	2.5	5
106	DEKCS: A Dynamic Clustering Protocol to Prolong Underwater Sensor Networks. IEEE Sensors Journal, 2021, 21, 9457-9464.	4.7	51
107	Cross-Layer-Aided Opportunistic Routing for Sparse Underwater Wireless Sensor Networks. Sensors, 2021, 21, 3205.	3.8	10
108	DDCA: A Dynamic Data Collection Algorithm in Mobile Underwater Wireless Sensor Networks. , 2021, ,		2

#	Article	IF	CITATIONS
109	AUV Trajectory Optimization for an Optical Underwater Sensor Network in the Presence of Ocean Currents. , 2021, , .		2
110	Communication-Aware Robotics: Exploiting Motion for Communication. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 115-139.	11.8	17
111	Dynamic Detecting Based Trajectory Planning for AUV to Collect Data from Underwater Sensors. , 2021, , .		2
112	Sleep-Scheduling-Based Hierarchical Data Collection Algorithm for Gliders in Underwater Acoustic Sensor Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 9466-9479.	6.3	14
113	A Decade Bibliometric Analysis of Underwater Sensor Network Research on the Internet of Underwater Things: An African Perspective. EAI/Springer Innovations in Communication and Computing, 2020, , 147-182.	1.1	3
114	Aerial Vehicle Path Planning for Monitoring Wildfire Frontiers. Springer Tracts in Advanced Robotics, 2016, , 455-467.	0.4	9
115	Delay and Lifetime Performance of Underwater Wireless Sensor Networks with Mobile Element Based Data Collection. International Journal of Distributed Sensor Networks, 2015, 11, 128757.	2.2	17
116	The Teleoperator with Wave Impedance and Environment Impedance Matched. Journal of Information and Computational Science, 2013, 10, 4525-4533.	0.1	2
118	An Energy-Aware Data-Gathering Protocol Based on Clustering using AUV in Underwater Sensor Networks. International Journal of Computer Network and Information Security, 2016, 8, 36-43.	1.9	0
119	Contract Based Information Collection in Underwater Acoustic Sensor Networks. , 2020, , .		4
120	Three Dimensional Path Planning and Obstacle Avoidance: An Overview. International Journal of Computer Applications, 2020, 176, 23-27.	0.2	1
121	Persistent Surveillance of Events with Unknown Rate Statistics. Springer Proceedings in Advanced Robotics, 2020, , 736-751.	1.3	2
122	A Survey of Underwater Multi-Robot Systems. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1-18.	13.1	50
123	Multi-AUV Aided Cooperative 3D-localization for Underwater Sensor Networks. Recent Advances in Electrical and Electronic Engineering, 2020, 13, 80-90.	0.3	2
124	Human Perceptions of a Curious Robot that Performs Off-Task Actions. , 2020, , .		7
125	Power-Efficient Data Collection Scheme for AUV-Assisted Magnetic Induction and Acoustic Hybrid Internet of Underwater Things. IEEE Internet of Things Journal, 2022, 9, 11675-11684.	8.7	6
126	On Successful Transmission Probability of Dynamic AUV Networks with Random Waypoint Model. , 2020, , .		0
127	Sea Experiment of Positioning Underwater Mobile Vehicles Using Multiple Surface Beacons. , 2020, , .		2

#	Article	IF	CITATIONS
128	Multi-AUV Placement for Coverage Maximization in Underwater Optical Wireless Sensor Networks. , 2020, , .		0
129	Reliable Data Collection Techniques in Underwater Wireless Sensor Networks: A Survey. IEEE Communications Surveys and Tutorials, 2022, 24, 404-431.	39.4	51
130	Dynamic-Detection-Based Trajectory Planning for Autonomous Underwater Vehicle to Collect Data From Underwater Sensors. IEEE Internet of Things Journal, 2022, 9, 13168-13178.	8.7	13
131	Co-Optimization of Motion, Communication, and Sensing in Real Wireless Channel Environments via Monte Carlo Tree Search. IEEE Transactions on Control of Network Systems, 2022, 9, 1493-1505.	3.7	1
132	MIF: Optimizing Information Freshness in Intermittently Connected Sensor Networks. , 2021, , .		0
133	RSSI based Trilateration Technique to Localize Nodes in Underwater Wireless Sensor Networks through Optical Communication. , 2021, , .		2
135	Mobile Relaying-Based Reliable Data Collection in Underwater Acoustic Sensor Networks. IEEE Wireless Communications Letters, 2022, 11, 1795-1799.	5.0	7
136	A Novel Routing Protocol Based on Elliptical Shaped Movement of Autonomous Underwater Vehicles in Data Gathering Process for Underwater Wireless Sensor Network. Sensors, 2022, 22, 5269.	3.8	6
137	A joint optimized data collection algorithm based on dynamic cluster-head selection and value of information in UWSNs. Vehicular Communications, 2022, 38, 100530.	4.0	2
138	Survey on Multi-Path Routing Protocols of Underwater Wireless Sensor Networks: Advancement and Applications. Electronics (Switzerland), 2022, 11, 3467.	3.1	9
139	Energy Aware Trajectory Optimization of Solar Powered AUVs for Optical Underwater Sensor Networks. IEEE Transactions on Communications, 2022, 70, 8258-8269.	7.8	3
140	Underwater Wireless Sensor Networks: Enabling Technologies for Node Deployment and Data Collection Challenges. IEEE Internet of Things Journal, 2023, 10, 3500-3524.	8.7	11
141	Environment-Aware AUV Trajectory Design and Resource Management for Multi-Tier Underwater Computing. IEEE Journal on Selected Areas in Communications, 2023, 41, 474-490.	14.0	14
142	Approximation Algorithms forÂReliability-Aware Maximum Vol onÂAUV-Aided Data Collections. Lecture Notes in Computer Science, 2022, , 219-230.	1.3	0
143	Evaluating Integration of Autonomous Underwater Vehicles into Port Protection. , 2022, , .		2
144	AUV-Enabled Data Collection for Underwater Acoustic Sensor Networks. , 2022, , .		2
145	Joint Channel Estimation and Decoding for Underwater Acoustic Communication With a Short Pilot Sequence. IEEE Journal of Oceanic Engineering, 2023, 48, 526-541.	3.8	3
146	Efficient Data Collection Scheme for Multi-Modal Underwater Sensor Networks Based on Deep Reinforcement Learning. IEEE Transactions on Vehicular Technology, 2023, 72, 6558-6570.	6.3	2

#	Article	IF	CITATIONS
147	Probabilistic Planning for AUV Data Harvesting from Smart Underwater Sensor Networks. , 2022, , .		1
148	A Medium Access Control Protocol Based on Interference Cancellation Graph for AUV-Assisted Internet of Underwater Things. Sustainability, 2023, 15, 4876.	3.2	0
149	Dynamic data collection algorithm based on mobile edge computing in underwater internet of things. Journal of Cloud Computing: Advances, Systems and Applications, 2023, 12, .	3.9	5
150	FER-Restricted AUV-Relaying Data Collection in Underwater Acoustic Sensor Networks. IEEE Transactions on Wireless Communications, 2023, 22, 9131-9142.	9.2	3
151	On Performance Analysis for Random 3D Mobile AUV Networks With Limited Data Buffers. IEEE Transactions on Vehicular Technology, 2023, , 1-16.	6.3	0
152	Autonomous underwater vehicle motion state recognition and control pattern mining. Ocean Engineering, 2023, 281, 114964.	4.3	2
153	Predictive receding-horizon multi-robot task allocation applied to the mapping of direct normal irradiance in a thermosolar power plant. Solar Energy, 2023, 263, 111911.	6.1	1
154	Frame Error Rate Restricted AUV Relaying Data Collection in Underwater Acoustic Sensor Networks. , 2023, , .		0
155	Mobile Relaying Between USV and AUV Under FER Constraints for Underwater Data Transmission. IEEE Communications Letters, 2023, 27, 3429-3433.	4.1	0
156	Acoustic positioning of multiple AUVs by an ASV: experimental validation and performance characterisation. IFAC-PapersOnLine, 2023, 56, 5753-5758.	0.9	0
157	Unlocking the Ocean 6C: A Review of Path-Planning Techniques for Maritime Data Harvesting Assisted by Autonomous Marine Vehicles. Journal of Marine Science and Engineering, 2024, 12, 126.	2.6	3
158	Wireless Sensor Network Protocols in Underwater Communication. Lecture Notes in Networks and Systems, 2024, , 97-111.	0.7	0