Two-Dimensional Transition Metal Carbides

ACS Nano 6, 1322-1331 DOI: 10.1021/nn204153h

Citation Report

#	Article	IF	CITATIONS
4	Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti ₃ C ₂ and Ti ₃ C ₂ X ₂ (X = F, OH) Monolayer. Journal of the American Chemical Society, 2012, 134, 16909-16916.	6.6	1,768
5	A Non-Aqueous Asymmetric Cell with a Ti ₂ C-Based Two-Dimensional Negative Electrode. Journal of the Electrochemical Society, 2012, 159, A1368-A1373.	1.3	332
6	Challenges in Ceramic Science: A Report from the Workshop on Emerging Research Areas in Ceramic Science. Journal of the American Ceramic Society, 2012, 95, 3699-3712.	1.9	59
7	Two-Dimensional Tetragonal TiC Monolayer Sheet and Nanoribbons. Journal of the American Chemical Society, 2012, 134, 19326-19329.	6.6	186
8	Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Computational Materials Science, 2012, 65, 104-114.	1.4	286
9	First principles study of two-dimensional early transition metal carbides. MRS Communications, 2012, 2, 133-137.	0.8	429
10	MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012, 16, 61-64.	2.3	1,252
11	Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chemical Society Reviews, 2013, 42, 8187.	18.7	386
12	New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. Journal of the American Chemical Society, 2013, 135, 15966-15969.	6.6	1,609
13	Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science, 2013, 341, 1502-1505.	6.0	3,329
14	Liquid Exfoliation of Layered Materials. Science, 2013, 340, .	6.0	3,109
15	Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2. Materials Letters, 2013, 109, 295-298.	1.3	136
16	Shape Memory and Superelastic Ceramics at Small Scales. Science, 2013, 341, 1505-1508.	6.0	236
17	Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C. Journal of Materials Chemistry A, 2013, 1, 13672.	5.2	77
18	An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chemical Communications, 2013, 49, 10112.	2.2	284
19	High temperature solution growth and characterization of Cr2AlC single crystals. Journal of Crystal Growth, 2013, 384, 88-95.	0.7	46
20	Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2â°'xNx(OH)2 from DFTB calculations. Journal of Solid State Chemistry, 2013, 207, 42-48.dy of structural and electronic properties of functionalized	1.4	154
21	Ti <mml:math inline"="" xmins:mml="http://www.w3.org/1998/Math/MathML
display="><mml:mrow><mml:msub><mml:mrow< td=""><td></td><td></td></mml:mrow<></mml:msub></mml:mrow></mml:math>		

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
22	Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 2013, 25, 2219-2223.	11.1	1,249
23	Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4, 1716.	5.8	2,095
24	Graphene-analogous low-dimensional materials. Progress in Materials Science, 2013, 58, 1244-1315.	16.0	684
25	Novel Electronic and Magnetic Properties of Twoâ€Dimensional Transition Metal Carbides and Nitrides. Advanced Functional Materials, 2013, 23, 2185-2192 First-principles analysis of MoS×mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	7.8	1,418
26	display= inline > <mmi:msub><mmi:mrow /><mmi:mn>2</mmi:mn> /mmi:msub>/Ti<mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mmi:msub><mmi:mrow /><mmi:mn>2</mmi:mn> </mmi:mrow </mmi:msub>C and MoS<mmi:math< td=""><td>1.1</td><td>166</td></mmi:math<></mmi:math </mmi:mrow </mmi:msub>	1.1	166
27	/> <mml: The New Skinny in Two-Dimensional Nanomaterials. ACS Nano, 2013, 7, 3739-3743.</mml: 	7.3	336
28	Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Materials Chemistry and Physics, 2013, 139, 147-152.	2.0	348
29	Structural and Electronic Properties and Stability of <i>MX</i> enes Ti ₂ C and Ti ₃ C ₂ Functionalized by Methoxy Groups. Journal of Physical Chemistry C, 2013, 117, 13637-13643.	1.5	194
30	MXene: A New Family of Promising Hydrogen Storage Medium. Journal of Physical Chemistry A, 2013, 117 14253-14260.	, 1.1	389
31	Corrosion behavior of Ti3AlC2 in molten KOH at 700 °C. Journal of Advanced Ceramics, 2013, 2, 313-317	7. 8.9	14
32	Electronic Properties of π-Conjugated Nickel Bis(dithiolene) Network and Its Addition Reactivity with Ethylene. Journal of Physical Chemistry C, 2013, 117, 14125-14129.	1.5	33
33	Graphene-like transition-metal nanocarbides and nanonitrides. Russian Chemical Reviews, 2013, 82, 735-746.	2.5	79
34	Grapheneâ€like nanocarbides and nanonitrides of <i>d</i> metals (MXenes): synthesis, properties and simulation. Micro and Nano Letters, 2013, 8, 59-62.	0.6	84
35	Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Ta _{n+1} C _n (n = 1,2,3). Europhysics Letters, 2013, 101, 57004.	0.7	54
36	Ultrathin Nanosheets of MAX Phases with Enhanced Thermal and Mechanical Properties in Polymeric Compositions: Ti ₃ Si _{0.75} Al _{0.25} C ₂ . Angewandte Chen - International Edition, 2013, 52, 4361-4365.	nie 7.2	113
38	SHS of MAX compounds in the Ti-Si-C system: Influence of mechanical activation. International Journal of Self-Propagating High-Temperature Synthesis, 2014, 23, 141-144.	0.2	11
39	Synthesis and Decomposition of Ti ₃ SiC ₂ under 1-5GPa at 1400°C. Key Engineering Materials, 2014, 602-603, 499-502.	0.4	6
40	Synthesis, characterization, and tribological properties of twoâ€dimensional Ti ₃ C ₂ . Crystal Research and Technology, 2014, 49, 926-932.	0.6	102

#	Article	IF	CITATIONS
41	Formation of nanolaminate structures in the Ti-Si-C system: A crystallochemical study. International Journal of Self-Propagating High-Temperature Synthesis, 2014, 23, 217-221.	0.2	20
42	Trends in electronic structures and structural properties of MAX phases: a first-principles study on M ₂ AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M ₂ AlN, and hypothetical M ₂ AlB phases. Journal of Physics Condensed Matter, 2014, 26, 505503.	0.7	116
43	High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry Communications, 2014, 48, 118-122.	2.3	420
44	Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Applied Physics Letters, 2014, 104, .	1.5	139
45	Enhanced and tunable surface plasmons in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ti</mml:mi><mml:mn mathvariant="normal">C<mml:mn>2</mml:mn></mml:mn </mml:msub></mml:mrow>stacks: Electronic structure versus boundary effects. Physical Review B, 2014, 89, .</mml:math 	ı>3≤/mml I.1	:mn>122
46	Microstructure and phase transformation of Ti ₃ AC ₂ (A = Al, Si) in hydrofluoric acid solution. Crystal Research and Technology, 2014, 49, 813-819.	0.6	17
47	Structure of Nanocrystalline <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Ti</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>Using Atomic Pair Distribution Function. Physical Review Letters, 2014, 112, 125501.</mml:msub></mml:mrow></mml:math>	mn>3>> <td>ml;mn>nrow></td>	ml;mn>nrow>
48	Tailoring mechanical properties and electrical conductivity of flexible niobium carbide nanocomposite thin films. RSC Advances, 2014, 4, 61355-61362.	1.7	41
49	Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field. Physical Chemistry Chemical Physics, 2014, 16, 26273-26278.	1.3	82
50	First Principles Calculations of the Relative Stability, Structure and Electronic Properties of Two Dimensional Metal Carbides and Nitrides. Key Engineering Materials, 0, 602-603, 527-531.	0.4	24
51	Particle processing technology. Science and Technology of Advanced Materials, 2014, 15, 010201.	2.8	0
52	Mechanically reliable thermoelectric (TE) nanocomposites by dispersing and embedding TE-nanostructures inside a tetragonal ZrO2matrix: the concept and experimental demonstration in graphene oxide–3YSZ system. Science and Technology of Advanced Materials, 2014, 15, 014201.	2.8	14
53	First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer. Computational Materials Science, 2014, 83, 290-293.	1.4	102
54	25th Anniversary Article: MXenes: A New Family of Twoâ€Dimensional Materials. Advanced Materials, 2014, 26, 992-1005.	11.1	4,547
55	Effect of helium irradiation on Ti3AlC2 at 500°C. Scripta Materialia, 2014, 77, 1-4.	2.6	51
56	The thermodynamic, electronic and elastic properties of the early-transition-metal diborides with AlB2-type structure: A density functional theory study. Journal of Alloys and Compounds, 2014, 607, 198-206.	2.8	28
57	Tuning Electronic Properties of Germanane Layers by External Electric Field and Biaxial Tensile Strain: A Computational Study. Journal of Physical Chemistry C, 2014, 118, 1148-1154.	1.5	92
58	Theoretical prediction of hydrogen storage on Li-decorated monolayer black phosphorus. Journal Physics D: Applied Physics, 2014, 47, 465302.	1.3	47

		REPORT	
#	Article	IF	CITATIONS
59	Ion Intercalation into Two-Dimensional Transition-Metal Carbides: Global Screening for New High-Capacity Battery Materials. Journal of the American Chemical Society, 2014, 136, 16270-16276.	6.6	528
60	Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16676-16681.	3.3	1,713
61	The effect of the interlayer element on the exfoliation of layered Mo ₂ AC (A = Al, Si, P, Ga,) Tj ETQc of Advanced Materials, 2014, 15, 014208.	0 0 0 rgBT 2.8	/Overlock 10 78
62	First principles investigation of point defect-related properties in Ti ₂ AlN. RSC Advances, 2014, 4, 42014-42021.	1.7	17
63	Investigations on V ₂ C and V ₂ CX ₂ (X = F, OH) Monolayer as a Promising Anode Material for Li Ion Batteries from First-Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 24274-24281.	1.5	301
64	In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti ₃ C ₂ and formation of carbon-supported TiO ₂ . Journal of Materials Chemistry A, 2014, 2, 14339.	5.2	287
65	One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chemical Communications, 2014, 50, 7420-7423.	2.2	614
66	Exfoliated layered copper phosphonate showing enhanced adsorption capability towards Pb ions. Chemical Communications, 2014, 50, 10622.	2.2	20
67	Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. Journal of Materials Chemistry A, 2014, 2, 14334-14338.	5.2	602
68	Tunable Indirect to Direct Band Gap Transition of Monolayer Sc ₂ CO ₂ by the Strain Effect. ACS Applied Materials & Interfaces, 2014, 6, 14724-14728.	4.0	175
69	Synthesis and characterization of two-dimensional Nb ₄ C ₃ (MXene). Chemical Communications, 2014, 50, 9517-9520.	2.2	481
70	Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sciences, 2014, 35, 62-65.	1.5	92
71	Role of Strain and Concentration on the Li Adsorption and Diffusion Properties on Ti ₂ C Layer. Journal of Physical Chemistry C, 2014, 118, 14983-14990.	1.5	88
72	Two-dimensional Ti 3 C 2 as anode material for Li-ion batteries. Electrochemistry Communications, 2014, 47, 80-83.	2.3	414
73	Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nature Communications, 2014, 5, 4576.	5.8	432
74	Ti ₃ C ₂ MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 11173-11179.	4.0	1,165
75	Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries. ACS Nano, 2014, 8, 9606-9615.	7.3	814
76	Coexistence of Ferromagnetic and a Re-entrant Cluster Glass State in the Layered Quaternary (Cr _{1â^<i>x</i>} ,Mn _{<i>x</i>}) ₂ GeC. Materials Research Letters, 2014, 2, 192-198.	4.1	45

#	Article	IF	CITATIONS
77	Surface Al leached Ti ₃ AlC ₂ as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale, 2014, 6, 11035-11040.	2.8	231
78	What Nano Can Do for Energy Storage. ACS Nano, 2014, 8, 5369-5371.	7.3	191
79	Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Physical Chemistry Chemical Physics, 2014, 16, 7841-7849.	1.3	395
80	Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid State Communications, 2014, 195, 61-69.	0.9	177
81	Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chemistry of Materials, 2014, 26, 2374-2381.	3.2	1,173
82	Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide. Journal of the American Chemical Society, 2014, 136, 4113-4116.	6.6	1,068
83	Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides. Journal of the American Chemical Society, 2014, 136, 6385-6394.	6.6	1,164
84	Interpenetrating network V ₂ O ₅ nanosheets/carbon nanotubes nanocomposite for fast lithium storage. RSC Advances, 2014, 4, 46624-46630.	1.7	31
85	Solid solution effects in the Ti2Al(C N) MAX phases: Synthesis, microstructure, electronic structure and transport properties. Acta Materialia, 2014, 80, 421-434.	3.8	51
86	Graphene, inorganic graphene analogs and their composites for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 12104.	5.2	251
87	Growth morphology and microstructural characterization of nonstoichiometric Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing. International Journal of Refractory Metals and Hard Materials, 2014, 45, 58-63.	1.7	17
88	Tunable Band Structures of Heterostructured Bilayers with Transition-Metal Dichalcogenide and MXene Monolayer. Journal of Physical Chemistry Ć, 2014, 118, 5593-5599.	1.5	147
89	Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations. International Journal of Hydrogen Energy, 2014, 39, 10606-10612.	3.8	163
90	Synthesis and tribological properties of TiC micro and nanoparticles. International Journal of Surface Science and Engineering, 2015, 9, 69.	0.4	1
91	Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bulletin, 2015, 40, 585-591.	1.7	71
92	Spectroscopic evidence in the visible-ultraviolet energy range of surface functionalization sites in the multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ti</mml:mi><mml:mmathvariant="normal"><c mml:mi="">C<mml:mn>2</mml:mn></c></mml:mmathvariant="normal"></mml:msub></mml:mrow></mml:math> MXene.	n> £ ≰/mm	:mᠯᢧ
93	Physical Review B, 2005, 90, . OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Physical Review B, 2015, 92, .	1.1	342
94	Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Physical Review B, 2015, 92, .	1.1	229

#	Article	IF	CITATIONS
95	Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides. Physical Review B, 2015, 92, .	1.1	65
96	Innovation and discovery of grapheneâ€like materials via densityâ€functional theory computations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 360-379.	6.2	205
97	Effect of MXene (Nano-Ti3C2) on Early-Age Hydration of Cement Paste. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	7
98	Shear induced micromechanical synthesis of Ti ₃ SiC ₂ MAXene nanosheets for functional applications. RSC Advances, 2015, 5, 51242-51247.	1.7	16
99	Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14096-14100.	5.2	152
100	First-principles design of silicene/Sc2CF2 heterojunction as a promising candidate for field effect transistor. Journal of Applied Physics, 2015, 117, .	1.1	27
101	Direct Measurement of Surface Termination Groups and Their Connectivity in the 2D MXene V ₂ CT _{<i>x</i>} Using NMR Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 13713-13720.	1.5	169
102	Synthesis and Structural Characterization of Ti ₂ C Nanosheets. Materials Science Forum, 0, 833, 44-47.	0.3	5
103	Covalency-Dependent Vibrational Dynamics in Two-Dimensional Titanium Carbides. Journal of Physical Chemistry A, 2015, 119, 12977-12984.	1.1	34
104	Phase stability and elastic properties of graphene-like Tan+1Cn (n = 1, 2, or 3) from first-pi calculations. Materials Research Innovations, 2015, 19, S264-S266.	rinciples	6
105	Effect of surface functionalization on the electronic transport properties of Ti ₃ C ₂ MXene. Europhysics Letters, 2015, 111, 67002.	0.7	106
105 106	Effect of surface functionalization on the electronic transport properties of Ti ₃ C ₂ MXene. Europhysics Letters, 2015, 111, 67002. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology, 2015, 26, 095201.	0.7 1.3	106 159
105 106 107	Effect of surface functionalization on the electronic transport properties of Ti ₃ C ₂ MXene. Europhysics Letters, 2015, 111, 67002. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology, 2015, 26, 095201. Sulfur Cathodes Based on Conductive MXene Nanosheets for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 3907-3911.	0.7 1.3 7.2	106 159 1,006
105 106 107	Effect of surface functionalization on the electronic transport properties of Ti ₃ C Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology, 2015, 26, 095201. Sulfur Cathodes Based on Conductive MXene Nanosheets for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 3907-3911. Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti ₃ C ₂ X. Journal of the American Chemical Society, 2015, 137, 2715-2721.	0.7 1.3 7.2 6.6	106 159 1,006 516
105 106 107 108	Effect of surface functionalization on the electronic transport properties of Ti ₃ C ₂ MXene. Europhysics Letters, 2015, 111, 67002.Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology, 2015, 26, 095201.Sulfur Cathodes Based on Conductive MXene Nanosheets for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 3907-3911.Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti < sub>3 C < sub>2 X. Journal of the American Chemical Society, 2015, 137, 2715-2721.Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. Journal of Materials Chemistry A, 2015, 3, 4960-4966.	0.7 1.3 7.2 6.6 5.2	106 159 1,006 516
105 106 107 108 109	Effect of surface functionalization on the electronic transport properties of Ti ₃ Csub>2 MXene. Europhysics Letters, 2015, 111, 67002.Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology, 2015, 26, 095201.Sulfur Cathodes Based on Conductive MXene Nanosheets for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 3907-3911.Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti(sub>3C ₂ X. Journal of the American Chemical Society, 2015, 137, 2715-2721.Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. Journal of Materials Chemistry A, 2015, 3, 4960-4966.How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 2015, 7, 6944-6956.	0.7 1.3 7.2 6.6 5.2 2.8	106 159 1,006 516 141 320
105 106 107 108 109 110	Effect of surface functionalization on the electronic transport properties of Ti < sub>3 C Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology, 2015, 26, 095201. Sulfur Cathodes Based on Conductive MXene Nanosheets for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 3907-3911. Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti ₃ C ₂ X. Journal of the American Chemical Society, 2015, 137, 2715-2721. Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. Journal of Materials Chemistry A, 2015, 3, 4960-4966. How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 2015, 7, 6944-6956. Highly Efficient Photothermal Effect by Atomic-Thickness Confinement in Two-Dimensional ZrNCI Nanosheets. ACS Nano, 2015, 9, 1683-1691.	0.7 1.3 7.2 6.6 5.2 2.8 7.3	106 159 1,006 516 141 320

#	Article	IF	CITATIONS
113	CO ₂ and temperature dual responsive "Smart―MXene phases. Chemical Communications, 2015, 51, 314-317.	2.2	222
115	Self-propagating high-temperature synthesis in the Ti-Si-C system: Features of product patterning. Nanotechnologies in Russia, 2015, 10, 67-74.	0.7	19
116	Intriguing electronic properties of two-dimensional MoS ₂ /TM ₂ CO ₂ (TM = Ti, Zr, or Hf) hetero-bilayers: type-II semiconductors with tunable band gaps. Nanotechnology, 2015, 26, 135703.	1.3	57
117	Fabrication of layered Ti ₃ C ₂ with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 7870-7876.	5.2	167
118	Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Scientific Reports, 2015, 5, 10522.	1.6	77
119	Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti ₂ CT _{<i>x</i>} MXene Electrodes for Supercapacitor Applications. Chemistry of Materials, 2015, 27, 5314-5323.	3.2	771
120	Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte. Journal of Advanced Ceramics, 2015, 4, 130-134.	8.9	74
121	Two-dimensional titanium carbide electrode with large mass loading for supercapacitor. Journal of Power Sources, 2015, 294, 354-359.	4.0	199
122	Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. Nano Letters, 2015, 15, 4955-4960.	4.5	415
123	Origin of Al Deficient Ti ₂ AlN and Pathways of Vacancy-Assisted Diffusion. Journal of Physical Chemistry C, 2015, 119, 16606-16613.	1.5	13
124	Recent advances in MXene: Preparation, properties, and applications. Frontiers of Physics, 2015, 10, 276-286.	2.4	734
125	Amineâ€Assisted Delamination of Nb ₂ C MXene for Liâ€Ion Energy Storage Devices. Advanced Materials, 2015, 27, 3501-3506.	11.1	749
126	Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes― Dalton Transactions, 2015, 44, 9353-9358.	1.6	662
127	Mg intercalation into Ti2C building block. Chemical Physics Letters, 2015, 629, 36-39.	1.2	16
128	Microscopic origin of MXenes derived from layered MAX phases. RSC Advances, 2015, 5, 25403-25408.	1.7	61
129	Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7, 8261-8283.	2.8	552
130	Binder-free layered Ti ₃ C ₂ /CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries. Dalton Transactions, 2015, 44, 7123-7126.	1.6	91
131	Achieving Type I, II, and III Heterojunctions Using Functionalized MXene. ACS Applied Materials & Interfaces, 2015, 7, 7163-7169.	4.0	120

#	Article	IF	CITATIONS
132	High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochimica Acta, 2015, 163, 246-251.	2.6	204
133	A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors and Actuators B: Chemical, 2015, 218, 60-66.	4.0	377
134	Vibrational properties of Ti ₃ C ₂ and Ti ₃ C ₂ T ₂ (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Physical Chemistry Chemical Physics, 2015, 17, 9997-10003.	1.3	455
135	Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications, 2015, 6, 6544.	5.8	873
136	Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Materials Letters, 2015, 150, 62-64.	1.3	223
137	Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical Reviews, 2015, 115, 11941-11966.	23.0	719
138	Novel Hierarchical TiO ₂ / C Nanocomposite with Enhanced Photocatalytic Performance. Nano, 2015, 10, 1550064.	0.5	26
139	Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015, 9, 9451-9469.	7.3	1,726
140	Surface group modification and carrier transport properties of layered transition metal carbides (Ti ₂ CT _x , T: –OH, –F and –O). Nanoscale, 2015, 7, 19390-19396.	2.8	285
141	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-11539.	7.3	2,069
142	Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Materials Letters, 2015, 160, 537-540.	1.3	208
143	Effect of lithium and sodium ion adsorption on the electronic transport properties of Ti3C2 MXene. Applied Surface Science, 2015, 359, 153-157.	3.1	50
144	Synthesis and Characterization of Novel AlF ₃ Cubes. Nano, 2015, 10, 1550071.	0.5	2
145	Noncovalent Molecular Doping of Twoâ€Đimensional Materials. ChemNanoMat, 2015, 1, 542-557.	1.5	41
146	Perylene diimide dye/layered carbide charge transfer composite: Design, synthesis, and photophysical properties. Materials Letters, 2015, 161, 208-211.	1.3	5
147	Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nature Communications, 2015, 6, 7873.	5.8	526
148	Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS ₂ monolayer. Journal of Materials Chemistry C, 2015, 3, 9603-9608.	2.7	135
149	Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. Europhysics Letters, 2015, 111, 26007.	0.7	262

#	Article	IF	CITATIONS
150	Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 2015, 14, 1135-1141.	13.3	1,045
151	Exploring the potential of exfoliated ternary ultrathin Ti ₄ AlN ₃ nanosheets for fabricating hybrid patterned polymer brushes. RSC Advances, 2015, 5, 70339-70344.	1.7	30
152	Theoretical understanding of magnetic and electronic structures of Ti3C2 monolayer and its derivatives. Solid State Communications, 2015, 222, 9-13.	0.9	41
153	Heavy-Metal Adsorption Behavior of Two-Dimensional Alkalization-Intercalated MXene by First-Principles Calculations. Journal of Physical Chemistry C, 2015, 119, 20923-20930.	1.5	193
154	High and anisotropic carrier mobility in experimentally possible Ti ₂ CO ₂ (MXene) monolayers and nanoribbons. Nanoscale, 2015, 7, 16020-16025.	2.8	225
155	Synthesis of Nb ₂ AlC Material by High Temperature Solid State Reaction Method. Key Engineering Materials, 2015, 655, 240-243.	0.4	3
156	The Nonlinear Elasticity of Hexagonal Ti ₂ C Monolayer from First-Principles Calculations. Materials Science Forum, 0, 833, 150-153.	0.3	0
157	Preparation and tribological properties of Ti ₃ C ₂ (OH) ₂ nanosheets as additives in base oil. RSC Advances, 2015, 5, 2762-2767.	1.7	117
158	An Organ-Like Titanium Carbide Material (MXene) with Multilayer Structure Encapsulating Hemoglobin for a Mediator-Free Biosensor. Journal of the Electrochemical Society, 2015, 162, B16-B21.	1.3	240
159	Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance. Advanced Materials, 2015, 27, 339-345.	11.1	1,125
160	Thermal stability of two-dimensional Ti2C nanosheets. Ceramics International, 2015, 41, 2631-2635.	2.3	143
161	Synthesis of Two-Dimensional Materials by Selective Extraction. Accounts of Chemical Research, 2015, 48, 128-135.	7.6	590
162	MXene nanoribbons. Journal of Materials Chemistry C, 2015, 3, 879-888.	2.7	65
163	Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 191, 33-40.	1.7	606
164	Regulating the Electrical Behaviors of 2D Inorganic Nanomaterials for Energy Applications. Small, 2015, 11, 654-666.	5.2	50
165	Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz rystal Admittance and In Situ Electronic Conductance Measurements. Advanced Energy Materials, 2015, 5, 1400815.	10.2	283
166	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
167	Promising prospects for 2D d ² –d ⁴ M ₃ C ₂ transition metal carbides (MXenes) in N ₂ capture and conversion into ammonia. Energy and Environmental Science, 2016, 9, 2545-2549.	15.6	395

#	Article	IF	CITATIONS
168	Synthesis of Twoâ€Ðimensional Materials for Capacitive Energy Storage. Advanced Materials, 2016, 28, 6104-6135.	11.1	548
169	A Twoâ€Dimensional Zirconium Carbide by Selective Etching of Al ₃ C ₃ from Nanolaminated Zr ₃ Al ₃ C ₅ . Angewandte Chemie - International Edition, 2016, 55, 5008-5013.	7.2	425
170	Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Advanced Functional Materials, 2016, 26, 3118-3127.	7.8	945
171	Fabrication of Ti ₃ C ₂ T <i>_x</i> MXene Transparent Thin Films with Tunable Optoelectronic Properties. Advanced Electronic Materials, 2016, 2, 1600050.	2.6	587
172	Two‣tep Oxidation of Mxene in the Synthesis of Layer‣tacked Anatase Titania with Enhanced Lithium‣torage Performance. ChemElectroChem, 2016, 3, 871-876.	1.7	53
173	Photoluminescence from Liquidâ€Exfoliated WS ₂ Monomers in Poly(Vinyl Alcohol) Polymer Composites. Advanced Functional Materials, 2016, 26, 1028-1039.	7.8	73
174	Ultrathin MXeneâ€Micropatternâ€Based Fieldâ€Effect Transistor for Probing Neural Activity. Advanced Materials, 2016, 28, 3333-3339.	11.1	474
175	Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. Small, 2016, 12, 2741-2749.	5.2	128
176	Review—Two-Dimensional Layered Materials for Energy Storage Applications. ECS Journal of Solid State Science and Technology, 2016, 5, Q3021-Q3025.	0.9	68
177	Direct Chemical Synthesis of MnO ₂ Nanowhiskers on Transition-Metal Carbide Surfaces for Supercapacitor Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 18806-18814.	4.0	350
178	Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology, 2016, 27, 335702.	1.3	226
179	Porous Twoâ€Dimensional Transition Metal Carbide (MXene) Flakes for Highâ€Performance Liâ€Ion Storage. ChemElectroChem, 2016, 3, 689-693.	1.7	452
180	A Twoâ€Dimensional Zirconium Carbide by Selective Etching of Al ₃ C ₃ from Nanolaminated Zr ₃ Al ₃ C ₅ . Angewandte Chemie, 2016, 128, 5092-5097.	1.6	65
181	Searching for Highly Active Catalysts for Hydrogen Evolution Reaction Based on O-Terminated MXenes through a Simple Descriptor. Chemistry of Materials, 2016, 28, 9026-9032.	3.2	247
182	Synthesis and DFT investigation of new bismuth-containing MAX phases. Scientific Reports, 2016, 6, 18829.	1.6	97
183	The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Scientific Reports, 2016, 6, 27971.	1.6	178
184	Effects of Applied Potential and Water Intercalation on the Surface Chemistry of Ti ₂ C and Mo ₂ C MXenes. Journal of Physical Chemistry C, 2016, 120, 28432-28440.	1.5	104
185	Ti ₂ CO ₂ Nanotubes with Negative Strain Energies and Tunable Band Gaps Predicted from First-Principles Calculations. Journal of Physical Chemistry Letters, 2016, 7, 5280-5284.	2.1	37

ARTICLE

186 Tunable electronic and magnetic properties of Cr2M′C2T2 (M′ = Ti or V; T = O, OH or F). Applied Physics Letters, 2016, 109, .

187	Computational characterization of lightweight multilayer MXene Li-ion battery anodes. Applied Physics Letters, 2016, 108, .	1.5	79
188	Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations. AIP Advances, 2016, 6, .	0.6	210
189	Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale, 2016, 8, 8986-8994.	2.8	380
190	Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. Journal of Alloys and Compounds, 2016, 685, 194-201.	2.8	128
191	Amorphous Metals. , 2016, , 611-623.		0
192	Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. Chemistry of Materials, 2016, 28, 3937-3943.	3.2	210
193	Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Applied Surface Science, 2016, 384, 287-293.	3.1	163
194	Synthesis of two-dimensional titanium nitride Ti ₄ N ₃ (MXene). Nanoscale, 2016, 8, 11385-11391.	2.8	878
195	Layer-by-layer self-assembly of polyelectrolyte functionalized MoS ₂ nanosheets. Nanoscale, 2016, 8, 9641-9647.	2.8	28
196	Investigation of magnetic and electronic properties of transition metal doped Sc ₂ CT ₂ (T = O, OH or F) using a first principles study. Physical Chemistry Chemical Physics, 2016, 18, 12914-12919.	1.3	70
197	Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo ₂ C Crystals. ACS Nano, 2016, 10, 4504-4510.	7.3	69
198	Cu 2 O Hybridized Titanium Carbide with Open Conductive Frameworks for Lithium-ion Batteries. Electrochimica Acta, 2016, 202, 24-31.	2.6	57
199	Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. Journal of Power Sources, 2016, 326, 575-579.	4.0	250
200	Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues. RSC Advances, 2016, 6, 49505-49516.	1.7	24
201	Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Advances, 2016, 6, 35731-35739.	1.7	224
202	Ion-Exchange and Cation Solvation Reactions in Ti ₃ C ₂ MXene. Chemistry of Materials, 2016, 28, 3507-3514.	3.2	499
203_	MXeneâ€onâ€Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601372.	10.2	368

#	Article	IF	CITATIONS
204	ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Advances, 2016, 6, 88934-88942.	1.7	79
205	Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Physical Review B, 2016, 94, .	1.1	142
206	Atomic Defects in Monolayer Titanium Carbide (Ti ₃ C ₂ T _{<i>x</i>}) MXene. ACS Nano, 2016, 10, 9193-9200.	7.3	785
207	Structure and properties of phosphorene-like IV-VI 2D materials. Nanotechnology, 2016, 27, 415203.	1.3	51
208	2D Structures Beyond Graphene. Semiconductors and Semimetals, 2016, 95, 1-33.	0.4	8
209	TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis. Progress in Natural Science: Materials International, 2016, 26, 493-497.	1.8	36
210	Self-Reduction Synthesis of New MXene/Ag Composites with Unexpected Electrocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2016, 4, 6763-6771.	3.2	216
211	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mi> M </mml:mi> <mm mathvariant="normal">C <mml:mn> 2 </mml:mn> </mm </mml:msubsup></mml:mrow> MXenes	ıl:mn>2 <td>nml:mn><m< td=""></m<></td>	nml:mn> <m< td=""></m<>

#	Article	IF	CITATIONS
222	Effects of 2-D transition metal carbide Ti ₂ CT _x on properties of epoxy composites. RSC Advances, 2016, 6, 87341-87352.	1.7	82
223	Ultrafine nanoparticles assembled Mo 2 C nanoplates as promising anode materials for sodium ion batteries with excellent performance. Journal of Energy Storage, 2016, 8, 205-211.	3.9	32
224	Computational discovery of stable <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:m Physical Review B, 2016, 94, .</mml:m </mml:msub></mml:mrow></mml:math 	n>n2r/mml	:m n5 >
225	2D materials for renewable energy storage devices: Outlook and challenges. Chemical Communications, 2016, 52, 13528-13542.	2.2	96
226	Transition Metalâ€Promoted V ₂ CO ₂ (MXenes): A New and Highly Active Catalyst for Hydrogen Evolution Reaction. Advanced Science, 2016, 3, 1600180.	5.6	279
227	Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide. Journal of Power Sources, 2016, 327, 519-525.	4.0	78
228	Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy and Environmental Science, 2016, 9, 2978-3006.	15.6	368
229	Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale, 2016, 8, 16371-16378.	2.8	227
230	A Cr ₂ CO ₂ monolayer as a promising cathode for lithium and non-lithium ion batteries: a computational exploration. RSC Advances, 2016, 6, 81591-81596.	1.7	29
231	Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases. Journal of Physical Chemistry C, 2016, 120, 28131-28137.	1.5	41
232	Nanolaminated composite materials: structure, interface role and applications. RSC Advances, 2016, 6, 109361-109385.	1.7	50
233	Structural, electronic transport and optical properties of functionalized quasi-2D TiC2 from first-principles calculations. Applied Surface Science, 2016, 390, 1009-1014.	3.1	10
234	Large-Gap Quantum Spin Hall State in MXenes: <i>d</i> Band Topological Order in a Triangular Lattice. Nano Letters, 2016, 16, 6584-6591.	4.5	193
235	Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceramics International, 2016, 42, 16412-16416.	2.3	316
236	2D nanostructures for water purification: graphene and beyond. Nanoscale, 2016, 8, 15115-15131.	2.8	318
237	Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced Science, 2016, 3, 1500286.	5.6	1,001
238	First-principles study of size- and edge-dependent properties of MXene nanoribbons. Physical Review B, 2016, 93, .	1.1	72
239	Nearly free electron states in MXenes. Physical Review B, 2016, 93, .	1.1	185

#	Article	IF	CITATIONS
240	Control of optical and electrical properties of nanosheets by the chemical structure of the turning point in a foldable polymer. Nanoscale, 2016, 8, 14673-14681.	2.8	18
242	Ti ₃ C ₂ T _x (MXene)–polyacrylamide nanocomposite films. RSC Advances, 2016, 6, 72069-72073.	1.7	162
243	Enhanced Capacitive Performance Based on Diverse Layered Structure of Two-Dimensional Ti ₃ C ₂ MXene with Long Etching Time. Journal of the Electrochemical Society, 2016, 163, A1975-A1982.	1.3	80
244	Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M ₂ CT ₂ , M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 2016, 4, 12913-12920.	5.2	205
245	Electronic and Transport Properties of Ti ₂ CO ₂ MXene Nanoribbons. Journal of Physical Chemistry C, 2016, 120, 17143-17152.	1.5	46
246	Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 29427-29433.	4.0	234
247	Proposing the prospects of Ti ₃ CN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2016, 18, 32937-32943.	1.3	105
248	Catalytic properties of group 4 transition metal dichalcogenides (MX ₂ ; M = Ti, Zr, Hf; X =) Tj ETQq1	1	4 _{.5} gBT /Over
249	Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers. Scientific Reports, 2016, 6, 29531.	1.6	14
250	Novel amperometric glucose biosensor based on MXene nanocomposite. Scientific Reports, 2016, 6, 36422.	1.6	268
251	Structural stability and electronic properties of multi-functionalized two-dimensional chromium carbides. Thin Solid Films, 2016, 619, 131-136.	0.8	33
252	Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nature Communications, 2016, 7, 12543.	5.8	78
253	2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy, 2016, 30, 603-613.	8.2	293
254	Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers. ACS Applied Materials & Interfaces, 2016, 8, 29642-29648.	4.0	147
255	One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS. Scientific Reports, 2016, 6, 32049.	1.6	316
256	Site-projected electronic structure of two-dimensional Ti ₃ C ₂ MXene: the role of the surface functionalization groups. Physical Chemistry Chemical Physics, 2016, 18, 30946-30953.	1.3	121
257	Supercapacitors based on two dimensional VO 2 nanosheet electrodes in organic gel electrolyte. Electrochimica Acta, 2016, 220, 601-608.	2.6	58
258	Highly active Co–Mo–C/NRGO composite as an efficient oxygen electrode for water–oxygen redox cycle. Journal of Materials Chemistry A, 2016, 4, 18100-18106.	5.2	40

#	Article	IF	CITATIONS
259	Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti ₃ C ₂ MXene Flakes. Advanced Electronic Materials, 2016, 2, 1600255.	2.6	1,160
260	Effects of the Interlayer Interaction and Electric Field on the Band Gap of Polar Bilayers: A Case Study of Sc ₂ CO ₂ . Journal of Physical Chemistry C, 2016, 120, 24857-24865.	1.5	42
261	Demonstration of Li-Ion Capacity of MAX Phases. ACS Energy Letters, 2016, 1, 1094-1099.	8.8	57
262	MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A, 2016, 4, 18265-18271.	5.2	358
263	New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. Journal of Materials Chemistry C, 2016, 4, 11143-11149.	2.7	164
264	Production of Twoâ€Dimensional Nanomaterials via Liquidâ€Based Direct Exfoliation. Small, 2016, 12, 272-293.	5.2	407
265	Synthetic Twoâ€Dimensional Materials: A New Paradigm of Membranes for Ultimate Separation. Advanced Materials, 2016, 28, 6529-6545.	11.1	192
266	Layered Orthorhombic Nb ₂ O ₅ @Nb ₄ C ₃ T <i>_x</i> and TiO ₂ @Ti ₃ C ₂ T <i>_x</i> Hierarchical Composites for High Performance Liâ€ion Batteries. Advanced Functional Materials. 2016. 26. 4143-4151.	7.8	309
267	Nanoscale Elastic Changes in 2D Ti ₃ C ₂ T _{<i>x</i>} (MXene) Pseudocapacitive Electrodes. Advanced Energy Materials, 2016, 6, 1502290.	10.2	117
268	Twoâ€Dimensional Materials for Beyondâ€Lithiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600025.	10.2	533
269	Twoâ€Dimensional Nbâ€Based M ₄ C ₃ Solid Solutions (MXenes). Journal of the American Ceramic Society, 2016, 99, 660-666.	1.9	234
270	Energy storage performance of V _{n+1} C _n monolayer as electrode material studied by first-principles calculations. RSC Advances, 2016, 6, 54999-55006.	1.7	18
271	Preparation and methane adsorption of two-dimensional carbide Ti2C. Adsorption, 2016, 22, 915-922.	1.4	85
272	A Honeycomb BeN ₂ Sheet with a Desirable Direct Band Gap and High Carrier Mobility. Journal of Physical Chemistry Letters, 2016, 7, 2664-2670.	2.1	100
273	Production of Ni(OH) ₂ nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	5.2	71
274	Two-Dimensional Titanium Carbide/RGO Composite for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 15661-15667.	4.0	275
275	Morphological control in the adaptive ionic layer epitaxy of ZnO nanosheets. Extreme Mechanics Letters, 2016, 7, 64-70.	2.0	14
276	Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 2016, 515, 175-188.	4.1	155

#	Article	IF	CITATIONS
277	Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. ACS Applied Materials & Interfaces, 2016, 8, 16396-16403.	4.0	214
278	High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. Journal of Materials Chemistry C, 2016, 4, 6500-6509.	2.7	127
279	Hydrogenated V ₂ O ₅ Nanosheets for Superior Lithium Storage Properties. Advanced Functional Materials, 2016, 26, 784-791.	7.8	149
280	MXene Electrode for the Integration of WSe ₂ and MoS ₂ Field Effect Transistors. Advanced Functional Materials, 2016, 26, 5328-5334.	7.8	198
281	Fundamental insights into the electronic structure of zigzag MoS ₂ nanoribbons. Physical Chemistry Chemical Physics, 2016, 18, 4675-4683.	1.3	16
282	Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 2016, 308, 402-410.	6.5	115
283	Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors. Physical Chemistry Chemical Physics, 2016, 18, 4460-4467.	1.3	65
284	The role of terminations and coordination atoms on the pseudocapacitance of titanium carbonitride monolayers. Physical Chemistry Chemical Physics, 2016, 18, 4376-4384.	1.3	32
285	Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. Journal of Materials Chemistry A, 2016, 4, 489-499.	5.2	170
286	Resolving the Structure of Ti ₃ C ₂ T _{<i>x</i>} MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function. Chemistry of Materials, 2016, 28, 349-359.	3.2	374
287	Superior catalytic activity derived from a two-dimensional Ti ₃ C ₂ precursor towards the hydrogen storage reaction of magnesium hydride. Chemical Communications, 2016, 52, 705-708.	2.2	220
288	X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Applied Surface Science, 2016, 362, 406-417.	3.1	1,369
289	High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 2016, 18, 228-233.	1.3	109
290	Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Nanotechnology, 2016, 27, 172001.	1.3	48
291	A few-layered Ti ₃ C ₂ nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 5993-5998.	5.2	130
292	The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 2016, 8, 9128-9133.	2.8	225
293	Isolation of pristine MXene from Nb ₄ AlC ₃ MAX phase: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 11073-11080.	1.3	47
294	Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano, 2016, 10, 3334-3341.	7.3	448

#	Article	IF	CITATIONS
295	Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. Journal of Materials Science: Materials in Electronics, 2016, 27, 5440-5445.	1.1	41
296	Few layered Co(OH) ₂ ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chemistry, 2016, 18, 3066-3074.	4.6	171
297	Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. Journal of Electroanalytical Chemistry, 2016, 766, 78-86.	1.9	17
298	Sn ⁴⁺ Ion Decorated Highly Conductive Ti ₃ C ₂ MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. ACS Nano, 2016, 10, 2491-2499.	7.3	632
299	Predicted Surface Composition and Thermodynamic Stability of MXenes in Solution. Journal of Physical Chemistry C, 2016, 120, 3550-3556.	1.5	196
300	Ab Initio Prediction and Characterization of Mo ₂ C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries. Journal of Physical Chemistry Letters, 2016, 7, 937-943.	2.1	334
301	Antibacterial Activity of Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Nano, 2016, 10, 3674-3684.	7.3	904
302	Composites of TiO ₂ Nanoparticles Deposited on Ti ₃ C ₂ MXene Nanosheets with Enhanced Electrochemical Performance. Journal of the Electrochemical Society, 2016, 163, A785-A791.	1.3	280
303	Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceramics International, 2016, 42, 8419-8424.	2.3	295
304	Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale, 2016, 8, 7085-7093.	2.8	325
305	Promising electron mobility and high thermal conductivity in Sc ₂ CT ₂ (T = F,) Tj ETQq0 (0 0 rgBT /0 2 . g	Overlock 10 T
306	Recent advances in 2D materials for photocatalysis. Nanoscale, 2016, 8, 6904-6920.	2.8	680
307	Prediction of Mobility, Enhanced Storage Capacity, and Volume Change during Sodiation on Interlayer-Expanded Functionalized Ti ₃ C ₂ MXene Anode Materials for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 5288-5296.	1.5	258
308	Investigations on Nb ₂ C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations. RSC Advances, 2016, 6, 27467-27474.	1.7	147
309	H ₂ O ₂ assisted room temperature oxidation of Ti ₂ C MXene for Li-ion battery anodes. Nanoscale, 2016, 8, 7580-7587.	2.8	396
310	Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. ACS Nano, 2016, 10, 1589-1601.	7.3	365
311	TiC ₂ : a new two-dimensional sheet beyond MXenes. Nanoscale, 2016, 8, 233-242.	2.8	161
312	Optical and Electronic Properties of Two-Dimensional Layered Materials. Nanophotonics, 2017, 6, 479-493.	2.9	145

#	Article	IF	CITATIONS
313	Preparation of TiO ₂ /Ti ₃ C ₂ T _x hybrid nanocomposites and their tribological properties as base oil lubricant additives. RSC Advances, 2017, 7, 4312-4319.	1.7	90
314	Enhanced Liâ€ l on Accessibility in MXene Titanium Carbide by Steric Chloride Termination. Advanced Energy Materials, 2017, 7, 1601873.	10.2	212
315	A Twoâ€Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angewandte Chemie - International Edition, 2017, 56, 1825-1829.	7.2	831
316	A Twoâ€Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angewandte Chemie, 2017, 129, 1851-1855.	1.6	95
317	Synthesis and tribological property of Ti3C2T X nanosheets. Journal of Materials Science, 2017, 52, 2200-2209.	1.7	101
318	Layered ternary M _{n+1} AX _n phases and their 2D derivative MXene: an overview from a thin-film perspective. Journal Physics D: Applied Physics, 2017, 50, 113001.	1.3	216
319	Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. Journal of Materials Chemistry A, 2017, 5, 3735-3758.	5.2	329
320	2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2, .	23.3	5,261
321	Recent advances of supercapacitors based on two-dimensional materials. Applied Materials Today, 2017, 7, 1-12.	2.3	20
322	Atomic layer deposition of SnO 2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34, 249-256.	8.2	423
323	Titanium carbide sheet based high performance wire type solid state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 5726-5736.	5.2	140
324	Synthesis of Nanoflower-Shaped MXene Derivative with Unexpected Catalytic Activity for Dehydrogenation of Sodium Alanates. ACS Applied Materials & Interfaces, 2017, 9, 7611-7618.	4.0	64
325	Ti ₃ BN monolayer: the MXene-like material predicted by first-principles calculations. RSC Advances, 2017, 7, 11834-11839.	1.7	7
326	Superconductivity of monolayer Mo2C: The key role of functional groups. Journal of Chemical Physics, 2017, 146, 034705.	1.2	61
327	Interfacial Defect Engineering on Electronic States of Two-Dimensional AlN/MoS ₂ Heterostructure. Journal of Physical Chemistry C, 2017, 121, 6605-6613.	1.5	31
328	Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 2017, 29, 1605336.	11.1	1,021
329	Binder-free Ti 3 C 2 T x MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chemical Engineering Journal, 2017, 317, 1026-1036.	6.6	202
330	Large-Area Highly Conductive Transparent Two-Dimensional Ti ₂ CT _{<i>x</i>} Film. Journal of Physical Chemistry Letters, 2017, 8, 859-865.	2.1	118

#	Article	IF	CITATIONS
331	Preparation of High-Purity V ₂ C MXene and Electrochemical Properties as Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A709-A713.	1.3	282
332	Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction. 2D Materials, 2017, 4, 025031.	2.0	18
333	Photoluminescent Ti ₃ C ₂ MXene Quantum Dots for Multicolor Cellular Imaging. Advanced Materials, 2017, 29, 1604847.	11.1	692
334	Structures and Mechanical and Electronic Properties of the Ti2CO2 MXene Incorporated with Neighboring Elements (Sc, V, B and N). Journal of Electronic Materials, 2017, 46, 2460-2466.	1.0	68
335	Controllable magnitude and anisotropy of the electrical conductivity of Hf ₃ C ₂ O ₂ MXene. Journal of Physics Condensed Matter, 2017, 29, 165701.	0.7	35
336	Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. Advanced Energy Materials, 2017, 7, 1602725.	10.2	514
337	Predicting stable phase monolayer Mo ₂ C (MXene), a superconductor with chemically-tunable critical temperature. Journal of Materials Chemistry C, 2017, 5, 3438-3444.	2.7	88
338	High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 2017, 7, 11000-11011.	1.7	166
339	Tunable band gap and optical properties of surface functionalized Sc ₂ C monolayer. Chinese Physics B, 2017, 26, 017806.	0.7	13
340	Electronic properties and applications of MXenes: a theoretical review. Journal of Materials Chemistry C, 2017, 5, 2488-2503.	2.7	759
341	Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Advances, 2017, 7, 20494-20501.	1.7	242
342	P and Si functionalized MXenes for metal-ion battery applications. 2D Materials, 2017, 4, 025073.	2.0	62
343	Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti 3 C 2 X 2 (X O, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium. Applied Catalysis B: Environmental, 2017, 210, 462-469.	10.8	77
344	Two-Dimensional Topological Insulators: Progress and Prospects. Journal of Physical Chemistry Letters, 2017, 8, 1905-1919.	2.1	170
345	The influence of N content on structure, phase stability, elastic and electronic properties in Ti ₃ AlC _{2Ⱂ<i>x</i>} N _{<i>x</i>} (<i>x</i> = 0–2). Physica Status S (B): Basic Research, 2017, 254, 1700009.	olûdt	10
346	Selective Calixareneâ€Directed Synthesis of MXene Plates, Crumpled Sheets, Spheres, and Scrolls. Chemistry - A European Journal, 2017, 23, 8128-8133.	1.7	30
347	Two-dimensional scandium-based carbides (MXene): Band gap modulation and optical properties. Journal of Alloys and Compounds, 2017, 712, 752-759.	2.8	68
348	Polydispersity reduction of colloidal plates via size fractionation of the isotropic–nematic phase transition. Soft Matter, 2017, 13, 3789-3793.	1.2	8

	CITATION RE	PORT	
#	Article	IF	CITATIONS
349	A first-principles study of NbSe ₂ monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries. Journal Physics D: Applied Physics, 2017, 50, 235501.	1.3	69
350	Mechanism on the Improved Performance of Lithium Sulfur Batteries with MXene-Based Additives. Journal of Physical Chemistry C, 2017, 121, 11047-11054.	1.5	118
351	Computational mining of photocatalysts for water splitting hydrogen production: two-dimensional InSe-family monolayers. Catalysis Science and Technology, 2017, 7, 2744-2752.	2.1	123
352	Band gap modification in doped MXene: Sc ₂ CF ₂ . Journal of Materials Chemistry C, 2017, 5, 5956-5961.	2.7	78
353	In Situ Monitoring of Gravimetric and Viscoelastic Changes in 2D Intercalation Electrodes. ACS Energy Letters, 2017, 2, 1407-1415.	8.8	56
354	Facile preparation of in situ coated Ti ₃ C ₂ T _x /Ni _{0.5} Zn _{0.5} Fe ₂ O _{4 and their electromagnetic performance. RSC Advances, 2017, 7, 24698-24708.}	‹/s ub >com	np æsið es
355	Preparation of Ti 3 C 2 and Ti 2 C MXenes by fluoride salts etching and methane adsorptive properties. Applied Surface Science, 2017, 416, 781-789.	3.1	407
356	Two-dimensional MXenes for energy storage and conversion applications. Materials Today Energy, 2017, 5, 22-36.	2.5	128
357	The origin of low workfunctions in OH terminated MXenes. Nanoscale, 2017, 9, 7016-7020.	2.8	59
358	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	1.9	23
359	Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chemistry of Materials, 2017, 29, 4848-4856.	3.2	1,120
360	Strain engineering of electronic structures and photocatalytic responses of MXenes functionalized by oxygen. Physical Chemistry Chemical Physics, 2017, 19, 14738-14744.	1.3	60
361	Ti ₃ C ₂ MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. ACS Nano, 2017, 11, 4792-4800.	7.3	544
362	Raman spectroscopy of two-dimensional material under high pressure: Black phosphorus ultrathin film, phosphorene. Japanese Journal of Applied Physics, 2017, 56, 05FB06.	0.8	13
363	Molybdenum Carbideâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 10947-10961.	1.7	267
364	Ground-State Structure of YN ₂ Monolayer Identified by Global Search. Journal of Physical Chemistry C, 2017, 121, 10258-10264.	1.5	38
365	Simultaneous Preparation and Functionalization of 2D Materials Assisted by Amphiphilic MoS ₂ Nanosheets. Advanced Materials Interfaces, 2017, 4, 1600847.	1.9	10
366	2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2017, 7, 494-500.	5.5	825

#	Article	IF	CITATIONS
367	Two-dimensional nitrogen-rich transition metal compounds: The case of TiN 2. Journal of Electron Spectroscopy and Related Phenomena, 2017, 219, 29-34.	0.8	3
368	Electrically Transduced Sensors Based on Nanomaterials (2012–2016). Analytical Chemistry, 2017, 89, 249-275.	3.2	71
369	Structural, mechanical, dynamical and electronic properties and high-pressure behavior of Mo2GeC: A first-principles study. Computational Materials Science, 2017, 137, 306-313.	1.4	7
370	Magnetotransport in the MAX phases and their 2D derivatives: MXenes. Materials Research Letters, 2017, 5, 365-378.	4.1	47
371	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 2017, 11, 5800-5807.	7.3	557
372	Sb ₂ O ₃ /MXene(Ti ₃ C ₂ T _x) hybrid anode materials with enhanced performance for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12445-12452.	5.2	245
373	Achieving high-rate capacitance of multi-layer titanium carbide (MXene) by liquid-phase exfoliation through Li-intercalation. Electrochemistry Communications, 2017, 81, 48-51.	2.3	33
374	Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters. Materials and Design, 2017, 130, 512-520.	3.3	117
375	Prediction of T―and Hâ€Phase Twoâ€Dimensional Transitionâ€Metal Carbides/Nitrides and Their Semiconducting–Metallic Phase Transition. ChemPhysChem, 2017, 18, 1897-1902.	1.0	30
376	A simple high-yield synthesis of high-purity HÃǥg carbide (χ-Fe ₅ C ₂) nanoparticles with extraordinary electrochemical properties. Nanoscale, 2017, 9, 10440-10446.	2.8	20
377	Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides. Advanced Materials, 2017, 29, 1700364.	11.1	61
378	In vitro studies on cytotoxicity of delaminated Ti3C2 MXene. Journal of Hazardous Materials, 2017, 339, 1-8.	6.5	216
379	Nitrogen-doped Ti 3 C 2 T x MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38, 368-376.	8.2	528
380	Synthesis and oxidation resistance of V ₂ AIC powders by molten salt method. International Journal of Applied Ceramic Technology, 2017, 14, 873-879.	1.1	56
381	Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. ACS Applied Materials & Interfaces, 2017, 9, 20038-20045.	4.0	323
382	Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Advances, 2017, 7, 27755-27761.	1.7	70
383	Modifications on reduced titanium dioxide photocatalysts: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 32, 21-39.	5.6	221
384	Recent advances of supercapacitors based on two-dimensional materials. Applied Materials Today, 2017, 8, 104-115.	2.3	139

#	Article	IF	CITATIONS
385	Electrochemical performance of MXenes as K-ion battery anodes. Chemical Communications, 2017, 53, 6883-6886.	2.2	157
386	A Generalized Strategy for the Synthesis of Large‧ize Ultrathin Twoâ€Dimensional Metal Oxide Nanosheets. Angewandte Chemie, 2017, 129, 8892-8896.	1.6	22
387	A Generalized Strategy for the Synthesis of Large‧ize Ultrathin Twoâ€Dimensional Metal Oxide Nanosheets. Angewandte Chemie - International Edition, 2017, 56, 8766-8770.	7.2	135
388	Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. Journal of Power Sources, 2017, 359, 332-339.	4.0	152
389	Exotic Physics and Chemistry of Two-Dimensional Phosphorus: Phosphorene. Journal of Physical Chemistry Letters, 2017, 8, 2909-2916.	2.1	71
390	Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nature Communications, 2017, 8, 15717.	5.8	263
391	Two-Dimensional MXenes as Catalysts for Electrochemical Hydrogen Evolution: A Computational Screening Study. Journal of Physical Chemistry C, 2017, 121, 13593-13598.	1.5	183
392	Conversion of MAX phase single crystals in highly porous carbides by high temperature chlorination. Ceramics International, 2017, 43, 8246-8254.	2.3	7
393	Environmental Friendly Scalable Production of Colloidal 2D Titanium Carbonitride MXene with Minimized Nanosheets Restacking for Excellent Cycle Life Lithium-Ion Batteries. Electrochimica Acta, 2017, 235, 690-699.	2.6	186
394	Fe 2 C monolayer: An intrinsic ferromagnetic MXene. Journal of Magnetism and Magnetic Materials, 2017, 434, 164-168.	1.0	68
395	Sc ₂ C as a Promising Anode Material with High Mobility and Capacity: A Firstâ€Principles Study. ChemPhysChem, 2017, 18, 1627-1634.	1.0	88
396	Mn2C sheet as an electrode material for lithium-ion battery: A first-principles prediction. Electrochimica Acta, 2017, 235, 167-174.	2.6	56
397	Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures. 2D Materials, 2017, 4, 022004.	2.0	189
398	Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Materials, 2017, 4, 025054.	2.0	39
399	Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. ACS Nano, 2017, 11, 3841-3850.	7.3	370
400	Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: A computational study. Applied Surface Science, 2017, 412, 591-598.	3.1	130
401	Ti ₃ C ₂ MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 2017, 5, 4068-4074.	2.7	345
402	Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochimica Acta, 2017, 235, 471-479.	2.6	215

#	Article	IF	CITATIONS
403	High-Throughput Survey of Ordering Configurations in MXene Alloys Across Compositions and Temperatures. ACS Nano, 2017, 11, 4407-4418.	7.3	146
404	Transparent, conductive solution processed spincast 2D Ti ₂ CT <i>_x</i> (MXene) films. Materials Research Letters, 2017, 5, 391-398.	4.1	127
405	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
406	Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. Journal of Colloid and Interface Science, 2017, 499, 17-32.	5.0	78
407	Chelation assisted exfoliation of layered borides towards synthesizing boron based nanosheets. RSC Advances, 2017, 7, 1905-1914.	1.7	58
408	Robust half-metallic ferromagnetism in Cr 3 C 2 MXene. Journal of Magnetism and Magnetic Materials, 2017, 433, 222-226.	1.0	60
409	Emerging topological states in quasiâ€ŧwoâ€dimensional materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1296.	6.2	28
410	EuSn ₂ As ₂ : an exfoliatable magnetic layered Zintl–Klemm phase. Inorganic Chemistry Frontiers, 2017, 4, 378-386.	3.0	48
411	Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Letters, 2017, 17, 384-391.	4.5	953
412	Smart combination of three-dimensional-flower-like MoS2 nanospheres/interconnected carbon nanotubes for application in supercapacitor with enhanced electrochemical performance. Journal of Alloys and Compounds, 2017, 696, 900-906.	2.8	89
413	Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano, 2017, 11, 2459-2469.	7.3	700
414	Controlled growth of ultrathin Mo ₂ C superconducting crystals on liquid Cu surface. 2D Materials, 2017, 4, 011012.	2.0	112
415	Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. Journal of Materials Chemistry A, 2017, 5, 3039-3068.	5.2	625
416	Cyanide bridged coordination polymer nanoflakes thermally derived Ni ₃ C and fcc-Ni nanoparticles for electrocatalysts. New Journal of Chemistry, 2017, 41, 14890-14897.	1.4	23
417	Hydrogen adsorption, dissociation and diffusion on two-dimensional Ti2C monolayer. International Journal of Hydrogen Energy, 2017, 42, 27214-27219.	3.8	27
418	Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches. Applied Physics Reviews, 2017, 4, 041301.	5.5	20
419	A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature Communications, 2017, 8, 1207.	5.8	560
420	Substrate orientation-induced epitaxial growth of face centered cubic Mo ₂ C superconductive thin film. Journal of Materials Chemistry C, 2017, 5, 10822-10827.	2.7	71

#	Article	IF	CITATIONS
421	Performance evaluation of asymmetric supercapacitor based on Ti3C2Tx-paper. Journal of Alloys and Compounds, 2017, 729, 1165-1171.	2.8	26
422	Recent advances in ternary two-dimensional materials: synthesis, properties and applications. Journal of Materials Chemistry A, 2017, 5, 22855-22876.	5.2	137
423	Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 2017, 352, 306-327.	9.5	484
424	The facile synthesis of layered Ti ₂ C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Transactions, 2017, 46, 14880-14887.	1.6	68
425	Electrochemical etching of Ti ₂ AlC to Ti ₂ CT _x (MXene) in low-concentration hydrochloric acid solution. Journal of Materials Chemistry A, 2017, 5, 21663-21668.	5.2	445
426	Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Applied Materials & Interfaces, 2017, 9, 37184-37190.	4.0	561
427	A new etching environment (FeF ₃ /HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs.Âwater. Journal of Materials Chemistry A, 2017, 5, 22012-22023.	5.2	227
428	Multimodality of Structural, Electrical, and Gravimetric Responses of Intercalated MXenes to Water. ACS Nano, 2017, 11, 11118-11126.	7.3	183
429	Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries. ACS Nano, 2017, 11, 11135-11144.	7.3	402
430	New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 23530-23535.	5.2	253
431	Ni foam supported quasi-core-shell structure of ultrathin Ti 3 C 2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. Journal of Power Sources, 2017, 369, 78-86.	4.0	65
432	A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. Journal of the American Chemical Society, 2017, 139, 16235-16247.	6.6	1,026
433	Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti ₃ C ₂ T _{<i>x</i>} MXene). Chemistry of Materials, 2017, 29, 7633-7644.	3.2	3,129
434	Oneâ€Step Formation of 3D Alternatingâ€Layer Structures Composed of Plates of Nanocrystalline Bismuth Oxide and Spherical Particles of Metallic Bismuth. Crystal Research and Technology, 2017, 52, 1700099.	0.6	1
435	Understanding of Electrochemical Mechanisms for CO ₂ Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes). ACS Nano, 2017, 11, 10825-10833.	7.3	359
436	New Ti 3 C 2 aerogel as promising negative electrode materials for asymmetric supercapacitors. Journal of Power Sources, 2017, 364, 234-241.	4.0	205
437	Layer Structured Materials for Advanced Energy Storage and Conversion. Small, 2017, 13, 1701649.	5.2	129
438	MoS ₂ -Decorated Ti ₃ C ₂ MXene Nanosheet as Anode Material in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2654-A2659.	1.3	75

#	Article	IF	CITATIONS
439	Direct Synthesis of Largeâ€Area 2D Mo ₂ C on In Situ Grown Graphene. Advanced Materials, 2017, 29, 1700072.	11.1	305
440	Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochimica Acta, 2017, 248, 46-57.	2.6	265
441	Electrophoretic Deposition of Two-Dimensional Titanium Carbide (MXene) Thick Films. Journal of the Electrochemical Society, 2017, 164, D573-D580.	1.3	63
442	MXene–Silicon Van Der Waals Heterostructures for Highâ€Speed Selfâ€Driven Photodetectors. Advanced Electronic Materials, 2017, 3, 1700165.	2.6	162
443	Flexible MXene–graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. Journal of Materials Chemistry A, 2017, 5, 17442-17451.	5.2	211
444	Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Advanced Materials, 2017, 29, 1702678.	11.1	756
445	Metallic MXene Saturable Absorber for Femtosecond Mode‣ocked Lasers. Advanced Materials, 2017, 29, 1702496.	11.1	475
446	Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 2017, 426, 572-578.	3.1	83
447	Flexible Harsh environment micro supercapacitors using direct-write 2D transition metal carbides. , 2017, , .		1
448	Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017, 40, 1-8.	8.2	549
449	Twoâ€Dimensional Nanostructured Materials for Gas Sensing. Advanced Functional Materials, 2017, 27, 1702168.	7.8	588
450	Stable and metallic two-dimensional TaC ₂ as an anode material for lithium-ion battery. Journal of Materials Chemistry A, 2017, 5, 18698-18706.	5.2	75
451	Single-Layer Tl ₂ O: A Metal-Shrouded 2D Semiconductor with High Electronic Mobility. Journal of the American Chemical Society, 2017, 139, 11694-11697.	6.6	72
452	Low Cost Synthesis Method of Two-Dimensional Titanium Carbide MXene. IOP Conference Series: Materials Science and Engineering, 2017, 209, 012001.	0.3	12
453	Designing flexible 2D transition metal carbides with strain-controllable lithium storage. Proceedings of the United States of America, 2017, 114, E11082-E11091.	3.3	51
454	Computational methods for 2D materials: discovery, property characterization, and application design. Journal of Physics Condensed Matter, 2017, 29, 473001.	0.7	55
455	Evidence for Symmetry Reduction in Ti ₃ (Al _{1â^îî} Cu _Î)C ₂ MAX Phase Solid Solutions. Inorganic Chemistry, 2017, 56, 14388-14395.	1.9	24
456	Theoretical exploration of the potential applications of Sc-based MXenes. Physical Chemistry Chemical Physics, 2017, 19, 32253-32261.	1.3	34

ARTICLE IF CITATIONS Functional Group Effects on the Photoelectronic Properties of MXene (Sc2CT2, T = O, F, OH) and Their 74 457 1.6 Possible Photocatalytic Activities. Scientific Reports, 2017, 7, 15095. Theoretical prediction of two-dimensional functionalized MXene nitrides as topological insulators. 1.1 Physical Review B, 2017, 96, . Metalâ€"semiconductor transition of two-dimensional Mg₂C monolayer induced by biaxial 459 1.3 16 tensile strain. Physical Chemistry Chemical Physics, 2017, 19, 32086-32090. MXene: a potential candidate for yarn supercapacitors. Nanoscale, 2017, 9, 18604-18608. 460 119 In–situ growth of carbon nanotubes on two–dimensional titanium carbide for enhanced 461 2.6 43 electrochemical performance. Electrochimica Acta, 2017, 258, 291-301. MXene: an emerging two-dimensional material for future energy conversion and storage applications. Journal of Materials Chemistry A, 2017, 5, 24564-24579. 5.2 450 Current rectification induced by V-doped and Sc-doped in Ti2CO2 devices. Computational Materials 463 1.4 15 Science, 2017, 138, 175-182. Nitrogen and Sulfur Co-Doped 2D Titanium Carbides for Enhanced Electrochemical Performance. 464 1.3 Journal of the Electrochemical Society, 2017, 164, A1939-A1945. Calorimetric Study of Alkali Metal Ion (K⁺, Na⁺, Li⁺) Exchange in a 465 1.5 31 Clay-Like MXene. Journal of Physical Chemistry C, 2017, 121, 15145-15153. Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: High capacity and rate 8.2 123 handling Li-ion battery cathodes. Nano Energy, 2017, 39, 151-161. Manipulating the mechanical properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ti</mml:mi><mml:mn>2 {/mml:mp} </mml:n 467 mathvariant="normal">C</mml:mi></mml:mrow></mml:math> MXene: Effect of substitutional doping. Physical Review B, 2017, 95, Interwoven MXene Nanosheet/Carbonâ€Nanotube Composites as Li–S Cathode Hosts. Advanced 468 11.1 606 Materials, 2017, 29, 1603040. Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid 469 3.2 401 Exfoliation. Chemistry of Materials, 2017, 29, 243-255. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: Enhanced exfoliation and 2.8 delamination. Journal of Alloys and Compounds, 2017, 695, 818-826. Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000 °C. Journal of the 471 2.8 41 European Ceramic Society, 2017, 37, 43-51. Corrosion and tribological performance of quasi-stoichiometric titanium containing carbo-nitride coatings. Arabian Journal of Chemistry, 2017, 10, 1015-1028. Synthesis and characterization of a new (Ti 1- $\hat{l}\mu$, Cu $\hat{l}\mu$) 3 (Al,Cu)C 2 MAX phase solid solution. Journal of 473 2.8 37 the European Ceramic Society, 2017, 37, 459-466. Two-dimensional hexagonal CrN with promising magnetic and optical properties: A theoretical 474 2.8 prediction. Nanoscale, 2017, 9, 621-630.

#	Article	IF	CITATIONS
475	Room Temperature Oxidation of Ti ₃ C ₂ MXene for Supercapacitor Electrodes. Journal of the Electrochemical Society, 2017, 164, A3933-A3942.	1.3	155
476	Biological Activity and Bio-Sorption Properties of the Ti2C Studied by Means of Zeta Potential and SEM. International Journal of Electrochemical Science, 2017, 12, 2159-2172.	0.5	58
477	Graphene-Hexagonal Boron Nitride Heterostructure as a Tunable Phonon–Plasmon Coupling System. Crystals, 2017, 7, 49.	1.0	11
478	First-Principles Calculations of Ti ₂ N and Ti ₂ NT ₂ (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond. Journal of Physical Chemistry C, 2017, 121, 13025-13034.	1.5	151
479	A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Research, 2018, 11, 4149-4168.	5.8	112
480	Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochimica Acta, 2018, 268, 503-511.	2.6	73
481	First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. Journal of Materials Science and Technology, 2018, 34, 2022-2026.	5.6	127
482	Probing the impact of magnetic interactions on the lattice dynamics of two-dimensional Ti ₂ X (X = C, N) MXenes. Physical Chemistry Chemical Physics, 2018, 20, 7754-7763.	1.3	27
483	MXene as a Charge Storage Host. Accounts of Chemical Research, 2018, 51, 591-599.	7.6	309
484	Mechanistic Quantification of Thermodynamic Stability and Mechanical Strength for Two-Dimensional Transition-Metal Carbides. Journal of Physical Chemistry C, 2018, 122, 4710-4722.	1.5	28
485	High-Thermal-Stability and High-Thermal-Conductivity Ti ₃ C ₂ T <i>_x</i> MXene/Poly(vinyl alcohol) (PVA) Composites. ACS Omega, 2018, 3, 2609-2617.	1.6	278
486	Functionalized 2D Clay Derivative: Hybrid Nanosheets with Unique Lead Sorption Behaviors and Interface Structure. Advanced Materials Interfaces, 2018, 5, 1700934.	1.9	27
487	Chemical Exfoliation of Layered Magnesium Diboride To Yield Functionalized Nanosheets and Nanoaccordions for Potential Flame Retardant Applications. ACS Applied Nano Materials, 2018, 1, 1612-1622.	2.4	32
488	Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H- <i>M</i> ₂ P (Mo ₂ P, W ₂ P, Nb ₂ P and) Tj ETQ	q10 170.7 84	43 å 4 rgBT /○
489	Organic field-effect transistors integrated with Ti ₂ CT _x electrodes. Nanoscale, 2018, 10, 5191-5197.	2.8	29
490	Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Materials Research Letters, 2018, 6, 230-235.	4.1	115
491	Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. Electronic Materials Letters, 2018, 14, 221-260.	1.0	197
492	Doped Sc ₂ C(OH) ₂ MXene: new type s-pd band inversion topological insulator. Journal of Physics Condensed Matter, 2018, 30, 155501.	0.7	24

#	Article	IF	CITATIONS
493	Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances, 2018, 4, eaaq0118.	4.7	229
494	Insights into exfoliation possibility of MAX phases to MXenes. Physical Chemistry Chemical Physics, 2018, 20, 8579-8592.	1.3	182
495	High-Voltage Symmetric Supercapacitor Based on 2D Titanium Carbide (MXene,) Tj ETQq0 0 0 rgBT /Overlock 10 Journal of the Electrochemical Society, 2018, 165, A501-A511.	Tf 50 667 1.3	Td (Ti _{ 100}
496	Boosting the Photocatalytic Activity of P25 for Carbon Dioxide Reduction by using a Surfaceâ€Alkalinized Titanium Carbide MXene as Cocatalyst. ChemSusChem, 2018, 11, 1606-1611.	3.6	239
497	Effects of Temperature and Strain Rate on Mechanical Behaviors of Stone–Wales Defective Monolayer Black Phosphorene. Journal of Physical Chemistry C, 2018, 122, 6368-6378.	1.5	17
498	2D magnetic titanium carbide MXene for cancer theranostics. Journal of Materials Chemistry B, 2018, 6, 3541-3548.	2.9	99
499	MXene–2D layered electrode materials for energy storage. Progress in Natural Science: Materials International, 2018, 28, 133-147.	1.8	197
500	Phonon-mediated stabilization and softening of 2D transition metal carbides: case studies of Ti ₂ CO ₂ and Mo ₂ CO ₂ . Physical Chemistry Chemical Physics, 2018, 20, 14608-14618.	1.3	8
501	Ohmic contacts between monolayer WSe2 and two-dimensional titanium carbides. Carbon, 2018, 135, 125-133.	5.4	55
502	TiC ₃ Monolayer with High Specific Capacity for Sodium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 5962-5968.	6.6	244
503	Bipolar magnetic semiconductors among intermediate states during the conversion from Sc ₂ C(OH) ₂ to Sc ₂ CO ₂ MXene. Nanoscale, 2018, 10, 8763-8771.	2.8	27
504	Sandwich-like Co3O4/MXene composite with enhanced catalytic performance for Bisphenol A degradation. Chemical Engineering Journal, 2018, 347, 731-740.	6.6	217
505	An Inkjet Printed Ti ₃ C ₂ -GO Electrode for the Electrochemical Sensing of Hydrogen Peroxide. Journal of the Electrochemical Society, 2018, 165, B227-B231.	1.3	90
506	Tailoring Structure, Composition, and Energy Storage Properties of MXenes from Selective Etching of Inâ€Plane, Chemically Ordered MAX Phases. Small, 2018, 14, e1703676.	5.2	174
507	Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites. ACS Nano, 2018, 12, 3369-3377.	7.3	334
508	The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale, 2018, 10, 8859-8868.	2.8	118
509	A general strategy for the synthesis of two-dimensional holey nanosheets as cathodes for superior energy storage. Journal of Materials Chemistry A, 2018, 6, 8374-8381.	5.2	27
510	Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. Journal of Alloys and Compounds, 2018, 752, 32-39.	2.8	66

# 511	ARTICLE Electronic and transport properties for Ti3C2O2 under the influence of a vertical electric field and stacking number. Computational Materials Science, 2018, 147, 186-193.	IF 1.4	CITATIONS
512	Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale, 2018, 10, 5906-5913.	2.8	212
513	Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor. Chemical Engineering Journal, 2018, 339, 547-556.	6.6	164
514	MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horizons, 2018, 3, 335-341.	4.1	183
515	Recent Advances in Layered Ti ₃ C ₂ T <i>_x</i> MXene for Electrochemical Energy Storage. Small, 2018, 14, e1703419.	5.2	729
516	Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries. Nano Energy, 2018, 46, 20-28.	8.2	162
517	Improving the electrochemical properties of MXene Ti3C2 multilayer for Li-ion batteries by vacuum calcination. Electrochimica Acta, 2018, 265, 140-150.	2.6	99
518	High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. Journal of Materials Chemistry A, 2018, 6, 4271-4278.	5.2	198
519	Facile synthesis and electrochemical performance of TiO2 nanowires/Ti3C2 composite. Journal of Materials Science: Materials in Electronics, 2018, 29, 4881-4887.	1.1	18
520	A Strategy for Synthesis of Carbon Nitride Induced Chemically Doped 2D MXene for Highâ€Performance Supercapacitor Electrodes. Advanced Energy Materials, 2018, 8, 1703173.	10.2	191
521	First-Principle Study of Li-Ion Storage of Functionalized Ti ₂ C Monolayer with Vacancies. ACS Applied Materials & Interfaces, 2018, 10, 6369-6377.	4.0	89
522	Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews, 2018, 118, 6236-6296.	23.0	410
523	CO ₂ abatement using two-dimensional MXene carbides. Journal of Materials Chemistry A, 2018, 6, 3381-3385.	5.2	152
524	Enhancement of the selectivity of MXenes (M ₂ C, M = Ti, V, Nb, Mo) <i>via</i> oxygen-functionalization: promising materials for gas-sensing and -separation. Physical Chemistry Chemical Physics, 2018, 20, 6073-6082.	1.3	99
525	Condition optimization for exfoliation of two dimensional titanium carbide (Ti ₃ C ₂ T <i> _x </i>). Nanotechnology, 2018, 29, 095605.	1.3	64
526	Achieving of Flexible, Freeâ€Standing, Ultracompact Delaminated Titanium Carbide Films for High Volumetric Performance and Heatâ€Resistant Symmetric Supercapacitors. Advanced Functional Materials, 2018, 28, 1705487.	7.8	105
527	Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Science China Materials, 2018, 61, 728-736.	3.5	203
528	Wearable energy sources based on 2D materials. Chemical Society Reviews, 2018, 47, 3152-3188.	18.7	226

#	Article	IF	CITATIONS
529	Electrochemical Reduction of TiO2/Al2O3/C to Ti3AlC2and Its Derived Two-Dimensional (2D) Carbides. Journal of the Electrochemical Society, 2018, 165, E97-E107.	1.3	14
530	2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosensors and Bioelectronics, 2018, 107, 69-75.	5.3	251
531	Zr ₂ Si: an antiferromagnetic Dirac MXene. Physical Chemistry Chemical Physics, 2018, 20, 3946-3952.	1.3	19
532	Clayâ€Inspired MXeneâ€Based Electrochemical Devices and Photoâ€Electrocatalyst: Stateâ€ofâ€theâ€Art Progresses and Challenges. Advanced Materials, 2018, 30, e1704561.	11.1	431
533	Two-dimensional nanostructures for sodium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 3284-3303.	5.2	224
534	Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. Journal of Physics and Chemistry of Solids, 2018, 115, 172-179.	1.9	72
535	One‣tep Synthesis of Nb ₂ O ₅ /C/Nb ₂ C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution. ChemSusChem, 2018, 11, 688-699.	3.6	315
536	Pressure-induced shear and interlayer expansion in Ti ₃ C ₂ MXene in the presence of water. Science Advances, 2018, 4, eaao6850.	4.7	75
537	A novel approach for electroanalytical determinations employing discharge of pseudocapacitor by electroactive species. Analytica Chimica Acta, 2018, 1006, 1-9.	2.6	5
538	Stamping of Flexible, Coplanar Microâ€Supercapacitors Using MXene Inks. Advanced Functional Materials, 2018, 28, 1705506.	7.8	427
539	3D Porous MXene (Ti ₃ C ₂)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 3634-3643.	4.0	288
540	Epitaxial Synthesis of Molybdenum Carbide and Formation of a Mo ₂ C/MoS ₂ Hybrid Structure <i>via</i> Chemical Conversion of Molybdenum Disulfide. ACS Nano, 2018, 12, 338-346.	7.3	148
541	Facile synthesis of layered Li4Ti5O12-Ti3C2Tx (MXene) composite for high-performance lithium ion battery. Journal of Electroanalytical Chemistry, 2018, 810, 27-33.	1.9	41
542	Fabrication of Cu ₂ Oâ€based Materials for Lithiumâ€ion Batteries. ChemSusChem, 2018, 11, 1581-1599.	3.6	62
543	Energy storage properties of selectively functionalized Cr-group MXenes. Computational Materials Science, 2018, 150, 236-243.	1.4	18
544	Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. Journal of Power Sources, 2018, 390, 208-214.	4.0	56
545	Selfâ€Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage. Advanced Materials, 2018, 30, e1707334.	11.1	467
546	Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. Journal of Materials Chemistry A, 2018, 6, 7794-7806.	5.2	186

#	Article	IF	CITATIONS
547	Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale, 2018, 10, 10876-10883.	2.8	215
548	Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale, 2018, 10, 6005-6013.	2.8	184
549	Electronic and vibrational properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi mathvariant="normal">V <mml:mn>2 </mml:mn> </mml:mi </mml:msub> <mml:mi mathvariant="normal">C -based MXenes: From experiments to first-principles modeling. Physical Review B, 2018, 97, .</mml:mi </mml:math 	1.1	162
550	Bismuth Oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochimica Acta, 2018, 271, 351-360.	2.6	144
551	Promising Photocatalysts for Water Splitting in BeN ₂ and MgN ₂ Monolayers. Journal of Physical Chemistry C, 2018, 122, 8102-8108.	1.5	32
552	TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. Journal of Catalysis, 2018, 361, 255-266.	3.1	647
553	Universal Descriptor for Large-Scale Screening of High-Performance MXene-Based Materials for Energy Storage and Conversion. Chemistry of Materials, 2018, 30, 2687-2693.	3.2	71
554	Fe ₃ O ₄ @Ti ₃ C ₂ MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 11189-11197.	5.2	229
555	Electrosynthesis of Two-Dimensional TiC and C Materials from Ti3SiC2in Molten Salt. Journal of the Electrochemical Society, 2018, 165, D190-D195.	1.3	5
556	Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes. Journal of Membrane Science, 2018, 564, 35-43.	4.1	57
557	Superior electronic structure of two-dimensional 3d transition metal dicarbides for applications in spintronics. Journal of Materials Chemistry C, 2018, 6, 4290-4299.	2.7	23
558	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	5.8	132
559	Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy, 2018, 47, 512-518.	8.2	243
560	SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts. Frontiers of Physics, 2018, 13, 1.	2.4	30
561	Porous-carbon-based Mo ₂ C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale, 2018, 10, 6945-6953.	2.8	152
562	Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures. Frontiers of Physics, 2018, 13, 1.	2.4	19
563	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
564	Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science, 2018, 92, 258-283.	16.0	253

#	Article	IF	CITATIONS
565	Chemical bonding in carbide MXene nanosheets. Journal of Electron Spectroscopy and Related Phenomena, 2018, 224, 27-32.	0.8	64
566	Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. Journal of Colloid and Interface Science, 2018, 511, 128-134.	5.0	107
567	Porous Zr2SC-carbon composite microspheres: Possible radiation tolerant sorbents and transmutation hosts for technetium-99. Microporous and Mesoporous Materials, 2018, 259, 67-78.	2.2	5
568	On the organization and thermal behavior of functional groups on Ti ₃ C ₂ MXene surfaces in vacuum. 2D Materials, 2018, 5, 015002.	2.0	219
569	Two-dimensional MXene/A-TiO2 composite with unprecedented catalytic activation for sodium alanate. Catalysis Today, 2018, 318, 167-174.	2.2	30
570	Kerosene-fuelled high velocity oxy-fuel (HVOF) spray of Ti2AlC MAX phase powders. Journal of Alloys and Compounds, 2018, 735, 377-385.	2.8	29
571	First-principles study of a MXene terahertz detector. Nanoscale, 2018, 10, 69-75.	2.8	79
572	First-principle study of the Nb+1C T2 systems as electrode materials for supercapacitors. Computational Materials Science, 2018, 143, 225-231.	1.4	26
573	Theranostic 2D Tantalum Carbide (MXene). Advanced Materials, 2018, 30, 1703284.	11.1	422
574	Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting. Applied Surface Science, 2018, 439, 374-379.	3.1	36
575	Fabrication of hierarchical MXene-based AuNPs-containing core–shell nanocomposites for high efficient catalysts. Green Energy and Environment, 2018, 3, 147-155.	4.7	60
576	Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Twoâ€Đimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study. ChemSusChem, 2018, 11, 1892-1899.	3.6	50
577	Ratiometric photoluminescence sensing based on Ti ₃ C ₂ MXene quantum dots as an intracellular pH sensor. Nanoscale, 2018, 10, 1111-1118.	2.8	241
578	Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry, 2018, 27, 57-72.	7.1	179
579	Recent progress in two-dimensional inorganic quantum dots. Chemical Society Reviews, 2018, 47, 586-625.	18.7	230
580	Highâ€Performance Ultrathin Flexible Solidâ€State Supercapacitors Based on Solution Processable Mo _{1.33} C MXene and PEDOT:PSS. Advanced Functional Materials, 2018, 28, 1703808.	7.8	196
581	A Redâ€Phosphorousâ€Assisted Ballâ€Milling Synthesis of Few‣ayered Ti ₃ C ₂ T _{<i>x</i>} (MXene) Nanodot Composite. ChemNanoMat, 2018, 4, 56-60.	1.5	64
582	MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 2018, 27, 73-85.	7.1	548

#	Article	IF	CITATIONS
583	In Situ High-Pressure X-ray Diffraction and Raman Spectroscopy Study of Ti3C2Tx MXene. Nanoscale Research Letters, 2018, 13, 343.	3.1	67
584	Topochemical synthesis of 2D materials. Chemical Society Reviews, 2018, 47, 8744-8765.	18.7	232
585	Low temperature solution synthesis of reduced two dimensional Ti ₃ C ₂ MXenes with paramagnetic behaviour. Nanoscale, 2018, 10, 22429-22438.	2.8	72
586	Antibacterial properties of electrospun Ti ₃ C ₂ T _z (MXene)/chitosan nanofibers. RSC Advances, 2018, 8, 35386-35394.	1.7	149
587	Application of Uniform Design Method in the Optimization of Hydrothermal Synthesis for Nano MoS2 Catalyst with High HDS Activity. Catalysts, 2018, 8, 654.	1.6	8
588	Ti ₃ C ₂ MXene as an excellent anode material for high-performance microbial fuel cells. Journal of Materials Chemistry A, 2018, 6, 20887-20895.	5.2	58
589	Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti ₃ C ₂ (MXene) epitaxial thin film. RSC Advances, 2018, 8, 36785-36790.	1.7	49
591	Optimizing special quasirandom structure (SQS) models for accurate functional property prediction in disordered 2D alloys. Journal of Physics Condensed Matter, 2018, 30, 485402.	0.7	4
592	Two-Dimensional Titanium Carbonitride Mxene for High-Performance Sodium Ion Batteries. ACS Applied Nano Materials, 2018, 1, 6854-6863.	2.4	71
593	Dialkali-Metal Monochalcogenide Semiconductors with High Mobility and Tunable Magnetism. Journal of Physical Chemistry Letters, 2018, 9, 6695-6701.	2.1	17
594	Sustainable Synthesis of Cr7C3, Cr2AlC, and Their Derived Porous Carbons in Molten Salts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16607-16615.	3.2	11
595	Two-Dimensional, Ordered, Double Transition Metal Carbides (MXenes): A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 28113-28122.	1.5	104
596	First-Principles Studies of Adsorptive Remediation of Water and Air Pollutants Using Two-Dimensional MXene Materials. Materials, 2018, 11, 2281.	1.3	20
597	Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Advanced Materials, 2018, 30, e1804779.	11.1	850
598	Electrochemical Determination of Adrenaline Using MXene/Graphite Composite Paste Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 43343-43351.	4.0	129
599	Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today, 2018, 23, 73-96.	6.2	96
600	Effect of Edge Charges on Stability and Aggregation of Ti ₃ C ₂ T <i>_z</i> MXene Colloidal Suspensions. Journal of Physical Chemistry C, 2018, 122, 27745-27753.	1.5	150
601	Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 21255-21260.	5.2	151

#	Article	IF	CITATIONS
602	First-principles Investigations of Magnetic Semiconductors: An example of Transition Metal Decorated Two-dimensional SnS Monolayer. Nanomaterials, 2018, 8, 789.	1.9	12
603	MXene Ti ₃ C ₂ <i> T _x </i> saturable absorber for pulsed laser at 1.3 μm. Chinese Physics B, 2018, 27, 094214.	0.7	37
604	Ti ₃ C ₂ T _{<i>x</i>} MXene Catalyzed Ethylbenzene Dehydrogenation: Active Sites and Mechanism Exploration from both Experimental and Theoretical Aspects. ACS Catalysis, 2018, 8, 10051-10057.	5.5	79
605	2D Metal Carbides and Nitrides (MXenes) as Highâ€Performance Electrode Materials for Lithiumâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1801897.	10.2	341
606	Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Applied Materials Today, 2018, 13, 217-227.	2.3	250
607	A novel two-dimensional accordion-like titanium carbide (MXene) for adsorption of Cr(VI) from aqueous solution. Journal of Advanced Dielectrics, 2018, 08, 1850035.	1.5	46
608	Cu ₂ Te–Ag ₂ Te lateral topological insulator heterojunction: stability and properties. Nanotechnology, 2018, 29, 505711.	1.3	2
609	Flexible Nitrogenâ€Doped 2D Titanium Carbides (MXene) Films Constructed by an Ex Situ Solvothermal Method with Extraordinary Volumetric Capacitance. Advanced Energy Materials, 2018, 8, 1802087.	10.2	205
610	Two-dimensional nanomaterial based sensors for heavy metal ions. Mikrochimica Acta, 2018, 185, 478.	2.5	48
611	Self-assembled MXene(Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochimica Acta, 2018, 292, 31-38.	2.6	92
612	Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 20869-20877.	5.2	133
613	Transition metal modification and carbon vacancy promoted Cr ₂ CO ₂ (MXenes): a new opportunity for a highly active catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 20956-20965.	5.2	74
614	Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Composites Part A: Applied Science and Manufacturing, 2018, 115, 371-382.	3.8	271
616	Thermally Reduced Graphene/MXene Film for Enhanced Liâ€ion Storage. Chemistry - A European Journal, 2018, 24, 18556-18563.	1.7	65
617	Colloidal Properties and Stability of 2D Ti3C2 and Ti2C MXenes in Water. International Journal of Electrochemical Science, 2018, 13, 10837-10847.	0.5	34
618	Theoretical Evaluation of Possible 2D Boron Monolayer in N ₂ Electrochemical Conversion into Ammonia. Journal of Physical Chemistry C, 2018, 122, 25268-25273.	1.5	91
619	Efficient Visible-Light Photocatalysis of 2D-MXene Nanohybrids with Gd ³⁺ - and Sn ⁴⁺ -Codoped Bismuth Ferrite. ACS Omega, 2018, 3, 13828-13836.	1.6	121
620	Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method. Composites Science and Technology, 2018, 168, 404-411.	3.8	97

#	Article	IF	CITATIONS
621	Enhancing the Photocatalytic Performance of MXenes via Stoichiometry Engineering of Their Electronic and Optical Properties. ACS Applied Materials & Interfaces, 2018, 10, 39879-39889.	4.0	37
622	Insight into the catalytic activity of MXenes for hydrogen evolution reaction. Science Bulletin, 2018, 63, 1397-1403.	4.3	61
623	2D Ti ₃ C ₂ MXene/WO ₃ Hybrid Architectures for Highâ€Rate Supercapacitors. Advanced Materials Interfaces, 2018, 5, 1801361.	1.9	95
624	Mxeneâ€Directed Dual Amphiphilicity at Liquid, Solid, and Gas Interfaces. Chemistry - an Asian Journal, 2018, 13, 3850-3854.	1.7	4
625	Intertwined Titanium Carbide MXene within a 3 D Tangled Polypyrrole Nanowires Matrix for Enhanced Supercapacitor Performances. Chemistry - A European Journal, 2019, 25, 1037-1043.	1.7	74
626	The Synthesis Process and Thermal Stability of V2C MXene. Materials, 2018, 11, 2112.	1.3	152
627	Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Twoâ€Dimensional Transitionâ€Metal Carbonitrides (MXene). Chemistry - A European Journal, 2018, 24, 18479-18486.	1.7	87
628	Surface Modifications of Ti ₂ CO ₂ for Obtaining High Hydrogen Evolution Reaction Activity and Conductivity: A Computational Approach. ChemPhysChem, 2018, 19, 3380-3387.	1.0	20
629	Hybrid Architectures based on 2D MXenes and Lowâ€Dimensional Inorganic Nanostructures: Methods, Synergies, and Energyâ€Related Applications. Small, 2018, 14, e1803632.	5.2	54
630	Hierarchical Cobalt Borate/MXenes Hybrid with Extraordinary Electrocatalytic Performance in Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 3758-3765.	3.6	66
631	Measurement and Analysis of Thermal Conductivity of Ti3C2Tx MXene Films. Materials, 2018, 11, 1701.	1.3	82
632	Study of Mxene: Characterization and Radiation Properties of Two-Dimensional Titanium Carbide. Solid State Phenomena, 2018, 280, 31-35.	0.3	0
633	Therapeutic mesopore construction on 2D Nb ₂ C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics, 2018, 8, 4491-4508.	4.6	158
634	Further surface modification by carbon coating for in-situ growth of Fe3O4 nanoparticles on MXene Ti3C2 multilayers for advanced Li-ion storage. Electrochimica Acta, 2018, 289, 228-237.	2.6	51
635	Surface Electrochemical Stability and Strain‶unable Lithium Storage of Highly Flexible 2D Transition Metal Carbides. Advanced Functional Materials, 2018, 28, 1804867.	7.8	33
636	Anion Adsorption, Ti ₃ C ₂ T <i>_z</i> MXene Multilayers, and Their Effect on Claylike Swelling. Journal of Physical Chemistry C, 2018, 122, 23172-23179.	1.5	42
637	Variable range hopping and thermally activated transport in molybdenum-based MXenes. Physical Review B, 2018, 98, .	1.1	66
638	Growth of WS2 flakes on Ti3C2Tx Mxene Using Vapor Transportation Routine. Coatings, 2018, 8, 281.	1.2	12
#	Article	IF	CITATIONS
-----	--	------	-----------
639	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	18.7	384
640	Liquid catalysts: an innovative solution to 2D materials in CVD processes. Materials Horizons, 2018, 5, 1021-1034.	6.4	19
641	Oxidized Ti ₃ C ₂ MXene nanosheets for dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 16446-16450.	1.4	60
642	Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 446.	0.9	23
643	The Marriage of the FeN ₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220.	11.1	289
644	Ultrathin MXene Nanosheets Decorated with TiO ₂ Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small, 2018, 14, e1802443.	5.2	125
645	Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosensors and Bioelectronics, 2018, 121, 243-249.	5.3	312
646	A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. Journal of Materials Chemistry A, 2018, 6, 18116-18124.	5.2	286
647	A novel potential modulated amino acid sensing chip modified by MXene for total internal reflection imaging ellipsometry biosensor. , 2018, , .		4
648	Review of phase stability in the group IVB and VB transitionâ€metal carbides. Journal of the American Ceramic Society, 2018, 101, 4401-4424.	1.9	67
649	On the Structural Stability of MXene and the Role of Transition Metal Adatoms. Nanoscale, 2018, 10, 10850-10855.	2.8	71
650	Improving barium ion adsorption on two-dimensional titanium carbide by surface modification. Dalton Transactions, 2018, 47, 8375-8381.	1.6	71
651	An evolving energy solution: Intermediate hydrogen storage. International Journal of Hydrogen Energy, 2018, 43, 12168-12188.	3.8	72
652	Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti ₃ C ₂ T _x MXene. Nanoscale, 2018, 10, 17030-17037.	2.8	46
653	Two-dimensional nitrides as highly efficient potential candidates for CO ₂ capture and activation. Physical Chemistry Chemical Physics, 2018, 20, 17117-17124.	1.3	55
654	Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 105-113.	2.3	88
655	Synthesis of Two-Dimensional Nb _{1.33} C (MXene) with Randomly Distributed Vacancies by Etching of the Quaternary Solid Solution (Nb _{2/3} Sc _{1/3}) ₂ AlC MAX Phase. ACS Applied Nano Materials, 2018, 1, 2455-2460.	2.4	154
656	Adsorptive environmental applications of MXene nanomaterials: a review. RSC Advances, 2018, 8, 19895-19905.	1.7	313

#	Article	IF	CITATIONS
657	Ti3C2Tx-foam as free-standing electrode for supercapacitor with improved electrochemical performance. Ceramics International, 2018, 44, 13901-13907.	2.3	31
658	Sonication-assisted liquid-phase exfoliated α-GeTe: a two-dimensional material with high Fe ³⁺ sensitivity. Nanoscale, 2018, 10, 15989-15997.	2.8	48
659	In Situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving High apacity, Long Lifetime Li‧ Batteries. Advanced Science, 2018, 5, 1800502.	5.6	210
660	MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Physical Chemistry Chemical Physics, 2018, 20, 19390-19397.	1.3	74
661	Enhancing the lithium storage capabilities of TiO2 nanoparticles using delaminated MXene supports. Ceramics International, 2018, 44, 17660-17666.	2.3	20
662	Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study. 2D Materials, 2018, 5, 045004.	2.0	171
663	Extraordinary Areal and Volumetric Performance of Flexible Solidâ€&tate Microâ€&upercapacitors Based on Highly Conductive Freestanding Ti ₃ C ₂ T <i>_x</i> Films. Advanced Electronic Materials, 2018, 4, 1800179.	2.6	93
664	Chemical sensing with 2D materials. Chemical Society Reviews, 2018, 47, 4860-4908.	18.7	513
665	Structural, electronic and mechanical properties of two-dimensional Janus transition metal carbides and nitrides. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 307-313.	1.3	32
666	Controlled synthesis of nickel carbide nanoparticles and their application in lithium storage. Chemical Engineering Journal, 2018, 352, 940-946.	6.6	13
667	Tunable dextran retention of MXene-TiO ₂ mesoporous membranes by adjusting the 2D MXene content. 2D Materials, 2018, 5, 045003.	2.0	42
668	First-principles study on the electrical and thermal properties of the semiconducting Sc ₃ (CN)F ₂ MXene. RSC Advances, 2018, 8, 22452-22459.	1.7	24
669	Lowâ€ŧemperature synthesis of highâ€purity Ti ₂ AlC powder by microwave sintering. Micro and Nano Letters, 2018, 13, 798-800.	0.6	2
670	3D d-Ti3C2 xerogel framework decorated with core-shell SnO2@C for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 285, 94-102.	2.6	44
671	Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Advanced Materials, 2018, 30, e1800865.	11.1	203
672	Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Advanced Science, 2018, 5, 1800518.	5.6	397
673	Hybridization of Binary Nonâ€Preciousâ€Metal Nanoparticles with dâ€Ti ₃ C ₂ MXene for Catalyzing the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 3307-3314.	1.7	32
674	Complexity of Intercalation in MXenes: Destabilization of Urea by Two-Dimensional Titanium Carbide. Journal of the American Chemical Society, 2018, 140, 10305-10314.	6.6	93

#	Article	IF	CITATIONS
675	Germanene Growth on Al(111): A Case Study of Interface Effect. Journal of Physical Chemistry C, 2018, 122, 18669-18681.	1.5	17
676	Flexible Ti ₃ C ₂ T <i>_x</i> @Al electrodes with Ultrahigh Areal Capacitance: In Situ Regulation of Interlayer Conductivity and Spacing. Advanced Functional Materials, 2018, 28, 1803196.	7.8	66
677	Facile Fabrication of Flowerâ€Like C@ <i>α</i> â€Mo ₂ C Hybrids with Enhanced Energy Storage Properties. ChemistrySelect, 2018, 3, 8395-8401.	0.7	0
678	Screening Surface Structure of MXenes by High-Throughput Computation and Vibrational Spectroscopic Confirmation. Journal of Physical Chemistry C, 2018, 122, 18501-18509.	1.5	130
679	2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. Theranostics, 2018, 8, 1648-1664.	4.6	185
680	Sulfurâ€Doped Rhenium Selenide Vertical Nanosheets: A Highâ€Performance Electrocatalyst for Hydrogen Evolution. ChemCatChem, 2018, 10, 4424-4430.	1.8	28
681	Two-dimensional Ti3C2 coating as an emerging protective solid-lubricant for tribology. Ceramics International, 2018, 44, 20154-20162.	2.3	100
682	Recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides electrodes for electrochemical supercapacitors – A brief review. Journal of Industrial and Engineering Chemistry, 2018, 67, 12-27.	2.9	111
683	Stability and electronic properties of sulfur terminated two-dimensional early transition metal carbides and nitrides (MXene). Computational Materials Science, 2018, 153, 303-308.	1.4	46
684	Coincident modulation of lattice and electron thermal transport performance in MXenes <i>via</i> surface functionalization. Physical Chemistry Chemical Physics, 2018, 20, 19689-19697.	1.3	18
685	A Review of Carbon Nanomaterials' Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials, 2018, 11, 822.	1.3	315
686	Synthesis and Electrochemical Properties of Two-Dimensional RGO/Ti3C2Tx Nanocomposites. Nanomaterials, 2018, 8, 80.	1.9	109
687	TiC MXene High Energy Density Cathode for Lithium–Air Battery. Advanced Theory and Simulations, 2018, 1, 1800059.	1.3	21
688	Mesoporous Hierarchical Structure of Li ₄ Ti ₅ O ₁₂ /Graphene with High Electrochemical Performance in Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 11360-11366.	3.2	24
689	Printable Nanomaterials for the Fabrication of High-Performance Supercapacitors. Nanomaterials, 2018, 8, 528.	1.9	46
690	Adding a New Member to the MXene Family: Synthesis, Structure, and Electrocatalytic Activity for the Hydrogen Evolution Reaction of V ₄ C ₃ T _{<i>x</i>} . ACS Applied Energy Materials, 2018, 1, 3908-3914.	2.5	187
691	Type-II Multiferroic Hf ₂ VC ₂ F ₂ MXene Monolayer with High Transition Temperature. Journal of the American Chemical Society, 2018, 140, 9768-9773.	6.6	179
692	Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chemical Communications, 2018, 54, 7873-7891.	2.2	373

ARTICLE IF CITATIONS # Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. 693 5.2 267 Journal of Materials Chemistry A, 2018, 6, 22123-22133. Hierarchically structured cellulose aerogels with interconnected MXene networks and their 694 2.7 enhanced microwave absorption properties. Journal of Materials Chemistry C, 2018, 6, 8679-8687. Influence of Ti3C2Tx (MXene) intercalation pseudocapacitance on electrochemical performance of 695 2.3 81 Co-MOF binder-free electrode. Ceramics International, 2018, 44, 14425-14431. Composite of Fe3O4/MnCO3 as anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 757, 112-117. The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin 697 2.0 711 crystals. 2D Materials, 2018, 5, 042002. Controlling topological electronic structure of multifunctional MXene layer. Applied Physics 1.5 Letters, 2018, 113, . Efficient U(VI) Reduction and Sequestration by Ti₂CT_{<i>x</i>} MXene. 699 4.6 253 Environmental Science & amp; Technology, 2018, 52, 10748-10756. Tailoring properties in 2D materials. AIP Conference Proceedings, 2018, , . 0.3 700 Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides. 701 1.3 6 Chinese Physics Letters, 2018, 35, 087303. Hexagonal Ti₂B₂ monolayer: a promising anode material offering high rate 1.3 capability for Li-ion and Na-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 22168-22178. Recent advances in the preparation, characterization, and applications of two-dimensional 703 heterostructures for energy storage and conversion. Journal of Materials Chemistry A, 2018, 6, 5.2 85 21747-21784. Vertically aligned MoS₂ on Ti₃C₂ (MXene) as an improved HER 704 5.2 146 catalyst. Journal of Materials Chemistry A, 2018, 6, 16882-16889. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by 705 8.2 300 low-work-function 2D titanium carbide. Nano Energy, 2018, 53, 97-107. Seawater electrolyte-mediated high volumetric MXene-based electrochemical symmetric 1.6 supercapacitors. Dalton Transactions, 2018, 47, 8676-8682. 2D MXene Nanofilms with Tunable Gas Transport Channels. Advanced Functional Materials, 2018, 28, 707 332 7.8 1801511. MXene: An emerging material for sensing and biosensing. TrAC - Trends in Analytical Chemistry, 2018, 5.8 465 105, 424-435. A novel solid-solution MXene (Ti0.5V0.5)3C2 with high catalytic activity for hydrogen storage in 709 1.378 MgH2. Materialia, 2018, 1, 114-120. MXenes stretch hydrogel sensor performance to new limits. Science Advances, 2018, 4, eaat0098. 556

#	Article	IF	Citations
711	Exploring MXenes as Cathodes for Nonâ€Aqueous Lithium–Oxygen Batteries: Design Rules for Selectively Nucleating Li ₂ O ₂ . ChemSusChem, 2018, 11, 1911-1918.	3.6	24
712	Environment-Sensitive Photoresponse of Spontaneously Partially Oxidized Ti ₃ C ₂ MXene Thin Films. ACS Nano, 2018, 12, 6109-6116.	7.3	214
713	Towards enhanced energy density of graphene-based supercapacitors: Current status, approaches, and future directions. Journal of Power Sources, 2018, 396, 182-206.	4.0	111
714	Layered Hexagonal Oxycarbides, Mn+1AO2Xn (M = Sc, Y, La, Cr, and Mo; A = Ca; X = C): Unexpected Photovoltaic Ceramics. Journal of Physical Chemistry C, 2018, 122, 14240-14247.	1.5	3
715	Double transition metal MXenes with wide band gaps and novel magnetic properties. Nanoscale, 2018, 10, 11962-11968.	2.8	88
716	Two-Dimensional Tetragonal Titanium Carbide: a High-Capacity and High-Rate Battery Material. Journal of Physical Chemistry C, 2018, 122, 15118-15124.	1.5	38
717	A comparative study on the oxidation of two-dimensional Ti ₃ C ₂ MXene structures in different environments. Journal of Materials Chemistry A, 2018, 6, 12733-12743.	5.2	193
718	A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Materials, 2019, 16, 344-353.	9.5	150
719	2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. Journal of Energy Chemistry, 2019, 31, 148-153.	7.1	97
720	2D material as anode for sodium ion batteries: Recent progress and perspectives. Energy Storage Materials, 2019, 16, 323-343.	9.5	222
721	Facile preparation of BiOCl/Ti ₃ C ₂ hybrid photocatalyst with enhanced visible-light photocatalytic activity. Functional Materials Letters, 2019, 12, 1850100.	0.7	21
722	Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 19951-19962.	1.3	66
723	Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties. FlatChem, 2019, 17, 100128.	2.8	94
724	Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 23512-23536.	5.2	89
725	Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes. Journal of Applied Physics, 2019, 126, .	1.1	55
726	Novel two-dimensional tetragonal vanadium carbides and nitrides as promising materials for Li-ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 19513-19520.	1.3	26
727	Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti3C2Tx (MXene). Polymers, 2019, 11, 1272.	2.0	40
728	Unleashing the potential of Ti 2 CT x MXene as a pulse modulator for mid-infrared fiber lasers. 2D Materials. 2019. 6. 045038.	2.0	83

#	Article	IF	CITATIONS
729	Highâ€performance flexible sensing devices based on polyaniline/MXene nanocomposites. InformaÄnÃ- Materiġly, 2019, 1, 407-416.	8.5	310
730	Theoretical insights into nitrogen fixation on Ti ₂ C and Ti ₂ CO ₂ in a lithium–nitrogen battery. Journal of Materials Chemistry A, 2019, 7, 19950-19960.	5.2	21
731	Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Materials, 2019, 6, 045025.	2.0	46
732	Functionalization with MXene (Ti ₃ C ₂) Enhances the Wettability and Shear Strength of Carbon Fiber-Epoxy Composites. ACS Applied Nano Materials, 2019, 2, 5553-5562.	2.4	60
733	Recent progress on synthesis, structure and electrocatalytic applications of MXenes. FlatChem, 2019, 17, 100129.	2.8	33
734	XPS of cold pressed multilayered and freestanding delaminated 2D thin films of Mo2TiC2Tz and Mo2Ti2C3Tz (MXenes). Applied Surface Science, 2019, 494, 1138-1147.	3.1	58
735	Formation of new MXene film using spinning coating method with DMSO solution and its application in advanced memristive device. Ceramics International, 2019, 45, 19467-19472.	2.3	37
736	Beyond Graphene: Chemistry of Group 14 Graphene Analogues: Silicene, Germanene, and Stanene. ACS Nano, 2019, 13, 8566-8576.	7.3	93
737	Excellent catalytic activity of a two-dimensional Nb4C3Tx (MXene) on hydrogen storage of MgH2. Applied Surface Science, 2019, 493, 431-440.	3.1	73
738	Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries. Carbon, 2019, 153, 625-633.	5.4	47
739	Edge Capping of 2Dâ€MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal Suspensions. Angewandte Chemie, 2019, 131, 12785-12790.	1.6	78
740	Theoretical prediction on the stability, electronic structure, room and elevated temperature properties of a new MAB phase Mo2AlB2. Journal of Materials Science and Technology, 2019, 35, 2926-2934.	5.6	16
741	Enhancement of Dielectric Permittivity of Ti ₃ C ₂ T _{<i>x</i>} MXene/Polymer Composites by Controlling Flake Size and Surface Termination. ACS Applied Materials & Interfaces, 2019, 11, 27358-27362.	4.0	68
742	Ti ₃ C ₂ MXene as a new nanofiller for robust and conductive elastomer composites. Nanoscale, 2019, 11, 14712-14719.	2.8	52
743	Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Applied Catalysis B: Environmental, 2019, 258, 117956.	10.8	485
744	Potential Applications of Heterostructures of TMDs with MXenes in Sodium-Ion and Na–O ₂ Batteries. Nano Letters, 2019, 19, 5577-5586.	4.5	69
745	Tailoring Storage Capacity and Ion Kinetics in Ti2CO2/ Graphene Heterostructures by Functionalization of Graphene. Physical Review Applied, 2019, 12, .	1.5	17
746	Edge Capping of 2Dâ€MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal Suspensions. Angewandte Chemie - International Edition, 2019, 58, 12655-12660.	7.2	225

#	Article	IF	CITATIONS
747	Systematic investigations of the electron, phonon and elastic properties of monolayer M ₂ C (M  =  V, Nb, Ta) by first-principles calculations. Journal of Physics Condensed 2019, 31, 405703.	Martter,	16
748	Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Applied Surface Science, 2019, 494, 540-550.	3.1	91
749	Effect of Cationic Exchange on the Hydration and Swelling Behavior of Ti ₃ C ₂ T <i>_z</i> MXenes. Journal of Physical Chemistry C, 2019, 123, 20044-20050.	1.5	45
750	Few‣ayer Mxene Ti ₃ C ₂ T _{<i>x</i>} (T=F, O, Or OH) for Robust Pulse Generation in a Compact Erâ€Doped Fiber Laser. ChemNanoMat, 2019, 5, 1233-1238.	1.5	55
751	Intriguing electronic and optical properties of M2CX2 (M = Mo, W; X = O, F) MXenes and their van der Waals heterostructures. Chemical Physics Letters, 2019, 731, 136614.	1.2	13
752	Ti _{n+1} C _n MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Advances, 2019, 1, 3680-3685.	2.2	81
753	Synthesis of (V _{2/3} Sc _{1/3}) ₂ AlC i-MAX phase and V _{2â^'x} C MXene scrolls. Nanoscale, 2019, 11, 14720-14726.	2.8	52
754	Polybenzimidazole thermal management composites containing functionalized boron nitride nanosheets and 2D transition metal carbide MXenes. Polymer, 2019, 179, 121613.	1.8	29
755	Application of Ti ₃ C ₂ MXene Quantum Dots for Immunomodulation and Regenerative Medicine. Advanced Healthcare Materials, 2019, 8, e1900569.	3.9	125
756	Rapid preparation, thermal stability and electromagnetic interference shielding properties of two-dimensional Ti3C2 MXene. Ceramics International, 2019, 45, 19902-19909.	2.3	69
757	Two-dimensional transition metal carbide (Ti ₃ C ₂ <i>T</i> _x) as an efficient adsorbent to remove cesium (Cs ⁺). Dalton Transactions, 2019, 48, 11803-11812.	1.6	98
758	The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering, 2019, 3, 041501.	3.3	84
759	Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy, 2019, 66, 104134.	8.2	149
760	Van der Waals heterostructures of blue phosphorene and scandium-based MXenes monolayers. Journal of Applied Physics, 2019, 126, .	1.1	14
761	Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Applied Surface Science, 2019, 498, 143889.	3.1	89
762	Sculpting Liquids with Two-Dimensional Materials: The Assembly of Ti ₃ C ₂ T _{<i>x</i>} MXene Sheets at Liquid–Liquid Interfaces. ACS Nano, 2019, 13, 12385-12392.	7.3	52
763	Analysis of seismic damage process of high concrete dam-foundation system. IOP Conference Series: Earth and Environmental Science, 2019, 304, 042068.	0.2	1
764	2D Metal Carbides and Nitrides (MXenes). , 2019, , .		240

#	Article	IF	CITATIONS
765	Introduction to 2D Transition Metal Carbides and Nitrides (MXenes). , 2019, , 3-12.		43
766	Electronic Properties and Applications of MXenes from Ab Initio Calculations Perspective. , 2019, , 255-289.		6
767	Electronic and Mechanical Properties of MXenes Derived from Single-Flake Measurements. , 2019, , 301-325.		9
768	Optical Properties of MXenes. , 2019, , 327-346.		12
769	Non-MAX Phase Precursors for MXenes. , 2019, , 53-68.		12
770	Top-Down MXene Synthesis (Selective Etching). , 2019, , 69-87.		16
771	Effect of Synthesis Methods on the Structure and Defects of Two-Dimensional MXenes. , 2019, , 111-123.		1
772	First-principles study on the mechanical properties of M2CT2 (M = Ti, Zr, Hf; T = O, F, OH) MX& Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	nes 1.3	14
773	Selective Lithiation–Expansion–Microexplosion Synthesis of Two-Dimensional Fluoride-Free Mxene. , 2019, 1, 628-632.		64
774	A Novel Strategy for Lithium-Ion Battery Anode with Enhanced Cycling Performance: Silicon Particles Enclosed in Shell-Like Mxenes/CNTs Nanostructure. , 2019, , .		1
775	<i>Ab initio</i> study of the effective Coulomb interactions and Stoner ferromagnetism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:m mathvariant="normal">C</mml:m </mml:msub></mml:mrow> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:m< td=""><td>n>21.1 n>2<td>l:mn>22 l:mn></td></td></mml:m<></mml:msub></mml:mrow></mml:math </mml:math 	n>21.1 n>2 <td>l:mn>22 l:mn></td>	l:mn>22 l:mn>
776	Physical Review B, 2019, 100, . Rational Design of Flexible Two-Dimensional MXenes with Multiple Functionalities. Chemical Reviews, 2019, 119, 11980-12031.	23.0	242
777	A new single-layer structure of MBene family: Ti ₂ B. Journal of Physics Condensed Matter, 2019, 31, 505401.	0.7	27
778	Alkali Metal Arenides as a Universal Synthetic Tool for Layered 2D Germanene Modification. Angewandte Chemie, 2019, 131, 16669-16674.	1.6	0
779	Alkali Metal Arenides as a Universal Synthetic Tool for Layered 2D Germanene Modification. Angewandte Chemie - International Edition, 2019, 58, 16517-16522.	7.2	14
780	First-Principles Calculations of TiB MBene Monolayers for Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 7220-7229.	2.4	45
781	Investigate of lateral interactions between ammonia molecules adsorbed on a V3C2 MXenes sheet of DFT study and statistical physics. AIP Conference Proceedings, 2019, , .	0.3	2
782	Effects of biaxial strain and functional groups on SiC/ti ₃ C ₂ heterostructure: a first principle calculation. Materials Research Express, 2019, 6, 125070.	0.8	1

#	Article	IF	CITATIONS
783	Electrochemical Nitrogen Reduction Reaction Performance of Single-Boron Catalysts Tuned by MXene Substrates. Journal of Physical Chemistry Letters, 2019, 10, 6984-6989.	2.1	120
784	Specific ion effects at graphitic interfaces. Nature Communications, 2019, 10, 4858.	5.8	62
785	MXeneâ€Bonded Flexible Hard Carbon Film as Anode for Stable Na/Kâ€ion Storage. Advanced Functional Materials, 2019, 29, 1906282.	7.8	214
786	The Contacts of the Monolayer Semiconductor C ₂ N with 2D Metal Electrodes. Advanced Theory and Simulations, 2019, 2, 1800161.	1.3	19
787	Novel Synthesis of Red Phosphorus Nanodot/Ti ₃ C ₂ T _{<i>x</i>} MXenes from Low-Cost Ti ₃ SiC ₂ MAX Phases for Superior Lithium- and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42086-42093.	4.0	45
788	Nanostructure of Cr ₂ CO ₂ MXene Supported Single Metal Atom as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Energy Materials, 2019, 2, 6851-6859.	2.5	81
789	Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.	2.8	52
790	The Synthesis, Structure, Morphology Characterizations and Evolution Mechanisms of Nanosized Titanium Carbides and Their Further Applications. Nanomaterials, 2019, 9, 1152.	1.9	54
791	Hierarchical Vertically Aligned Titanium Carbide (MXene) Array for Flexible All-Solid-State Supercapacitor with High Volumetric Capacitance. ACS Applied Energy Materials, 2019, 2, 6834-6840.	2.5	18
792	One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries. Dalton Transactions, 2019, 48, 14433-14439.	1.6	45
793	Stabilizing Ti3C2Tx-MXenes with TiOF2 nanospheres intercalation to improve hydrogen evolution reaction and humidity-sensing performance. Applied Surface Science, 2019, 496, 143729.	3.1	52
794	Synthesis of atomically layered and chemically ordered rare-earth (RE) <i>i</i> MAX phases; (Mo _{2/3} RE _{1/3}) ₂ GaC with RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Materials Research Letters, 2019, 7, 446-452.	4.1	40
795	Recent advances in MXene–based electrochemical sensors and biosensors. TrAC - Trends in Analytical Chemistry, 2019, 120, 115643.	5.8	220
796	Single molybdenum atom anchored on 2D Ti ₂ NO ₂ MXene as a promising electrocatalyst for N ₂ fixation. Nanoscale, 2019, 11, 18132-18141.	2.8	55
797	Superior Thermoelectric Performance of Ordered Double Transition Metal MXenes: Cr ₂ TiC ₂ T ₂ (T = â^'OH or â^'F). Journal of Physical Chemistry Letters, 2019, 10, 5721-5728.	2.1	49
798	Facile Synthesis of Ti ₃ C ₂ T _{<i>x</i>} –Poly(vinylpyrrolidone) Nanocomposites for Nonvolatile Memory Devices with Low Switching Voltage. ACS Applied Materials & Interfaces, 2019, 11, 38061-38067.	4.0	28
799	Tuning the Hydrogen Evolution Performance of Metallic 2D Tantalum Disulfide by Interfacial Engineering. ACS Nano, 2019, 13, 11874-11881.	7.3	77
800	Current state of the art on tailoring the MXene composition, structure, and surface chemistry. Current Opinion in Solid State and Materials Science, 2019, 23, 100774.	5.6	92

#	Article	IF	Citations
801	Catalytic Effect on CO ₂ Electroreduction by Hydroxyl-Terminated Two-Dimensional MXenes. ACS Applied Materials & Interfaces, 2019, 11, 36571-36579.	4.0	94
802	An Unexpected Transformation of Organic Solvents into 2D Fluorescent Quantum Dots during Ultrasonication-Assisted Liquid-Phase Exfoliation. Journal of Physical Chemistry C, 2019, 123, 25412-25421.	1.5	21
803	The mechanical flexibility, electronic structure and carrier mobility of monolayer GeP: A first principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125856.	0.9	4
804	Theoretical Analysis, Synthesis, and Characterization of 2D W _{1.33} C (MXene) with Ordered Vacancies. ACS Applied Nano Materials, 2019, 2, 6209-6219.	2.4	37
805	Highly-dispersed iron oxide nanoparticles anchored on crumpled nitrogen-doped MXene nanosheets as anode for Li-ion batteries with enhanced cyclic and rate performance. Journal of Power Sources, 2019, 439, 227107.	4.0	45
806	Introduction to MXenes: synthesis and characteristics. Materials Today Chemistry, 2019, 14, 100191.	1.7	89
807	The Cr impurity effect on the optical properties of the Ti2N graphene-like materials: a DFT study. International Nano Letters, 2019, 9, 289-298.	2.3	1
808	Carbon-Coated SnO ₂ /Ti ₃ C ₂ Composites with Enhanced Lithium Storage Performance. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	1
809	Preparation and mechanical properties of nano-sized flaky TiCN compounds. Integrated Ferroelectrics, 2019, 200, 43-48.	0.3	1
810	High-Performance Humidity Sensor Based on Urchin-Like Composite of Ti ₃ C ₂ MXene-Derived TiO ₂ Nanowires. ACS Applied Materials & Interfaces, 2019, 11, 38116-38125.	4.0	156
811	Nanotechnology Facets of the Periodic Table of Elements. ACS Nano, 2019, 13, 10879-10886.	7.3	26
812	Demulsification of acidic oil-in-water emulsions driven by chitosan loaded Ti3C2Tx. Applied Surface Science, 2019, 476, 878-885.	3.1	36
813	2D planar penta-MN ₂ (M = Pd, Pt) sheets identified through structure search. Physical Chemistry Chemical Physics, 2019, 21, 246-251.	1.3	32
814	Heterostructures of Ni–Co–Al layered double hydroxide assembled on V ₄ C ₃ MXene for high-energy hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 2291-2300.	5.2	154
815	Cr ₂ TiC ₂ -based double MXenes: novel 2D bipolar antiferromagnetic semiconductor with gate-controllable spin orientation toward antiferromagnetic spintronics. Nanoscale, 2019, 11, 356-364.	2.8	112
816	Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe ₃ O ₄ /Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega, 2019, 4, 1897-1906.	1.6	234
817	Tailoring Electrocatalytic Properties of Pt Nanoparticles Grown on Ti ₃ C ₂ T _X MXene Surface. Journal of the Electrochemical Society, 2019, 166, H54-H62.	1.3	48
818	Influence of modification of Ti ₃ C ₂ MXene with ceramic oxide and noble metal nanoparticles on its antimicrobial properties and ecotoxicity towards selected algae and higher plants. RSC Advances, 2019, 9, 4092-4105.	1.7	31

#	Article	IF	CITATIONS
819	Two-Dimensional Hydroxyl-Functionalized and Carbon-Deficient Scandium Carbide, ScC _{<i>x</i>} OH, a Direct Band Gap Semiconductor. ACS Nano, 2019, 13, 1195-1203.	7.3	30
820	Control of MXenes' electronic properties through termination and intercalation. Nature Communications, 2019, 10, 522.	5.8	721
821	Atomic Sulfur Covalently Engineered Interlayers of Ti ₃ C ₂ MXene for Ultraâ€Fast Sodiumâ€Ion Storage by Enhanced Pseudocapacitance. Advanced Functional Materials, 2019, 29, 1808107.	7.8	213
822	Electronic and optical characterization of 2D Ti ₂ C and Nb ₂ C (MXene) thin films. Journal of Physics Condensed Matter, 2019, 31, 165301.	0.7	74
823	Oxygenâ€Functionalized Ultrathin Ti ₃ C ₂ T _{<i>x</i>} MXene for Enhanced Electrocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 1368-1373.	3.6	204
824	Titanium carbide MXene: Synthesis, electrical and optical properties and their applications in sensors and energy storage devices. Nanomaterials and Nanotechnology, 2019, 9, 184798041882447.	1.2	49
825	Recent advances in MXenes: From fundamentals to applications. Current Opinion in Solid State and Materials Science, 2019, 23, 164-178.	5.6	247
826	Electrochemical performance of two-dimensional Ti3C2-Mn3O4 nanocomposites and carbonized iron cations for hybrid supercapacitor electrodes. Electrochimica Acta, 2019, 301, 487-499.	2.6	57
827	High Sensitivity Surface Plasmon Resonance Sensor Based on Two-Dimensional MXene and Transition Metal Dichalcogenide: A Theoretical Study. Nanomaterials, 2019, 9, 165.	1.9	126
828	Two-dimensional materials for advanced Li-S batteries. Energy Storage Materials, 2019, 22, 284-310.	9.5	114
829	MXene-supported Co ₃ O ₄ quantum dots for superior lithium storage and oxygen evolution activities. Chemical Communications, 2019, 55, 1237-1240.	2.2	94
830	Au nanoparticles supported on functionalized two-dimensional titanium carbide for the sensitive detection of nitrite. New Journal of Chemistry, 2019, 43, 2464-2470.	1.4	33
831	A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS ₂ , MXenes, and 2D MOFs. Journal of Materials Chemistry A, 2019, 7, 16598-16621.	5.2	95
832	Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts. Electrochemical Energy Reviews, 2019, 2, 373-394.	13.1	74
833	Steady microwave absorption behavior of two-dimensional metal carbide MXene and Polyaniline composite in X-band. Journal of Magnetism and Magnetic Materials, 2019, 488, 165364.	1.0	63
834	Preparation of (Vx, Ti1â^'x)2C MXenes and their performance as anode materials for LIBs. Journal of Materials Science, 2019, 54, 11991-11999.	1.7	38
835	Organ-like Ti3C2 Mxenes/polyaniline composites by chemical grafting as high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2019, 847, 113203.	1.9	43
836	Low Resistivity and High Breakdown Current Density of 10 nm Diameter van der Waals TaSe ₃ Nanowires by Chemical Vapor Deposition. Nano Letters, 2019, 19, 4355-4361.	4.5	55

~			<u>_</u>
CIT	ΑΤΙ	ON I	REPORT
\sim			

#	Article	IF	CITATIONS
837	Plasmonic Ti ₃ C ₂ T _{<i>x</i>} MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device. ACS Nano, 2019, 13, 8124-8134.	7.3	247
838	Topochemical synthesis of phase-pure Mo ₂ AlB ₂ through staging mechanism. Chemical Communications, 2019, 55, 9295-9298.	2.2	34
839	Electrode Materials for High-Performance Sodium-Ion Batteries. Materials, 2019, 12, 1952.	1.3	62
840	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62, 933-967.	4.2	256
841	Theoretical Prediction of Catalytic Activity of Ti ₂ C MXene as Cathode for Li–O ₂ Batteries. Journal of Physical Chemistry C, 2019, 123, 17466-17471.	1.5	53
842	<p>Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene</p> . International Journal of Nanomedicine, 2019, Volume 14, 4529-4539.	3.3	61
843	Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International, 2019, 45, 18167-18188.	2.3	371
844	Enhanced Thermal Conductivity of Epoxy Composites Filled with 2D Transition Metal Carbides (MXenes) with Ultralow Loading. Scientific Reports, 2019, 9, 9135.	1.6	104
845	Antioxidants Unlock Shelf-Stable Ti3C2T (MXene) Nanosheet Dispersions. Matter, 2019, 1, 513-526.	5.0	436
846	Origin of theoretical pseudocapacitance of two-dimensional supercapacitor electrodes Ti ₃ C ₂ T ₂ (T = bare, O, S). Journal of Materials Chemistry A, 2019, 7, 16231-16238.	5.2	26
847	Synthesis and Processing of Emerging Two-Dimensional Nanomaterials. , 2019, , 1-25.		18
848	Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceramics International, 2019, 45, 17653-17661.	2.3	109
849	Two-Dimensional Transition Metal MXene-Based Photocatalysts for Solar Fuel Generation. Journal of Physical Chemistry Letters, 2019, 10, 3488-3494.	2.1	193
850	Two-Dimensional Vanadium Carbide MXene for Gas Sensors with Ultrahigh Sensitivity Toward Nonpolar Gases. ACS Sensors, 2019, 4, 1603-1611.	4.0	252
851	2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 2019, 4, 1687-1709.	8.8	375
852	Exploring the catalytic activity of MXenes Mn+1CnO2 for hydrogen evolution. Journal of Materials Science, 2019, 54, 11378-11389.	1.7	14
853	2D MXenes as Perspective Immobilization Platforms for Design of Electrochemical Nanobiosensors. Electroanalysis, 2019, 31, 1833-1844.	1.5	36
854	Ti ₂ C MXene Modified with Ceramic Oxide and Noble Metal Nanoparticles: Synthesis, Morphostructural Properties, and High Photocatalytic Activity. Inorganic Chemistry, 2019, 58, 7602-7614.	1.9	77

#	Article	IF	CITATIONS
855	Ag ₂ S/MoS ₂ Nanocomposites Anchored on Reduced Graphene Oxide: Fast Interfacial Charge Transfer for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 22380-22389.	4.0	55
856	Etching and Exfoliation Properties of Cr ₂ AlC into Cr ₂ CO ₂ and the Electrocatalytic Performances of 2D Cr ₂ CO ₂ MXene. Journal of Physical Chemistry C, 2019, 123, 15629-15636.	1.5	29
857	MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. Trends in Chemistry, 2019, 1, 656-669.	4.4	302
858	Aqueous dispersions of highly luminescent boron-rich nanosheets by the exfoliation of polycrystalline titanium diboride. New Journal of Chemistry, 2019, 43, 9953-9960.	1.4	19
859	Deep insights into the exfoliation properties of MAX to MXenes and the hydrogen evolution performances of 2D MXenes. Journal of Materials Chemistry A, 2019, 7, 15862-15870.	5.2	58
860	Quick mass-production of MAX (Ti ₂ AlC) book with pages separated by stacking faults benefiting removal of "Aâ€layer. Chemical Communications, 2019, 55, 7522-7525.	2.2	3
861	Fluorine-free Ti3C2Tx as anode materials for Li-ion batteries. Electrochemistry Communications, 2019, 104, 106472.	2.3	46
862	Superior Kinetic and Cyclic Performance of a 2D Titanium Carbide Incorporated 2LiH + MgB ₂ Composite toward Highly Reversible Hydrogen Storage. ACS Applied Energy Materials, 2019, 2, 4853-4864.	2.5	37
863	Mn2C Monolayer: Hydrogenation/Oxygenation-Induced Strong Ferromagnetism and Potential Applications. Journal of Physical Chemistry C, 2019, 123, 16388-16392.	1.5	13
864	3D Macroscopic Architectures from Selfâ€Assembled MXene Hydrogels. Advanced Functional Materials, 2019, 29, 1903960.	7.8	360
865	Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Materials Today, 2019, 30, 80-102.	8.3	390
866	Dense Charge Accumulation in MXene with a Hydrate-Melt Electrolyte. Chemistry of Materials, 2019, 31, 5190-5196.	3.2	39
867	Perfect planar tetra-coordinated MC ₆ monolayer: superior anode material for Li-ion battery. Physical Chemistry Chemical Physics, 2019, 21, 15187-15194.	1.3	14
868	Two-dimensional Ti3C2Tx@S as cathode for room temperature sodium-sulfur batteries. Ionics, 2019, 25, 5373-5382.	1.2	29
869	MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance. Journal of Alloys and Compounds, 2019, 802, 259-268.	2.8	104
870	Solid state MXene based electrostatic fractional capacitors. Applied Physics Letters, 2019, 114, .	1.5	16
871	<i>In situ</i> formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH ₂ . Journal of Materials Chemistry A, 2019, 7, 14244-14252.	5.2	114
872	O-Vacancy-line defective Ti ₂ CO ₂ nanoribbons: novel magnetism, tunable carrier mobility, and magnetic device behaviors. Journal of Materials Chemistry C, 2019, 7, 745-7759.	2.7	63

#	Article	IF	CITATIONS
873	Advanced Nonâ€metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions. Chemistry - A European Journal, 2019, 25, 12464-12485.	1.7	57
874	Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nature Communications, 2019, 10, 2284.	5.8	159
875	Stabilization of 2D graphene, functionalized graphene, and Ti2CO2 (MXene) in super-critical CO2: a molecular dynamics study. Physical Chemistry Chemical Physics, 2019, 21, 12968-12976.	1.3	13
876	Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and Highâ€Power Zinc Ion Battery. Advanced Functional Materials, 2019, 29, 1901336.	7.8	145
877	Surface Modified MXeneâ€Based Nanocomposites for Electrochemical Energy Conversion and Storage. Small, 2019, 15, e1901503.	5.2	159
878	Ordered double-M elements MXenes TiMC: Large in-plane stiffness and ferromagnetism. Journal of Magnetism and Magnetic Materials, 2019, 486, 165280.	1.0	14
879	Concentric Advancing Front Corrugations and Multiple Ordered Growth of 2D Mo ₂ C Crystals. Crystal Growth and Design, 2019, 19, 3097-3102.	1.4	6
880	Heterostructure engineering of Co-doped MoS ₂ coupled with Mo ₂ CT _x MXene for enhanced hydrogen evolution in alkaline media. Nanoscale, 2019, 11, 10992-11000.	2.8	127
881	Nylon-6/Ti ₃ C ₂ T _{<i>z</i>/sub> MXene Nanocomposites Synthesized by in Situ Ring Opening Polymerization of ε-Caprolactam and Their Water Transport Properties. ACS Applied Materials & Interfaces, 2019, 11, 20425-20436.}	4.0	52
882	High Lithiumâ€lon Storage Performance of Ti ₃ SiC ₂ MAX by Oxygen Doping. ChemistrySelect, 2019, 4, 5319-5321.	0.7	12
883	Plasmonic Light Illumination Creates a Channel To Achieve Fast Degradation of Ti ₃ C ₂ T _{<i>x</i>} Nanosheets. Inorganic Chemistry, 2019, 58, 7285-7294.	1.9	37
884	Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale, 2019, 11, 11305-11314.	2.8	120
885	Effect of Ti ₃ AlC ₂ MAX Phase on Structure and Properties of Resultant Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Applied Nano Materials, 2019, 2, 3368-3376.	2.4	210
886	Computational Discovery of Transparent Conducting In-Plane Ordered MXene (<i>i</i> -MXene) Alloys. Chemistry of Materials, 2019, 31, 4124-4132.	3.2	19
887	La- and Mn-Codoped Bismuth Ferrite/Ti ₃ C ₂ MXene Composites for Efficient Photocatalytic Degradation of Congo Red Dye. ACS Omega, 2019, 4, 8661-8668.	1.6	121
888	Review of twoâ€dimensional materials for electrochemical CO ₂ reduction from a theoretical perspective. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1416.	6.2	59
889	Insights into the thermal and chemical stability of multilayered V ₂ CT _x MXene. Nanoscale, 2019, 11, 10716-10726.	2.8	130
890	Structure and Deformation Behavior of Ti-SiC Composites Made by Mechanical Alloying and Spark Plasma Sintering. Materials, 2019, 12, 1276.	1.3	6

#	Article	IF	CITATIONS
891	Strain-tunable electronic structures and optical properties of semiconducting MXenes. Nanotechnology, 2019, 30, 345205.	1.3	29
892	TMC (TM = Co, Ni, and Cu) monolayers with planar pentacoordinate carbon and their potential applications. Journal of Materials Chemistry C, 2019, 7, 6406-6413.	2.7	29
893	Planar NiC ₃ as a reversible anode material with high storage capacity for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 13356-13363.	5.2	47
894	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	10.2	18
895	Layer-Stacking, Defects, and Robust Superconductivity on the Mo-Terminated Surface of Ultrathin Mo ₂ C Flakes Grown by CVD. Nano Letters, 2019, 19, 3327-3335.	4.5	21
896	Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Materials, 2019, 20, 299-306.	9.5	108
897	Multiscale Simulation of Morphology Evolution of Supported Pt Nanoparticles via Interfacial Control. Langmuir, 2019, 35, 6393-6402.	1.6	8
898	High Dielectric Constant and Low Dielectric Loss via Poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 467 Materials & Interfaces, 2019, 11, 18599-18608.	Td (alcoh 4.0	iol)/Ti _{ 157}
899	Zirconium Monocarbide. , 2019, , 423-675.		2
900	Tuning the Magnetic and Electronic Properties of Janus MoSSe Nanoribbon by Edge Modification: A Firstâ€Principles Study. Physica Status Solidi (B): Basic Research, 2019, 256, 1900106.	0.7	8
901	Synthesis of (Ti0.5V0.5)3C2 as Novel Electrocatalyst to Modify Carbon Paste Electrode for Measurement of Propranolol in Real Samples. Russian Journal of Electrochemistry, 2019, 55, 52-59.	0.3	10
902	Flexible electrode based on multi-scaled MXene (Ti3C2Tx) for supercapacitors. Journal of Alloys and Compounds, 2019, 790, 517-523.	2.8	49
903	Phase pure and well crystalline Cr2AlB2: A key precursor for two-dimensional CrB. Journal of Materials Science and Technology, 2019, 35, 1593-1600.	5.6	84
904	Hierarchical Ni ₂ P/Cr ₂ CT _x (MXene) composites with oxidized surface groups as efficient bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 9324-9334.	5.2	54
905	Excellent air and water stability of two-dimensional black phosphorene/MXene heterostructure. Materials Research Express, 2019, 6, 065504.	0.8	13
906	Atomically Layered and Ordered Rare-Earth <i>i</i> -MAX Phases: A New Class of Magnetic Quaternary Compounds. Chemistry of Materials, 2019, 31, 2476-2485.	3.2	89
907	Single-Molecule Sensing Using Nanopores in Two-Dimensional Transition Metal Carbide (MXene) Membranes. ACS Nano, 2019, 13, 3042-3053.	7.3	140
908	2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application. Advanced Energy Materials, 2019, 9, 1803358.	10.2	467

#	Article	IF	CITATIONS
909	Tuning the Electrical Conductivity of Ti ₂ CO ₂ MXene by Varying the Layer Thickness and Applying Strains. Journal of Physical Chemistry C, 2019, 123, 6802-6811.	1.5	49
910	Truncated octahedral bipyramidal TiO ₂ /MXene Ti ₃ C ₂ hybrids with enhanced photocatalytic H ₂ production activity. Nanoscale Advances, 2019, 1, 1812-1818.	2.2	63
911	Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Applied Surface Science, 2019, 484, 383-391.	3.1	163
912	Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene. Chemistry of Materials, 2019, 31, 2941-2951.	3.2	160
913	Unraveling the multiscale damping properties of two-dimensional layered MXene. Nanomaterials and Energy, 2019, 8, 84-95.	0.1	5
914	Gas-surface interactions on two-dimensional crystals. Surface Science Reports, 2019, 74, 141-177.	3.8	16
915	Nanolayered Ti ₃ C ₂ and SrTiO ₃ Composites for Photocatalytic Reduction and Removal of Uranium(VI). ACS Applied Nano Materials, 2019, 2, 2283-2294.	2.4	119
916	Methane adsorption on strained 1T′-MoS ₂ monolayer: insights from density functional theory calculations. Materials Research Express, 2019, 6, 065512.	0.8	9
917	White Photoluminescent Ti ₃ C ₂ MXene Quantum Dots with Twoâ€Photon Fluorescence. Advanced Science, 2019, 6, 1801470.	5.6	143
918	Tuning the photoluminescence of large Ti3C2Tx MXene flakes. Ceramics International, 2019, 45, 11468-11474.	2.3	22
919	Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State and Materials Science, 2019, 23, 149-163.	5.6	353
920	Tuning Thermal Transport Through Atomically Thin Ti ₃ C ₂ T _z MXene by Current Annealing in Vacuum. Advanced Functional Materials, 2019, 29, 1805693.	7.8	25
921	Atomic Layer Tailoring Titanium Carbide MXene To Tune Transport and Polarization for Utilization of Electromagnetic Energy beyond Solar and Chemical Energy. ACS Applied Materials & Interfaces, 2019, 11, 12535-12543.	4.0	187
922	MXeneâ€Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1802004.	1.9	214
923	Interlayer Hydrogenâ€Bonded Metal Porphyrin Frameworks/MXene Hybrid Film with High Capacitance for Flexible Allâ€Solidâ€State Supercapacitors. Small, 2019, 15, e1901351.	5.2	139
924	Intercalation and delamination behavior of Ti ₃ C ₂ T _x and MnO ₂ /Ti ₃ C ₂ T _x /RGO flexible fibers with high volumetric capacitance. Journal of Materials Chemistry A, 2019, 7, 12582-12592.	5.2	48
925	Ta4C3 MXene as supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 792, 1230-1238.	2.8	103
926	Impact of surface oxidation on the structural, electronic transport, and optical properties of two-dimensional titanium nitride (Ti3N2) MXene. Computational Condensed Matter, 2019, 2 <u>0, e00382</u> .	0.9	19

#	Article	IF	CITATIONS
927	0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2. Nano Energy, 2019, 61, 27-35.	8.2	173
928	Two-dimensional Ti ₂ CT _x MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration. Journal of Materials Chemistry A, 2019, 7, 12095-12104.	5.2	96
929	Synthesis of Ti ₃ C ₂ /TiO ₂ heterostructure by microwave heating with high electrochemical performance. Materials Research Express, 2019, 6, 065056.	0.8	15
930	Two-dimensional V4C3 MXene as high performance electrode materials for supercapacitors. Electrochimica Acta, 2019, 307, 414-421.	2.6	119
931	Nitrogen-doped Nb2CTx MXene as anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2019, 793, 505-511.	2.8	87
932	Layered Tl ₂ 0: a model thermoelectric material. Journal of Materials Chemistry C, 2019, 7, 5094-5103.	2.7	46
933	MXenes and ultrasonication. Journal of Materials Chemistry A, 2019, 7, 10843-10857.	5.2	230
934	Normal compressive strain-induced modulation of electronic and mechanical properties of multilayer MoS2 and Graphene/MoS2 heterostructure: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 111, 158-166.	1.3	19
935	Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horizons, 2019, 4, 809-827.	4.1	218
936	Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy, 2019, 60, 734-742.	8.2	124
937	Surface Termination Dependent Work Function and Electronic Properties of Ti ₃ C ₂ T _{<i>x</i>/sub> MXene. Chemistry of Materials, 2019, 31, 6590-6597.}	3.2	359
938	The potential application of 2D Ti2CT2 (T = C, O and S) monolayer MXenes as anodes for Na-ion batteries: A theoretical study. Computational Materials Science, 2019, 163, 267-277.	1.4	43
939	On the Chemical Diversity of the MAX Phases. Trends in Chemistry, 2019, 1, 210-223.	4.4	490
940	Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization. Nanomaterials, 2019, 9, 284.	1.9	73
941	Temperature-dependent optical and electrical properties of bulk Ti2AlC and two-dimensional MXenes from first-principles. Physica B: Condensed Matter, 2019, 560, 146-154.	1.3	12
942	Promoting Role of MXene Nanosheets in Biomedical Sciences: Therapeutic and Biosensing Innovations. Advanced Healthcare Materials, 2019, 8, e1801137.	3.9	248
943	Hydrous RuO ₂ â€Decorated MXene Coordinating with Silver Nanowire Inks Enabling Fully Printed Micro‧upercapacitors with Extraordinary Volumetric Performance. Advanced Energy Materials, 2019, 9, 1803987.	10.2	188
944	Ultrathin MXene/Calcium Alginate Aerogel Film for Highâ€Performance Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2019, 6, 1802040.	1.9	219

#	Article	IF	CITATIONS
945	A Series of MAX Phases with MAâ€Triangularâ€Prism Bilayers and Elastic Properties. Angewandte Chemie - International Edition, 2019, 58, 4576-4580.	7.2	20
946	Asymmetric MXene/monolayer transition metal dichalcogenide heterostructures for functional applications. Npj Computational Materials, 2019, 5, .	3.5	23
947	Liquid phase exfoliation of MoO ₂ nanosheets for lithium ion battery applications. Nanoscale Advances, 2019, 1, 1560-1570.	2.2	35
948	Tetragonal and trigonal Mo ₂ B ₂ monolayers: two new low-dimensional materials for Li-ion and Na-ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 5178-5188.	1.3	72
949	Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D Materials and Applications, 2019, 3, .	3.9	312
950	Mechanical and thermal transport properties of monolayer PbI ₂ via first-principles investigations. Philosophical Magazine, 2019, 99, 1277-1296.	0.7	16
951	Laserâ€Cutting Fabrication of Mxeneâ€Based Flexible Microâ€Supercapacitors with High Areal Capacitance. ChemNanoMat, 2019, 5, 658-665.	1.5	38
952	Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale, 2019, 11, 3993-4000.	2.8	69
953	A Series of MAX Phases with MAâ€Triangularâ€Prism Bilayers and Elastic Properties. Angewandte Chemie, 2019, 131, 4624-4628.	1.6	2
954	Single Photon Sources in Atomically Thin Materials. Annual Review of Physical Chemistry, 2019, 70, 123-142.	4.8	145
955	Mapping Hot Spots at Heterogeneities of Few-Layer Ti ₃ C ₂ MXene Sheets. ACS Nano, 2019, 13, 3301-3309.	7.3	29
956	Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society, 2019, 141, 4730-4737.	6.6	811
957	Interface Schottky barrier in Hf ₂ NT ₂ /MSSe (T = F, O, OH; M = Mo, W) heterostructures. Physical Chemistry Chemical Physics, 2019, 21, 5394-5401.	1.3	19
958	Recent progress in 2D group IV–IV monochalcogenides: synthesis, properties and applications. Nanotechnology, 2019, 30, 252001.	1.3	104
959	Investigation of twoâ€dimensional hfâ€based MXenes as the anode materials for li/naâ€ion batteries: A DFT study. Journal of Computational Chemistry, 2019, 40, 1352-1359.	1.5	38
960	Promoted electro-responsive performances in an interface-confined oxidized niobium carbide MXene. Chemical Engineering Journal, 2019, 366, 321-329.	6.6	51
961	Catalytic effect of Ti2C MXene on the dehydrogenation of MgH2. International Journal of Hydrogen Energy, 2019, 44, 6787-6794.	3.8	62
962	High capacity silicon anodes enabled by MXene viscous aqueous ink. Nature Communications, 2019, 10, 849.	5.8	253

#	Article	IF	CITATIONS
963	Interfacial and electronic properties of heterostructures of MXene and graphene. Physical Review B, 2019, 99, .	1.1	53
964	Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti ₃ C ₂ T <i>_x</i> (MXene) Nanoparticle–Nanosheet Hybrid Network. Advanced Functional Materials, 2019, 29, 1807882.	7.8	187
965	Electrodeposition of a Ni–P–TiO2/Ti3C2Tx Coating with in situ Grown Nanoparticles TiO2 on Ti3C2Tx Sheets. Coatings, 2019, 9, 750.	1.2	12
966	Multifunctional 2D CuSe monolayer nanodevice. Journal of Physics Condensed Matter, 2019, 31, 355301.	0.7	8
967	Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale, 2019, 11, 23382-23391.	2.8	203
968	1T-MoS ₂ nanopatch/Ti ₃ C ₂ MXene/TiO ₂ nanosheet hybrids for efficient photocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2019, 3, 2673-2680.	3.2	81
969	Tellurene based chemical sensor. Journal of Materials Chemistry A, 2019, 7, 26326-26333.	5.2	95
970	Alternative electrodes for HTMs and noble-metal-free perovskite solar cells: 2D MXenes electrodes. RSC Advances, 2019, 9, 34152-34157.	1.7	39
971	Monolayer MBenes: prediction of anode materials for high-performance lithium/sodium ion batteries. Nanoscale, 2019, 11, 20307-20314.	2.8	93
972	Ambient oxidation of Ti ₃ C ₂ MXene initialized by atomic defects. Nanoscale, 2019, 11, 23330-23337.	2.8	147
973	Tunable energy storage capacity of two-dimensional Ti ₃ C ₂ T _x modified by a facile two-step pillaring strategy for high performance supercapacitor electrodes. Nanoscale, 2019, 11, 21981-21989.	2.8	32
974	Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. Journal of Materials Chemistry A, 2019, 7, 23301-23336.	5.2	94
975	Cu single atoms on Ti ₂ CO ₂ as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell. Journal of Materials Chemistry A, 2019, 7, 26062-26070.	5.2	95
976	Constructing Conductive Bridge Arrays between Ti ₃ C ₂ T _{<i>x</i>/i>} MXene Nanosheets for High-Performance Lithium-Ion Batteries and Highly Efficient Hydrogen Evolution. Inorganic Chemistry, 2019, 58, 16524-16536.	1.9	39
977	Scalable Two-Dimensional Lateral Metal/Semiconductor Junction Fabricated with Selective Synthetic Integration of Transition-Metal-Carbide (Mo ₂ C)/-Dichalcogenide (MoS ₂). ACS Applied Materials & Interfaces, 2019, 11, 47190-47196.	4.0	19
978	Ti ₃ C ₂ -MXene/Bismuth Ferrite Nanohybrids for Efficient Degradation of Organic Dyes and Colorless Pollutants. ACS Omega, 2019, 4, 20530-20539.	1.6	119
979	NbS ₂ : A Promising <i>p</i> -Type Ohmic Contact for Two-Dimensional Materials. Physical Review Applied, 2019, 12, .	1.5	36
980	The rise of 2D dielectrics/ferroelectrics. APL Materials, 2019, 7, .	2.2	66

#	Article	IF	CITATIONS
981	<p>Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration</p> . International Journal of Nanomedicine, 2019, Volume 14, 10091-10103.	3.3	83
982	Control of spintronic and electronic properties of bimetallic and vacancy-ordered vanadium carbide MXenes via surface functionalization. Physical Chemistry Chemical Physics, 2019, 21, 25802-25808.	1.3	22
983	Towards fast-charging technologies in Li ⁺ /Na ⁺ storage: from the perspectives of pseudocapacitive materials and non-aqueous hybrid capacitors. Nanoscale, 2019, 11, 19225-19240.	2.8	44
984	Exploring the potentials of Ti ₃ N ₂ and Ti ₃ N ₂ X ₂ (X = O, F, OH) monolayers as anodes for Li or non-Li ion batteries from first-principles calculations. RSC Advances, 2019, 9, 40340-40347.	1.7	15
985	Formation of toroidal Li ₂ O ₂ in non-aqueous Li–O ₂ batteries with Mo ₂ CT _x MXene/CNT composite. RSC Advances, 2019, 9, 41120-41125.	1.7	16
986	Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. Journal of Materials Chemistry A, 2019, 7, 27620-27631.	5.2	133
987	Tuning the Electronic Properties of Hexagonal Two-Dimensional GaN Monolayers via Doping for Enhanced Optoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 202-213.	2.4	60
988	Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environmental Pollution, 2019, 246, 608-620.	3.7	530
989	Assembling 2D MXenes into Highly Stable Pseudocapacitive Electrodes with High Power and Energy Densities. Advanced Materials, 2019, 31, e1806931.	11.1	238
990	A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2TX flakes decoration for enhanced photoelectrochemical water oxidation. Chemical Engineering Journal, 2019, 361, 853-861.	6.6	67
991	High TMR in MXene-Based Mn ₂ CF ₂ /Ti ₂ CO ₂ /Mn ₂ CF ₂ Magnetic Tunneling Junction. ACS Applied Materials & Interfaces, 2019, 11, 3609-3616.	4.0	28
992	Stabilities and electronic properties of vacancy-doped Ti2CO2. Computational Materials Science, 2019, 159, 127-135.	1.4	21
993	Mo ₂ C/graphene heterostructures: low temperature chemical vapor deposition on liquid bimetallic Sn–Cu and hydrogen evolution reaction electrocatalytic properties. Nanotechnology, 2019, 30, 125401.	1.3	44
994	The MN effect on Electronic, optical and thermoelectric properties of Ti2N graphene: by DFT. Chinese Journal of Physics, 2019, 57, 240-249.	2.0	1
995	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 2019, 119, 478-598.	23.0	521
996	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
997	Facile synthesis of MXene/MnO2 composite with high specific capacitance. Journal of Solid State Electrochemistry, 2019, 23, 361-365.	1.2	27
998	Enhanced charge transfer for efficient photocatalytic H2 evolution over UiO-66-NH2 with annealed Ti3C2Tx MXenes. International Journal of Hydrogen Energy, 2019, 44, 788-800.	3.8	100

#	Article	IF	CITATIONS
999	Cobalt decorated ultra-thin Ti ₃ C ₂ MXene electrocatalyst for high-efficiency hydrogen evolution reaction. Materials Research Express, 2019, 6, 025056.	0.8	14
1000	Pillared MXene with Ultralarge Interlayer Spacing as a Stable Matrix for High Performance Sodium Metal Anodes. Advanced Functional Materials, 2019, 29, 1805946.	7.8	242
1001	Synthesis Pd/biomass-based carbon microsheet composite for efficient dehydrogenation from formic acid. Materials Letters, 2019, 237, 61-64.	1.3	11
1002	Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution. Electrochimica Acta, 2019, 296, 762-770.	2.6	71
1003	2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chemical Engineering Journal, 2019, 359, 1265-1302.	6.6	715
1004	Electrocatalysis on ultra-thin 2D electrodes: New concepts and prospects for tailoring reactivity. Current Opinion in Electrochemistry, 2019, 13, 100-106.	2.5	11
1005	Two-dimensional materials for lithium/sodium-ion capacitors. Materials Today Energy, 2019, 11, 30-45.	2.5	88
1006	Theoretical investigations of TiNbC MXenes as anode materials for Li-ion batteries. Journal of Alloys and Compounds, 2019, 778, 53-60.	2.8	49
1007	Methyl-terminated germanane GeCH3 synthesized by solvothermal method with improved photocatalytic properties. Applied Surface Science, 2019, 467-468, 881-888.	3.1	30
1008	In situ polymerized Ti3C2Tx/PDA electrode with superior areal capacitance for supercapacitors. Journal of Alloys and Compounds, 2019, 778, 858-865.	2.8	63
1009	Progress and prospects in lowâ€dimensional multiferroic materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1409.	6.2	53
1010	Facile mechanism to induce topological transition in MXene. Applied Surface Science, 2019, 473, 597-602.	3.1	5
1011	First-principles investigation of native point defects in two-dimensional Ti3C2. Computational and Theoretical Chemistry, 2019, 1150, 26-39.	1.1	9
1012	A Tungsten-Based Nanolaminated Ternary Carbide: (W,Ti) ₄ C _{4–<i>x</i>} . Inorganic Chemistry, 2019, 58, 1100-1106.	1.9	9
1013	Water Sorption in MXene/Polyelectrolyte Multilayers for Ultrafast Humidity Sensing. ACS Applied Nano Materials, 2019, 2, 948-955.	2.4	173
1014	Probing the Domain Architecture in 2D αâ€Mo ₂ C via Polarized Raman Spectroscopy. Advanced Materials, 2019, 31, e1807160.	11.1	58
1015	Process Safety Analysis for Ti ₃ C ₂ T _{<i>x</i>} MXene Synthesis and Processing. Industrial & Engineering Chemistry Research, 2019, 58, 1570-1579.	1.8	89
1016	Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules. ACS Applied Energy Materials, 2019, 2, 1251-1258.	2.5	19

#	Article	IF	CITATIONS
1017	Predicting the Electrochemical Synthesis of 2D Materials from First Principles. Journal of Physical Chemistry C, 2019, 123, 3180-3187.	1.5	34
1018	Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Separation and Purification Technology, 2019, 211, 782-789.	3.9	177
1019	Crystal structure of Cr4AlB4: A new MAB phase compound discovered in Cr-Al-B system. Journal of Materials Science and Technology, 2019, 35, 530-534.	5.6	66
1020	Efficient Electrocatalytic N2 Fixation with MXene under Ambient Conditions. Joule, 2019, 3, 279-289.	11.7	577
1021	Facile construction of ultrathin SnOx nanosheets decorated MXene (Ti3C2) nanocomposite towards Li-ion batteries as high performance anode materials. Electrochimica Acta, 2019, 295, 237-245.	2.6	64
1022	2D Transition Metal Carbides (MXenes) for Carbon Capture. Advanced Materials, 2019, 31, e1805472.	11.1	184
1023	Conversion of Ti2AlC to C-K2Ti4O9 via a KOH assisted hydrothermal treatment and its application in lithium-ion battery anodes. Electrochimica Acta, 2019, 295, 599-604.	2.6	20
1024	Prediction of Ti3C2O2 MXene as an effective capturer of formaldehyde. Applied Surface Science, 2019, 469, 770-774.	3.1	40
1025	Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Research, 2019, 12, 471-487.	5.8	358
1026	Two-dimensional Nb-based M4C3Tx MXenes and their sodium storage performances. Ceramics International, 2019, 45, 5761-5767.	2.3	30
1027	Density Functional Theory Analysis of Electronic and Optical Properties of Twoâ€Dimensional Tantalum Carbides Ta _{<i>n</i>+1} C <i>_n</i> (<i>n</i> = 1, 2, 3). Physica Status Solidi (B): Basic Research, 2019, 256, 1800457.	0.7	5
1028	Ti ₃ C ₂ T _{<i>x</i>} -Based Three-Dimensional Hydrogel by a Graphene Oxide-Assisted Self-Convergence Process for Enhanced Photoredox Catalysis. ACS Nano, 2019, 13, 295-304.	7.3	247
1029	Probing the electrochemistry of MXene (Ti2CTx)/electrolytic manganese dioxide (EMD) composites as anode materials for lithium-ion batteries. Electrochimica Acta, 2019, 297, 961-973.	2.6	34
1030	Preparation and electrochemical performance of modified Ti ₃ C ₂ T _{<i>x</i>} /polypyrrole composites. Journal of Applied Polymer Science, 2019, 136, 47003.	1.3	12
1031	MXene: A New Trend in 2D Materials Science. , 2019, , 319-330.		20
1032	Structure and Chemistry of 2D Materials. , 2019, , 55-90.		17
1033	Removal of radioactive palladium based on novel 2D titanium carbides. Chemical Engineering Journal, 2019, 358, 283-290.	6.6	102
1034	Insights Into Interfacial Interaction and Its Influence on the Electronic and Optical Properties of Twoâ€Dimensional WS ₂ /TX ₂ CO ₂ (TX = Ti, Zr) van der Waals Heterostructures. Physica Status Solidi (B): Basic Research, 2019, 256, 1800377.	0.7	2

#	Article	IF	CITATIONS
1035	Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro- and Photocatalysis. CheM, 2019, 5, 18-50.	5.8	579
1036	Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions. Desalination, 2019, 451, 18-34.	4.0	87
1037	The Atomic Structure of Ti2C and Ti3C2 MXenes is Responsible for Their Antibacterial Activity Toward E. coli Bacteria. Journal of Materials Engineering and Performance, 2019, 28, 1272-1277.	1.2	85
1038	Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Materials, 2019, 16, 102-125.	9.5	313
1039	Mo2TiC2 MXene: A Promising Catalyst for Electrocatalytic Ammonia Synthesis. Catalysis Today, 2020, 339, 120-126.	2.2	102
1040	Two-dimensional tetragonal GaOI and InOI sheets: In-plane anisotropic optical properties and application to photocatalytic water splitting. Catalysis Today, 2020, 340, 178-182.	2.2	20
1041	V impurity effect on the electronic and optical properties of Ti2C graphene-like: based on DFT. Indian Journal of Physics, 2020, 94, 209-218.	0.9	0
1042	Three-dimensional Cu2O nanorods modified by hydrogen treated Ti3C2TX MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. Chemical Engineering Journal, 2020, 381, 122001.	6.6	57
1043	Das Aufkommen der organischen Einkristallelektronik. Angewandte Chemie, 2020, 132, 1424-1445.	1.6	14
1044	The Emergence of Organic Single rystal Electronics. Angewandte Chemie - International Edition, 2020, 59, 1408-1428.	7.2	153
1045	Intriguing of two-dimensional Janus surface-functionalized MXenes: An ab initio calculation. Computational Materials Science, 2020, 171, 109231.	1.4	56
1046	2D heterostructure comprised of Ni3S2/d-Ti3C2 supported on Ni foam as binder-free electrode for hybrid supercapacitor. Journal of Alloys and Compounds, 2020, 814, 152271.	2.8	59
1047	Pt immobilized spontaneously on porous MXene/MAX hybrid monolith for hydrogen evolution reaction. Chinese Chemical Letters, 2020, 31, 988-991.	4.8	45
1048	Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Materials, 2020, 25, 563-571.	9.5	235
1049	Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. Journal of Alloys and Compounds, 2020, 815, 152403.	2.8	108
1050	Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal. Journal of Hazardous Materials, 2020, 384, 121367.	6.5	102
1051	W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sensors and Actuators B: Chemical, 2020, 304, 127274.	4.0	195
1052	Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors. Trends in Biotechnology, 2020, 38, 264-279.	4.9	161

#	Article	IF	Citations
1053	Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering Reports, 2020, 139, 100520.	14.8	145
1054	Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M =†Ti, Mo). Applied Surface Science, 2020, 500, 143987.	3.1	93
1055	From high-yield Ti3AlCN ceramics to high-quality Ti3CNT MXenes through eliminating Al segregation. Chinese Chemical Letters, 2020, 31, 1044-1048. 998/Math/MathML" display="inline" id="d1e351"	4.8	21
1056	altimg= si37.svg > <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> TiC <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e359" altimg="si37.svg"><mml:msub><mml:mrow< td=""><td>1.3</td><td>10</td></mml:mrow<></mml:msub></mml:math 	1.3	10
1057	Two-dimensional vanadium carbide (V2CT) MXene as supercapacitor electrode in seawater electrolyte. Chinese Chemical Letters, 2020, 31, 984-987.	4.8	74
1058	Twoâ€Dimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 59-77.	3.6	31
1059	MoS2-decorated 2D Ti3C2 (MXene): a high-performance anode material for lithium-ion batteries. Ionics, 2020, 26, 51-59.	1.2	29
1060	2D Superlattices for Efficient Energy Storage and Conversion. Advanced Materials, 2020, 32, e1902654.	11.1	117
1061	Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceramics International, 2020, 46, 81-88.	2.3	88
1062	The correlation between structure, multifunctional properties and application of PVD MAX phase coatings. Part III. Multifunctional applications. Surface Engineering, 2020, 36, 303-325.	1.1	7
1063	Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries. Journal of Energy Chemistry, 2020, 46, 256-263.	7.1	44
1064	Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance. Journal of Power Sources, 2020, 448, 227398.	4.0	58
1065	2D Materials as Ionic Sieves for Inhibiting the Shuttle Effect in Batteries. Chemistry - an Asian Journal, 2020, 15, 2294-2302.	1.7	20
1066	Enhanced gas sensing properties at low working temperature of iron molybdate/MXene composite. Journal of Alloys and Compounds, 2020, 817, 152785.	2.8	42
1067	MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons, 2020, 5, 235-258.	4.1	588
1068	MXene-based sensors and biosensors: next-generation detection platforms. , 2020, , 361-372.		11
1069	Highly sensitive fluorescent sensing for intracellular glutathione based on Ti3C2 quantum dots. Journal of Materials Science: Materials in Electronics, 2020, 31, 175-181.	1.1	16
1070	Two-dimensional semiconducting Lu ₂ CT ₂ (T = F, OH) MXene with low work function and high carrier mobility. Nanoscale, 2020, 12, 3795-3802.	2.8	30

#	Article	IF	CITATIONS
1071	A high-performance trace level acetone sensor using an indispensable V ₄ C ₃ T _x MXene. RSC Advances, 2020, 10, 1261-1270.	1.7	54
1072	From the perspectives of DFT calculations, thermodynamic modeling, and kinetic Monte Carlo simulations: the interaction between hydrogen and Sc ₂ C monolayers. Physical Chemistry Chemical Physics, 2020, 22, 4387-4401.	1.3	4
1073	Band alignment in multilayered semiconductor homojunctions supported on metals. Journal of Materials Chemistry C, 2020, 8, 959-967.	2.7	15
1074	Distinguishing electronic contributions of surface and sub-surface transition metal atoms in Ti-based MXenes. 2D Materials, 2020, 7, 025015.	2.0	31
1075	Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors. Chemical Engineering Journal, 2020, 395, 124057.	6.6	77
1076	Mussel-inspired conductive Ti ₂ C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction. Theranostics, 2020, 10, 2047-2066.	4.6	61
1077	Two-dimensional composite of D-Ti ₃ C ₂ T _x @S@TiO ₂ (MXene) as the cathode material for aluminum-ion batteries. Nanoscale, 2020, 12, 3387-3399.	2.8	60
1078	A small amount of delaminated Ti3C2 flakes to greatly enhance the thermal conductivity of boron nitride papers by assembling a well-designed interface. Materials Chemistry Frontiers, 2020, 4, 292-301.	3.2	32
1079	Fabrication of novel MXene (Ti ₃ C ₂)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft Matter, 2020, 16, 162-169.	1.2	83
1080	Mechanical Exfoliation of Select MAX Phases and Mo ₄ Ce ₄ Al ₇ C ₃ Single Crystals to Produce MAXenes. Small, 2020, 16, e1905784.	5.2	30
1081	An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small, 2020, 16, e1906851.	5.2	186
1082	Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Research, 2020, 13, 196-202.	5.8	52
1083	Exfoliated Mo2C nanosheets hybridized on CdS with fast electron transfer for efficient photocatalytic H2 production under visible light irradiation. Applied Catalysis B: Environmental, 2020, 264, 118541.	10.8	79
1084	Efficient day-night photocatalysis performance of 2D/2D Ti3C2/Porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants. Chemosphere, 2020, 246, 125760.	4.2	89
1085	Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105754.	3.8	132
1086	DFT investigations into the physical properties of a MAB phase Cr4AlB4. Journal of Alloys and Compounds, 2020, 821, 153547.	2.8	15
1087	Remarkable hydrogen absorption/desorption behaviors and mechanism of sodium alanates in-situ doped with Ti-based 2D MXene. Materials Chemistry and Physics, 2020, 242, 122529.	2.0	35
1088	Scalable, and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors. Nano Energy, 2020, 69, 104431.	8.2	78

#	Article	IF	CITATIONS
1089	Methanol and Diethanolamine Assisted Synthesis of Flexible Nitrogen-Doped Ti ₃ C ₂ (MXene) Film for Ultrahigh Volumetric Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 586-596.	2.5	40
1090	Triazine-Based Two-Dimensional Organic Polymer for Selective NO ₂ Sensing with Excellent Performance. ACS Applied Materials & Interfaces, 2020, 12, 3919-3927.	4.0	48
1091	Advancements in MXene-Polymer composites for various biomedical applications. Ceramics International, 2020, 46, 8522-8535.	2.3	144
1092	A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures. Nano Research, 2020, 13, 1-17.	5.8	34
1093	Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Composites Part B: Engineering, 2020, 182, 107603.	5.9	55
1094	Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength. Advanced Functional Materials, 2020, 30, 1906996.	7.8	138
1095	Strain-tunable electronic properties and lithium storage of 2D transition metal carbide (MXene) Ti ₂ CO ₂ as a flexible electrode. Journal of Materials Chemistry A, 2020, 8, 760-769.	5.2	35
1096	Recent developments in emerging two-dimensional materials and their applications. Journal of Materials Chemistry C, 2020, 8, 387-440.	2.7	501
1097	Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. Journal of Hazardous Materials, 2020, 387, 122021.	6.5	136
1098	The effect of S-functionalized and vacancies on V2C MXenes as anode materials for Na-ion and Li-ion batteries. Current Applied Physics, 2020, 20, 310-319.	1.1	56
1099	Recent progress of MXenes as the support of catalysts for the CO oxidation and oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 931-936.	4.8	32
1100	Mo _{1.33} C MXene-Assisted PEDOT:PSS Hole Transport Layer for High-Performance Bulk-Heterojunction Polymer Solar Cells. ACS Applied Electronic Materials, 2020, 2, 163-169.	2.0	25
1101	Twoâ€Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy and Environmental Materials, 2020, 3, 29-55.	7.3	319
1102	Dynamical Control over Terahertz Electromagnetic Interference Shielding with 2D Ti ₃ C ₂ T _{<i>y</i>} MXene by Ultrafast Optical Pulses. Nano Letters, 2020, 20, 636-643.	4.5	75
1103	Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries. Chemical Engineering Journal, 2020, 385, 123839.	6.6	141
1104	Ti ₂ CT _{<i>x</i>} MXeneâ€based allâ€optical modulator. InformaÄnÃ-Materiály, 2020, 2, 601-609.	8.5	39
1105	Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes. Advanced Powder Technology, 2020, 31, 808-815.	2.0	62
1106	The preparation of V2CTx by facile hydrothermal-assisted etching processing and its performance in lithium-ion battery. Journal of Materials Research and Technology, 2020, 9, 984-993.	2.6	58

#	Article	IF	CITATIONS
1107	Proton Redox and Transport in MXene-Confined Water. ACS Applied Materials & Interfaces, 2020, 12, 763-770.	4.0	53
1108	Synthesis of Mo ₄ VAlC ₄ MAX Phase and Two-Dimensional Mo ₄ VC ₄ MXene with Five Atomic Layers of Transition Metals. ACS Nano, 2020, 14, 204-217.	7.3	429
1109	Two-dimensional hybrid nanomaterials derived from MXenes (Ti3C2T) as advanced energy storage and conversion applications. Chinese Chemical Letters, 2020, 31, 947-952.	4.8	31
1110	Ti3C2T /PEDOT:PSS hybrid materials for room-temperature methanol sensor. Chinese Chemical Letters, 2020, 31, 1018-1021.	4.8	57
1111	MXene Materials for the Electrochemical Nitrogen Reduction—Functionalized or Not?. ACS Catalysis, 2020, 10, 253-264.	5.5	107
1112	MXene Tunable Lamellae Architectures for Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 411-422.	2.5	46
1113	First-principles study of high performance lithium/sodium storage of Ti ₃ C ₂ T ₂ nanosheets as electrode materials*. Chinese Physics B, 2020, 29, 016802.	0.7	8
1114	Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal. Journal of Colloid and Interface Science, 2020, 561, 46-57.	5.0	78
1116	MXenes—A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond. Applied Materials Today, 2020, 18, 100509.	2.3	82
1117	Oxygen/sulfur decorated 2D MXene V2C for promising lithium ion battery anodes. Materials Today Communications, 2020, 22, 100713.	0.9	27
1118	MXeneâ€Based Dendriteâ€Free Potassium Metal Batteries. Advanced Materials, 2020, 32, e1906739.	11.1	244
1119	3D interpenetrating assembly of partially oxidized MXene confined Mn–Fe bimetallic oxide for superior energy storage in ionic liquid. Electrochimica Acta, 2020, 334, 135546.	2.6	76
1120	Self-healing polymers with nanomaterials and nanostructures. Nano Today, 2020, 30, 100826.	6.2	68
1121	Review— Recent Exploration of Two-Dimensional MXenes for Gas Sensing: From a Theoretical to an Experimental View. Journal of the Electrochemical Society, 2020, 167, 037515.	1.3	78
1122	Terahertz Polarizers Based on 2D Ti ₃ C ₂ T _z MXene: Spin Cast from Aqueous Suspensions. Advanced Photonics Research, 2020, 1, 2000084.	1.7	8
1123	Three-Dimensional Hierarchical Porous Structures Constructed by Two-Stage MXene-Wrapped Si Nanoparticles for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 48718-48728.	4.0	45
1124	Exploring the Influence of Critical Parameters for the Effective Synthesis of High-Quality 2D MXene. ACS Omega, 2020, 5, 26845-26854.	1.6	56
1125	MXenes-Based Bioanalytical Sensors: Design, Characterization, and Applications. Sensors, 2020, 20, 5434.	2.1	66

#	Article	IF	CITATIONS
1126	Unique cellular network formation guided by heterostructures based on reduced graphene oxide - Ti3C2Tx MXene hydrogels. Acta Biomaterialia, 2020, 115, 104-115.	4.1	47
1127	Novel materials for electrochemical sensing platforms. Sensors International, 2020, 1, 100035.	4.9	23
1128	Spin-gapless semiconductors for future spintronics and electronics. Physics Reports, 2020, 888, 1-57.	10.3	64
1129	Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene. Materials, 2020, 13, 4587.	1.3	26
1130	Technological challenges in the environmental applications of MXenes and future outlook. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100034.	2.9	25
1131	In-situ SEM compression of accordion-like multilayer MXenes. Extreme Mechanics Letters, 2020, 41, 101054.	2.0	5
1132	Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: A review. Journal of Electroanalytical Chemistry, 2020, 878, 114588.	1.9	33
1133	Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bulletin, 2020, 45, 850-861.	1.7	138
1134	Theoretical study on the electrical and mechanical properties of MXene multilayer structures through strain regulation. Chemical Physics Letters, 2020, 760, 137997.	1.2	13
1135	MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO ₂ . Journal of Materials Chemistry C, 2020, 8, 16258-16281.	2.7	61
1136	Graphene to Advanced MoS2: A Review of Structure, Synthesis, and Optoelectronic Device Application. Crystals, 2020, 10, 902.	1.0	38
1137	Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production. Journal of Materials Chemistry A, 2020, 8, 23202-23230.	5.2	81
1138	Designing Advanced Vanadiumâ€Based Materials to Achieve Electrochemically Active Multielectron Reactions in Sodium/Potassiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2002244.	10.2	79
1139	Enhancing the conductivity, stability and flexibility of Ti3C2Tx MXenes by regulating etching conditions. Applied Surface Science, 2020, 533, 147475.	3.1	16
1140	Oxidation behavior and thermal stability of Cr2AlB2 powders. Corrosion Science, 2020, 176, 108941.	3.0	23
1141	Advances in electrode and electrolyte improvements in vanadium redox flow batteries with a focus on the nanofluidic electrolyte approach. Physics Reports, 2020, 881, 1-49.	10.3	41
1142	Chemical-Combined Ball-Milling Synthesis of Fluorine-Free Porous MXene for High-Performance Lithium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10234-10241.	2.5	49
1143	Photocatalytic Applications of Two-Dimensional Ti ₃ C ₂ MXenes: A Review. ACS Applied Nano Materials, 2020, 3, 9581-9603.	2.4	142

ARTICLE IF CITATIONS First-Principles Study of the Ferromagnetic Properties of Cr₂CO₂and 9 1144 1.6 Cr₂NO₂MXenes. ACS Omega, 2020, 5, 25848-25853. Flexible freestanding all-MXene hybrid films with enhanced capacitive performance for powering a 1145 5.2 flex sensor. Journal of Materials Chemistry A, 2020, 8, 16649-16660. Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on 1146 7.3 15 Amorphous Substrates. ACS Nano, 2020, 14, 2202-2211. New Method for the Synthesis of 2D Vanadium Nitride (MXene) and Its Application as a Supercapacitor 1147 84 Electrode. ACS Omega, 2020, 5, 17983-17992. Impact of strain, pressure, and electron correlation on magnetism and crystal structure of Mn2GaC 1148 1.6 13 from first-principles. Scientific Reports, 2020, 10, 11384. Experimental and theoretical investigation of the chemical exfoliation of Cr-based MAX phase particles. Dalton Transactions, 2020, 49, 12215-12221. 1.6 Improved Thermophysical Properties and Energy Efficiency of Aqueous Ionic Liquid/MXene Nanofluid 1150 1.9 74 in a Hybrid PV/T Solar System. Nanomaterials, 2020, 10, 1372. Optically Driven Ultrafast Magnetic Order Transitions in Two-Dimensional Ferrimagnetic MXenes. 2.1 36 Journal of Physical Chemistry Letters, 2020, 11, 6219-6226. Demonstration of 2D MXene memristor: Stability, conduction mechanism, and synaptic plasticity. 1152 22 1.3 Materials Letters, 2020, 266, 127413. Novel MXene-based hierarchically porous composite as superior electrodes for Li-ion storage. Applied 3.1 Surface Science, 2020, 530, 147214. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient 1154 5.0139 photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 580, 669-680. Multiresponsive MXene (Ti₃C₂T<i>_x</i>)-Decorated Textiles for Wearable Thermal Management and Human Motion Monitoring. ACS Applied Materials & amp; Interfaces, 4.0 106 2020, 12, 34226-34234 2D MXene-derived Nb₂O₅/C/Nb₂C/g-C₃N₄ heterojunctions for efficient nitrogen photofixation. Catalysis Science and Technology, 2020, 10, 1156 2.1 49 5964-5972. High performance photocatalytic and thermoelectric two-dimensional asymmetrically ordered 2.6 14 Janus-like MXene alloys. Materials Advances, 2020, 1, 1176-1185. 1158 Research progress of MXenes-based wearable pressure sensors. APL Materials, 2020, 8, . 2.2 31 Synthesis and electrochemical properties of V2C MXene by etching in opened/closed environments. 8.9 Journal of Advanced Ceramics, 2020, 9, 749-758. Ti₃C₂T_x nanosheet wrapped coreâ€"shell MnO₂ nanorods @ hollow porous carbon as a multifunctional polysulfide mediator for improved Liâ€"S 1160 2.8 17 batteries. Nanoscale, 2020, 12, 24196-24205. Phase behavior of terminating oxygen layer of V2C MXene. AIP Conference Proceedings, 2020, , .

#	Article	IF	CITATIONS
1162	Influence of MXene (Ti3C2) Phase Addition on the Microstructure and Mechanical Properties of Silicon Nitride Ceramics. Materials, 2020, 13, 5221.	1.3	16
1163	Recent Advances in MXene Nanocomposite-Based Biosensors. Biosensors, 2020, 10, 185.	2.3	57
1164	Temperature-dependent electron-phonon spectral function and the intrinsic resistivity of a metal: A case study of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ti</mml:mi><mml:mathvariant="normal">N</mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> . Physical Review B, 2020, 102, .	ın> ¹ 21/mm	ıl:m'n>
1165	Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks. Small, 2020, 16, e2004900.	5.2	17
1166	Fabrication of two-dimensional Ti3C2Tx MXenes by ball milling pretreatment and mild etchant and their microstructure. Ceramics International, 2020, 46, 28949-28954.	2.3	16
1167	A dual-potential electrochemiluminescence sensor for ratiometric detection of carcinoembryonic antigen based on single luminophor. Sensors and Actuators B: Chemical, 2020, 325, 128776.	4.0	41
1168	Generation of Monodisperse Submicron Water-in-Diesel Emulsions via a Hydrophobic MXene-Modified Ceramic Membrane. Industrial & Engineering Chemistry Research, 2020, 59, 20349-20358.	1.8	11
1169	X-ray Photoelectron Spectroscopy of Ti ₃ AlC ₂ , Ti ₃ C ₂ T <i>_z</i> , and TiC Provides Evidence for the Electrostatic Interaction between Laminated Layers in MAX-Phase Materials. Journal of Physical Chemistry C, 2020, 124, 27732-27742.	1.5	71
1170	Electronic Structure Sensitivity to Surface Disorder and Nanometer-Scale Impurity of 2D Titanium Carbide MXene Sheets as Revealed by Electron Energy-Loss Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 27071-27081.	1.5	9
1171	Bare Mo-Based Ordered Double-Transition Metal MXenes as High-Performance Anode Materials for Aluminum-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 25769-25774.	1.5	23
1172	Annealed Ti ₃ C ₂ T _{<i>z</i>/i>} MXene Films for Oxidation-Resistant Functional Coatings. ACS Applied Nano Materials, 2020, 3, 10578-10585.	2.4	49
1173	2H-MoS ₂ on Mo ₂ CT _{<i>x</i>} MXene Nanohybrid for Efficient and Durable Electrocatalytic Hydrogen Evolution. ACS Nano, 2020, 14, 16140-16155.	7.3	180
1174	Effect of Sheet Size and Atomic Structure on the Antibacterial Activity of Nb-MXene Nanosheets. ACS Applied Nano Materials, 2020, 3, 11372-11382.	2.4	56
1175	NiMn-Layered Double Hydroxides Chemically Anchored on Ti ₃ C ₂ MXene for Superior Lithium Ion Storage. ACS Applied Energy Materials, 2020, 3, 11119-11130.	2.5	38
1176	Robust mechanical tunability of 2D transition metal carbides via surface termination engineering: Molecular dynamics simulation. Applied Surface Science, 2020, 532, 147380.	3.1	22
1177	Nb-based MXenes for efficient electrochemical sensing of small biomolecules in the anodic potential. Electrochemistry Communications, 2020, 119, 106811.	2.3	47
1178	Enhanced Electrocatalytic Activity of Murdochite-Type Ni ₆ MnO ₈ for Water Oxidation via Surface Reconstruction. ACS Applied Materials & Interfaces, 2020, 12, 39205-39214.	4.0	18
1179	First-principles exploration of superconductivity in MXenes. Nanoscale, 2020, 12, 17354-17361.	2.8	24

#	Article	IF	CITATIONS
1180	Advances on Emerging Materials for Flexible Supercapacitors: Current Trends and Beyond. Advanced Functional Materials, 2020, 30, 2002993.	7.8	92
1181	MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conversion efficiency and thermal energy storage capability and thermal conductivity. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106067.	3.8	94
1182	Three dimensional Ti ₃ C ₂ MXene nanoribbon frameworks with uniform potassiophilic sites for the dendrite-free potassium metal anodes. Nanoscale Advances, 2020, 2, 4212-4219.	2.2	39
1183	Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chemical Society Reviews, 2020, 49, 6666-6693.	18.7	466
1184	Mechanotribological Aspects of MXeneâ€Reinforced Nanocomposites. Advanced Materials, 2020, 32, e2003154.	11.1	160
1185	Mechanical, Thermal, and Rheological Properties of Ti ₃ C ₂ T _x MXene/ Thermoplastic Polyurethane Nanocomposites. Macromolecular Materials and Engineering, 2020, 305, 2000343.	1.7	44
1186	Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS Nano, 2020, 14, 10834-10864.	7.3	349
1187	Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: Application of intercalation strategy in DESs. Science of the Total Environment, 2020, 746, 141009.	3.9	34
1188	One-step scalable preparation of graphene nanosheets and high-thermal-conductivity flexible graphene films. Ceramics International, 2020, 46, 26760-26766.	2.3	9
1189	A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere, 2020, 261, 127781.	4.2	111
1190	Surface-Related Features Responsible for Cytotoxic Behavior of MXenes Layered Materials Predicted with Machine Learning Approach. Materials, 2020, 13, 3083.	1.3	22
1191	MXene-graphene hybrid nanoflakes as friction modifiers for outboard engine oil. IOP Conference Series: Materials Science and Engineering, 2020, 834, 012039.	0.3	8
1192	Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. Journal of Advanced Ceramics, 2020, 9, 481-492.	8.9	56
1193	Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chemical Society Reviews, 2020, 49, 6224-6247.	18.7	61
1194	Two-dimensional CuAg/Ti ₃ C ₂ catalyst for electrochemical synthesis of ammonia under ambient conditions: a combined experimental and theoretical study. Sustainable Energy and Fuels, 2020, 4, 5061-5071.	2.5	26
1195	Vertically Aligned Sn ⁴⁺ Preintercalated Ti ₂ CT _X MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan. Advanced Energy Materials, 2020, 10, 2001394.	10.2	127
1196	Prediction of Optimal Synthesis Conditions for the Formation of Ordered Double-Transition-Metal MXenes (<i>o</i> -MXenes). Journal of Physical Chemistry C, 2020, 124, 18797-18804.	1.5	11
1197	Catalytic Activity of Tiâ€based MXenes for the Hydrogenation of Furfural. ChemCatChem, 2020, 12, 5733-5742.	1.8	20

	CHAHONR	LPORT	
#	Article	IF	CITATIONS
1198	Properties and potential applications of two-dimensional AlN. Vacuum, 2020, 176, 109231.	1.6	30
1199	Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets. Journal of Materials Chemistry A, 2020, 8, 18538-18559.	5.2	86
1200	Large-gap topological insulators in functionalized ordered double transition metal carbide MXenes. Physical Review B, 2020, 102, .	1.1	24
1201	Theoretical exploration on the vibrational and mechanical properties of M ₃ C ₂ /M ₃ C ₂ T ₂ MXenes. International Journal of Quantum Chemistry, 2020, 120, e26409.	1.0	10
1202	Synthesis and recent applications of MXenes with Mo, V or Nb transition metals: a review. Tungsten, 2020, 2, 176-193.	2.0	20
1203	Single Crystal Growth and Structural Characterization of Theoretically Predicted Nanolaminates M2Al2C3, Where M = Sc and Er. Crystal Growth and Design, 2020, 20, 7640-7646.	1.4	3
1204	Co-solvent exfoliation of layered titanium diboride into few-layer-thick nanosheets. Ceramics International, 2020, 46, 28324-28331.	2.3	17
1205	Tailoring Electronic and Optical Properties of MXenes through Forming Solid Solutions. Journal of the American Chemical Society, 2020, 142, 19110-19118.	6.6	198
1206	Synthesis and Properties of MXenes. Engineering Materials, 2020, , 5-93.	0.3	1
1207	Construction of heterogeneous 2D layered MoS2/MXene nanohybrid anode material via interstratification process and its synergetic effect for asymmetric supercapacitors. Applied Surface Science, 2020, 534, 147644.	3.1	68
1208	Chromium Carbide Nanosheets Prepared by Selective Etching of Aluminum from Cr ₂ AlC for Hydrazine Detection. ACS Applied Nano Materials, 2020, 3, 11007-11016.	2.4	17
1209	Recent Advances in Nanostructured Transition Metal Carbide- and Nitride-Based Cathode Electrocatalysts for Li–O2 Batteries (LOBs): A Brief Review, Nanomaterials, 2020, 10, 2106. Electronic properties of substitutional impurities in graphenelike <mml:math walastic properties of substitutional impurities in graphenelike <mml:math< td=""><td>1.9</td><td>14</td></mml:math<></mml:math 	1.9	14
1210	mathvariant="normal">C <mml:mn>2<mml:msub><mml:mi mathvariant="normal">N<mml:mrow>, <mml:mi xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mi>g</mml:mi> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mi>g</mml:mi></mml:mrow></mml:mrow></mml:mi </mml:mrow></mml:mi </mml:msub></mml:mn>	1.1 • < mml:mte	11 ext>â^'
1211	mathyariant – normal yee(mini.mix) (mini.mix) (mini.mix) (mini.mix) (mini.mix) (mini.mix) (mini.mix) (mini.mix) Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer's Disease. Sensors, 2020, 20, 4748.	2.1	36
1212	Mussel Inspired Highly Aligned Ti ₃ C ₂ T _{<i>x</i>} MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS Nano, 2020, 14, 11722-11732.	7.3	212
1213	Oxygen Vacancies in the Single Layer of Ti ₂ CO ₂ MXene: Effects of Gating Voltage, Mechanical Strain, and Atomic Impurities. Physica Status Solidi (B): Basic Research, 2020, 257, 2000343.	0.7	29
1214	Nanocomposite hydrogel-based strain and pressure sensors: a review. Journal of Materials Chemistry A, 2020, 8, 18605-18623.	5.2	230
1215	Gas adsorption properties (N ₂ , H ₂ , O ₂ , NO, NO ₂ , CO,) Tj E first-principles study. New Journal of Chemistry, 2020, 44, 18763-18769.	IQq1 1 0.7 1.4	784314 rgB 30

#	Article	IF	CITATIONS
1216	Theoretical Study of Transitionâ€Metalâ€Modified Mo ₂ CO ₂ MXene as a Catalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2020, 13, 6005-6015.	3.6	41
1217	Arbitrary deformable and high-strength electroactive polymer/MXene anti-exfoliative composite films assembled into high performance, flexible all-solid-state supercapacitors. Nanoscale, 2020, 12, 20797-20810.	2.8	29
1218	State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coordination Chemistry Reviews, 2020, 424, 213514.	9.5	169
1219	pH, Nanosheet Concentration, and Antioxidant Affect the Oxidation of Ti ₃ C ₂ T <i>_x</i> and Ti ₂ CT <i>_x</i> Dispersions. Advanced Materials Interfaces, 2020, 7, 2000845.	1.9	99
1220	Strain-dependent anisotropic nonlinear optical response in two-dimensional functionalized MXene Sc ₂ CT ₂ (T = O and OH). Physical Chemistry Chemical Physics, 2020, 22, 21428-21435.	1.3	15
1222	Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Nanoscale, 2020, 12, 19007-19042.	2.8	78
1223	Topochemical synthesis of low-dimensional nanomaterials. Nanoscale, 2020, 12, 21971-21987.	2.8	7
1224	Bioencapsulated MXene Flakes for Enhanced Stability and Composite Precursors. Advanced Functional Materials, 2020, 30, 2004554.	7.8	63
1225	Interface Chemistry on MXeneâ€Based Materials for Enhanced Energy Storage and Conversion Performance. Advanced Functional Materials, 2020, 30, 2005190.	7.8	136
1226	Synthesis and characterization of SiO2/Ti3C2 anode materials for lithium-ion batteries via different methods. Ionics, 2020, 26, 5325-5331.	1.2	15
1227	Vanadium based carbide–oxide heterogeneous V ₂ O ₅ @V ₂ C nanotube arrays for high-rate and long-life lithium–sulfur batteries. Nanoscale, 2020, 12, 18950-18964.	2.8	31
1228	Sensing mechanism of hydrogen storage on Li, Na and K-decorated Ti2C. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	6
1229	Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional Applications. Chemistry of Materials, 2020, 32, 10296-10320.	3.2	101
1230	Ti ₃ C ₂ 2D MXene: Recent Progress and Perspectives in Photocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 56663-56680.	4.0	148
1231	Rational Design of Pillared SnS/Ti ₃ C ₂ T _{<i>x</i>} MXene for Superior Lithium-Ion Storage. ACS Nano, 2020, 14, 17665-17674.	7.3	93
1232	Electrical Properties and Biological Synaptic Simulation of Ag/MXene/SiO2/Pt RRAM Devices. Electronics (Switzerland), 2020, 9, 2098.	1.8	25
1233	Progress and Insights in the Application of MXenes as New 2D Nano-Materials Suitable for Biosensors and Biofuel Cell Design. International Journal of Molecular Sciences, 2020, 21, 9224.	1.8	82
1234	Electrically Conductive MXene-Coated Glass Fibers for Damage Monitoring in Fiber-Reinforced Composites. Journal of Carbon Research, 2020, 6, 64.	1.4	5

#	Article	IF	CITATIONS
1235	Flexible, fouling-resistant and self-cleaning Ti3C2Tx-derivated hydrophilic nanofiltration membrane for highly efficient rejection of organic molecules from wastewater. Journal of Materials Research and Technology, 2020, 9, 11675-11686.	2.6	17
1236	MXenes and MXenes-based Composites. Engineering Materials, 2020, , .	0.3	8
1237	Ti3C2Tx MXene for wearable energy devices: Supercapacitors and triboelectric nanogenerators. APL Materials, 2020, 8, .	2.2	30
1238	Tailoring two-dimensional nanomaterials by structural engineering for chemical and biological sensing. Sensors and Actuators Reports, 2020, 2, 100024.	2.3	8
1239	First-principle calculations of lithium adsorption and diffusion on titanium-based monolayers. Chemical Physics, 2020, 539, 110956.	0.9	3
1240	2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. Advanced Materials, 2020, 32, e2002159.	11.1	201
1241	Current Trends in MXene-Based Nanomaterials for Energy Storage and Conversion System: A Mini Review. Catalysts, 2020, 10, 495.	1.6	89
1242	Two-Dimensional Titanium and Molybdenum Carbide MXenes as Electrocatalysts for CO2 Reduction. IScience, 2020, 23, 101181.	1.9	123
1243	Two-dimensional material membranes for critical separations. Inorganic Chemistry Frontiers, 2020, 7, 2560-2581.	3.0	65
1244	<i>i</i> â€MXenes for Energy Storage and Catalysis. Advanced Functional Materials, 2020, 30, 2000894.	7.8	126
1244 1245	<i>i>i</i> à€MXenes for Energy Storage and Catalysis. Advanced Functional Materials, 2020, 30, 2000894. Boosting visible-light-driven photocatalytic activity of BiPO4 via constructing Schottky junction with Ti3C2 MXene. Materials and Design, 2020, 192, 108772.	7.8 3.3	126 38
1244 1245 1246	 <i>i>i</i>à€MXenes for Energy Storage and Catalysis. Advanced Functional Materials, 2020, 30, 2000894. Boosting visible-light-driven photocatalytic activity of BiPO4 via constructing Schottky junction with Ti3C2 MXene. Materials and Design, 2020, 192, 108772. Interfacial structure design of <scp>MXeneâ€based</scp> nanomaterials for electrochemical energy storage and conversion. InformaÄnÃ-MateriÃ₁ly, 2020, 2, 1057-1076. 	7.8 3.3 8.5	126 38 143
1244 1245 1246 1247	 <i>i>i</i>à€MXenes for Energy Storage and Catalysis. Advanced Functional Materials, 2020, 30, 2000894. Boosting visible-light-driven photocatalytic activity of BiPO4 via constructing Schottky junction with Ti3C2 MXene. Materials and Design, 2020, 192, 108772. Interfacial structure design of <scp>MXeneâ€based</scp> nanomaterials for electrochemical energy storage and conversion. InformaÄnÃ-MateriÃ₁ly, 2020, 2, 1057-1076. MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS Applied Materials & amp; Interfaces, 2020, 12, 26013-26025. 	7.83.38.54.0	126 38 143 91
1244 1245 1246 1247 1248	<i>i>i</i> à €MXenes for Energy Storage and Catalysis. Advanced Functional Materials, 2020, 30, 2000894.Boosting visible-light-driven photocatalytic activity of BiPO4 via constructing Schottky junction with Ti3C2 MXene. Materials and Design, 2020, 192, 108772.Interfacial structure design of <scp>MXeneâ€based</scp> nanomaterials for electrochemical energy storage and conversion. InformaÄnÃ-Materiály, 2020, 2, 1057-1076.MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS Applied Materials & amp; Interfaces, 2020, 12, 26013-26025.Continuous flow vortex fluidic-mediated exfoliation and fragmentation of two-dimensional MXene. Royal Society Open Science, 2020, 7, 192255.	 7.8 3.3 8.5 4.0 1.1 	126 38 143 91 10
1244 1245 1246 1247 1248 1249	<i>i<i>iBoosting visible-light-driven photocatalytic activity of BiPO4 via constructing Schottky junction with Ti3C2 MXene. Materials and Design, 2020, 192, 108772.Interfacial structure design of <scp>MXeneâ&based</scp> nanomaterials for electrochemical energy storage and conversion. InformaĂnĂ-MateriĂily, 2020, 2, 1057-1076.MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS Applied Materials & amp; Interfaces, 2020, 12, 26013-26025.Continuous flow vortex fluidic-mediated exfoliation and fragmentation of two-dimensional MXene. Royal Society Open Science, 2020, 7, 192255.3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.</i></i>	 7.8 3.3 8.5 4.0 1.1 7.8 	126 38 143 91 10 276
1244 1245 1246 1247 1248 1249	ki>ik/> à €MXenes for Energy Storage and Catalysis. Advanced Functional Materials, 2020, 30, 2000894.Boosting visible-light-driven photocatalytic activity of BiPO4 via constructing Schottky junction with Ti3C2 MXene. Materials and Design, 2020, 192, 108772.Interfacial structure design of <scp>MXeneâ€based</scp> nanomaterials for electrochemical energy storage and conversion. InformaĂnĂ-MateriĂ ₁ ly, 2020, 2, 1057-1076.MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS Applied Materials & amp; Interfaces, 2020, 12, 26013-26025.Continuous flow vortex fluidic-mediated exfoliation and fragmentation of two-dimensional MXene. Royal Society Open Science, 2020, 7, 192255.3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.MXene Materials for Designing Advanced Separation Membranes. Advanced Materials, 2020, 32, e1906697.	 7.8 3.3 8.5 4.0 1.1 7.8 11.1 	126 38 143 91 10 276
1244 1245 1246 1247 1248 1249 1250	<\>I<	 7.8 3.3 8.5 4.0 1.1 7.8 11.1 6.6 	 126 38 143 91 91 201 276 295 140

#	Article	IF	CITATIONS
1253	Ultra-high selectivity biogas upgrading through porous MXenes. Journal of Materials Chemistry A, 2020, 8, 12296-12300.	5.2	20
1254	Facile preparation of self-assembled MXene@Au@CdS nanocomposite with enhanced photocatalytic hydrogen production activity. Science China Materials, 2020, 63, 2228-2238.	3.5	128
1255	Ultrasensitive Ti3C2TX MXene/Chitosan Nanocomposite-Based Amperometric Biosensor for Detection of Potential Prostate Cancer Marker in Urine Samples. Processes, 2020, 8, 580.	1.3	58
1256	MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chemical Engineering Journal, 2020, 397, 125428.	6.6	112
1257	Direct growth of 2D MoO2 single crystal on SiO2/Si substrate by atmospheric pressure chemical vapor deposition. Materials Chemistry and Physics, 2020, 251, 123166.	2.0	8
1258	Facile synthesis of colloidal nitrogenâ€doped titanium carbide sheets with enhanced electrochemical performance. , 2020, 2, 624-634.		13
1259	Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Chemical Engineering Journal, 2020, 398, 125679.	6.6	70
1260	A facile method for synthesizing NiS nanoflower grown on MXene (Ti3C2Tx) as positive electrodes for "supercapattery― Electrochimica Acta, 2020, 353, 136526.	2.6	55
1261	Theoretically exploring the possible configurations, the electronic and transport properties of MoS2-OH bilayer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126575.	0.9	1
1262	Dispersibility and Photochemical Stability of Delaminated MXene Flakes in Water. Small, 2020, 16, e2002433.	5.2	55
1263	All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy, 2020, 75, 104971.	8.2	119
1264	NiMn Layered Double Hydroxide Nanosheets In-situ Anchored on Ti ₃ C ₂ MXene via Chemical Bonds for Superior Supercapacitors. ACS Applied Energy Materials, 2020, 3, 5949-5964.	2.5	131
1265	Tailoring the Electronic Structure of Transition Metals by the V ₂ C MXene Support: Excellent Oxygen Reduction Performance Triggered by Metal–Support Interactions. ACS Applied Materials & Interfaces, 2020, 12, 28206-28216.	4.0	39
1266	Chemistry of Germanene: Surface Modification of Germanane Using Alkyl Halides. ACS Nano, 2020, 14, 7319-7327.	7.3	26
1267	Physical properties of 2D MXenes: from a theoretical perspective. JPhys Materials, 2021, 3, 032006.	1.8	67
1268	Visible-Light-Induced Photocatalytic Activity of Stacked MXene Sheets of Y ₂ CF ₂ . Journal of Physical Chemistry C, 2020, 124, 14640-14645.	1.5	22
1269	Two dimensional ruthenium carbide: structural and electronic features. Physical Chemistry Chemical Physics, 2020, 22, 15488-15495.	1.3	2
1270	Tunable magnetic and electronic properties of the Cr-based MXene (Cr2C) with functional groups and doping. Journal of Magnetism and Magnetic Materials, 2020, 514, 167141.	1.0	42

#	Article	IF	CITATIONS
1271	Novel confinement of Mn3O4 nanoparticles on two-dimensional carbide enabling high-performance electrochemical synthesis of ammonia under ambient conditions. Chemical Engineering Journal, 2020, 396, 125163.	6.6	24
1272	Implementing Hybrid Energy Harvesting in 3D Spherical Evaporator for Solar Steam Generation and Synergic Water Purification. Solar Rrl, 2020, 4, 2000232.	3.1	84
1273	Design of MXene contacts for high-performance WS2 transistors. Applied Surface Science, 2020, 527, 146701.	3.1	22
1274	Hydrophilicity-Dependent Distinct Frictional Behaviors of Different Modified MXene Nanosheets. Journal of Physical Chemistry C, 2020, 124, 13664-13671.	1.5	29
1275	A comprehensive computational and experimental analysis of stable ferromagnetism in layered 2D Nb-doped Ti3C2 MXene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114253.	1.3	26
1276	Large-scale wet-spinning of highly electroconductive MXene fibers. Nature Communications, 2020, 11, 2825.	5.8	212
1277	First-principle calculations on the structure, electronic property and catalytic activity for hydrogen evolution reaction of 2D transition-metal borides. Materials Chemistry and Physics, 2020, 253, 123334.	2.0	21
1278	Interstratification-assembled 2D black phosphorene and V ₂ CT _x MXene as superior anodes for boosting potassium-ion storage. Journal of Materials Chemistry A, 2020, 8, 12705-12715.	5.2	44
1279	Single Faceted Two-Dimensional Mo ₂ C Electrocatalyst for Highly Efficient Nitrogen Fixation. ACS Catalysis, 2020, 10, 7864-7870.	5.5	80
1280	Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review. Sensors, 2020, 20, 3096.	2.1	135
1282	Oxygen vacancies modified TiO2/Ti3C2 derived from MXenes for enhanced photocatalytic degradation of organic pollutants: The crucial role of oxygen vacancy to schottky junction. Applied Surface Science, 2020, 528, 146929.	3.1	99
1283	Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. Journal of Power Sources, 2020, 470, 228356.	4.0	42
1284	Nature of Terminating Hydroxyl Groups and Intercalating Water in Ti ₃ C ₂ T _{<i>x</i>} MXenes: A Study by ¹ H Solid-State NMR and DFT Calculations. Journal of Physical Chemistry C, 2020, 124, 13649-13655.	1.5	35
1285	Raman spectra of MXenes Zr ₂ X(X=C and N). Nanotechnology, 2020, 31, 405708.	1.3	7
1288	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406.	7.3	455
1289	Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. Journal of Alloys and Compounds, 2020, 843, 155713.	2.8	50
1290	CsPbBr ₃ –Ti ₃ C ₂ T <i>_x</i> MXene QD/QD Heterojunction: Photoluminescence Quenching, Charge Transfer, and Cd Ion Sensing Application. ACS Applied Nano Materials, 2020, 3, 3305-3314.	2.4	41
1291	2D MXene–TiO ₂ Core–Shell Nanosheets as a Dataâ€Storage Medium in Memory Devices.	11.1	89
#	Article	IF	CITATIONS
--	--	--	---
1292	Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screenâ€Printed Micro‧upercapacitors. Advanced Materials, 2020, 32, e2000716.	11.1	241
1294	Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures with Stable Fluorinated Interphase. ACS Nano, 2020, 14, 3651-3659.	7.3	155
1295	Exfoliation of 2D Materials for Energy and Environmental Applications. Chemistry - A European Journal, 2020, 26, 6360-6401.	1.7	88
1296	Hydrogen Generation by Solar Water Splitting Using 2D Nanomaterials. Solar Rrl, 2020, 4, 2000050.	3.1	29
1297	Synthesis and microstructural evolution in ternary metalloceramic Ti3SiC2 consolidated via the Maxthal 312 powder route. Ceramics International, 2020, 46, 15342-15356.	2.3	14
1298	Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 2020, 11, 1302.	5.8	294
1299	Green synthesis of reduced Ti ₃ C ₂ T _x MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity. Journal of Materials Chemistry C, 2020, 8, 4722-4731.	2.7	82
1300	Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Letters, 2020, 12, 72.	14.4	155
1301	Two-dimensional MXene-based heterostructures for photocatalysis. , 2020, , 247-267.		8
1302	Multifunctional Pure MXene Fiber from Liquid Crystals of Only Water and MXene. ACS Central Science, 2020, 6, 344-346.	5.3	15
1302 1303	Multifunctional Pure MXene Fiber from Liquid Crystals of Only Water and MXene. ACS Central Science, 2020, 6, 344-346. Ti ₃ C ₂ T _x MXenes as thin broadband absorbers. Nanotechnology, 2020, 31, 275301.	5.3 1.3	15 17
1302 1303 1304	Multifunctional Pure MXene Fiber from Liquid Crystals of Only Water and MXene. ACS Central Science, 2020, 6, 344-346. Ti ₃ C ₂ T _x MXenes as thin broadband absorbers. Nanotechnology, 2020, 31, 275301. NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life. Journal of Energy Chemistry, 2020, 50, 143-153.	5.3 1.3 7.1	15 17 118
1302 1303 1304 1305	Multifunctional Pure MXene Fiber from Liquid Crystals of Only Water and MXene. ACS Central Science, 2020, 6, 344-346. Ti ₃ C ₂ T _x MXenes as thin broadband absorbers. Nanotechnology, 2020, 31, 275301. NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life. Journal of Energy Chemistry, 2020, 50, 143-153. Novel Interlayer on the Separator with the Cr ₃ C ₂ Compound as a Robust Polysulfide Anchor for Lithium–Sulfur Batteries. Industrial & amp; Engineering Chemistry Research, 2020, 59, 7538-7545.	5.31.37.11.8	15 17 118 16
1302 1303 1304 1305 1306	Multifunctional Pure MXene Fiber from Liquid Crystals of Only Water and MXene. ACS CentralScience, 2020, 6, 344-346.Ti ₃ C ₂ T _x MXenes as thin broadband absorbers. Nanotechnology, 2020, 31, 275301.NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life. Journal of Energy Chemistry, 2020, 50, 143-153.Novel Interlayer on the Separator with the Cr ₃ C ₂ Compound as a Robust Polysulfide Anchor for Lithiumã€"Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 7538-7545.Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. Journal of Materials Chemistry B, 2020, 8, 4990-5013.	 5.3 1.3 7.1 1.8 2.9 	15 17 118 16 76
1302 1303 1304 1305 1306 1307	Multifunctional Pure MXene Fiber from Liquid Crystals of Only Water and MXene. ACS Central Science, 2020, 6, 344-346. Ti ₃ C ₂ T _x MXenes as thin broadband absorbers. Nanotechnology, 2020, 31, 275301. NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life. Journal of Energy Chemistry, 2020, 50, 143-153. Novel Interlayer on the Separator with the Cr ₃ C ₂ Compound as a Robust Polysulfide Anchor for Lithiumãe [®] Sulfur Batteries. Industrial & amp; Engineering Chemistry Research, 2020, 59, 7538-7545. Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. Journal of Materials Chemistry B, 2020, 8, 4990-5013. Effect of HCl+LiF Etching Process on Electrochemical Performance of Ti ₃ C ₂ . Kano, 2020, 15, 2050058.	 5.3 1.3 7.1 1.8 2.9 0.5 	 15 17 118 16 76 3
1302 1303 1304 1305 1306 1307	Multifunctional Pure MXene Fiber from Liquid Crystals of Only Water and MXene. ACS CentralScience, 2020, 6, 344-346.Ti ₃ C _{C₂T_x MXenes as thin broadband absorbers. Nanotechnology,2020, 31, 275301.NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cyclelife. Journal of Energy Chemistry, 2020, 50, 143-153.Novel Interlayer on the Separator with the Cr₃C₂ Compound as a RobustPolysulfide Anchor for Lithiumã€"Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 7538-7545.Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. Journal of Materials Chemistry B, 2020, 8, 4990-5013.Effect of HCl+LiF Etching Process on Electrochemical Performance of Ti₃C₂.Rano, 2020, 15, 2050058.Enhancing Capacitance Performance of Ti3C2Tx MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction. Nano-Micro Letters, 2020, 12, 77.}	 5.3 1.3 7.1 1.8 2.9 0.5 14.4 	15 17 118 16 76 3
1302 1303 1304 1305 1306 1307 1308	Multifunctional Pure MXene Fiber from Liquid Crystals of Only Water and MXene. ACS Central Science, 2020, 6, 344-346.Ti ₃ C ₂ T _x MXenes as thin broadband absorbers. Nanotechnology, 2020, 31, 275301.NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life. Journal of Energy Chemistry, 2020, 50, 143-153.Nocel Interlayer on the Separator with the Cr ₃ C ₂ Compound as a Robust Polysulfide Anchor for Lithiumãe"Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 7538-7545.Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. Journal of Materials Chemistry B, 2020, 8, 4990-5013.Effect of HCl+LIF Etching Process on Electrochemical Performance of Ti ₃ C ₂ .Enhancing Capacitance Performance of Ti3C2Tx MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction. Nano-Micro Letters, 2020, 12, 77.Partial Atomic Tin Nanocomplex Pillared Few-Layered Ti3C2Tx MXenes for Superior Lithium-Ion Storage. Nano-Micro Letters, 2020, 12, 78.	 5.3 1.3 7.1 1.8 2.9 0.5 14.4 14.4 	 15 17 118 16 76 3 136 68

#	Article	IF	CITATIONS
1311	Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review. Nanomaterials, 2020, 10, 602.	1.9	114
1312	Monolayer Ti ₂ C MXene: manipulating magnetic properties and electronic structures by an electric field. Physical Chemistry Chemical Physics, 2020, 22, 11266-11272.	1.3	38
1313	Effect of Surfactant Choice and Concentration on the Dimensions and Yield of Liquid-Phase-Exfoliated Nanosheets. Chemistry of Materials, 2020, 32, 2852-2862.	3.2	47
1314	Fire-safe unsaturated polyester resin nanocomposites based on MAX and MXene: a comparative investigation of their properties and mechanism of fire retardancy. Dalton Transactions, 2020, 49, 5803-5814.	1.6	55
1315	Stimuliâ€Responsive MXeneâ€Based Actuators. Advanced Functional Materials, 2020, 30, 1909504.	7.8	126
1316	MXene Printing and Patterned Coating for Device Applications. Advanced Materials, 2020, 32, e1908486.	11.1	239
1317	Synthesis and Surface Chemistry of 2D TiVC Solid-Solution MXenes. ACS Applied Materials & Interfaces, 2020, 12, 20129-20137.	4.0	93
1318	Insights into the Genesis of a Selective and Coke-Resistant MXene-Based Catalyst for the Dry Reforming of Methane. ACS Catalysis, 2020, 10, 5124-5134.	5.5	43
1319	Nanoplating of a SnO ₂ thin-film on MXene-based sponge for stable and efficient solar energy conversion. Journal of Materials Chemistry A, 2020, 8, 8065-8074.	5.2	19
1320	Recent Advances in 2D MXenes for Photodetection. Advanced Functional Materials, 2020, 30, 2000907.	7.8	143
1321	Ultrathin ZnIn ₂ S ₄ Nanosheets Anchored on Ti ₃ C ₂ T _{<i>X</i>} MXene for Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2020, 59, 11287-11292.	7.2	416
1322	In-situ pillared MXene as a viable zinc-ion hybrid capacitor. Electrochimica Acta, 2020, 341, 136061.	2.6	76
1323	Broadband spatial self-phase modulation and ultrafast response of MXene Ti ₃ C ₂ T _x (T=O, OH or F). Nanophotonics, 2020, 9, 2415-2424.	2.9	28
1324	Solution-processed two-dimensional materials for ultrafast fiber lasers (invited). Nanophotonics, 2020, 9, 2169-2189.	2.9	43
1325	Computational Atomistic Modeling in Carbon Flatland and Other 2D Nanomaterials. Applied Sciences (Switzerland), 2020, 10, 1724.	1.3	2
1326	2D tetragonal transition-metal phosphides: an ideal platform to screen metal shrouded crystals for multifunctional applications. Nanoscale, 2020, 12, 6776-6784.	2.8	21
1327	Surface termination modification on high-conductivity MXene film for energy conversion. Journal of Alloys and Compounds, 2020, 829, 154634.	2.8	48
1328	Impact of Cation Intercalation on the Electronic Structure of Ti ₃ C ₂ T _{<i>x</i>} MXenes in Sulfuric Acid. ACS Applied Materials &: Interfaces 2020, 12, 15087-15094	4.0	32

	CITATION R	CITATION REPORT	
# 1329	ARTICLE An MXene-based membrane for molecular separation. Environmental Science: Nano, 2020, 7, 1289-1304.	IF 2.2	Citations
1330	A first principle study of black phosphorene/N-doped graphene heterostructure: Electronic, mechanical and interface properties. Applied Surface Science, 2020, 528, 146962.	3.1	12
1331	Improvement of desorption performance of Mg(BH4)2 by two-dimensional Ti3C2 MXene addition. International Journal of Hydrogen Energy, 2020, 45, 16654-16662.	3.8	25
1332	Optical properties of two-dimensional semi-conductive MXene Sc2CO produced by sputtering. Optik, 2020, 219, 165046.	1.4	13
1333	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782.	23.0	1,020
1334	Enhancing the thermal properties of organic phase change material (palmitic acid) by doping MXene nanoflakes. AIP Conference Proceedings, 2020, , .	0.3	7
1335	Sulfur functions as the activity centers for high-capacity lithium ion batteries in S- and O-bifunctionalized MXenes: A density functional theory (DFT) study. Applied Surface Science, 2020, 525, 146501.	3.1	26
1336	A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale, 2020, 12, 15993-16007.	2.8	102
1337	Two-Dimensional Layered Materials: High-Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2020, 3, 6270-6296.	2.4	70
1338	Prediction of room-temperature ferromagnetism in a two-dimensional direct band gap semiconductor. Nanoscale, 2020, 12, 15670-15676.	2.8	38
1339	Enhanced Functional Properties of Ti 3 C 2 T x MXenes as Negative Electrodes in Sodiumâ€lon Batteries by Chemical Tuning. Small Methods, 2020, 4, 2000314.	4.6	27
1340	Fluorine-free treatment of Ti3AlC2 for supercapacitor electrode material. Journal of Materials Science: Materials in Electronics, 2020, 31, 10564-10573.	1.1	3
1341	Two-dimensional materials for photocatalytic water splitting and CO2 reduction. , 2020, , 173-227.		7
1342	2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor. Coordination Chemistry Reviews, 2020, 421, 213439.	9.5	68
1343	Freezing Titanium Carbide Aqueous Dispersions for Ultra-long-term Storage. ACS Applied Materials & Interfaces, 2020, 12, 34032-34040.	4.0	136
1344	Young's Modulus and Tensile Strength of Ti ₃ C ₂ MXene Nanosheets As Revealed by <i>In Situ</i> TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations. Nano Letters, 2020, 20, 5900-5908.	4.5	88
1345	Graphene-MoS ₂ vertically anchored on an MXene-derived accordion-like TiO ₂ /C skeleton: an ultrastable HER catalyst. Journal of Materials Chemistry A, 2020, 8, 14223-14233.	5.2	28
1346	Magnetic phase transition from paramagnetic in Nb ₂ AlC-MAX to superconductivity-like diamagnetic in Nb ₂ C-MXene: an experimental and computational analysis. RSC Advances, 2020, 10, 25669-25678.	1.7	52

ARTICLE IF CITATIONS Titanium Monocarbide., 2020, , 11-514. 0 1347 Electronic devices based on solution-processed two-dimensional materials. , 2020, , 351-384. 1348 Density functional theory calculations on single atomic catalysis: Ti-decorated Ti3C2O2 monolayer 1349 6.9 59 (MXene) for HCHO oxidation. Chinese Journal of Catalysis, 2020, 41, 1633-1644. Scalable Ti₃C₂T_{<i>x</i>} MXene Interlayered Forward Osmosis Membranes for Enhanced Water Purification and Organic Solvent Recovery. ACS Nano, 2020, 14, 1350 151 9125-9135. Understanding Chemistry of Two-Dimensional Transition Metal Carbides and Carbonitrides (MXenes) 1351 7.3 74 with Gas Analysis. ACS Nano, 2020, 14, 10251-10257. Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering. Physical Chemistry Chemical Physics, 2020, 22, 16482-16526. 1.3 Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future 1353 7.8 162 Perspectives. Advanced Functional Materials, 2020, 30, 2002528. Temperature-difference-induced electricity during solar desalination with bilayer MXene-based 1354 8.2 37 monoliths. Nano Energy, 2020, 76, 105060. Elementary processes governing V₂AlC chemical etching in HF. RSC Advances, 2020, 10, 1355 1.7 19 25266-25274. Broadband ultrafast photonics of two-dimensional transition metal carbides (MXenes). Nano Futures, 1.0 2020, 4, 032003. Two-dimensional Material as Anode for Lithium Ion Batteries: Recent Progress. International Journal 1357 0.5 10 of Electrochemical Science, 2020, 15, 5416-5429. Two-dimensional C@TiO2/Ti3C2 composite with superior catalytic performance for NaAlH4. 3.8 29 International Journal of Hydrogen Energy, 2020, 45, 21666-21675. Deepâ€Learningâ€Enabled MXeneâ€Based Artificial Throat: Toward Sound Detection and Speech Recognition. 1359 3.0 45 Advanced Materials Technologies, 2020, 5, 2000262. Structural transformation and nature of defects in titanium carbide treated in different redox 1.7 atmospheres. RSC Advances, 2020, 10, 25602-25608. Recent Progress in MXeneâ€Based Materials: Potential Highâ€Performance Electrocatalysts. Advanced 1361 181 7.8 Functional Materials, 2020, 30, 2003437. Additive-Free MXene Liquid Crystals and Fibers. ACS Central Science, 2020, 6, 254-265. 1362 182 Recent Advances in the Rational Design and Synthesis of Twoâ€Dimensional Materials for Multivalent 1363 3.6 25 Ion Batteries. ChemSusChem, 2020, 13, 1071-1092. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, 1364 6.6 267 challenges and prospects. Chemical Engineering Journal, 2020, 388, 124340.

#	Article	IF	CITATIONS
1365	Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. Journal of Materials Chemistry A, 2020, 8, 5853-5858.	5.2	113
1366	A review on MXene for energy storage application: effect of interlayer distance. Materials Research Express, 2020, 7, 022001.	0.8	119
1367	Topochemical synthesis of one-dimensional Mo2C nanobelts. Ceramics International, 2020, 46, 12891-12896.	2.3	5
1368	Polyelectrolyte Functionalized Ti ₂ CT <i>_x</i> MXene Membranes for Pervaporation Dehydration of Isopropanol/Water Mixtures. Industrial & Engineering Chemistry Research, 2020, 59, 4732-4741.	1.8	63
1369	Micromechanical modeling of MXene-polymer composites. Carbon, 2020, 162, 402-409.	5.4	46
1370	Modulation of nearly free electron states in hydroxyl-functionalized MXenes: a first-principles study. Journal of Materials Chemistry C, 2020, 8, 5211-5221.	2.7	21
1371	Phase-dependent electronic and magnetic properties of Ti2C monolayers. Journal of Applied Physics, 2020, 127, .	1.1	30
1372	Self-assembled sandwich hollow porous carbon sphere @ MXene composites as superior LiS battery cathode hosts. 2D Materials, 2020, 7, 025049.	2.0	28
1373	Device characteristics of Ti2CT2 MXene-based field-effect transistor. Superlattices and Microstructures, 2020, 140, 106433.	1.4	9
1374	Vortex Fluidic Mediated Synthesis of TiO ₂ Nanoparticle/MXene Composites. ChemNanoMat, 2020, 6, 657-662.	1.5	9
1375	Facile synthesis of CuS/MXene nanocomposites for efficient photocatalytic hydrogen generation. CrystEngComm, 2020, 22, 2060-2066.	1.3	21
1376	How Much Oxygen Can a MXene Surface Take Before It Breaks?. Advanced Functional Materials, 2020, 30, 1909005.	7.8	111
1377	Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption. Nano-Micro Letters, 2020, 12, 55.	14.4	240
1378	Recent Advances of Twoâ€Dimensional (2 D) MXenes and Phosphorene for Highâ€Performance Rechargeable Batteries. ChemSusChem, 2020, 13, 1047-1070.	3.6	59
1379	A Fast Charge/Discharge and Wide-Temperature Battery with a Germanium Oxide Layer on a Ti ₃ C ₂ MXene Matrix as Anode. ACS Nano, 2020, 14, 3678-3686.	7.3	74
1380	Ultrasound-Driven Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene Hydrogel Generator. ACS Nano, 2020, 14, 3199-3207.	7.3	91
1381	Modulating Electronic Structures of Armchair GaN Nanoribbons by Chemical Functionalization under an Electric Field Effect. ACS Omega, 2020, 5, 1261-1269.	1.6	6
1382	Colloidal Behaviors of Two-Dimensional Titanium Carbide in Natural Surface Waters: The Role of Solution Chemistry. Environmental Science & Technology, 2020, 54, 3353-3362.	4.6	17

#	Article	IF	CITATIONS
1383	Nitrogen Doped Intercalation TiO2/TiN/Ti3C2Tx Nanocomposite Electrodes with Enhanced Pseudocapacitance. Nanomaterials, 2020, 10, 345.	1.9	21
1384	Application of functionalised MXene-carbon nanoparticle-polymer composites in resistive hydrostatic pressure sensors. SN Applied Sciences, 2020, 2, 1.	1.5	10
1385	Theoretical identification of layered MXene phase Na _x Ti ₄ C ₂ O ₄ as superb anodes for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 11177-11187.	5.2	20
1386	MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Molecular Catalysis, 2020, 486, 110850.	1.0	97
1387	K + Intercalation of NH 4 HF 2 â€Exfoliated Ti 3 C 2 MXene as Binderâ€Free Electrodes with High Electrochemical Capacitance. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900806.	0.8	6
1388	Design and modulation principles of molybdenum carbide-based materials for green hydrogen evolution. Journal of Energy Chemistry, 2020, 48, 398-423.	7.1	39
1389	Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants. Applied Materials Today, 2020, 19, 100574.	2.3	44
1390	MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chemistry of Materials, 2020, 32, 1703-1747.	3.2	429
1391	Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environmental Science: Nano, 2020, 7, 724-752.	2.2	44
1392	Bioinspired Microspines for a High-Performance Spray Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Piezoresistive Sensor. ACS Nano, 2020, 14, 2145-2155.	7.3	330
1393	The Assembly of MXenes from 2D to 3D. Advanced Science, 2020, 7, 1903077.	5.6	231
1394	Strain Effects on the 2D van der Waals Heterostructure C ₃ B/C ₃ N: A Density Functional Theory and a Tightâ€Binding Study. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000012.	1.2	10
1395	Ti ₃ C ₂ T _{<i>x</i>} MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors. ACS Nano, 2020, 14, 3576-3586.	7.3	277
1396	Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceramics International, 2020, 46, 12593-12605.	2.3	67
1397	Recent Progress of Two-Dimensional Thermoelectric Materials. Nano-Micro Letters, 2020, 12, 36.	14.4	218
1398	Temperature-dependent mechanical properties of Ti _{n+1} C _n O ₂ (<i>n</i> = 1, 2) MXene monolayers: a first-principles study. Physical Chemistry Chemical Physics, 2020, 22, 3414-3424.	1.3	35
1399	Electron Energy Loss Structures of Terminated Scandium and Hafnium MXene Monolayers from First-Principles Calculations. Journal of Electronic Materials, 2020, 49, 2502-2520.	1.0	15
1400	Crumpled Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene Lamellar Membranes for Solvent Permeation and Separation. ACS Applied Nano Materials, 2020, 3, 1526-1534.	2.4	40

#	Article	IF	CITATIONS
1401	One‣tep Synthesis of Nanostructured CoS ₂ Grown on Titanium Carbide MXene for Highâ€Performance Asymmetrical Supercapacitors. Advanced Materials Interfaces, 2020, 7, 1901659.	1.9	77
1402	Flux Synthesis of MgNi ₂ Bi ₄ and Its Structural Relationship to NiBi ₃ . Inorganic Chemistry, 2020, 59, 3452-3458.	1.9	2
1403	On tuning the cytotoxicity of Ti ₃ C ₂ (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Materials, 2020, 7, 025018.	2.0	63
1404	Investigation of electrical performance and synaptic long-term plasticity of memristive devices with new transition metal carbide. Semiconductor Science and Technology, 2020, 35, 035008.	1.0	1
1405	MXeneâ€Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors. Advanced Energy Materials, 2020, 10, 1903534.	10.2	97
1406	Revisiting the anchoring behavior in lithium-sulfur batteries: many-body effect on the suppression of shuttle effect. Npj Computational Materials, 2020, 6, .	3.5	29
1407	Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Industrial and Engineering Chemistry, 2020, 85, 1-33.	2.9	107
1408	Identification of Efficient Single-Atom Catalysts Based on V ₂ CO ₂ MXene by <i>ab Initio</i> Simulations. Journal of Physical Chemistry C, 2020, 124, 4090-4100.	1.5	31
1409	Improving the performance of a titanium carbide MXene in supercapacitors by partial oxidation treatment. Inorganic Chemistry Frontiers, 2020, 7, 1205-1211.	3.0	30
1410	Are transition-metal borides promising for Na ion batteries? A first-principles study on transition-metal boride monolayer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126282.	0.9	30
1411	Twoâ€dimensional MXenes for lithiumâ€sulfur batteries. InformaÄnÃ-Materiály, 2020, 2, 613-638.	8.5	221
1412	Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124468.	2.3	118
1413	Allâ€Optical Control of Microfiber Knot Resonator Based on 2D Ti ₂ CT <i>_x</i> MXene. Advanced Optical Materials, 2020, 8, 1900977.	3.6	39
1414	Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Physics Reports, 2020, 848, 1-58.	10.3	594
1415	Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature, 2020, 577, 492-496.	13.7	145
1416	Realization of 2D crystalline metal nitrides via selective atomic substitution. Science Advances, 2020, 6, eaax8784.	4.7	66
1417	Enhancing energy storage capacity of B3+-intercalated Ti3C2Tx by combining its three-dimensional network structure with hollow carbon nanospheres. Journal of Materials Science, 2020, 55, 4769-4779.	1.7	5
1418	In Situ Nâ€Doped Graphene and Mo Nanoribbon Formation from Mo ₂ Ti ₂ C ₃ MXene Monolayers. Small, 2020, 16, e1907115.	5.2	14

#	Article	IF	CITATIONS
1419	Achieving superior high-capacity batteries with the lightest Ti2C MXene anode by first-principles calculations: Overarching role of S-functionate (Ti 2CS2) and multivalent cations carrier. Journal of Power Sources, 2020, 451, 227791.	4.0	84
1420	A safe etching route to synthesize highly crystalline Nb2CTx MXene for high performance asymmetric supercapacitor applications. Electrochimica Acta, 2020, 337, 135803.	2.6	99
1421	Advances in Two-Dimensional MXenes for Nitrogen Electrocatalytic Reduction to Ammonia. International Journal of Photoenergy, 2020, 2020, 1-11.	1.4	28
1422	Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 6926-6956.	5.2	158
1423	MXene-Enhanced Deep Ultraviolet Photovoltaic Performances of Crossed Zn ₂ GeO ₄ Nanowires. Journal of Physical Chemistry C, 2020, 124, 4764-4771.	1.5	32
1424	Symmetric, Asymmetric, and Batteryâ€Type Supercapacitors Using Twoâ€Dimensional Nanomaterials and Composites. Batteries and Supercaps, 2020, 3, 860-875.	2.4	72
1425	First-principles study on the electronic and optical properties of 2D chalcogenides M2X and M2X3 (MÂ=ÂTl, in and XÂ=ÂO, S, Se). Chemical Physics Letters, 2020, 749, 137404.	1.2	5
1426	Understanding MXene-Based "Symmetric―Supercapacitors and Redox Electrolyte Energy Storage. ACS Applied Energy Materials, 2020, 3, 5006-5014.	2.5	38
1427	Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene. Advanced Materials Interfaces, 2020, 7, 1902207.	1.9	35
1428	Recent Advances in Nobleâ€Metalâ€Free Catalysts for Electrocatalytic Synthesis of Ammonia under Ambient Conditions. Chemistry - an Asian Journal, 2020, 15, 1791-1807.	1.7	8
1429	Self-assembly of secondary-formed multilayer La/e-Ti3C2 as high performance supercapacitive material with excellent cycle stability and high rate capability. Journal of Alloys and Compounds, 2020, 835, 155343.	2.8	9
1430	Electrochemical detection of amyloid-l ² protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer. Materials Today Communications, 2020, 23, 101097.	0.9	60
1431	Ultrathin ZnIn ₂ S ₄ Nanosheets Anchored on Ti ₃ C ₂ T _{<i>X</i>} MXene for Photocatalytic H ₂ Evolution. Angewandte Chemie, 2020, 132, 11383-11388.	1.6	69
1432	Flexible Solidâ€State Asymmetric Supercapacitors with Enhanced Performance Enabled by Freeâ€Standing MXeneâ^'Biopolymer Nanocomposites and Hierarchical Grapheneâ^'RuO _{<i>x</i>} Paper Electrodes. Batteries and Supercaps, 2020, 3, 604-610.	2.4	19
1433	Surface reformation of 2D MXene by in situ LaF3-decorated and enhancement of energy storage in lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 6735-6743.	1.1	12
1434	Self-assembly of hierarchical Ti3C2Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes. Electrochimica Acta, 2020, 348, 136211.	2.6	43
1435	Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environmental Research, 2020, 185, 109409.	3.7	151
1436	Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor. International Journal of Hydrogen Energy, 2020, 45, 13080-13089.	3.8	113

#	Article	IF	CITATIONS
1437	Comment on "MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation― International Journal of Hydrogen Energy, 2020, 45, 13559-13562.	3.8	3
1438	Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene. Nano Energy, 2020, 72, 104741.	8.2	62
1439	MXene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector. Solar Energy Materials and Solar Cells, 2020, 211, 110526.	3.0	88
1440	Hierarchical Mesoporous MXene–NiCoP Electrocatalyst for Water-Splitting. ACS Applied Materials & Interfaces, 2020, 12, 18570-18577.	4.0	137
1441	Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. Journal of Materials Chemistry A, 2020, 8, 7508-7535.	5.2	201
1442	Ti ₃ C ₂ (MXene) based field electron emitters. Nanotechnology, 2020, 31, 285701.	1.3	14
1443	Peculiar magnetic behaviour and Meissner effect in two-dimensional layered Nb ₂ C MXene. 2D Materials, 2020, 7, 035012.	2.0	33
1444	MXenes and Their Applications in Wearable Sensors. Frontiers in Chemistry, 2020, 8, 297.	1.8	147
1445	Hydrogen Bond Interaction Promotes Flash Energy Transport at MXene-Solvent Interface. Journal of Physical Chemistry C, 2020, 124, 10306-10314.	1.5	32
1446	Uranium adsorption on two-dimensional irradiation resistant MXenes from first-principles calculations. Chemical Physics Letters, 2020, 750, 137444.	1.2	22
1447	Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials, 2020, 5, 517-538.	23.3	360
1448	Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes. Carbon, 2020, 165, 150-162.	5.4	52
1449	Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Advanced Functional Materials, 2020, 30, 2000712.	7.8	336
1450	MXeneâ€Based Nanocomposites for Energy Conversion and Storage Applications. Chemistry - A European Journal, 2020, 26, 6342-6359.	1.7	66
1451	Nitrogenâ€Doped Ti ₃ C ₂ MXene: Mechanism Investigation and Electrochemical Analysis. Advanced Functional Materials, 2020, 30, 2000852.	7.8	166
1452	Two-Dimensional Titanium Carbide (Ti3C2Tx) MXenes of Different Flake Sizes Studied by Scanning Electrochemical Microscopy in Different Electrolytes. Journal of Electronic Materials, 2020, 49, 4028-4044.	1.0	9
1453	Applications of MXene-based membranes in water purification: A review. Chemosphere, 2020, 254, 126821.	4.2	166
1454	Highly active and durable Pt/MXene nanocatalysts for ORR in both alkaline and acidic conditions. Journal of Electroanalytical Chemistry, 2020, 865, 114142.	1.9	41

#	Article	IF	CITATIONS
1455	Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 10584-10592.	1.5	62
1456	Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. New Journal of Chemistry, 2020, 44, 6524-6532.	1.4	64
1457	Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes. Journal of Materials Chemistry A, 2020, 8, 8957-8968.	5.2	90
1458	Nb-Doped MXene With Enhanced Energy Storage Capacity and Stability. Frontiers in Chemistry, 2020, 8, 168.	1.8	57
1459	Atomic defects, functional groups and properties in MXenes. Chinese Chemical Letters, 2021, 32, 339-344.	4.8	40
1460	Excellent tribological properties of epoxy—Ti3C2 with three-dimensional nanosheets composites. Friction, 2021, 9, 734-746.	3.4	36
1461	MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chinese Journal of Catalysis, 2021, 42, 3-14.	6.9	220
1462	MXenes for Nonâ€Lithiumâ€lon (Na, K, Ca, Mg, and Al) Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2000681.	10.2	183
1463	Two-dimensional (2D) electrode materials for supercapacitors. Materials Today: Proceedings, 2021, 41, 498-505.	0.9	55
1464	Thermal kinetics involved during the solid-state synthesis of Cr2AlC MAX phase. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3997-4008.	2.0	7
1465	MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2021, 61, 80-115.	5.3	123
1466	First-principles study on the electric field manipulation of the magnetic property and the electronic structures for monolayer Fe2C MXene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 386, 126960.	0.9	5
1467	Interlayer Chemistry of Layered Electrode Materials in Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2007358.	7.8	28
1468	Wettability of MXene and its interfacial adhesion with epoxy resin. Materials Chemistry and Physics, 2021, 257, 123820.	2.0	27
1469	Facile fabrication of novel Ti3C2T -supported fallen leaf-like Bi2S3 nanopieces by a combined local-repulsion and macroscopic attraction strategy with enhanced symmetrical supercapacitor performance. Electrochimica Acta, 2021, 366, 137406.	2.6	34
1470	Simple method for preparing nanometer thick Ti3C2TX sheets towards highly efficient lubrication and wear resistance. Tribology International, 2021, 153, 106598.	3.0	44
1471	Booming development and present advances of two dimensional MXenes for photodetectors. Chemical Engineering Journal, 2021, 403, 126336.	6.6	40
1472	Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene Schottky junction nanohybrid. Chemical Engineering Journal, 2021, 403, 126328.	6.6	94

#	Article	IF	CITATIONS
1473	Orbital symmetry matching: Achieving superior nitrogen reduction reaction over single-atom catalysts anchored on Mxene substrates. Chinese Journal of Catalysis, 2021, 42, 288-296.	6.9	41
1474	Recent advance in electromagnetic shielding of MXenes. Chinese Chemical Letters, 2021, 32, 620-634.	4.8	16
1475	Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Research, 2021, 14, 212-221.	5.8	66
1476	Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. Journal of Colloid and Interface Science, 2021, 584, 1-10.	5.0	86
1477	Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 1099-1106.	5.0	57
1478	Valence state of transition metal center as an activity descriptor for CO2 reduction on single atom catalysts. Journal of Energy Chemistry, 2021, 56, 444-448.	7.1	20
1479	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733.	16.0	97
1480	Two-dimensional (Zr0.5Hf0.5)2CO2: A promising visible light water-splitting photocatalyst with efficiently carrier separation. Computational Materials Science, 2021, 186, 110013.	1.4	8
1481	Accordion-like composite of carbon-coated Fe3O4 nanoparticle decorated Ti3C2 MXene with enhanced electrochemical performance. Journal of Materials Science, 2021, 56, 2486-2496.	1.7	25
1482	Theoretical investigation of Ti2B monolayer as powerful anode material for Li/Na batteries with high storage capacity. Applied Surface Science, 2021, 538, 148048.	3.1	14
1483	2D Ti3C2 MXene embedded with Co(II)(OH)n nanoparticles as the cathode material for hybrid magnesium–lithium-ion batteries. Journal of Materials Science, 2021, 56, 2464-2473.	1.7	17
1484	Unusual synthesis of safflower-shaped TiO2/Ti3C2 heterostructures initiated from two-dimensional Ti3C2 MXene. Applied Surface Science, 2021, 538, 148023.	3.1	52
1485	2D titanium carbide MXenes as emerging optical biosensing platforms. Biosensors and Bioelectronics, 2021, 171, 112730.	5.3	101
1486	Highly flexible, self-healable and conductive poly(vinyl alcohol)/Ti3C2Tx MXene film and it's application in capacitive deionization. Chemical Engineering Journal, 2021, 408, 127256.	6.6	60
1487	On the rapid in situ oxidation of two-dimensional V2CTz MXene in culture cell media and their cytotoxicity. Materials Science and Engineering C, 2021, 119, 111431.	3.8	30
1488	Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Materials, 2021, 35, 630-660.	9.5	182
1489	Recent progress in energy storage and conversion of flexible symmetric transducers. Journal of Materials Chemistry A, 2021, 9, 753-781.	5.2	17
1490	Functionalized M ₂ TiC ₂ T _x MXenes (M = Cr and Mo; T = F, O, and) Tj ETQq1 Physics, 2021, 23, 1038-1049.	1 0.7843 1.3	14 rgBT /0 16

CITATION REPORT ARTICLE IF CITATIONS Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic 2.3 88 degradation of water pollutants. Ceramics International, 2021, 47, 7321-7343. MXeneâ€derived TiC/SiBCN ceramics with excellent electromagnetic absorption and highâ€temperature 1.9 resistance. Journal of the American Ceramic Society, 2021, 104, 1772-1784. Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 6.6 40 solar cells. Chemical Engineering Journal, 2021, 417, 127912. Hydrogen Evolution Reaction for Vacancyâ€Ordered iâ€MXenes and the Impact of Proton Absorption into 2.7 the Vacancies. Advanced Sustainable Systems, 2021, 5, 2000158. A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area 6.6 60 energy density. Chemical Engineering Journal, 2021, 405, 126694. Tailoring adsorption for tunable lithium ion storage and devices. Chemical Engineering Journal, 2021, 413, 127428. 6.6 Ultrasensitive and reversible room-temperature resistive humidity sensor based on layered 2.327 two-dimensional titanium carbide. Ceramics International, 2021, 47, 6463-6469. Aqueous solution-processed MXene (Ti3C2Tx) for non-hydrophilic epoxy resin-based composites with 3.3 enhanced mechanical and physical properties. Materials and Design, 2021, 197, 109276. Electronic and magnetic properties of 3d transition metal atom adsorbed Zr2CO2 Mxene: 0.9 9 First-principles study. Solid State Communications, 2021, 325, 114140. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. Chinese Journal of Catalysis, 2021, 42, 872-903. Cobalt phosphide nanoparticles grown on Ti3C2 nanosheet for enhanced lithium ions storage 2.8 20 performances. Journal of Alloys and Compounds, 2021, 853, 157136. Strategies for engineering the MXenes toward highly active catalysts. Materials Today Nano, 2021, 13, 2.3 100104. Review on Current Progress of MnO₂â€Based Ternary Nanocomposites for Supercapacitor 1.7 62 Applications. ChemElectroChem, 2021, 8, 291-336. A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Metals, 2021, 40, 1459-1476. 3.6 3D flexible WxV1-xSe2 nanoplates arrays on carbon cloth as an novel efficient hydrogen evolution 7 3.1electrocatalysts. Applied Surface Science, 2021, 540, 148297. Leaf-like MXene nanosheets intercalated TiO2 nanorod array photoelectrode with enhanced photoelectrochemical performance. Journal of Power Sources, 2021, 484, 229236.

Role of electrolytes on the electrochemical characteristics of Fe3O4/MXene/RGO composites for 2.6 42 supercapacitor applications. Electrochimica Acta, 2021, 367, 137473.

11.1

224

MXenes for Rechargeable Batteries Beyond the Lithiumâ€Ion. Advanced Materials, 2021, 33, e2004039.

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1503

1504

1505

	CITA	CITATION REPORT	
# 1509	ARTICLE Manipulation of electronic and magnetic properties of Cr2CX2 (X=F,O,OH) monolayer by applying mechanical strains. Journal of Alloys and Compounds, 2021, 850, 156769.	IF 2.8	Citations
1510	Electrocatalytic Synthesis of Ammonia Using a 2D Ti ₃ C ₂ MXene Loaded with Copper Nanoparticles. ChemPlusChem, 2021, 86, 166-170.	1.3	23
1511	Black potassium titanate nanobelts: Ultrafast and durable aqueous redox electrolyte energy storage. Journal of Power Sources, 2021, 483, 229140. Advanced synthesis of MXene derived nanoflower shaped TIO2@Tixmml:math	4.0	5
1512	xmlns:mml="http://www.w3.org/1998/Math/MathML" ['] display="inline" id="d1e559" altimg="si4.svg"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub><mml:msub><mml:mrow><mml:mi> heterojunction to enhance photocatalytic degradation of Rhodamine B. Environmental Technology</mml:mi></mml:mrow></mml:msub></mml:mrow>	C349mml:	:mrow> <min< td=""></min<>
1513	and Innovation, 2021, 21, 101286. An adept approach to convert titanium carbide to titanium nitride and it's composite with N-doped carbon nanotubes for efficient oxygen electroreduction kinetics. Catalysis Today, 2021, 370, 46-54.	2.2	8
1514	Active oxygen promoted electrochemical conversion of methane on two-dimensional carbide (MXenes): From stability, reactivity and selectivity. Journal of Catalysis, 2021, 393, 20-29.	3.1	19
1515	A coupled conductor of ionic liquid with Ti ₃ C ₂ MXene to improve electrochemical properties. Journal of Materials Chemistry A, 2021, 9, 442-452.	5.2	32
1516	Challenges and Opportunities in Utilizing MXenes of Carbides and Nitrides as Electrocatalysts. Advanced Energy Materials, 2021, 11, 2002967.	10.2	94
1517	Tailored synthesis approach of (Mo _{2/3} Y _{1/3}) ₂ AlC <i>i</i> MAX a its two-dimensional derivative Mo _{1.33} CT _z MXene: enhancing the yield, qualit and performance in supercapacitor applications. Nanoscale, 2021, 13, 311-319.	nd y, 2.8	22
1518	Site-exposed Ti ₃ C ₂ MXene anchored in N-defect g-C ₃ N ₄ heterostructure nanosheets for efficient photocatalytic N ₂ fixation. Catalysis Science and Technology, 2021, 11, 1027-1038.	2.1	34
1519	Allâ€MXene Cottonâ€Based Supercapacitorâ€Powered Human Body Thermal Management System. ChemElectroChem, 2021, 8, 648-655.	1.7	33
1520	Recent Advances in the Controlled Synthesis and Catalytic Applications of Two-Dimensional Rhodium Nanomaterials. , 2021, 3, 121-133.		28
1521	Improved pseudocapacitances of supercapacitors based on electrodes of nitrogen-doped Ti3C2Tx nanosheets with in-situ growth of carbon nanotubes. Journal of Alloys and Compounds, 2021, 859, 158347.	2.8	10
1522	The recent progress of MXene-Based microwave absorption materials. Carbon, 2021, 174, 484-499.	5.4	138
1523	Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Research, 2021, 14, 1218-1227.	5.8	45
1524	Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C). Composites Part B: Engineering, 2021, 207, 108580.	5.9	62
1525	Freestanding Nanolayers of a Wideâ€Gap Topological Insulator through Liquidâ€Phase Exfoliation. Chemistry - A European Journal, 2021, 27, 794-801.	1.7	5
1526	Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater. Applied Surface Science, 2021, 537, 148006.	3.1	67

#	Article	IF	CITATIONS
1527	Room temperature gas sensing under UV light irradiation for Ti3C2Tx MXene derived lamellar TiO2-C/g-C3N4 composites. Applied Surface Science, 2021, 535, 147666.	3.1	40
1528	Role of geometry, charge and fluxionality of clusters in CO2 activation on supported sub-nanometer metal clusters: The case of Cu tetramers on pristine and O-terminated MXene. Catalysis Today, 2021, 370, 93-103.	2.2	8
1529	Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceramics International, 2021, 47, 5747-5757.	2.3	63
1530	Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy, 2021, 79, 105369.	8.2	282
1531	Pressureless manufacturing of Cr ₂ AlC compound and the temperature effect. Materials and Manufacturing Processes, 2021, 36, 200-208.	2.7	11
1532	Atomistic modeling of electrocatalysis: Are we there yet?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1499.	6.2	79
1533	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	5.2	398
1534	Elongated heterometal double-sites promote nitrogen reduction on two-dimensional MM′B ₇ monolayers. Journal of Materials Chemistry A, 2021, 9, 10855-10868.	5.2	16
1535	Introduction, History, and Origin of Two Dimensional (2D) Materials. Materials Horizons, 2021, , 1-9.	0.3	4
1536	Surface Modifications of 2D-Ti3C2O2 by Nonmetal Doping for Obtaining High Hydrogen Evolution Reaction Activity: A Computational Approach. Catalysts, 2021, 11, 161.	1.6	4
1537	MC ₂ (M = Y, Zr, Nb, and Mo) monolayers containing C ₂ dimers: prediction of anode materials for high-performance sodium ion batteries. Nanoscale Advances, 2021, 3, 6617-6627.	2.2	8
1538	Laccase immobilized on Au confined MXene based electrode for electrochemical detection of catechol. Materials Today: Proceedings, 2021, 46, 3136-3143.	0.9	18
1539	Liquid–liquid interfaces: a unique and advantageous environment to prepare and process thin films of complex materials. Materials Horizons, 2021, 8, 1409-1432.	6.4	35
1540	Fabrication of Mo _{1.33} CT _z (MXene)–cellulose freestanding electrodes for supercapacitor applications. Materials Advances, 2021, 2, 743-753.	2.6	15
1541	Discovery of intrinsic two-dimensional antiferromagnets from transition-metal borides. Nanoscale, 2021, 13, 8254-8263.	2.8	31
1542	Highly Electroconductive and Mechanically Strong Ti ₃ C ₂ T _{<i>x</i>} MXene Fibers Using a Deformable MXene Gel. ACS Nano, 2021, 15, 3320-3329.	7.3	177
1543	State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review. Nanoscale, 2021, 13, 9463-9504.	2.8	87
1544	Solvothermal preparation of spherical Bi ₂ O ₃ nanoparticles uniformly distributed on Ti ₃ C ₂ T _{<i>x</i>>} for enhanced capacitive performance. Nanoscale Advances, 2021, 3, 5312-5321.	2.2	4

#	Article	IF	CITATIONS
1545	Chemically Stabilized and Functionalized 2Dâ€MXene with Deep Eutectic Solvents as Versatile Dispersion Medium. Advanced Functional Materials, 2021, 31, 2008722.	7.8	60
1546	Recent advances in MXene-based force sensors: a mini-review. RSC Advances, 2021, 11, 19169-19184.	1.7	12
1547	Few-layer large Ti ₃ C ₂ T _x sheets exfoliated by NaHF ₂ and applied to the sodium-ion battery. Journal of Materials Chemistry A, 2021, 9, 9593-9601.	5.2	25
1548	Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. Journal of Materials Chemistry A, 2021, 9, 3231-3269.	5.2	97
1549	Recent progress on strategies for the preparation of 2D/2D MXene/g-C ₃ N ₄ nanocomposites for photocatalytic energy and environmental applications. Catalysis Science and Technology, 2021, 11, 1222-1248.	2.1	75
1550	Phosgene Gas Sensing of Ti ₂ CT ₂ (T = F ^{â^'} , O ^{â^'} ,) Tj ETQq1 1	0.784314 1.9	rgBT /Overld
1551	2D High- <i>ΰ</i> Dielectric Ceramic Nanoplatelets for Polymer Nanocomposite Capacitors. Inorganic Materials Series, 2021, , 1-51.	0.5	0
1552	Transition Metal Carbide (MXene)–Polymer Nanocomposites. Inorganic Materials Series, 2021, , 99-128.	0.5	0
1553	Electrochemically active site-rich nanocomposites of two-dimensional materials as anode catalysts for direct oxidation fuel cells: new age beyond graphene. Nanoscale Advances, 2021, 3, 3681-3707.	2.2	13
1554	Computational simulations of 2D materials. , 2021, , 313-345.		0
1555	Room-temperature ferromagnetism in two-dimensional transition metal borides: a first-principles investigation. Physical Chemistry Chemical Physics, 2021, 23, 10615-10620.	1.3	18
1556	Facile synthesis of coral-like Pt nanoparticles/MXene (Ti3C2Tx) with efficient hydrogen evolution reaction activity. Ionics, 2021, 27, 1221-1231.	1.2	18
1557	Fe2O3-decoration and multilayer structure design of Ti3C2 MXene materials toward strong and broadband absorption of electromagnetic waves in the X-band region. Journal of Materials Science: Materials in Electronics, 2021, 32, 25919-25932.	1.1	15
1558	2D MXenes Based Supercapacitors. , 2022, , 590-598.		0
1559	Variation in the interface strength of silicon with surface engineered Ti ₃ C ₂ MXenes. Physical Chemistry Chemical Physics, 2021, 23, 5540-5550.	1.3	7
1560	Ti ₃ C ₂ T _x Nanosheets for High-Repetition-Rate Wideband-Tunable Q-Switched Fiber Laser Around 3 μm. IEEE Photonics Technology Letters, 2021, 33, 515-518.	1.3	3
1561	Activating the I ⁰ /I ⁺ redox couple in an aqueous I ₂ –Zn battery to achieve a high voltage plateau. Energy and Environmental Science, 2021, 14, 407-413.	15.6	129
1562	Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber /MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. Advanced Functional Materials, 2021, 31, 2008006.	7.8	340

#	Article	IF	CITATIONS
1563	Organic–inorganic hybrid and inorganic halide perovskites: structural and chemical engineering, interfaces and optoelectronic properties. Journal Physics D: Applied Physics, 2021, 54, 133002.	1.3	27
1564	Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of Materials Chemistry C, 2021, 9, 8395-8465.	2.7	30
1565	Theoretical assessment of Raman spectra on MXene Ti ₂ C: from monolayer to bilayer. Physical Chemistry Chemical Physics, 2021, 23, 19884-19891.	1.3	9
1566	Drastically increased electrical and thermal conductivities of Pt-infiltrated MXenes. Journal of Materials Chemistry A, 2021, 9, 10739-10746.	5.2	22
1567	A new 2D auxetic CN ₂ nanostructure with high energy density and mechanical strength. Physical Chemistry Chemical Physics, 2021, 23, 4353-4364.	1.3	8
1568	Tactile sensors based on buckle structure. , 2021, , 197-218.		0
1569	Newly Emerging Metal–Organic Frameworks (MOF), MXenes, and Zeolite Nanosheets in Solutes Removal from Water. Springer Series on Polymer and Composite Materials, 2021, , 219-247.	0.5	0
1570	2D metal carbides and their hybrid nanostructure: fundamental, synthesis, and applications. , 2021, , 235-251.		0
1571	Self-assembled nanodendritic PdPtCu nanosheets/Ti ₂ CT _{<i>x</i>} –CNT electrocatalysts for low overpotential and long-term stable hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 23085-23094.	5.2	4
1572	Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction. Nanoscale, 2021, 13, 15002-15009.	2.8	22
1573	Computational Screening of Photocathodes Based on Layered MXene coated Cs3Sb Heterostructures. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	0
1574	Interlayer Structural Engineering of 2D MXene for Electrochemical Energy Storage. , 2021, , 451-478.		0
1575	Hydrothermal-Assisted Synthesis and Stability of Multifunctional MXene Nanobipyramids: Structural, Chemical, and Optical Evolution. ACS Applied Materials & Interfaces, 2021, 13, 3011-3023.	4.0	36
1576	Progress and Perspective: MXene and MXeneâ€Based Nanomaterials for Highâ€Performance Energy Storage Devices. Advanced Electronic Materials, 2021, 7, 2000967.	2.6	122
1577	A progressive journey into 2D-chalcogenide/carbide/nitride-based broadband photodetectors: recent developments and future perspectives. Journal of Materials Chemistry C, 2021, 9, 14532-14572.	2.7	19
1578	First-Principles Calculation and Experimental Investigation of a Three-Atoms-Type MXene V ₂ C and Its Effects on Memristive Devices. IEEE Nanotechnology Magazine, 2021, 20, 512-516.	1.1	6
1579	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	6.4	37
1580	A graphene–Mo ₂ C heterostructure for a highly responsive broadband photodetector. Physical Chemistry Chemical Physics, 2021, 23, 23024-23031.	1.3	1

#	Article	IF	CITATIONS
1581	Catalyst-free growth of single- to few-layered graphene on ionic liquid surfaces at room temperature. CrystEngComm, 2021, 23, 4169-4174.	1.3	2
1582	Microscopic origin of graphene nanosheets derived from coal-tar pitch by treating Al4C3 as the intermediate. Physical Chemistry Chemical Physics, 2021, 23, 12449-12455.	1.3	2
1583	Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catalysis Science and Technology, 2021, 11, 5028-5049.	2.1	11
1584	Water-Dispersible Ti ₃ C ₂ T _z MXene Nanosheets by Acid-Free, Molten Salt Etching. SSRN Electronic Journal, 0, , .	0.4	1
1585	Interaction of First Row Transition Metals with M ₂ C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and) Tj ETQq0	0 0 rgBT /0 1.5	Overlock 10 ⁻

1586	Synthesis of ultrathin metal oxide and hydroxide nanosheets using formamide in water at room temperature. CrystEngComm, 2021, 23, 3794-3801.	1.3	5
1587	Transition metal carbide—MXene. , 2021, , 671-709.		4
1588	Tuning the electrochemical performance of Ti ₃ C ₂ and Hf ₃ C ₂ monolayer by functional groups for metal-ion battery applications. Nanoscale, 2021, 13, 11534-11543.	2.8	25
1589	First-principles study of a topological phase transition induced by image potential states in MXenes. Physical Review B, 2021, 103, .	1.1	6
1590	Hybridization with Ti ₃ C ₂ T <i>_x</i> MXene: An Effective Approach to Boost the Hydrothermal Stability and Catalytic Performance of Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 1380-1387.	1.9	17
1591	Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 6089-6108.	5.2	128
1592	Enhanced field emission performance of MXene–TiO ₂ composite films. Nanoscale, 2021, 13, 7622-7629.	2.8	21
1593	A Fe ₂ O ₃ –Fe ₃ C heterostructure encapsulated into a carbon matrix for the anode of lithium-ion batteries. Chemical Communications, 2021, 57, 8818-8821.	2.2	13
1594	Heteroâ€MXenes: Theory, Synthesis, and Emerging Applications. Advanced Materials, 2021, 33, e2004129.	11.1	150
1595	Electrocatalytic CO ₂ reduction on earth abundant 2D Mo ₂ C and Ti ₃ C ₂ MXenes. Chemical Communications, 2021, 57, 1675-1678.	2.2	40
1596	Ti ₃ C ₂ T _x MXene for electrode materials of supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11501-11529.	5.2	181
1597	Halogenated Ti ₃ C ₂ MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano, 2021, 15, 1077-1085.	7.3	183
1598	Ultraefficiently Calming Cytokine Storm Using Ti ₃ C ₂ T <i>_x</i> MXene. Small Methods, 2021, 5, 2001108.	4.6	29

#	Article	IF	CITATIONS
1599	Conducting polymeric nanocomposite for supercapattery. , 2021, , 63-91.		1
1600	Regulating the Nb2C nanosheets with different degrees of oxidation in water lubricated sliding toward an excellent tribological performance. Friction, 2022, 10, 398-410.	3.4	16
1601	Supercapacitors based on two-dimensional transition metal dichalcogenides and their hybrids. , 2021, , 159-191.		3
1602	MXene-based photocatalysts. , 2021, , 333-357.		0
1603	TiO ₂ /Ti ₃ C ₂ intercalated with g-C ₃ N ₄ nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N ₂ selectivity in aqueous solution. Inorganic Chemistry Frontiers, 2021, 8, 2518-2531.	3.0	32
1604	The oxidation and thermal stability of two-dimensional transition metal carbides and/or carbonitrides (MXenes) and the improvement based on their surface state. Inorganic Chemistry Frontiers, 2021, 8, 2164-2182.	3.0	56
1605	Nb2CT MXene: High capacity and ultra-long cycle capability for lithium-ion battery by regulation of functional groups. Journal of Energy Chemistry, 2021, 53, 387-395.	7.1	61
1606	Role of MXene surface terminations in electrochemical energy storage: A review. Chinese Chemical Letters, 2021, 32, 2648-2658.	4.8	62
1607	Interfacial engineering insights of promising monolayer 2D Ti3C2 MXene anchored flake-like ZnO thin films for improved PEC water splitting. Journal of Electroanalytical Chemistry, 2021, 883, 115044.	1.9	32
1608	MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small, 2021, 17, e2006054.	5.2	119
1609	Large Intrinsic Resistivity of Monolayer Cu ₂ Si and Fermi Surface Nesting. ACS Applied Electronic Materials, 2021, 3, 1279-1287.	2.0	2
1610	Turning Trash into Treasure: MXene with Intrinsic LiF Solid Electrolyte Interfaces Performs Better and Better during Battery Cycling. Advanced Materials Technologies, 2021, 6, 2000882.	3.0	9
1611	Boosting the Pseudocapacitive and High Mass‣oaded Lithium/Sodium Storage through Bonding Polyoxometalate Nanoparticles on MXene Nanosheets. Advanced Functional Materials, 2021, 31, 2007636.	7.8	53
1612	Exploring structural, electronic, and mechanical properties of 2D hexagonal MBenes. Journal of Physics Condensed Matter, 2021, 33, 155503.	0.7	20
1614	Recent progress in the design and fabrication of MXene-based membranes. Frontiers of Chemical Science and Engineering, 2021, 15, 820-836.	2.3	27
1615	Flocculation of MXenes and Their Use as 2D Particle Surfactants for Capsule Formation. Langmuir, 2021, 37, 2649-2657.	1.6	17
1616	Application of MXenes in environmental remediation technologies. Nano Convergence, 2021, 8, 5.	6.3	73
1617	Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Materials and Design, 2021, 200, 109442	3.3	101

# 1618	ARTICLE Progress and biomedical applications of MXenes. Nano Select, 2021, 2, 1480-1508.	IF 1.9	CITATIONS
1619	Catalytic Nanozyme for Radiation Protection. Bioconjugate Chemistry, 2021, 32, 411-429.	1.8	23
1620	Boosting the volumetric capacitance of MoO3-x free-standing films with Ti3C2 MXene. Electrochimica Acta, 2021, 370, 137665.	2.6	34
1621	Theoretical Study of Two-Dimensional α-Tellurene with Pseudo-Heterospecies as a Promising Elemental Anchoring Material for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2021, 125, 4623-4631.	1.5	12
1622	Growth of heterolayered [cubic-TaC(111)Â+Ârhombohedral-Ta3C2(0001)] nanocomposite thin films on Al2O3(0001). Acta Materialia, 2021, 204, 116499.	3.8	3
1623	Magnetic Ti3C2Tx/Fe3O4/Aramid nanofibers composite paper with tunable electromagnetic interference shielding performance. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	8
1624	Interband, Surface Plasmon and Fano Resonances in Titanium Carbide (MXene) Nanoparticles in the Visible to Infrared Range. Photonics, 2021, 8, 36.	0.9	4
1625	Effect of Ti3AlC2 precursor and processing conditions on microwave absorption performance of resultant Ti3C2Tx MXene. Journal of Materials Science, 2021, 56, 9287-9301.	1.7	19
1626	Superconductivity and High-Pressure Performance of 2D Mo ₂ C Crystals. Journal of Physical Chemistry Letters, 2021, 12, 2219-2225.	2.1	3
1627	Ultrafast, One-Step, Salt-Solution-Based Acoustic Synthesis of Ti ₃ C ₂ MXene. ACS Nano, 2021, 15, 4287-4293.	7.3	103
1628	A facile route of two-dimensional metal oxide nanosheets fabrication by atomic layer deposition. Journal of Physics: Conference Series, 2021, 1825, 012042.	0.3	1
1629	The prior rules of designing Ti3C2Tx MXene-based gas sensors. Frontiers of Chemical Science and Engineering, 2021, 15, 505-517.	2.3	38
1630	Two-Dimensional Carbonitride MXenes as an Efficient Electrocatalyst for Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 4477-4488.	1.5	13
1631	Highly Enhanced Light–Matter Interaction in MXene Quantum Dots–Monolayer WS ₂ Heterostructure. Small, 2021, 17, e2006309.	5.2	22
1632	Ti3C2/graphene oxide heterostructural coating with enhanced dry tribological performance. Applied Nanoscience (Switzerland), 2021, 11, 1471-1479.	1.6	10
1633	Harnessing the Unique Features of 2D Materials toward Dendriteâ€free Metal Anodes. Energy and Environmental Materials, 2022, 5, 45-67.	7.3	33
1634	Determination of Quantum Capacitance of Niobium Nitrides Nb2N and Nb4N3 for Supercapacitor Applications. Journal of Composites Science, 2021, 5, 85.	1.4	8
1635	2D Transitionâ€Metal Silicides as Analogs of MXenes: A Firstâ€Principles Exploration. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100048.	1.2	4

			2
#	ARTICLE	IF.	CITATIONS
1636	Computational insights into modulating the performance of MXene based electrode materials for rechargeable batteries. Nanotechnology, 2021, 32, 252001.	1.3	21
1637	Structural, thermal and dielectric behavior of two-dimensional layered Ti3C2Tx(MXene) filled ethylene–vinyl acetate (EVA) nanocomposites. Journal of Materials Science: Materials in Electronics, 2021, 32, 8081-8091.	1.1	10
1638	Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Reviews in Inorganic Chemistry, 2022, 42, 53-88.	1.8	66
1639	2D MXenes: Tunable Mechanical and Tribological Properties. Advanced Materials, 2021, 33, e2007973.	11.1	278
1640	Two-Dimensional F-Ti ₃ C ₂ T _{<i>x</i>} @Ag Composite for an Extraordinary Long Cycle Lifetime with High Specific Capacity in an Aluminum Battery. ACS Applied Materials & Interfaces, 2021, 13, 11822-11832.	4.0	32
1641	Hierarchically Organized Biomimetic Architectured Silk Fibroin–Ceramic-Based Anisotropic Hybrid Aerogels for Thermal Energy Management. Biomacromolecules, 2021, 22, 1739-1751.	2.6	16
1642	MX Anti-MXenes from Non-van der Waals Bulks for Electrochemical Applications: The Merit of Metallicity and Active Basal Plane. ACS Nano, 2021, 15, 6233-6242.	7.3	26
1643	Ionâ€Selective MXeneâ€Based Membranes: Current Status and Prospects. Advanced Materials Technologies, 2021, 6, 2001189.	3.0	31
1644	Twoâ€dimensional materials and synthesis, energy storage, utilization, and conversion applications of twoâ€dimensional <scp>MXene</scp> materials. International Journal of Energy Research, 2021, 45, 9878-9894.	2.2	10
1645	Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti ₃ C ₂ T _{<i>x</i>} MXene Film Driven by Natural Sunlight Fluctuation. ACS Nano, 2021, 15, 5294-5306.	7.3	103
1646	Advances in MXene Films: Synthesis, Assembly, and Applications. Transactions of Tianjin University, 2021, 27, 217-247.	3.3	66
1647	MXene based advanced materials for thermal energy storage: A recent review. Journal of Energy Storage, 2021, 35, 102322.	3.9	64
1648	Structure Prototype Outperforming MXenes in Stability and Performance in Metalâ€lon Batteries: A High Throughput Study. Advanced Energy Materials, 2021, 11, 2003633.	10.2	111
1649	Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Convergence, 2021, 8, 9.	6.3	194
1650	MXeneâ€Based Materials for Electrochemical Sodiumâ€Ion Storage. Advanced Science, 2021, 8, e2003185.	5.6	88
1651	Skin-Inspired Pressure Sensor with MXene/P(VDF-TrFE-CFE) as Active Layer for Wearable Electronics. Nanomaterials, 2021, 11, 716.	1.9	13
1652	Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy and Environment, 2023, 8, 233-245.	4.7	31
1653	Exploring MXenes and their MAX phase precursors by electron microscopy. Materials Today Advances, 2021, 9, 100123.	2.5	26

	CITA	CITATION REPORT	
# 1654	ARTICLE MXene polymer nanocomposites: a review. Materials Today Advances, 2021, 9, 100120.	IF 2.5	Citations 96
1655	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	8.3	107
1656	Liquidâ€Exfoliated 2D Materials for Optoelectronic Applications. Advanced Science, 2021, 8, e2003864	. 5.6	77
1657	Synergistic Effect of CeF ₃ Nanoparticles Supported on Ti ₃ C ₂ MXene for Catalyzing Hydrogen Storage of NaAlH ₄ . ACS Applied Energy Materials, 2021, 4 2820-2827.	r, 2.5	26
1658	Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin. Research, 2021, 2021, 7065907.	2.8	47
1659	Recent advances in developing the MXene/polymer nanocomposites with multiple properties: A review study. Synthetic Metals, 2021, 273, 116695.	2.1	43
1660	Green Synthesis of A Novel MXene–CS Composite Applied in Treatment of Cr(VI) Contaminated Aque Solution. Processes, 2021, 9, 524.	ous 1.3	17
1661	Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings. Materials Today Advances, 2021, 9, 100133.	2.5	44
1662	MXenes for memristive and tactile sensory systems. Applied Physics Reviews, 2021, 8, .	5.5	25
1663	A Review on MXene: Synthesis, Properties and Applications on Alkali Metal Ion Batteries. IOP Conference Series: Earth and Environmental Science, 2021, 714, 042030.	0.2	20
1664	DNA Detection with Single-Layer Ti ₃ C ₂ MXene Nanopore. ACS Nano, 2021, 1 4861-4869.	5, 7.3	35
1665	Hydroxyl-Boosted Nitrogen Reduction Reaction: The Essential Role of Surface Hydrogen in Functionalized MXenes. ACS Applied Materials & Interfaces, 2021, 13, 14283-14290.	4.0	34
1666	MXenes for electromagnetic interferenceÂshielding: Experimental and theoretical perspectives. Materials Today Advances, 2021, 9, 100124.	2.5	63
1667	Visible-light induced one-pot hydrogenation and amidation of nitroaromatics with carboxylic acids over 2D MXene-derived Pt/N-TiO2/Ti3C2. Molecular Catalysis, 2021, 504, 111490.	1.0	5
1668	Status and Prospects of MXeneâ€Based Lithium–Sulfur Batteries. Advanced Functional Materials, 202 31, 2100457.	21, 7.8	147
1669	Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors. Materials Today Advances, 2021, 9, 100135.	2.5	19
1670	Advances in transition metal dichalcogenide-based two-dimensional nanomaterials. Materials Today Chemistry, 2021, 19, 100399.	1.7	50
1671	Perspectives on solution processing of two-dimensional MXenes. Materials Today, 2021, 48, 214-240.	8.3	178

#	Article	IF	CITATIONS
1672	Low-temperature synthesis and growth model of thin Mo2C crystals on indium. Scientific Reports, 2021, 11, 8247.	1.6	11
1673	Surface Functionalization of Ti ₃ C ₂ T <i>_x</i> MXene Nanosheets with Catechols: Implication for Colloidal Processing. Langmuir, 2021, 37, 5447-5456.	1.6	17
1674	Impact of Pretreatment of the Bulk Starting Material on the Efficiency of Liquid Phase Exfoliation of WS2. Nanomaterials, 2021, 11, 1072.	1.9	6
1675	Design of Highly Stable and Efficient Bifunctional <i>MX</i> ene-Based Electrocatalysts for Oxygen Reduction and Evolution Reactions. Physical Review Applied, 2021, 15, .	1.5	11
1676	Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application. Chemical Engineering Journal, 2021, 410, 128310.	6.6	111
1677	Fabrication of surface-charged MXene membrane and its application for water desalination. Journal of Membrane Science, 2021, 623, 119076.	4.1	95
1678	MXenes for polymer matrix electromagnetic interference shielding composites: A review. Composites Communications, 2021, 24, 100653.	3.3	291
1679	MXeneâ€GaN van der Waals Heterostructures for Highâ€Speed Selfâ€Driven Photodetectors and Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2000955.	2.6	35
1680	Realizing stability of magnetic response under bending in flexible CoFeMnSi films with a sponge-like Ti3C2 MXene buffer layer. Applied Surface Science, 2021, 546, 149167.	3.1	0
1681	Engineering the band gap of Hf2CO2 MXene semiconductor by C/O doping. Journal of Materials Research, 2021, 36, 1678-1685.	1.2	8
1682	Dual-mode ECL/SERS immunoassay for ultrasensitive determination of Vibrio vulnificus based on multifunctional MXene. Sensors and Actuators B: Chemical, 2021, 332, 129525.	4.0	53
1683	First-principle study of Ti2XS2 (XÂ=ÂC/N) MXenes as high capacity anodes for rechargeable potassium-ion batteries. Applied Surface Science, 2021, 546, 149096.	3.1	12
1684	MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano, 2021, 15, 5775-5780.	7.3	250
1685	Review—Ti ₃ C ₂ T _x MXene: An Emerging Two-Dimensional Layered Material in Water Treatment. ECS Journal of Solid State Science and Technology, 2021, 10, 047002.	0.9	22
1686	MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon, 2021, 175, 509-518.	5.4	106
1687	Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process. Journal of Membrane Science, 2021, 623, 119080.	4.1	130
1688	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
1689	Electrostatic self-assembly of heterostructured black phosphorus–MXene nanocomposites for flexible microsupercapacitors with high rate performance. Energy Storage Materials, 2021, 36, 257-264.	9.5	39

#	Article	IF	CITATIONS
1690	Two-dimensional Nanomaterials in Thermocatalytic Reactions: Transition Metal Dichalcogenides, Metal Phosphorus Trichalcogenides and MXenes. Catalysis Reviews - Science and Engineering, 2023, 65, 1-51.	5.7	10
1691	Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals. Research, 2021, 2021, 9863038.	2.8	29
1692	Single transition metal atom catalysts on Ti2CN2 for efficient CO2 reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 12886-12896.	3.8	38
1693	Polymer/MXene nanocomposite–a new age for advanced materials. Polymer-Plastics Technology and Materials, 0, , 1-16.	0.6	4
1694	Pseudocapacitive Anode Materials toward Highâ€Power Sodiumâ€Ion Capacitors. Batteries and Supercaps, 2021, 4, 1567-1587.	2.4	31
1695	Electronic, magnetic and optical properties of penta-BN2 nanoribbons: A first principles study. Computational Materials Science, 2021, 190, 110275.	1.4	9
1696	Comparative study of functionalized MXenes Mn+1CnO2 (M = Ti, Zr and Hf, n = 1, 2 and 3): A proposal for renewable energy applications. Modern Physics Letters B, 2021, 35, 2150290.	1.0	2
1697	<i>In Situ</i> Tensile Testing of Nanometer-Thick Two-Dimensional Transition-Metal Carbide Films: Implications for MXenes Acting as Nanoscale Reinforcement Agents. ACS Applied Nano Materials, 2021, 4, 5058-5067.	2.4	15
1698	Exploring MXene-based materials for next-generation rechargeable batteries. JPhys Energy, 2021, 3, 032009.	2.3	22
1699	Cationic intermediates assisted self-assembly two-dimensional Ti3C2T /rGO hybrid nanoflakes for advanced lithium-ion capacitors. Science Bulletin, 2021, 66, 914-924.	4.3	161
1700	Photocatalytic H2O2 production using Ti3C2 MXene as a non-noble metal cocatalyst. Applied Catalysis A: General, 2021, 618, 118127.	2.2	42
1701	Functionalized Germanene-Based Nanomaterials for the Detection of Single Nucleotide Polymorphism. ACS Applied Nano Materials, 2021, 4, 5164-5175.	2.4	17
1702	MXene (Ti3C2Tx) Functionalized Short Carbon Fibers as a Cross-Scale Mechanical Reinforcement for Epoxy Composites. Polymers, 2021, 13, 1825.	2.0	13
1703	Manganese dioxide nanosheets decorated on MXene (Ti3C2Tx) with enhanced performance for asymmetric supercapacitors. Ceramics International, 2021, 47, 12211-12220.	2.3	18
1704	Structure and electromagnetic properties of Ti3C2Tx MXene derived from Ti3AlC2 with different microstructures. Ceramics International, 2021, 47, 13628-13634.	2.3	31
1705	Emerging MXenes for Functional Memories. Small Science, 2021, 1, 2100006.	5.8	50
1706	Selective electrosorption of Ca2+ by MXene cathodes coupled with NiAl-LMO anodes through ion intercalation. Journal of Colloid and Interface Science, 2021, 590, 539-547.	5.0	30
1707	Rapid production of mixed metal oxy-fluoride nanoplates as superior oxygen evolution electrocatalysts. Materials Letters, 2021, 291, 129530.	1.3	0

#	Article	IF	CITATIONS
1708	First-Principles Evaluation of Volatile Organic Compounds Degradation in Z-Scheme Photocatalytic Systems: MXene and Graphitic-CN Heterostructures. ACS Applied Materials & Interfaces, 2021, 13, 23843-23852.	4.0	47
1709	Vacancies-Engineered M ₂ CO ₂ MXene as an Efficient Hydrogen Evolution Reaction Electrocatalyst. Journal of Physical Chemistry Letters, 2021, 12, 4805-4813.	2.1	31
1710	Nanocomposites of MXene for industrial applications. Journal of Alloys and Compounds, 2021, 862, 158547.	2.8	58
1711	Optical modulation of the MXene Ti3C2Tx saturable absorber for Er:Lu2O3 laser. Optical Materials, 2021, 115, 110949.	1.7	9
1712	2D Ti3C2Tx flakes prepared by in-situ HF etchant for simultaneous screening of carbamate pesticides. Journal of Colloid and Interface Science, 2021, 590, 365-374.	5.0	38
1713	Coating Porous MXene Films with Tunable Porosity for Highâ€Performance Solid‣tate Supercapacitors. ChemElectroChem, 2021, 8, 1911-1917.	1.7	21
1714	Two-Dimensional Nanostructures for Electrochemical Biosensor. Sensors, 2021, 21, 3369.	2.1	20
1715	Potential environmental applications of MXenes: A critical review. Chemosphere, 2021, 271, 129578.	4.2	71
1716	2D MXene Materials for Sodium Ion Batteries: A review on Energy Storage. Journal of Energy Storage, 2021, 37, 102478.	3.9	62
1717	Self-assembled Au/Fe3O4 nanoparticle-loaded phytic acid-graphene oxide composite foam with highly efficient catalytic performance for p-nitrophenol and o-nitroaniline organic pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126368.	2.3	10
1718	High-temperature stability and phase transformations of titanium carbide (Ti ₃ C ₂ T _x) MXene. Journal of Physics Condensed Matter, 2021, 33, 224002.	0.7	26
1719	Two-Dimensional MXene Based Materials for Micro-Supercapacitors. , 0, , .		2
1720	Attapulgite–MXene Hybrids with Ti3C2Tx Lamellae Surface Modified by Attapulgite as a Mechanical Reinforcement for Epoxy Composites. Polymers, 2021, 13, 1820.	2.0	9
1721	Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. Small Methods, 2021, 5, e2100409.	4.6	67
1722	Scalable Synthesis of MAX Phase Precursors toward Titanium-Based MXenes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 26074-26083.	4.0	32
1723	Thermochemically nanostructured off-stoichiometric Ti0.2Al1.8C4O5 nanowires as robust electrocatalysts for hydrogen evolution from corrosive acidic electrolyte. Catalysis Today, 2021, 370, 26-35.	2.2	0
1724	Recent Advancement for the Synthesis of MXene Derivatives and Their Sensing Protocol. Advanced Materials Technologies, 2021, 6, 2001197.	3.0	16
1725	A variety of interface and strain tuning electronic properties of the MoS ₂ /Cr ₂ CX ₂ van der Waals heterostructures. Journal Physics D: Applied Physics, 2021, 54, 345105.	1.3	3

#	Article	IF	CITATIONS
1726	High-Entropy 2D Carbide MXenes: TiVNbMoC ₃ and TiVCrMoC ₃ . ACS Nano, 2021, 15, 12815-12825.	7.3	162
1727	Embedding CdS@Au into Ultrathin Ti _{3–<i>x</i>} C ₂ T _{<i>y</i>} to Build Dual Schottky Barriers for Photocatalytic H ₂ Production. ACS Catalysis, 2021, 11, 8510-8520.	5.5	193
1728	Titanium Carbide (Ti ₃ C ₂) MXene as a Promising Co-catalyst for Photocatalytic CO ₂ Conversion to Energy-Efficient Fuels: A Review. Energy & amp; Fuels, 2021, 35, 10374-10404.	2.5	80
1729	Vacancy-induced structural, electronic and optical properties of Hf2CO2 MXene. Journal of Physics and Chemistry of Solids, 2021, 153, 110021.	1.9	5
1730	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	9.5	29
1731	All-Solid High-Performance Asymmetric Supercapacitor Based on Yolk–Shell NiMoO ₄ /V ₂ CT _{<i>x</i>} @Reduced Graphene Oxide and Hierarchical Bamboo-Shaped MoO ₂ @Fe ₂ O ₃ /N-Doped Carbon. Energy & Fuels. 2021. 35. 10250-10261.	2.5	24
1732	Rational design of MXene-based films for energy storage: Progress, prospects. Materials Today, 2021, 46, 183-211.	8.3	83
1733	Morphological Evolutions of Ti ₃ C ₂ T <i>_x</i> Nanosheets and Fe ₃ O ₄ /Ti ₃ C ₂ T <i>_x</i> Nanocomposites under Potential Cycling Investigated Using In Situ Electrochemical Atomic Force Microscopy. Journal of Physical Chemistry C. 2021, 125, 12811-12818.	1.5	5
1734	The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372, .	6.0	1,209
1735	Organic molecule intercalated multilayer Ti3C2Tx MXene with enhanced electrochemical lithium and sodium storage. Ionics, 2021, 27, 3373.	1.2	6
1737	Electrochemical Behavior of Vanadium Carbide in Neutral Aqueous Electrolytes. Chinese Physics Letters, 2021, 38, 058201.	1.3	5
1738	Application of MXene in Electrochemical Sensors: A Review. Electroanalysis, 2021, 33, 1827-1851.	1.5	86
1739	Recent advances in the rational design of <scp>2D MXenes</scp> in energy conversion and storage systems. International Journal of Energy Research, 2021, 45, 17563-17576.	2.2	4
1740	Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 38, 354-378.	9.5	41
1740 1741	Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 38, 354-378. Sustainable MXenes-based membranes for highly energy-efficient separations. Renewable and Sustainable Energy Reviews, 2021, 143, 110878.	9.5 8.2	41 39
1740 1741 1742	Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 38, 354-378. Sustainable MXenes-based membranes for highly energy-efficient separations. Renewable and Sustainable Energy Reviews, 2021, 143, 110878. Ti ₃ C ₂ MXene-Based Nanobiosensors for Detection of Cancer Biomarkers. , 0, , .	9.5 8.2	41 39 3
1740 1741 1742 1743	Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 38, 354-378. Sustainable MXenes-based membranes for highly energy-efficient separations. Renewable and Sustainable Energy Reviews, 2021, 143, 110878. Ti ₃ C ₂ MXene-Based Nanobiosensors for Detection of Cancer Biomarkers., 0, , . Un-doped and Er-adsorbed layered Nb2C MXene for efficient hydrazine sensing application. Surfaces and Interfaces, 2021, 24, 101074.	9.5 8.2 1.5	41 39 3 18

#	Article	IF	CITATIONS
1745	Scavenging activity and reaction mechanism of Ti3C2Tx MXene as a novel free radical scavenger. Ceramics International, 2021, 47, 16555-16561.	2.3	9
1746	Recent Advances in Immunosafety and Nanoinformatics of Two-Dimensional Materials Applied to Nano-imaging. Frontiers in Immunology, 2021, 12, 689519.	2.2	5
1747	Effect of heat treatment on microwave absorption properties of Ti3C2Tx. Journal of Materials Science: Materials in Electronics, 2021, 32, 17953-17965.	1.1	6
1748	Engineering the Interlayer Spacing by Preâ€Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. Advanced Functional Materials, 2021, 31, 2104007.	7.8	64
1749	Experimental and Computational Analysis of MnO2@V2C-MXene for Enhanced Energy Storage. Nanomaterials, 2021, 11, 1707.	1.9	18
1750	Application of Nanomaterials for Chemical and Biological Sensors: A Review. IEEE Sensors Journal, 2021, 21, 12407-12425.	2.4	17
1751	Acoustomicrofluidic Synthesis of Pristine Ultrathin Ti ₃ C ₂ T _{<i>z</i>} MXene Nanosheets and Quantum Dots. ACS Nano, 2021, 15, 12099-12108.	7.3	46
1752	Adsorption of SF ₆ Decomposed Species on Ti ₃ C ₂ O ₂ and Ti ₃ C ₂ F ₂ with Point Defects by DFT Study. Advanced Theory and Simulations, 2021, 4, 2100074.	1.3	16
1754	Carbon-Dots-Initiated Photopolymerization: An <i>In Situ</i> Synthetic Approach for MXene/Poly(norepinephrine)/Copper Hybrid and its Application for Mitigating Water Pollution. ACS Applied Materials & Interfaces, 2021, 13, 31038-31050.	4.0	73
1755	MXene and MoS _{3â^'} <i>_x</i> Coated 3Dâ€Printed Hybrid Electrode for Solidâ€State Asymmetric Supercapacitor. Small Methods, 2021, 5, e2100451.	4.6	56
1756	Breathable Ti ₃ C ₂ T _{<i>x</i>} MXene/Protein Nanocomposites for Ultrasensitive Medical Pressure Sensor with Degradability in Solvents. ACS Nano, 2021, 15, 9746-9758.	7.3	198
1757	Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Materials Today Advances, 2021, 10, 100139.	2.5	64
1758	Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. Npj 2D Materials and Applications, 2021, 5, .	3.9	163
1759	Laser crystallized sandwich-like MXene/Fe3O4/MXene thin film electrodes for flexible supercapacitors. Journal of Power Sources, 2021, 497, 229882.	4.0	46
1760	Enhanced tensile and electrochemical performance of MXene/CNT hierarchical film. Nanotechnology, 2021, 32, 355706.	1.3	19
1761	Manganese cobalt oxide nanoflakes for electrochemical energy storage. Journal of Materials Science: Materials in Electronics, 2022, 33, 8484-8492.	1.1	10
1762	A Microstructural Analysis of 2D Halide Perovskites: Stability and Functionality. Frontiers in Nanotechnology, 2021, 3, .	2.4	3
1763	A theoretical investigation of quantum spin Hall state in ordered Mâ $\in^2 2$ Mâ $\in^3 2$ C3 MXenes (Mâ $\in^2 = V$, Nb, Ta and	l Mậ€³) Tj 0.7	ETQq1 1 0.7

#	Article	IF	CITATIONS
1764	Computational screening study of double transition metal carbonitrides M′2M″CNO2-MXene as catalysts for hydrogen evolution reaction. Npj Computational Materials, 2021, 7, .	3.5	63
1765	High-Throughput Screening of Atomic Defects in MXenes for CO ₂ Capture, Activation, and Dissociation. ACS Applied Materials & Interfaces, 2021, 13, 35585-35594.	4.0	30
1766	Review on <scp>MXene</scp> synthesis, properties, and recent research exploring electrode architecture for supercapacitor applications. International Journal of Energy Research, 2021, 45, 19746-19771.	2.2	51
1767	Structure Dependent Water Transport in Membranes Based on Two-Dimensional Materials. Industrial & Engineering Chemistry Research, 2021, 60, 10917-10959.	1.8	12
1768	2D MXene Nanomaterials for Versatile Biomedical Applications: Current Trends and Future Prospects. Small, 2021, 17, e2100946.	5.2	57
1769	Photocatalysis over MXene-based hybrids: Synthesis, surface chemistry, and interfacial charge kinetics. APL Materials, 2021, 9, .	2.2	20
1770	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.	14.4	71
1771	Lamellar MXene: A novel 2D nanomaterial for electrochemical sensors. Journal of Applied Electrochemistry, 2021, 51, 1509-1522.	1.5	27
1772	Micro-porous MXene/Aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Composites Part B: Engineering, 2021, 217, 108853.	5.9	129
1773	MXene as emerging nanofillers for high-performance polymer composites: A review. Composites Part B: Engineering, 2021, 217, 108867.	5.9	161
1774	Facile Fabrication of Densely Packed Ti ₃ C ₂ ÂMXene/Nanocellulose Composite Films for Enhancing Electromagnetic Interference Shielding and Electro-/Photothermal Performance. ACS Nano, 2021, 15, 12405-12417.	7.3	152
1775	Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon, 2021, 179, 408-416.	5.4	66
1776	Flexible Photodriven Actuator Based on Gradient–Paraffin-Wax-Filled Ti ₃ C ₂ T _{<i>x</i>} MXene Film for Bionic Robots. ACS Nano, 2021, 15, 12826-12835.	7.3	52
1777	Novel 2D MBenes—Synthesis, Structure, and Biotechnological Potential. Advanced Functional Materials, 2021, 31, 2103048.	7.8	67
1778	Sandwich-like N-doped carbon nanotube@Nb2C MXene composite for high performance alkali ion batteries. Ceramics International, 2021, 47, 20610-20616.	2.3	18
1779	Controlling the Defect Density of Perovskite Films by MXene/SnO ₂ Hybrid Electron Transport Layers for Efficient and Stable Photovoltaics. Journal of Physical Chemistry C, 2021, 125, 15210-15222.	1.5	34
1780	Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects. FlatChem, 2021, 28, 100256.	2.8	35
1781	Tuning Schottky Barrier and Contact Type of Metal–Semiconductor in Ti ₃ C ₂ T ₂ /MoS ₂ (T = F, O, OH) by Strain: A First-Principles Study, Journal of Physical Chemistry C, 2021, 125, 16200-16210.	1.5	29

#	Article	IF	Citations
1782	MXenes@Te as a composite material for high-performance aluminum batteries. Science China Materials, 2022, 65, 85-94.	3.5	10
1783	Ultrahigh-Volumetric-Energy-Density Lithium–Sulfur Batteries with Lean Electrolyte Enabled by Cobalt-Doped MoSe ₂ /Ti ₃ C ₂ T _{<i>x</i>} MXene Bifunctional Catalyst. ACS Nano, 2021, 15, 11619-11633.	7.3	115
1784	MXenes: Emerging 2D materials for hydrogen storage. Nano Energy, 2021, 85, 105989.	8.2	132
1785	Recent Progress of Two-Dimensional Materials for Ultrafast Photonics. Nanomaterials, 2021, 11, 1778.	1.9	31
1786	Recent advances in partially and completely derived 2D Ti3C2 MXene based TiO2 nanocomposites towards photocatalytic applications: A review. Solar Energy, 2021, 222, 48-73.	2.9	53
1787	Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breathâ€Based Biomarker Diagnosis. Advanced Healthcare Materials, 2021, 10, e2100970.	3.9	41
1788	Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage. Science China Materials, 2022, 65, 51-58.	3.5	18
1790	Ti–Al–C MAX Phases and Ti–C MXenes via SHS Route and Acid Leaching. International Journal of Self-Propagating High-Temperature Synthesis, 2021, 30, 159-164.	0.2	2
1791	Emerging applications of MXene materials in CO2 photocatalysis. FlatChem, 2021, 28, 100252.	2.8	31
1792	Electroanalytical overview: utilising micro- and nano-dimensional sized materials in electrochemical-based biosensing platforms. Mikrochimica Acta, 2021, 188, 268.	2.5	28
1793	Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chemical Engineering Journal, 2021, 415, 128930.	6.6	54
1794	Fermiology of two-dimensional titanium carbide and nitride MXenes. Physical Review B, 2021, 104, .	1.1	5
1795	Stimulation of surface terminating group by carbon quantum dots for improving pseudocapacitance of Ti3C2Tx MXene based electrode. Carbon, 2021, 180, 118-126.	5.4	32
1796	Recent Advances in the Synthesis and Energy Applications of 2D MXenes. ChemElectroChem, 2021, 8, 3804-3826.	1.7	18
1797	Theoretical study on Fe2C MXene as electrode material for secondary battery. Chemical Physics, 2021, 548, 111223.	0.9	6
1798	Highly selective MXene/V2O5/CuWO4-based ultra-sensitive room temperature ammonia sensor. Journal of Hazardous Materials, 2021, 416, 126196.	6.5	36
1799	A theoretical investigation of topological phase modulation in carbide MXenes: Role of image potential states. Carbon, 2021, 181, 370-378.	5.4	6
1800	MXene Reinforced Thermosetting Composite for Lightning Strike Protection of Carbon Fiber Reinforced Polymer. Advanced Materials Interfaces, 2021, 8, 2100803.	1.9	7

#	Article	IF	CITATIONS
1801	Structural, electronic and optical properties of GeX (X = N, P and As) monolayer: under stress and strain conditions. Optical and Quantum Electronics, 2021, 53, 1.	1.5	8
1802	Regulating the Coordination Environment of Ruthenium Cluster Catalysts for the Alkaline Hydrogen Evolution Reaction. Journal of Physical Chemistry Letters, 2021, 12, 8016-8023.	2.1	21
1803	Highâ€Entropy Atomic Layers of Transitionâ€Metal Carbides (MXenes). Advanced Materials, 2021, 33, e2101473.	11.1	122
1804	Amino-Functionalized Ti ₃ C ₂ MXene Quantum Dots as Photoluminescent Sensors for Diagnosing Histidine in Human Serum. ACS Applied Nano Materials, 2021, 4, 8192-8199.	2.4	34
1805	118 nm-wavelength-tunable Er3+-doped ZBLAN passively mode-locked fiber laser. , 2021, , .		0
1806	MXene and MXene-based materials for lithium-sulfur batteries. Progress in Natural Science: Materials International, 2021, 31, 501-513.	1.8	32
1807	Recent Advances and Applications Toward Emerging Lithium–Sulfur Batteries: Working Principles and Opportunities. Energy and Environmental Materials, 2022, 5, 777-799.	7.3	106
1808	2D Titanium Carbide (MXene) Based Films: Expanding the Frontier of Functional Film Materials. Advanced Functional Materials, 2021, 31, 2105043.	7.8	50
1809	Carbon Capture and Usage by MXenes. ACS Catalysis, 2021, 11, 11248-11255.	5.5	40
1810	Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis. Chemistry of Materials, 2021, 33, 6346-6355.	3.2	102
1811	Boridene: Two-dimensional Mo _{4/3} B _{2-x} with ordered metal vacancies obtained by chemical exfoliation. Science, 2021, 373, 801-805.	6.0	126
1812	Recent advances in the rational design of <scp>2D MXenes</scp> in energy conversion and storage systems. International Journal of Energy Research, 2021, 45, 20448-20462.	2.2	5
1813	Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges. Chemical Engineering Journal, 2021, 418, 129296.	6.6	70
1814	The Role of Alkali Cation Intercalates on the Electrochemical Characteristics of Nb ₂ CT _{<i>X</i>} MXene for Energy Storage. Chemistry - A European Journal, 2021, 27, 13235-13241.	1.7	9
1815	Tailored Lattice "Tape†to Confine Tensile Interface for 11.08%â€Efficiency Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cell with an Ultrahigh Voltage of 1.702ÁV. Advanced Science, 2021, 8, e2101418.	5.6	161
1816	Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. Journal of Chemical Health and Safety, 2021, 28, 326-338.	1.1	102
1817	Cr2NX2 MXene (X = O, F, OH): A 2D ferromagnetic half-metal. Applied Physics Letters, 2021, 119, .	1.5	32
1818	Recent Advances and Need of Green Synthesis in Two-Dimensional Materials for Energy Conversion and Storage Applications. Current Nanoscience, 2021, 17, 554-571.	0.7	8

#	Article	IF	CITATIONS
1819	Ten Years of Progress in the Synthesis and Development of MXenes. Advanced Materials, 2021, 33, e2103393.	11.1	410
1820	High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Applied Surface Science, 2021, 556, 149710.	3.1	61

Computational study of mechanical stability and phonon properties of MXenes Mo2ScC2T2 (T $\hat{a} \in \infty = \hat{a} \in \infty O$ and) Tj ETQq0 0.0 rgBT /Ov 1.1

1822	MXene (Ti ₃ C ₂) Based Pesticide Delivery System for Sustained Release and Enhanced Pest Control. ACS Applied Bio Materials, 2021, 4, 6912-6923.	2.3	38
1823	Direct Growth of van der Waals Tin Diiodide Monolayers. Advanced Science, 2021, 8, e2100009.	5.6	10
1824	Challenges and opportunities in tailoring MAX phases as a starting materials for MXenes development. Materials Technology, 2022, 37, 1639-1650.	1.5	4
1825	Strategies to Solve Lithium Battery Thermal Runaway: From Mechanism to Modification. Electrochemical Energy Reviews, 2021, 4, 633-679.	13.1	85
1826	Toward Sustainable, Colorless, and Transparent Photovoltaics: State of the Art and Perspectives for the Development of Selective Nearâ€Infrared Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2021, 11, 2101598.	10.2	73
1827	Solventâ€Assisted Anisotropic Cleavage of Transition Metal Carbide into 2D Nanoflakes. Small Structures, 2021, 2, 2100039.	6.9	6
1828	Carbon-based nanomaterials for the detection of volatile organic compounds: A review. Carbon, 2021, 180, 274-297.	5.4	67
1829	Tuning of electronic structure, magnetic phase, and transition temperature in two-dimensional Cr-based Janus MXenes. Physical Review Materials, 2021, 5, .	0.9	23
1830	Synthesis and characterization of 2D MXene: Device fabrication for humidity sensing. Journal of Science: Advanced Materials and Devices, 2022, 7, 100390.	1.5	18
1831	Design single nonmetal atom doped 2D Ti2CO2 electrocatalyst for hydrogen evolution reaction by coupling electronic descriptor. Applied Surface Science, 2021, 556, 149778.	3.1	15
1832	Advances in the Synthesis of 2D MXenes. Advanced Materials, 2021, 33, e2103148.	11.1	488
1833	Designing large-sized cocatalysts for fast charge separation towards highly efficient visible-light-driven hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 28545-28553.	3.8	37
1834	Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. Journal of Alloys and Compounds, 2022, 893, 161998.	2.8	129
1835	Environmental applications ofÂtwo-dimensional transition metal carbides and nitrides for water purification: a review. Environmental Chemistry Letters, 2022, 20, 633-660.	8.3	19
1836	Interfacial assembly of two-dimensional MXenes. Journal of Energy Chemistry, 2021, 60, 417-434.	7.1	104

#	Article	IF	CITATIONS
1837	Recent advances and prospects of MXene-based materials for electrocatalysis and energy storage. Materials Today Physics, 2021, 20, 100469.	2.9	34
1838	Low-temperature annealing of 2D Ti3C2Tx MXene films using electron wind force in ambient conditions. Journal of Materials Research, 2021, 36, 3398-3406.	1.2	4
1839	Review on engineering two-dimensional nanomaterials for promoting efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 154-175.	7.1	11
1840	A facile method for preparation of porous nitrogen-doped Ti ₃ C ₂ Tx MXene for highly responsive acetone detection at high temperature. Functional Materials Letters, 2021, 14, .	0.7	11
1841	Recent Advancements in Energy Storage Based on Sodium Ion and Zinc Ion Hybrid Supercapacitors. Energy & Fuels, 2021, 35, 14241-14264.	2.5	17
1842	A high-voltage and high-capacity Ti3C2T /BiCuS2.5 heterostructure to boost up the energy density and recyclability of zinc-ion-hybrid capacitors. Nano Energy, 2021, 87, 106136.	8.2	28
1843	Insight into anticorrosion/thermal stability behavior of protection system composed of waterborne polyurethane containing SiOx/TiO2@Ti3C2. Journal of Materials Science, 2021, 56, 19840-19856.	1.7	3
1844	A decade of exploring MXenes as aquatic cleaners: Covering a broad range of contaminants, current challenges and future trends. Chemosphere, 2021, 279, 130587.	4.2	25
1845	A MXene-functionalized paper-based electrochemical immunosensor for label-free detection of cardiac troponin I. Journal of Semiconductors, 2021, 42, 092601.	2.0	17
1846	Double Transition Metal Carbides MXenes (D-MXenes) as Promising Electrocatalysts for Hydrogen Reduction Reaction: <i>Ab Initio</i> Calculations. ACS Omega, 2021, 6, 23676-23682.	1.6	14
1847	Nitrogen-Containing Gas Sensing Properties of 2-D Ti2N and Its Derivative Nanosheets: Electronic Structures Insight. Nanomaterials, 2021, 11, 2459.	1.9	5
1848	Electronically conductive MXene clay-polymer composite binders for electrochemical double-layer capacitor electrodes. Journal of Power Sources, 2021, 506, 230138.	4.0	4
1849	Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Materials and Applications, 2021, 5, .	3.9	133
1850	Role of nonspherical DLVO and capillary forces in the transport of 2D delaminated Ti3C2Tx MXene in saturated and unsaturated porous media. Environmental Research, 2021, 200, 111451.	3.7	4
1851	Firstâ€Principles Study of the Electronic and Optical Properties of Bi 2 Se 3 /MoSe 2 Heterojunction. Physica Status Solidi (B): Basic Research, 2021, 258, 2100403.	0.7	5
1852	Unified and ultimate high-pressure phase of several nanolaminate Mn+1AXn (n = 1, 2, 3, etc.) ceramics from first principles. Results in Physics, 2021, 28, 104681.	2.0	2
1853	Hierarchically porous MXene decorated carbon coated LiFePO4 as cathode material for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2021, 876, 160210.	2.8	35
1854	Engineering MXenes (Ti3C2Tx) surface with TiO2 for enhancing anti-corrosion performance of coatings. Polymer, 2021, 230, 124086.	1.8	24

#	Article	IF	CITATIONS
1855	Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem, 2021, 29, 100281.	2.8	20
1856	Simultaneous and Accurate Quantification of Multiple Antibiotics in Aquatic Samples by Surface-Enhanced Raman Scattering Using a Ti ₃ C ₂ T <i>_x</i> /DNA/Ag Membrane Substrate. Analytical Chemistry, 2021. 93. 13072-13079.	3.2	20
1857	Density functional theory study on the enhanced adsorption mechanism of gaseous pollutants on Al-doped Ti2CO2 monolayer. Sustainable Materials and Technologies, 2021, 29, e00294.	1.7	4
1858	Highly selective adsorption of SO2 on WX2 (X = S, Se, Te) monolayers and the effect of strain engineering: a DFT study. Journal of Computational Electronics, 2021, 20, 1874-1883.	1.3	1
1859	Multilevel Theoretical Screening of Novel Two-Dimensional MA ₂ Z ₄ Family for Hydrogen Evolution. Journal of Physical Chemistry Letters, 2021, 12, 9149-9154.	2.1	32
1860	Conductive hydrogels with 2D/2D β-NiS/Ti3C2Tx heterostructure for high-performance supercapacitor electrode materials. Ceramics International, 2022, 48, 1382-1393.	2.3	9
1861	Highly sensitive and selective NO2 sensor of alkalized V2CT MXene driven by interlayer swelling. Sensors and Actuators B: Chemical, 2021, 344, 130150.	4.0	104
1862	2D MoS2 nanosheets and hematein complexes deposited on screen-printed graphene electrodes as an efficient electrocatalytic sensor for detecting hydrazine. Sensors and Actuators B: Chemical, 2021, 345, 130385.	4.0	21
1863	Preparation of diamond/copper composites modified by Ti3C2Tx as interlayer with enhanced thermal conductivity. Diamond and Related Materials, 2021, 118, 108504.	1.8	11
1864	Prediction of high spin polarization and perpendicular magnetic anisotropy in two dimensional ferromagnetic Mn2CXX' (X, X′=F, Cl, Br, I) Janus monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114932.	1.3	7
1865	Titanium carbide/zeolite imidazole framework-8/polylactic acid electrospun membrane for near-infrared regulated photothermal/photodynamic therapy of drug-resistant bacterial infections. Journal of Colloid and Interface Science, 2021, 599, 390-403.	5.0	48
1866	Flexible MXene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing. Nano Energy, 2021, 88, 106257.	8.2	50
1867	2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage. Energy Storage Materials, 2021, 41, 554-562.	9.5	57
1868	Rapid synthesis of polyimidazole functionalized MXene via microwave-irradiation assisted multi-component reaction and its iodine adsorption performance. Journal of Hazardous Materials, 2021, 420, 126580.	6.5	36
1869	Towards high-performance electrocatalysts and photocatalysts: Design and construction of MXenes-based nanocomposites for water splitting. Chemical Engineering Journal, 2021, 421, 129944.	6.6	50
1870	Recent Progress in MXene-Based Materials for Metal-Sulfur and Metal-Air Batteries: Potential High-Performance Electrodes. Electrochemical Energy Reviews, 2022, 5, 112-144.	13.1	99
1871	Rationally designed CdS/Ti3C2 MXene electrocatalysts for efficient CO2 reduction in aqueous electrolyte. Ceramics International, 2021, 47, 28321-28327.	2.3	26
1872	Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano, 2021, 15, 15502-15537.	7.3	38

#	Article	IF	CITATIONS
1873	MXenes modified by single transition metal atom for hydrogen evolution reaction catalysts. Applied Surface Science, 2021, 562, 150151.	3.1	25
1874	The tuning on the magnetism and the electronic structures of monolayer Ti2N MXene by electric field. Physica B: Condensed Matter, 2021, 618, 413183.	1.3	8
1875	Enhanced N2 fixation on V2C by transition metal doping: First-principles calculation. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114875.	1.3	9
1876	Synthesis, characterization, photocatalytic and antibacterial properties of copper Ferrite/MXene (CuFe2O4/Ti3C2) nanohybrids. Ceramics International, 2021, 47, 28874-28883.	2.3	71
1877	New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. Journal of Energy Chemistry, 2021, 62, 660-691.	7.1	56
1878	Ti3C2Tx-AgNPs@beta-cyclodextrin SERS substrate for rapid and selective determination of erythrosin B in dyed food. Sensors and Actuators B: Chemical, 2021, 346, 130595.	4.0	20
1879	Activation of peracetic acid with cobalt anchored on 2D sandwich-like MXenes (Co@MXenes) for organic contaminant degradation: High efficiency and contribution of acetylperoxyl radicals. Applied Catalysis B: Environmental, 2021, 297, 120475.	10.8	68
1880	2D materials for bone therapy. Advanced Drug Delivery Reviews, 2021, 178, 113970.	6.6	23
1881	Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. Journal of Molecular Liquids, 2021, 342, 117524.	2.3	35
1882	MXene-based designer nanomaterials and their exploitation to mitigate hazardous pollutants from environmental matrices. Chemosphere, 2021, 283, 131293.	4.2	28
1883	A bio-inspired nanocomposite membrane with improved light-trapping and salt-rejecting performance for solar-driven interfacial evaporation applications. Nano Energy, 2021, 89, 106443.	8.2	75
1884	rGO/Ti3C2Tx heterostructures for the efficient, room-temperature detection of multiple toxic gases. Materials Chemistry and Physics, 2021, 273, 125087.	2.0	22
1885	Core@shell and sandwich-like Ti3C2T @Ni particles with enhanced electromagnetic interference shielding performance. Ceramics International, 2021, 47, 29995-30004.	2.3	10
1886	Research progress on construction and energy storage performance of MXene heterostructures. Journal of Energy Chemistry, 2021, 62, 220-242.	7.1	45
1887	Mechanical behaviors of titanium nitride and carbide MXenes: A molecular dynamics study. Applied Surface Science, 2021, 566, 150633.	3.1	34
1888	Irreplaceable carbon boosts Li-O2 batteries: From mechanism research to practical application. Nano Energy, 2021, 89, 106464.	8.2	47
1889	Removal of heavy metal cations and co-existing anions in simulated wastewater by two separated hydroxylated MXene membranes under an external voltage. Journal of Membrane Science, 2021, 638, 119697.	4.1	39
1890	CoS nanowires grown on Ti3C2Tx are promising electrodes for supercapacitors: High capacitance and remarkable cycle capability. Journal of Colloid and Interface Science, 2021, 602, 123-130.	5.0	13

#	Article	IF	CITATIONS
1891	Effect of hydroxyl intercalation on tribological properties of MXene (Ti3C2Tx). Ceramics International, 2021, 47, 30722-30728.	2.3	15
1892	Tribological properties of Ti3C2Tx MXene reinforced interpenetrating polymers network coating. Tribology International, 2021, 163, 107196.	3.0	33
1893	Hierarchical Sb2S3@m-Ti3C2Tx composite anode with enhanced Na-ion storage properties. Journal of Alloys and Compounds, 2021, 887, 161318.	2.8	8
1894	Construction ZnIn2S4/Ti3C2 of 2D/2D heterostructures with enhanced visible light photocatalytic activity: A combined experimental and first-principles DFT study. Applied Surface Science, 2021, 570, 151183.	3.1	29
1895	Enhanced catalytic properties of cobaltosic oxide through constructing MXene-supported nanocomposites for ammonium perchlorate thermal decomposition. Applied Surface Science, 2021, 570, 151224.	3.1	21
1896	Layered Ti3C2 MXene and silver co-modified g-C3N4 with enhanced visible light-driven photocatalytic activity. Chemical Engineering Journal, 2021, 425, 131493.	6.6	67
1897	Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: Progress and prospects. Talanta, 2021, 235, 122726.	2.9	46
1898	Enhancement mechanism of photocatalytic activity for MoS2/Ti3C2 Schottky junction: Experiment and DFT calculation. Journal of Alloys and Compounds, 2021, 887, 161411.	2.8	17
1899	Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy, 2021, 90, 106528.	8.2	43
1900	Perspective and prospects of 2D MXenes for smart biosensing. Materials Letters, 2021, 304, 130656.	1.3	65
1901	Screening MXenes for novel anode material of lithium-ion batteries with high capacity and stability: A DFT calculation. Applied Surface Science, 2021, 569, 151050.	3.1	48
1902	Investigating the potentials of TiVC MXenes as anode materials for Li-ion batteries by DFT calculations. Applied Surface Science, 2021, 569, 151002.	3.1	13
1903	A molecularly imprinted electrochemical sensor based on cationic intercalated two-dimensional titanium carbide nanosheets for sensitive and selective detection of triclosan in food samples. Food Control, 2022, 132, 108532.	2.8	13
1904	Flexible MXene-Ti3C2Tx bond few-layers transition metal dichalcogenides MoS2/C spheres for fast and stable sodium storage. Chemical Engineering Journal, 2022, 427, 130960.	6.6	15
1905	Preparation of 2D Graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products. Chemosphere, 2022, 287, 132106.	4.2	39
1906	Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 429, 132381.	6.6	126
1907	Nanoscopic humidity-dependent adhesion behaviors of 2D materials. Applied Surface Science, 2022, 572, 151394.	3.1	15
1908	Recent advances in MXene-based nanomaterials for desalination at water interfaces. Environmental Research, 2022, 203, 111845.	3.7	28

#	Article	IF	CITATIONS
1909	Application of MXenes for water treatment and energy-efficient desalination: A review. Journal of Hazardous Materials, 2022, 423, 127050.	6.5	111
1910	Confining ultrafine SnS2 nanoparticles into MXene interlayer toward fast and stable lithium storage. Chemical Engineering Science, 2022, 247, 117087.	1.9	12
1911	Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomaterials Science, 2021, 9, 5437-5471.	2.6	58
1912	Growth and <i>in situ</i> characterization of 2D materials by chemical vapour deposition on liquid metal catalysts: a review. Nanoscale, 2021, 13, 3346-3373.	2.8	30
1913	High performance 2D MXene based conducting polymer hybrids: synthesis to emerging applications. Journal of Materials Chemistry C, 2021, 9, 10193-10215.	2.7	31
1914	Understanding the Oxidation Degradation Mechanism to Enable Preparation of Ambient Ultra Stable Ti ₃ C ₂ T _x -MXene. SSRN Electronic Journal, 0, , .	0.4	1
1915	A fast self-healing multifunctional polyvinyl alcohol nano-organic composite hydrogel as a building block for highly sensitive strain/pressure sensors. Journal of Materials Chemistry A, 2021, 9, 22082-22094.	5.2	83
1916	Adhesion Between MXenes and Other 2D Materials. ACS Applied Materials & Interfaces, 2021, 13, 4682-4691.	4.0	39
1917	Synthesis of new M-layer solid-solution 312 MAX phases (Ta _{1â^'<i>x</i>} Ti _{<i>x</i>}) ₃ AlC ₂ (<i>x</i> = 0.4, 0.62,) Tj ET	Qq D7 0 0 rg	BT2‡Overlock
1918	Well-Dispersed Nanocomposites Using Covalently Modified, Multilayer, 2D Titanium Carbide (MXene) and In-Situ "Click―Polymerization. Chemistry of Materials, 2021, 33, 1648-1656.	3.2	37
1919	Current trends in MXene research: properties and applications. Materials Chemistry Frontiers, 2021, 5, 7134-7169.	3.2	30
1920	Phase diagram exploration of Tc–Al–B: from bulk Tc ₂ AlB ₂ to two-dimensional Tc ₂ B ₂ . Physical Chemistry Chemical Physics, 2021, 23, 22086-22095.	1.3	3
1921	Improved charge storage performance of a layered Mo _{1.33} C MXene/MoS ₂ /graphene nanocomposite. Nanoscale Advances, 2021, 3, 6689-6695.	2.2	2
1922	Pre-Sodiated Ti ₃ C ₂ T _{<i>x</i>} MXene Structure and Behavior as	7.3	54
1923	Synthesis of graphene and other two-dimensional materials. , 2021, , 1-79.		4
1923 1924	Synthesis of graphene and other two-dimensional materials. , 2021, , 1-79. Modelling high performance potassium-ion battery anode materials with two-dimensional vanadium carbide MXene: the role of surface O- and S-terminations. Physical Chemistry Chemical Physics, 2021, 23, 3898-3904.	1.3	4
1923 1924 1925	Synthesis of graphene and other two-dimensional materials. , 2021, , 1-79. Modelling high performance potassium-ion battery anode materials with two-dimensional vanadium carbide MXene: the role of surface O- and S-terminations. Physical Chemistry Chemical Physics, 2021, 23, 3898-3904. Computational screening of pristine and functionalized ordered TiVC MXenes as highly efficient anode materials for lithium-ion batteries. Nanoscale, 2021, 13, 2995-3001.	1.3 2.8	4 12 22

#	Article	IF	CITATIONS
1927	Controlled 2H/1T phase transition in MoS ₂ monolayers by a strong interface with M ₂ C MXenes: a computational study. Physical Chemistry Chemical Physics, 2021, 23, 20107-20116.	1.3	13
1928	Computational mining of Janus Sc ₂ C-based MXenes for spintronic, photocatalytic, and solar cell applications. Journal of Materials Chemistry A, 2021, 9, 10882-10892.	5.2	52
1929	Synthesis and optical nonlinearity investigation of novel Fe ₃ O ₄ @Ti ₃ C ₂ MXene hybrid nanomaterials from 1 to 2 μm. Journal of Materials Chemistry C, 2021, 9, 1772-1777.	2.7	13
1930	A flexible and high-performance electrochromic smart window produced by WO ₃ /Ti ₃ C ₂ T _x MXene hybrids. Journal of Materials Chemistry C, 2021, 9, 3183-3192.	2.7	25
1931	Recent Advance in the Fabrication of 2D and 3D Metal Carbides-Based Nanomaterials for Energy and Environmental Applications. Nanomaterials, 2021, 11, 246.	1.9	34
1932	Recent advancements and opportunities of decorated graphitic carbon nitride toward solar fuel production and beyond. Sustainable Energy and Fuels, 2021, 5, 4457-4511.	2.5	25
1933	Pillared Mo ₂ TiC ₂ MXene for high-power and long-life lithium and sodium-ion batteries. Nanoscale Advances, 2021, 3, 3145-3158.	2.2	46
1934	Ferromagnetic TM ₂ BC (TM = Cr, Mn) monolayers for spintronic devices with high Curie temperature. Physical Chemistry Chemical Physics, 2021, 23, 6107-6115.	1.3	29
1935	MXene derivatives: synthesis and applications in energy convention and storage. RSC Advances, 2021, 11, 16065-16082.	1.7	25
1936	A rationally designed two-dimensional MoSe ₂ /Ti ₂ CO ₂ heterojunction for photocatalytic overall water splitting: simultaneously suppressing electron–hole recombination and photocorrosion. Chemical Science, 2021, 12, 2863-2869.	3.7	82
1938	Nonlinear Work Function Tuning of Leadâ€Halide Perovskites by MXenes with Mixed Terminations. Advanced Functional Materials, 2020, 30, 1909028.	7.8	58
1939	Flexible Freeâ€Standing MoO ₃ /Ti ₃ C ₂ T <i>_z</i> MXene Composite Films with High Gravimetric and Volumetric Capacities. Advanced Science, 2021, 8, 2003656.	5.6	59
1940	MXenes for Environmental and Water Treatment Applications. , 2019, , 417-444.		11
1941	MXenes for Transparent Conductive Electrodes and Transparent Energy Storage Devices. , 2019, , 481-501.		1
1942	Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Frontiers of Chemical Science and Engineering, 2021, 15, 882-891.	2.3	22
1943	2D MXene-Based Materials for Electrocatalysis. Transactions of Tianjin University, 2020, 26, 149-171.	3.3	65
1944	Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chemical Engineering Journal, 2020, 383, 123095.	6.6	143
1945	Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceramics International, 2017, 43, 11450-11454.	2.3	85
#	Article	IF	CITATIONS
------	--	---	--------------------
1946	Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105956.	3.8	175
1947	Spider web-inspired ultra-stable 3D Ti3C2TX (MXene) hydrogels constructed by temporary ultrasonic alignment and permanent in-situ self-assembly fixation. Composites Part B: Engineering, 2020, 197, 108187.	5.9	41
1948	Prediction of intrinsic electrocatalytic activity for hydrogen evolution reaction in Ti4X3 (X = C, N). Journal of Catalysis, 2020, 387, 12-16.	3.1	27
1949	Graphene plasmonic-assisted enhancement of linear and nonlinear optical properties of conic-shaped InAs/GaAs quantum dots with wetting layer. Superlattices and Microstructures, 2020, 144, 106582.	1.4	3
1950	Extraordinary Electromechanical Actuation of Ti2C MXene. Journal of Physical Chemistry C, 2021, 125, 1060-1068.	1.5	13
1951	Intrinsic Structural, Electrical, Thermal, and Mechanical Properties of the Promising Conductor Mo ₂ C MXene. Journal of Physical Chemistry C, 2016, 120, 15082-15088.	1.5	139
1952	Recent progress and advances in the environmental applications of MXene related materials. Nanoscale, 2020, 12, 3574-3592.	2.8	186
1953	Two dimensional electrocatalyst engineering <i>via</i> heteroatom doping for electrocatalytic nitrogen reduction. Chemical Communications, 2020, 56, 14154-14162.	2.2	16
1954	Significant strengthening effect in few-layered MXene-reinforced Al matrix composites. Materials Research Letters, 2021, 9, 148-154.	4.1	22
1955	Electronic structures and electron–phonon superconductivity of Nb2C-based MXenes. Journal Physics D: Applied Physics, 2020, 53, 485301.	1.3	9
1956	Electron-phonon scattering limited intrinsic electrical conductivity of metallic MXenes X ₂ C (X= Ti or Mo). Journal Physics D: Applied Physics, 2021, 54, 015301.	1.3	5
1957	Enhanced field emission properties From plasma treated Ti ₃ C ₂ T _x (MXene) emitters. Materials Research Express, 2020, 7, 115011.	0.8	5
1958	Nonlinear optics of MXene in laser technologies. JPhys Materials, 2020, 3, 032004.	1.8	11
1959	A systematical ab-initio review of promising 2D MXene monolayers towards Li-ion battery applications. JPhys Energy, 2020, 2, 032006.	2.3	34
1960	Harnessing the unique properties of MXenes for advanced rechargeable batteries. JPhys Energy, 2021, 3, 012005.	2.3	14
1961	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">MoSi<mml:mn>2</mml:mn></mml:mi </mml:msub> <mml:msub><mml:mi mathvariant="normal">N<mml:mn>4</mml:mn></mml:mi </mml:msub> <mml:mo>,</mml:mo> ,,,,mathvariant="normal">M <mml:mi><mml:mi>2<td>nl1m10><m< td=""><td>ml2#sub><</td></m<></td></mml:mi></mml:mi>	nl 1 m10> <m< td=""><td>ml2#sub><</td></m<>	m l2 #sub><
1962	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">M<mml:mub><mml:mi mathvariant="normal">o<mml:mn>2</mml:mn><mml:mi mathvariant="normal">C<mml:mn>2ultrathin superconducting films</mml:mn></mml:mi </mml:mi </mml:mub></mml:mi </mml:mrow>	0.9	53
1963	RhlssahRil="http://www.sw300rg/1998/Math/MathML"> <mml:mrow><mml:mi< td=""> mathvariant="normal">M<mml:msub><mml:mi< td=""> mathvariant="normal">o<mml:mrow><mml:mn>1.33</mml:mn></mml:mrow><mml:mi< td=""> mathvariant="normal">o<mml:mrow><mml:mn>1.33</mml:mn></mml:mrow> mathvariant="normal">o mathvariant="normal">o <</mml:mi<></mml:mi<></mml:msub></mml:mi<></mml:mrow>	0.9	36

#	Article	IF	CITATIONS
1964	Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers. Physical Review Materials, 2017, 1, .	0.9	45
1965	Electronic structures of iMAX phases and their two-dimensional derivatives: A family of piezoelectric materials. Physical Review Materials, 2018, 2, .	0.9	31
1966	Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Mg </mml:mi> <mml:r mathvariant="normal">C </mml:r </mml:msub></mml:mrow> : Negative Poisson's ratio and unconventional two-dimensional emergent fermions. Physical Review Materials, 2018, 2, .</mml:math 	nn>20.9	nl:mn>
1967	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>i</mml:mi> -MAX single crystals <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mo>(<td>0.9 :mo><mn< td=""><td>10 nl:msub><mr< td=""></mr<></td></mn<></td></mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math 	0.9 :mo> <mn< td=""><td>10 nl:msub><mr< td=""></mr<></td></mn<>	10 nl:msub> <mr< td=""></mr<>
1968	Physical Review Materials, 2019, 5 Materials synthesis, neutron powder diffraction, and first-principles calculations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:m <mml:math 1998="" http:="" math="" mathml"="" www.w3.org="" xmlns:mml="http://www.w3.org/1998/. Physical Review Materials, 2019, 3, .</td><td>i>M9</m</td><td>ml114i><mml:</td></tr><tr><td>1969</td><td>xmlns:mml="> <mml:mrow> <mml:msub> <mml:mi>Ti</mml:mi> <mml:mi> 2 </mml:mi></mml:msub> </mml:mrow> </mml:math> MAX phase and <mml:math< td=""><td>1>31.3</td><td>:mn>16</td></mml:math<></mml:m </mml:msub></mml:mrow></mml:math 	1>31.3	:mn>16
1970	<pre>mathyariant="http://www.wo.org/12980/wath/wath/wath/with/with/with/with/with/with/with/wi</pre>	1233/11111	4
1971	Two-dimensional titanium carbide (Ti ₃ C ₂) MXene towards enhancing thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Canadian Journal of Chemistry, 2020, 98, 697-700.	0.6	8
1972	On a Two-Dimensional MoS ₂ /Mo ₂ CT _x Hydrogen Evolution Catalyst Obtained by the Topotactic Sulfurization of Mo ₂ CT _x MXene. Journal of the Electrochemical Society, 2020, 167, 124507.	1.3	26
1973	MXene-Ti ₃ C ₂ T _x for watt-level high-efficiency pulse generation in a 2.8  μm mid-infrared fiber laser. Photonics Research, 2020, 8, 972.	3.4	34
1974	MXenes: focus on optical and electronic properties and corresponding applications. Nanophotonics, 2020, 9, 1601-1620.	2.9	82
1975	Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics, 2020, 9, 2233-2249.	2.9	85
1976	MXenes for future nanophotonic device applications. Nanophotonics, 2020, 9, 1831-1853.	2.9	31
1977	An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200796.	0.3	5
1978	Studying of 2D Titanium Carbide Structure by Raman Spectroscopy after Heat Treatment in Argon and Hydrogen Atmospheres. Eurasian Chemico-Technological Journal, 2017, 19, 181.	0.3	16
1981	Degradable and Dissolvable Thin-Film Materials for the Applications of New-Generation Environmental-Friendly Electronic Devices. Applied Sciences (Switzerland), 2020, 10, 1320.	1.3	15
1982	Engineering of 2D Ti3C2 MXene Surface Charge and its Influence on Biological Properties. Materials, 2020, 13, 2347.	1.3	49
1983	First-principles study on stability and electronic properties of MC and Mn+1ACn phases. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 237301.	0.2	1

#	Article	IF	CITATIONS
1984	A Review on Synthesis of 2-Dimensional Mn+1X (MXene) materials. E3S Web of Conferences, 2021, 309, 01062.	0.2	0
1985	Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. Journal of Materials Chemistry A, 2021, 9, 24195-24214.	5.2	41
1986	Investigation on the nonlinear optical properties of V ₂ C MXene at 1.9 μm. Journal of Materials Chemistry C, 2021, 9, 15346-15353.	2.7	27
1987	Freestanding MXene-hydrogels prepared <i>via</i> critical density-controlled self-assembly: high-performance energy storage with ultrahigh capacitive <i>vs.</i> diffusion-limited contribution. Journal of Materials Chemistry A, 2021, 9, 25013-25023.	5.2	7
1988	Nitride MXenes as sulfur hosts for thermodynamic and kinetic suppression of polysulfide shuttling: a computational study. Journal of Materials Chemistry A, 2021, 9, 25391-25398.	5.2	37
1989	Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy and Environmental Science, 2021, 14, 6419-6427.	15.6	154
1990	A review on MXenes: new-generation 2D materials for supercapacitors. Sustainable Energy and Fuels, 2021, 5, 5672-5693.	2.5	55
1991	MXene-based gas sensors. Journal of Materials Chemistry C, 2021, 9, 15735-15754.	2.7	75
1992	Spinâ€Dependent Electronic Structure and Magnetic Properties of 2D JANUS Mn ₂ CFCl/CuBiP ₂ Se ₆ Van Der Waals Multiferroic Heterostructures. Advanced Theory and Simulations, 2021, 4, 2100302.	1.3	5
1993	MXene for aqueous zinc-based energy storage devices. Functional Materials Letters, 2021, 14, .	0.7	15
1994	Improved Thermoelectric Performance of Monolayer HfS ₂ by Strain Engineering. ACS Omega, 2021, 6, 29820-29829.	1.6	22
1995	Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization. Chemical Engineering Journal, 2022, 430, 133161.	6.6	109
1996	Magnetic Ti3C2T /Fe3O4/Ag substrate for rapid quantification of trace sulfonamides in aquatic products by surface enhanced Raman spectroscopy. Chinese Chemical Letters, 2022, 33, 3853-3858.	4.8	12
1997	Electronic properties and quasiparticle model of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>MoSi</mml:mi>mathvariant="normal">N</mml:mrow><mml:mn>4</mml:mn></mml:msub>. Physical Review B, 2021, 104, .</mml:math 	:mrow> <r< td=""><td>nml:mn>2<</td></r<>	nml:mn>2<
1998	Thermodynamics and Kinetics of Molecular Hydrogen Adsorption and Dissociation on MXenes: Relevance to Heterogeneously Catalyzed Hydrogenation Reactions. ACS Catalysis, 2021, 11, 12850-12857.	5.5	19
1999	Aqueous Electrolytes, MXeneâ€Based Supercapacitors and Their Selfâ€Discharge. Advanced Energy and Sustainability Research, 2022, 3, 2100147.	2.8	11
2000	Synthesis of sponge like Gd3+ doped vanadium oxide/2D MXene composites for improved degradation of industrial effluents and pathogens. Ceramics International, 2022, 48, 1969-1980.	2.3	55
2001	Solvent Coâ€Intercalationâ€Induced Activation and Capacity Fade Mechanism of Fewâ€/Multiâ€Layered MXenes in Lithium Ion Batteries. Small, 2021, 17, e2104130.	5.2	12

#	Article	IF	CITATIONS
2002	Synthesis and Electronic Applications of Particle-Templated Ti ₃ C ₂ T _{<i>z</i>/i>} MXene–Polymer Films via Pickering Emulsion Polymerization. ACS Applied Materials & Interfaces, 2021, 13, 51556-51566.	4.0	21
2003	MXene/TiO ₂ Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 51028-51038.	4.0	36
2004	Advances and Promises of 2D MXenes as Cocatalysts for Artificial Photosynthesis. Solar Rrl, 2021, 5, 2100603.	3.1	22
2005	Constructing a new 2D Janus black phosphorus/SMoSe heterostructure for spontaneous wide-spectral-responsive photocatalytic overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 39183-39194.	3.8	17
2006	MXene/Ag2CrO4 Nanocomposite as Supercapacitors Electrode. Materials, 2021, 14, 6008.	1.3	13
2007	A Review of Heteroatom Doped Materials for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, 2107166.	7.8	113
2008	Investigation and Optimization of Mxene Functionalized Mesoporous Titania Films as Efficient Photoelectrodes. Materials, 2021, 14, 6292.	1.3	34
2009	Effect of Aâ€site atom on static corrosion behavior and irradiation damage of Ti ₂ SC phases. Journal of the American Ceramic Society, 2022, 105, 1386-1393.	1.9	2
2010	Thermal and dielectric properties of twoâ€dimensional layered <scp>MXene</scp> (<scp>Ti₃C₂T_x</scp>) filled linear lowâ€density polyethylene composites. Journal of Applied Polymer Science, 2022, 139, 51743.	1.3	6
2011	Molten salt synthesis and formation mechanisms of ternary Vâ€based MAX phases by V–Al alloy strategy. Journal of the American Ceramic Society, 2022, 105, 2277-2287.	1.9	6
2012	Mo1.33CTz–Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors. Materials Today Energy, 2021, 22, 100878.	2.5	17
2013	Simple Liquid-Phase Synthesis of Cobalt Carbide (Co ₂ C) Nanoparticles and Their Use as Durable Electrocatalysts. Materials Transactions, 2021, 62, 1632-1638.	0.4	1
2014	Electrocatalytic conversion of CO2 over in-situ grown Cu microstructures on Cu and Zn foils. Journal of CO2 Utilization, 2021, 53, 101749.	3.3	11
2015	In-Situ Atomic Force Microscopy Studies of Ti3C2: A Promising New Material for Electrochemical Capacitors. ECS Meeting Abstracts, 2014, , .	0.0	0
2018	Structural Modification of Pristine Graphene Network Towards Nanoporous Graphene Membrane: A Review. Journal of Applied Membrane Science & Technology, 2018, 22, .	0.3	1
2019	Chemistry and Catalysis of MXenes. , 2019, , 445-456.		1
2020	Chapter 2. Two-dimensional Layered Materials for High-performance Lithium-ion Batteries. RSC Smart Materials, 2019, , 39-70.	0.1	0
2021	Synthesis and Theoretical Study of Conductive Mo1.33CT2 MXene. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34, 775.	0.6	2

#	Article	IF	CITATIONS
2022	Techniques for MXene Delamination into Single-Layer Flakes. , 2019, , 177-195.		6
2023	MXenes for Sodium-Ion Batteries. Materials Research Foundations, 2019, , 175-188.	0.2	1
2025	Dynamically controlled random lasing with colloidal titanium carbide MXene. Optical Materials Express, 2020, 10, 2304.	1.6	1
2026	Oxygen Coverage Effect on the Magnetic Properties of the Cr ₂ NO _{<i>x</i>} (0 â‰)PTj E	TQq1 1 0. 2.0	784314 rg8 6
2027	Construction of hierarchical Ti3C2Tx MXene/ZnIn2S4 heterostructures for efficiently photocatalytic reduction of Cr(VI) under visible light. Applied Surface Science, 2022, 575, 151753.	3.1	26
2028	Printable electrode materials for supercapacitors. ChemPhysMater, 2022, 1, 17-38.	1.4	10
2029	Highâ€Entropy Energy Materials in the Age of Big Data: A Critical Guide to Nextâ€Generation Synthesis and Applications. Advanced Energy Materials, 2021, 11, 2102355.	10.2	37
2030	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:msub> <mml:m monolayers <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo> (</mml:mo> <mml:mi>M<td>i>Bri>¹i¹mml:m</td><td>:mi><mml:n o>=</mml:n </td></mml:mi></mml:mrow></mml:math </mml:m </mml:msub></mml:mrow>	i>Bri> ¹ i ¹ mml:m	:mi> <mml:n o>=</mml:n
2031	B, 2021, 104, Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	23.0	87
2032	Highly selective trace level detection of DNA damage biomarker using iron-based MAX compound modified screen-printed carbon electrode using differential pulse voltammetry. Sensors and Actuators Reports, 2021, 3, 100057.	2.3	5
2033	Ti3C2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability. Journal of Colloid and Interface Science, 2022, 608, 2455-2462.	5.0	15
2034	Highâ€Yield Ti ₃ C ₂ T <i>_x</i> MXene–MoS ₂ Integrated Circuits. Advanced Materials, 2022, 34, e2107370.	11.1	24
2035	Thorium(IV) adsorption onto multilayered Ti ₃ C ₂ T _x MXene: a batch, X-ray diffraction and EXAFS combined study. Journal of Synchrotron Radiation, 2021, 28, 1709-1719.	1.0	4
2036	Synthesis of 2D material MXene from Ti3AlC2 MAX-phase for electromagnetic shielding applications. AlP Conference Proceedings, 2020, , .	0.3	3
2037	Single-Layer Dititanium Oxide Ti ₂ O MOene: Multifunctional Promises for Electride, Anode Materials, and Superconductor. Journal of Physical Chemistry Letters, 2021, 12, 494-500.	2.1	12
2038	Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis to Applications. Engineering Materials, 2021, , 179-199.	0.3	0
2039	Meissner to ferromagnetic phase transition in La-decorated functionalized Nb ₂ C MXene: an experimental and computational analysis. Nanotechnology, 2021, 32, 085711.	1.3	5
2040	<pre>rist-principles prediction of enhanced thermoelectric properties of double transition metal MXenes: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Ti</mml:mi> <mml:mi mathvariant="normal">C</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:msub> <mml:mi>T</mml:mi> <mn 2000="" <="" double="" metal="" mxenes:="" of="" physical="" pre="" properties="" provide="" second="" the="" transition=""></mn></mml:msub></mml:mrow></mml:math></pre>	ow <i>א</i> mm 1:mn>2 </td <td>l:m/n>3</td>	l:m/n>3

#	Article	IF	CITATIONS
2041	Epoxy-functionalized Ti3C2 nanosheet for epoxy coatings with prominent anticorrosion performance. Progress in Organic Coatings, 2022, 162, 106559.	1.9	7
2042	H2S sensing under various humidity conditions with Ag nanoparticle functionalized Ti3C2Tx MXene field-effect transistors. Journal of Hazardous Materials, 2022, 424, 127492.	6.5	48
2043	CO2 reduction mechanism on the Nb2CO2 MXene surface: Effect of nonmetal and metal modification. Computational Materials Science, 2022, 202, 110971.	1.4	16
2044	Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy and Environmental Science, 2021, 14, 6242-6286.	15.6	69
2045	Influence of synthesis parameters on mechanical properties of nanocomposite PMMA-MXene. Tehnika, 2021, 76, 545-549.	0.0	0
2046	First-principles study of magnetism in some novel MXene materials. RSC Advances, 2020, 10, 44430-44436.	1.7	11
2047	All-optical devices based on two-dimensional materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 184216.	0.2	6
2048	Vanadium Monocarbide. , 2020, , 515-707.		0
2049	Synthesis of Two-Dimensional (2D) Nanomaterials. , 2020, , 55-78.		0
2050	Microscopic conductivity and ultrafast carrier dynamics in molybdenum-based MXenes: THz spectroscopy study. , 2020, , .		0
2052	Twoâ€Dimensional MXeneâ€Polymer Heterostructure with Ordered Inâ€Plane Mesochannels for Highâ€Performance Capacitive Deionization. Angewandte Chemie - International Edition, 2021, 60, 26528-26534.	7.2	147
2053	A review of MXenes as emergent materials for dye removal from wastewater. Separation and Purification Technology, 2022, 282, 120083.	3.9	56
2054	Twoâ€Dimensional MXeneâ€Polymer Heterostructure with Ordered Inâ€Plane Mesochannels for Highâ€Performance Capacitive Deionization. Angewandte Chemie, 2021, 133, 26732-26738.	1.6	35
2055	High supercapacitance performance of nitrogen-doped Ti3C2T prepared by molten salt thermal treatment. Electrochimica Acta, 2022, 403, 139528.	2.6	10
2056	Perspectives on preparation of two-dimensional MXenes. Science and Technology of Advanced Materials, 2021, 22, 917-930.	2.8	22
2057	Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. IScience, 2021, 24, 103403.	1.9	60
2058	Metal–Organic-Framework- and MXene-Based Taste Sensors and Glucose Detection. Sensors, 2021, 21, 7423.	2.1	11
2060	Advanced Membranes Functionalized with Non-carbon-based 2D Nanomaterials for Liquid Separation. Chemistry in the Environment, 2021, , 108-136.	0.2	0

#	Article	IF	Citations
2061	Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. Nanoscale, 2021, 13, 19740-19770.	2.8	41
2062	High-performance copper-matrix materials reinforced by nail board-like structure 2D Ti3C2T MXene with in-situ TiO2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142392.	2.6	7
2063	Asymmetric janus functionalities induced changes in structural, electronic, optical characteristics of MXenes Ta4C3Tx. Solid State Communications, 2022, 341, 114585.	0.9	3
2064	Ag Nanoparticles decorated few-layer Nb2CT nanosheets architectures with superior lithium/sodium-ion storage. Electrochimica Acta, 2022, 402, 139566.	2.6	16
2065	Two-dimensional transition metal carbide/nitride (MXene)-based nanomaterials for removal of toxic/radioactive metal ions from wastewater. , 2022, , 161-194.		0
2066	Visible-light-enhanced Cr (VI) reduction and bioelectricity generation at MXene photocathode in photocelectrocatalytic microbial fuel cells. Journal of Water Process Engineering, 2022, 45, 102454.	2.6	12
2067	4E (energy, exergy, economic and environmental) investigation of LFR using MXene based silicone oil nanofluids. Sustainable Energy Technologies and Assessments, 2022, 49, 101715.	1.7	10
2068	First-principles analysis of Ti3C2Tx MXene as a promising candidate for SF6 decomposition characteristic components sensor. Applied Surface Science, 2022, 578, 152020.	3.1	37
2069	Emergence of Novel 2D Materials for High-Performance Supercapacitor Electrode Applications: A Brief Review. Energy & Fuels, 2021, 35, 19881-19900.	2.5	72
2070	Recent trends in the development of MXenes and MXene-based composites as anode materials for Li-ion batteries. Journal of Energy Storage, 2022, 47, 103572.	3.9	31
2071	Mechanically Robust Flexible Multilayer Aramid Nanofibers and MXene Film for High-Performance Electromagnetic Interference Shielding and Thermal Insulation. Nanomaterials, 2021, 11, 3041.	1.9	9
2072	Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels, 2021, 7, 216.	2.1	22
2073	Ultrahigh-rate and high-frequency MXene micro-supercapacitors for kHz AC line-filtering. Journal of Energy Chemistry, 2022, 69, 1-8.	7.1	13
2074	Free-Standing, Flexible Carbon@MXene Films with Cross-Linked Mesoporous Structures toward Supercapacitors and Pressure Sensors. ACS Applied Materials & Interfaces, 2021, 13, 57576-57587.	4.0	23
2075	Liquid Phase Exfoliation of Rubrene Single Crystals into Nanorods and Nanobelts. ACS Nano, 2021, 15, 20466-20477.	7.3	7
2076	Dimensional Design and Core–Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. Advanced Materials, 2022, 34, e2107538.	11.1	353
2077	Dirac-like band structure and strain-tunable electronic structure of Zr2CCl2 monolayer. Applied Surface Science, 2021, 577, 151931.	3.1	0
2078	In situ microscopy techniques for characterizing the mechanical properties and deformation behavior of two-dimensional (2D) materials. Materials Today, 2021, 51, 247-272.	8.3	22

#	Article	IF	CITATIONS
2079	2D-2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage. Chemical Engineering Journal, 2022, 431, 133796.	6.6	36
2080	Efficient and Stable Co/β-Mo ₂ C Catalyst for Hydroformylation. ACS Catalysis, 2021, 11, 14319-14327.	5.5	22
2081	Enhanced uranium photoreduction on Ti3C2Tx MXene by modulation of surface functional groups and deposition of plasmonic metal nanoparticles. Journal of Hazardous Materials, 2022, 426, 127823.	6.5	38
2082	From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. Journal of Advanced Ceramics, 2021, 10, 1194-1242.	8.9	122
2083	MXenes nanocomposites for energy storage and conversion. Rare Metals, 2022, 41, 1101-1128.	3.6	47
2084	MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review. Chemosphere, 2022, 291, 132921.	4.2	60
2085	Fermi surface and band structure of Ti2SnC as observed by angle-resolved photoemission spectroscopy. Physical Review B, 2021, 104, .	1.1	1
2086	Synthesis of MAX-phases, structure and phase composition of modified layers on titanium alloy VT-1 as a result of electron-beam treatment. Journal of Physics: Conference Series, 2021, 2064, 012095.	0.3	0
2087	In Situ Preparation of MXenes in Ambient-Temperature Organic Ionic Liquid Aluminum Batteries with Ultrastable Cycle Performance. ACS Applied Materials & Interfaces, 2021, 13, 55112-55122.	4.0	10
2088	Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti ₂ AlC. International Journal of Materials Research, 2021, 112, 852-859.	0.1	2
2089	Electrical Conductivity Enhancement and Electronic Applications of 2D Ti ₃ C ₂ T _x MXene Materials. Advanced Materials Interfaces, 2021, 8, 2100903.	1.9	26
2090	MXene-based hybrid composites as photocatalyst for the mitigation of pharmaceuticals. Chemosphere, 2022, 291, 133062.	4.2	15
2091	3D Printed MXene Aerogels with Truly 3D Macrostructure and Highly Engineered Microstructure for Enhanced Electrical and Electrochemical Performance. Advanced Materials, 2022, 34, e2104980.	11.1	64
2092	DFT computation of quantum capacitance of transition-metals and vacancy doped Sc2CF2 MXene for supercapacitor applications. Journal of Molecular Liquids, 2022, 345, 118263.	2.3	9
2093	Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuliâ€Responsive Constructs Mimicking Electrically Sensitive Tissue. Advanced NanoBiomed Research, 2022, 2, 2100108.	1.7	8
2094	Firstâ€Principles Calculations on the Elastic, Electronic, and Phononic Properties of Sc 2 Al 2 C 3. Physica Status Solidi (B): Basic Research, 0, , 2100336.	0.7	0
2095	MXenes—An Emerging Class of 2D Materials for Solar Water Desalination: Feasibility and Recent Advances. Solar Rrl, 2022, 6, 2100888.	3.1	14
2096	Inverse Design of Mxenes for High-Capacity Battery Materials Using Multi-Target Machine Learning. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
2097	Substantial Enhancement of Hydrogen Permeability of Mo ₂ C/V Composite Membranes by Ion Beam Sputtering. SSRN Electronic Journal, 0, , .	0.4	0
2098	Influence of Doping with Selected Organic Molecules on Magnetic and Electronic Properties of Bare, Surface Terminated and Defect Patterned Ti2C MXene Monolayer. Physical Chemistry Chemical Physics, 2022, , .	1.3	5
2099	Localized surface plasmon resonances and electric field confinement in titanium carbide (Ti ₃ C ₂) MXene nanoclusters. Physical Chemistry Chemical Physics, 2021, 23, 25807-25816.	1.3	13
2100	Contribution of nano-design approaches to future electrochemical energy storage systems. Frontiers of Nanoscience, 2021, 19, 273-325.	0.3	2
2101	Characterizing the Chemical Structure of Ti3C2Tx MXene by Angle-Resolved XPS Combined with Argon Ion Etching. Materials, 2022, 15, 307.	1.3	27
2102	The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward future biotechnological applications. Advanced Drug Delivery Reviews, 2022, 182, 114099.	6.6	28
2103	Effect of Base/Nucleophile Treatment on Interlayer Ion Intercalation, Surface Terminations, and Osmotic Swelling of Ti ₃ C ₂ T <i>_z</i> MXene Multilayers. Chemistry of Materials, 2022, 34, 678-693.	3.2	33
2104	Two-dimensional MXenes for electrochemical energy storage applications. Journal of Materials Chemistry A, 2022, 10, 1105-1149.	5.2	63
2105	Self-reductive palladium nanoparticles loaded on polydopamine-modified MXene for highly efficient and quickly catalytic reduction of nitroaromatics and dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128038.	2.3	16
2106	Nanomaterials: types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science and Health, 2022, 25, 100319.	2.1	33
2107	Recent advances in MXene-based sensors for Structural Health Monitoring applications: A review. Measurement: Journal of the International Measurement Confederation, 2022, 189, 110575.	2.5	22
2108	Latest advance on seamless metal-semiconductor contact with ultralow Schottky barrier in 2D-material-based devices. Nano Today, 2022, 42, 101372. Non-toxic 2D Tic mml-math xmlns:mml="http://www.w3.org/1998/Math/MathMI " display="inline"	6.2	21
2109	id="d1e347" altimg="si5.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub> C <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e355" altimg="si75 svg"><mml:msub></mml:msub><td>1.9</td><td>7</td></mml:math 	1.9	7
2110	A synergetic strategy of well dispersing hydrophilic Ti3C2TX MXene into hydrophobic polybenzoxazine composites for improved comprehensive performances. Composites Science and Technology, 2022, 219, 109248.	3.8	24
2111	Photosensitive Ti3C2 for dyes degradation. Results in Materials, 2022, 13, 100247.	0.9	2
2112	3D MXene-holey graphene hydrogel for supercapacitor with superior energy storage. Journal of Energy Storage, 2022, 47, 103911.	3.9	26
2113	A lithium-MXene composite anode with high specific capacity and low interfacial resistance for solid-state batteries. Energy Storage Materials, 2022, 45, 934-940.	9.5	34
2114	MXenes as emerging nanomaterials in water purification and environmental remediation. Science of the Total Environment, 2022, 811, 152280.	3.9	255

#	Article	IF	CITATIONS
2115	Two-dimensional nanoporous and lamellar membranes for water purification: Reality or a myth?. Chemical Engineering Journal, 2022, 432, 134335.	6.6	38
2117	Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coordination Chemistry Reviews, 2022, 454, 214339.	9.5	71
2118	Ta4C3 MXene as a saturable absorber for femtosecond mode-locked fiber lasers. Journal of Alloys and Compounds, 2022, 900, 163529.	2.8	33
2119	Design and synthesis of Mo2C/N, S co-doped porous carbon composites with enhanced electrochemical performance for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 901, 163618.	2.8	6
2120	Green building materials lit up by electromagnetic absorption function: A review. Journal of Materials Science and Technology, 2022, 112, 329-344.	5.6	86
2121	First-principles realistic prediction of gas adsorption on two-dimensional Vanadium Carbide (MXene). Applied Surface Science, 2022, 581, 152105.	3.1	26
2122	2D MXenes: Terahertz Properties and Applications. , 2020, , .		1
2123	Preparation and Evaluation of a High Performance Ti ₃ C ₂ T _x -MXene Membrane for Drinking Water Treatment. SSRN Electronic Journal, 0, , .	0.4	Ο
2124	Mo ₂ CS ₂ -Mxene Supported Single-Atom Catalysts for Efficient and Selective CO ₂ Electrochemical Reduction, SSRN Electronic Journal, 0,	0.4	0
2125	Synthesis and Characterizations of Solid-Solution i-MAX Phase (W _{1/3} Mo _{1/3} R) Tj ET Electrochemical Properties. SSRN Electronic Journal, 0, , .	Qq1 1 0.78 0.4	34314 rgBT ∣O 0
2125 2126	Synthesis and Characterizations of Solid-Solution i-MAX Phase (W _{1/3} Mo _{1/3} R) Tj ET Electrochemical Properties. SSRN Electronic Journal, 0, , . Recent Trends in Synthesis and Applications of Porous MXene Assemblies: A Topical Review. Chemical Record, 2022, 22, .	Qq1 1 0.78 0.4 2.9	84314 rgBT (O 0 22
2125 2126 2128	Synthesis and Characterizations of Solid-Solution i-MAX Phase (W _{1/3} Mo _{1/3} R) Tj ET Electrochemical Properties. SSRN Electronic Journal, 0, , . Recent Trends in Synthesis and Applications of Porous MXene Assemblies: A Topical Review. Chemical Record, 2022, 22, . Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation. Green Energy and Environment, 2023, 8, 1185-1194.	Qq1 1 0.78 0.4 2.9 4.7	84314 rgBT O 0 22 11
2125 2126 2128 2129	Synthesis and Characterizations of Solid-Solution i-MAX Phase (W _{1/3} Mo _{1/3} R) Tj ET Electrochemical Properties. SSRN Electronic Journal, 0, , . Recent Trends in Synthesis and Applications of Porous MXene Assemblies: A Topical Review. Chemical Record, 2022, 22, . Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation. Green Energy and Environment, 2023, 8, 1185-1194. MXenes and their composites: a promising material for hydrogen storage. , 2022, , 397-422.	Qq1 1 0.78 0.4 2.9 4.7	84314 rgBT (O 22 11 0
2125 2126 2128 2129 2130	Synthesis and Characterizations of Solid-Solution i-MAX Phase (W _{1/3} Mo _{1/3} R) Tj ET Electrochemical Properties. SSRN Electronic Journal, 0, , . Recent Trends in Synthesis and Applications of Porous MXene Assemblies: A Topical Review. Chemical Record, 2022, 22, . Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation. Green Energy and Environment, 2023, 8, 1185-1194. MXenes and their composites: a promising material for hydrogen storage. , 2022, , 397-422. Introduction to 2D MXenes: fundamental aspects, MAX phases and MXene derivatives, current challenges, and future prospects. , 2022, 1-47.	Qq1 1 0.78 0.4 2.9 4.7	84314 rgBT O 22 11 0 0
2125 2126 2128 2129 2130 2131	Synthesis and Characterizations of Solid-Solution i-MAX Phase (W _{1/3} Mo _{1/3} R) Tj ET Electrochemical Properties. SSRN Electronic Journal, 0, , . Recent Trends in Synthesis and Applications of Porous MXene Assemblies: A Topical Review. Chemical Record, 2022, 22, . Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation. Green Energy and Environment, 2023, 8, 1185-1194. MXenes and their composites: a promising material for hydrogen storage. , 2022, , 397-422. Introduction to 2D MXenes: fundamental aspects, MAX phases and MXene derivatives, current challenges, and future prospects. , 2022, , 1-47. Taking leads out of nature, can nano deliver us from COVID-like pandemics?. Biomedical Physics and Engineering Express, 2022, , .	Qq1 1 0.78 0.4 2.9 4.7 0.6	84314 rgBT . 22 11 0 0 0
2125 2126 2128 2129 2130 2131 2132	Synthesis and Characterizations of Solid-Solution i-MAX Phase (W _{1/3} Mo _{1/3} R) Tj ET Electrochemical Properties. SSRN Electronic Journal, 0, , . Recent Trends in Synthesis and Applications of Porous MXene Assemblies: A Topical Review. Chemical Record, 2022, 22, . Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation. Green Energy and Environment, 2023, 8, 1185-1194. MXenes and their composites: a promising material for hydrogen storage. , 2022, , 397-422. Introduction to 2D MXenes: fundamental aspects, MAX phases and MXene derivatives, current challenges, and future prospects. , 2022, , 1-47. Taking leads out of nature, can nano deliver us from COVID-like pandemics?. Biomedical Physics and Engineering Express, 2022, , . MXene-based symmetric supercapacitors with high voltage and high energy density. Materials Reports Energy, 2022, 2, 100078.	Qq1 1 0.78 0.4 2.9 4.7 0.6	84314 rgBT . 22 11 0 0 0 0 10
 2125 2126 2128 2129 2130 2131 2132 2133 	 Synthesis and Characterizations of Solid-Solution i-MAX Phase (W _{1/3}Mo _{1/3}R) Tj ET Electrochemical Properties. SSRN Electronic Journal, 0, , . Recent Trends in Synthesis and Applications of Porous MXene Assemblies: A Topical Review. Chemical Record, 2022, 22, . Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation. Green Energy and Environment, 2023, 8, 1185-1194. MXenes and their composites: a promising material for hydrogen storage. , 2022, , 397-422. Introduction to 2D MXenes: fundamental aspects, MAX phases and MXene derivatives, current challenges, and future prospects. , 2022, , 1-47. Taking leads out of nature, can nano deliver us from COVID-like pandemics?. Biomedical Physics and Engineering Express, 2022, , . MXene-based symmetric supercapacitors with high voltage and high energy density. Materials Reports Energy, 2022, 2, 100078. Label-free electrochemical biosensor based on GR5 DNAzyme/Ti3C2Tx Mxenes for Pb2+ detection. Journal of Electroanalytical Chemistry, 2022, 905, 115979. 	Qq1 1 0.78 0.4 4.7 0.6 1.7 1.9	84314 rgBT 0 22 11 0 0 0 0 10 6

#	Article	IF	CITATIONS
2136	Modification Strategies of Layered Double Hydroxides for Superior Supercapacitors. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	16
2137	Titanium Carbide MXene Nanostructures as Catalysts and Cocatalysts for Photocatalytic Fuel Production: A Review. ACS Applied Nano Materials, 2022, 5, 18-54.	2.4	41
2138	Layered MAX phase electrocatalyst activity is driven by only a few hot spots. Journal of Materials Chemistry A, 2022, 10, 3206-3215.	5.2	8
2139	Bovine serum albumin functionalized blue emitting Ti ₃ C ₂ MXene quantum dots as a sensitive fluorescence probe for Fe ³⁺ ion detection and its toxicity analysis. Luminescence, 2022, 37, 633-641.	1.5	11
2140	Microscopic understanding of exceptional orientation-dependent tensile and fracture responses of two-dimensional transition-metal carbides. Applied Surface Science, 2022, 585, 152557.	3.1	3
2142	Computational design of double transition metal MXenes with intrinsic magnetic properties. Nanoscale Horizons, 2022, 7, 276-287.	4.1	29
2143	Synthesis of layered vs planar Mo ₂ C: role of Mo diffusion. 2D Materials, 2022, 9, 015039.	2.0	6
2144	Research about the capacitance properties of ion-induced multilayer and self-assembled monolayer Ti ₃ C ₂ T _{<i>x</i>} . RSC Advances, 2022, 12, 3554-3560.	1.7	1
2145	Optical Properties of Few-Layer Ti ₃ CN MXene: From Experimental Observations to Theoretical Calculations. ACS Nano, 2022, 16, 3059-3069.	7.3	46
2146	Fabricating <scp> V ₂ AlC </scp> / <scp> gâ€C ₃ N ₄ </scp> nanocomposite with <scp>MAX</scp> as electron moderator for promoting photocatalytic <scp> CO ₂ â€CH ₄ </scp> refo. International Journal of Energy Research, 2022, 46, 7666-7685.	2.2	5
2147	Nanostructured nonoxide nanomaterials an introduction. , 2022, , 1-24.		2
2148	Optical and mechanical properties of MXenes. , 2022, , 131-169.		3
2149	MXenes and their composites for energy storage and conversion. , 2022, , 201-240.		1
2150	In-plane defect engineering on MoS2 through a novel two-phase hydrothermal synthesis. Catalysis Today, 2022, 404, 269-278.	2.2	6
2151	Applications of MXenes and their composites in catalysis and photoelectrocatalysis. , 2022, , 449-498.		0
2152	Porous carbons for energy storage and conversion. , 2022, , 239-540.		1
2153	Microstructure and tribological property of a MXene derived from Ti ₃ AlC ₂ . Materials Research Express, 2022, 9, 025004.	0.8	2
2154	Chlorophyll derivative intercalation into Nb2C MXene for lithium-ion energy storage. Journal of Materials Science, 2022, 57, 9971-9979.	1.7	10

#	ARTICLE Photocatalytic removal of benzene over Ti ₃ C ₂ T _{<i>x</i>} MXene	IF	CITATIONS
2155	and TiO <súb>2–MXene composite materials under solar and NIR irradiation. Journal of Materials Chemistry C, 2022, 10, 626-639.</súb>	2.7	13
2156	Controlled CVD growth of ultrathin Mo2C (MXene) flakes. Journal of Applied Physics, 2022, 131, .	1.1	14
2157	Structure defects and electronic properties of MXenes. , 2022, , 91-129.		3
2158	MXene-based materials for remediation of environmental pollutants. , 2022, , 553-594.		1
2159	MXenes and their composites: emerging materials for gas sensing and biosensing. , 2022, , 241-279.		0
2160	MXenes and their composites for energy harvesting applications. , 2022, , 687-723.		1
2161	Palladium nanoparticles decorated MXene for plasmon-enhanced photocatalysis. Journal of Industrial and Engineering Chemistry, 2022, 108, 501-507.	2.9	10
2162	Sandwich-like porous MXene/Ni3S4/CuS derived from MOFs as superior supercapacitor electrode. Journal of Alloys and Compounds, 2022, 906, 163863.	2.8	27
2163	Simple Synthesis of 2D Molybdenum Carbide Nanosheets and Their Application in the Hydrogen Evolution Reaction. European Journal of Inorganic Chemistry, 0, , .	1.0	4
2164	MXene Heterostructures as Perspective Materials for Gas Sensing Applications. Sensors, 2022, 22, 972.	2.1	26
2165	New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 971-1013.	2.5	18
2166	Direct band gap and anisotropic transport of ZnSb monolayers tuned by hydrogenation and strain. RSC Advances, 2022, 12, 2693-2700.	1.7	2
2167	MXenes for Energy Harvesting. Advanced Materials, 2022, 34, e2108560.	11.1	117
2168	Ru and Fe Alloying on a Twoâ€Ðimensional MXene Support for Enhanced Electrochemical Synthesis of Ammonia. ChemCatChem, 2022, 14, .	1.8	10
2169	Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Nextâ€Generation Supercapacitors: A Review. Advanced Functional Materials, 2022, 32, .	7.8	152
2170	Recent advances in niobium MXenes: Synthesis, properties, and emerging applications. Matter, 2022, 5, 546-572.	5.0	40
2171	Development of a flexible dry electrode based MXene with low contact impedance for biopotential recording. Measurement: Journal of the International Measurement Confederation, 2022, 190, 110782.	2.5	9
2172	Beyond sonication: Advanced exfoliation methods for scalable production of 2D materials. Matter, 2022, 5, 515-545.	5.0	33

		CITATION REPORT		
#	Article		IF	CITATIONS
2173	Temperature dependence of Fano resonances in CrPS4. Journal of Chemical Physics, 202	22, 156, 054707.	1.2	5
2174	Single-entity Ti3C2Tx MXene electro-oxidation. Applied Materials Today, 2022, 26, 1013	335.	2.3	3
2175	High-performance and robust polysulfone nanocomposite membrane containing 2D fun MXene nanosheets for the nanofiltration of salt and dye solutions. Desalination, 2022, 5	ctionalized 527, 115600.	4.0	30
2176	Prospects of titanium carbide-based MXene in heavy metal ion and radionuclide adsorpt wastewater remediation: A review. Chemosphere, 2022, 293, 133563.	ion for	4.2	46
2177	Role of surface functional groups to superconductivity in Nb2C-MXene: Experiments and functional theory calculations. Surfaces and Interfaces, 2022, 29, 101711.	d density	1.5	12
2178	Review on MXene/TiO2 nanohybrids for photocatalytic hydrogen production and polluta degradations. Journal of Environmental Chemical Engineering, 2022, 10, 107211.	ant	3.3	43
2179	Synthesis of Ti3C2 MXene@PANI composites for excellent anticorrosion performance or epoxy coating. Progress in Organic Coatings, 2022, 165, 106673.	f waterborne	1.9	20
2180	Advances in MXenes-based optical biosensors: A review. Biosensors and Bioelectronics, 113995.	2022, 202,	5.3	52
2181	Substantial enhancement of hydrogen permeability of Mo2C/V composite membranes b sputtering. Journal of Membrane Science, 2022, 647, 120312.	y ion beam	4.1	3
2182	Mxene pseudocapacitive electrode material for capacitive deionization. Chemical Engine 2022, 435, 134959.	eering Journal,	6.6	48
2183	The roles of MXenes in developing advanced lithium metal anodes. Journal of Energy Ch 69, 132-149.	emistry, 2022,	7.1	24
2184	Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Proprospects. Journal of Materials Science and Technology, 2022, 114, 143-164.	ogress and	5.6	28
2185	Conductive Hydrogel with Excellent Self-Healing Properties for Supercapacitor Electrode PbS/Ti ₃ C ₂ T _x Heterostructure. SSRN Electronic	es Using Journal, 0, , .	0.4	0
2186	A two-dimensional Ti ₃ C ₂ T _{<i>X</i>} MXene@TiO ₂ /MoS ₂ heterostructure with excellent selectivity temperature detection of ammonia. Journal of Materials Chemistry A, 2022, 10, 5505-5	y for the room 519.	5.2	76
2187	Optical gaps and excitons in semiconducting transition metal carbides (MXenes). Journa Chemistry C, 2022, 10, 3919-3928.	al of Materials	2.7	13
2188	EDL structure of ionic liquid-MXene-based supercapacitor and hydrogen bond role on th molecular dynamics simulation investigation. Physical Chemistry Chemical Physics, 2022	e interface: a 2, 24, 5903-5913.	1.3	15
2189	MXenes as next-generation materials for the photocatalytic degradation of pharmaceut Journal of Environmental Chemical Engineering, 2022, 10, 107381.	icals in water.	3.3	31
2190	Lubrication performance of MXene/Brij30/H2O composite lamellar liquid crystal system. Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128487.	Colloids and	2.3	4

#	Article	IF	CITATIONS
2191	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges, Chemical Reviews, 2022, 122, 6514-6613.	23.0	187
2192	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e704" altimg="si34.svg"> <mml:msub><mml:mrow /> <mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> NT <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e712"</mml:math 	1.3	4
2193	Firstâ€principles investigation of elastic and electronic properties of double transition metal carbide MXenes. Journal of the American Ceramic Society, 2022, 105, 4400-4413.	1.9	7
2194	Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries. Chemical Engineering Journal, 2022, 436, 135012.	6.6	30
2195	Si@MXene/graphene crumbled spherical nanocomposites. International Journal of Energy Research, 2022, 46, 21548-21557.	2.2	3
2196	Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Flexible Piezoresistive Physical Sensors. ACS Nano, 2022, 16, 1734-1758.	7.3	177
2197	Effect of vacancies on the electrochemical behavior of Mo-based MXenes in aqueous supercapacitors. Journal of Power Sources, 2022, 525, 231064.	4.0	13
2198	A review of etching methods of MXene and applications of MXene conductive hydrogels. European Polymer Journal, 2022, 167, 111063.	2.6	79
2199	NiCoO2 nanosheets interlayer network connected in reduced graphene oxide and MXene for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 49, 104176.	3.9	12
2200	Observation of robust infrared plasmons in twisted titanium carbide (Ti3C2) MXene. Journal of Physics and Chemistry of Solids, 2022, 164, 110612.	1.9	6
2201	A precise electrochemical sensor based on Sm2O3/2D TiC hybrid for highly sensitive and selective detection of antihypertensive drug nimodipine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128531.	2.3	15
2202	High-throughput lateral and basal interface in CeO2@Ti3C2TX: Reverse and synergistic migration of carrier for enhanced photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 615, 716-724.	5.0	11
2203	Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection. Nano-Micro Letters, 2022, 14, 19.	14.4	76
2204	MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials, 2021, 11, 3412.	1.9	52
2205	Synergy of Ferric Vanadate AndÂMxene for High Performance Li and Na Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2207	A strategic review of MXenes as emergent building blocks for future two-dimensional materials: recent progress and perspectives. Journal of Materials Chemistry C, 2022, 10, 4096-4123.	2.7	18
2208	Mechanistic insights for electrochemical reduction of CO ₂ into hydrocarbon fuels over O-terminated MXenes. Catalysis Science and Technology, 2022, 12, 2223-2231.	2.1	22
2209	MXenes: Synthesis, properties, and electrochemical performance of titanium, vanadium, and tantalum carbide MXenes as supercapacitor electrodes. , 2022, , 387-416.		1

#	Article	IF	CITATIONS
2210	Two-Dimensional Tio2/Mxene Ti3cn Heterojunction for Highly Efficient Photoelectrocatalytic Co2 Reduction. SSRN Electronic Journal, 0, , .	0.4	3
2211	Recent advances in flexible and wearable chemo- and bio-sensors based on two-dimensional transition metal carbides and nitrides (MXenes). Journal of Materials Chemistry B, 2022, 10, 2113-2125.	2.9	9
2212	Fluorine-free synthesis of ambient-stable delaminated Ti ₂ CT _{<i>x</i>} (MXene). Journal of Materials Chemistry A, 2022, 10, 7960-7967.	5.2	17
2213	Dimensional optimization enables high-performance capacitive deionization. Journal of Materials Chemistry A, 2022, 10, 6414-6441.	5.2	43
2214	Electrochemical "Signal On/Off―Paper-Based Aptasensor for Ochratoxin a Detection Based on Mxene-Au and Pt@Nico-Ldh-Catalyzed Signal Amplification. SSRN Electronic Journal, 0, , .	0.4	0
2215	Antibacterial properties of MXene-based nanomaterials: A review. Materials Express, 2022, 12, 34-48.	0.2	10
2216	MXene wearables: properties, fabrication strategies, sensing mechanism and applications. Materials Advances, 2022, 3, 3784-3808.	2.6	29
2217	From 0D to 3D MXenes: their diverse syntheses, morphologies and applications. Materials Chemistry Frontiers, 2022, 6, 818-842.	3.2	24
2218	Two-dimensional transition metal carbide (MXene) for enhanced energy storage. , 2022, , 255-283.		0
2219	In Situ Growth Tio2 Nanoparticles on Mxene (Ti3c2) Decorated with Nio Quantum Dots for Enhanced Photocatalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
2220	Effect of the sulfur termination on the properties of Hf ₂ CO ₂ MXene. Physical Chemistry Chemical Physics, 2022, 24, 7243-7252.	1.3	17
2222	Ultrasound-Aided Fabrication of Ti3c2tx Mxene by UsingÂln-Situ Forming of Hydrofluoric Acid Approach. SSRN Electronic Journal, 0, , .	0.4	0
2223	Hierarchical Ag3PO4/TiO2@C composites derived from Ti3C2 MXene for enhanced photocatalytic activity. Journal of Materials Science, 2022, 57, 5396-5409.	1.7	4
2224	MXenes for metal-ion and metal-sulfur batteries: Synthesis, properties, and electrochemistry. Materials Reports Energy, 2022, 2, 100077.	1.7	1
2225	High-Entropy Laminate Metal Carbide (MAX Phase) and Its Two-Dimensional Derivative MXene. Chemistry of Materials, 2022, 34, 2098-2106.	3.2	60
2226	A correlation to predict the thermal conductivity of MXeneâ€silicone oil based nanoâ€fluids and data driven modeling using artificial neural networks. International Journal of Energy Research, 2022, 46, 21538-21547.	2.2	3
2227	MXene-Based Electrodes for Supercapacitor Energy Storage. Energy & Fuels, 2022, 36, 2390-2406.	2.5	67
2228	Electronic Structures of Group III–V Element Haeckelite Compounds: A Novel Family of Semiconductors, Dirac Semimetals, and Topological Insulators. Advanced Functional Materials, 0, , 2110930.	7.8	3

#	Article	IF	CITATIONS
2229	Construction of Feâ€doped NiS–NiS ₂ Heterostructured Microspheres Via Etching Prussian Blue Analogues for Efficient Waterâ€Urea Splitting. Small, 2022, 18, e2106841.	5.2	49
2230	Two-dimensional titanium carbonitride MXene as a highly efficient electrocatalyst for hydrogen evolution reaction. Materials Reports Energy, 2022, 2, 100075.	1.7	20
2231	MXene based Heterostructures for electrode materials of Batteries: A Review. IOP Conference Series: Materials Science and Engineering, 2022, 1225, 012018.	0.3	3
2232	The Emergence of Aqueous Ammoniumâ€ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	16
2233	Synthesis and electrochemical behavior of monolayer-Ti3C2Tx for capacitive deionization. Journal of Central South University, 2022, 29, 359-372.	1.2	6
2234	Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. Advanced Science, 2022, 9, e2200296.	5.6	44
2235	Elucidating Synergistic Mechanisms of Adsorption and Electrocatalysis of Polysulfides on Double-Transition Metal MXenes for Na–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10298-10307.	4.0	18
2236	Fluorinated MAX Phases for Photoelectrochemical Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 2793-2801.	3.2	11
2237	Synthesis of Accordionâ€ i ke Ti ₃ CN MXene and its Structural Stability in Aqueous Solutions and Organic Solvents. ChemistrySelect, 2022, 7, .	0.7	6
2238	The Emergence of Aqueous Ammoniumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	65
2239	High-Performance and Stable Two-Dimensional MXene-Polyethyleneimine Composite Lamellar Membranes for Molecular Separation. ACS Applied Materials & Interfaces, 2022, 14, 10237-10245.	4.0	26
2240	Ultrasensitive, Ultrafast, and Gate-Tunable Two-Dimensional Photodetectors in Ternary Rhombohedral ZnIn ₂ S ₄ for Optical Neural Networks. ACS Applied Materials & Interfaces, 2022, 14, 12571-12582.	4.0	18
2241	Ti ₃ C ₂ T <i>_x</i> MXene/Bamboo Fiber/PDMS Pressure Sensor with Simultaneous Ultrawide Linear Sensing Range, Superb Environmental Stability, and Excellent Biocompatibility. ACS Sustainable Chemistry and Engineering, 2022, 10, 3546-3556.	3.2	20
2242	Metal-organic Framework ZIF-67 Functionalized MXene for Enhancing the Fire Safety of Thermoplastic Polyurethanes. Nanomaterials, 2022, 12, 1142.	1.9	19
2243	Performance analysis of Ta4C3 MXene based optically transparent patch antenna for terahertz communications. Optik, 2022, 260, 168959.	1.4	10
2244	Termination-Accelerated Electrochemical Nitrogen Fixation on Single-Atom Catalysts Supported by MXenes. Journal of Physical Chemistry Letters, 2022, 13, 2800-2807.	2.1	11
2245	Mussel-Inspired Polynorepinephrine/MXene-Based Magnetic Nanohybrid for Electromagnetic Interference Shielding in X-Band and Strain-Sensing Performance. Langmuir, 2022, 38, 3936-3950.	1.6	65
2246	Emerging Advancements in Polypyrrole MXene Hybrid Nanoarchitectonics for Capacitive Energy Storage Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1521-1540.	1.9	15

#	Article	IF	CITATIONS
2247	Efficient mercury removal from aqueous solutions using carboxylated Ti3C2T MXene. Journal of Hazardous Materials, 2022, 434, 128780.	6.5	17
2248	Optimizing the electronic spin state and delocalized electron of NiCo2(OH) /MXene composite by interface engineering and plasma boosting oxygen evolution reaction. Journal of Energy Chemistry, 2022, 71, 129-140.	7.1	25
2249	Few-layer Ta ₂ CT _x nanosheets-based mode-locked fiber lasers. Optical Materials Express, 2022, 12, 1731.	1.6	4
2250	âº-NSA doped PPy @ Ti3C2Tx hybrid material as a high-performance supercapacitor electrode. Journal of Materials Research, 2022, 37, 3965-3975.	1.2	7
2251	Electrochemical sensor based on Ti3C2 membrane doped with UIO-66-NH2 for dopamine. Mikrochimica Acta, 2022, 189, 141.	2.5	23
2253	Investigation of the effect of anion/cation-modified cellulose nanofibers/MXene composite aerogels on the high-performance lithium-sulfur batteries. Ionics, 2022, 28, 2805-2815.	1.2	6
2254	Advances in microâ€ s upercapacitors (MSCs) with high energy density and fast chargeâ€discharge capabilities for flexible bioelectronic devices—A review. Electrochemical Science Advances, 2023, 3, .	1.2	15
2255	Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Reports Physical Science, 2022, 3, 100814.	2.8	29
2256	Near-infrared all-fiber mode-locked laser based on vanadium carbide nanosheets. Optik, 2022, 260, 168792.	1.4	5
2257	Radiation-induced phase separation in nanostructured Hf-In-C ternary thin films under irradiation with 200 keV Ar ⁺ ion beam. Radiation Effects and Defects in Solids, 0, , 1-24.	0.4	0
2258	Roles of MXene in Pressure Sensing: Preparation, Composite Structure Design, and Mechanism. Advanced Materials, 2022, 34, e2110608.	11.1	90
2259	Recent advances in <scp>MXene</scp> as electrocatalysts for sustainable energy generation: A review on surface engineering and compositing of <scp>MXene</scp> . International Journal of Energy Research, 2022, 46, 8625-8656.	2.2	26
2260	Surface Functionalized MXenes for Wastewater Treatment—A Comprehensive Review. Global Challenges, 2022, 6, .	1.8	14
2261	Recent Advances in MXene/Epoxy Composites: Trends and Prospects. Polymers, 2022, 14, 1170.	2.0	29
2262	Emerging Layered Materials and Their Applications in the Corrosion Protection of Metals and Alloys. Sustainability, 2022, 14, 4079.	1.6	8
2263	Langmuir–Blodgett Assembly of Ti ₃ C ₂ T <i>_x</i> Nanosheets for Planar Microsupercapacitors. ACS Applied Nano Materials, 2022, 5, 4170-4179.	2.4	4
2264	Active site construction to boost electrochemical property for Li–S batteries: a review. Journal of Materials Science, 2022, 57, 7131-7154.	1.7	2
2265	Layered Nanoâ€Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution. Advanced Materials Interfaces, 2022, 9, .	1.9	6

#	Article	IF	CITATIONS
2266	Investigation of Ordered TiMC and TiMCT ₂ (M = Cr and Mo; T = O and S) MXenes as High-Performance Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 5283-5291.	1.5	9
2267	MXenes: Synthesis strategies and lithium-sulfur battery applications. EScience, 2022, 2, 164-182.	25.0	80
2268	MXene-based nanomaterials as adsorbents for wastewater treatment: a review on recent trends. Frontiers of Materials Science, 2022, 16, .	1.1	5
2269	Recent progress and new perspective of MXene-based membranes for water purification: A review. Ceramics International, 2022, 48, 16477-16491.	2.3	23
2270	Safety Assessment of 2D MXenes: In Vitro and In Vivo. Nanomaterials, 2022, 12, 828.	1.9	23
2271	Mo2CS2-MXene supported single-atom catalysts for efficient and selective CO2 electrochemical reduction. Applied Surface Science, 2022, 592, 153339.	3.1	20
2272	Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. Npj 2D Materials and Applications, 2022, 6, .	3.9	34
2273	Tunable 2D Nanomaterials; Their Key Roles and Mechanisms in Water Purification and Monitoring. Frontiers in Environmental Science, 2022, 10, .	1.5	16
2274	Nanoarchitectonics of vanadium carbide MXenes for separation and catalytic degradation of contaminants. Separation and Purification Technology, 2022, 292, 121032.	3.9	33
2275	Preparation and evaluation of a high performance Ti3C2Tx-MXene membrane for drinking water treatment. Journal of Membrane Science, 2022, 654, 120469.	4.1	11
2276	Coexistence of multiple Weyl fermions and quantum anomalous Hall effect in 2D half-metallic Cr2NT2. Materials Chemistry and Physics, 2022, 282, 125940.	2.0	2
2277	Ca2C MXene monolayer as a superior material for detection of toxic pnictogen hydrides. Materials Chemistry and Physics, 2022, 281, 125869.	2.0	4
2278	Preparation of 3D flower-like Ti3C2Tx microspheres by W/O emulsion-assisted assembly and their application for supercapacitors. Ceramics International, 2022, 48, 10834-10842.	2.3	5
2279	A systematic DFT study of (Ti3/2RE1/2)AlC alloys: A new database for adjustable mechanical and electronic properties. Computational Condensed Matter, 2022, , e00681.	0.9	0
2280	Biomedical engineering of two-dimensional MXenes. Advanced Drug Delivery Reviews, 2022, 184, 114178.	6.6	69
2281	Removal of pollutants via synergy of adsorption and photocatalysis over MXene-based nanocomposites. Chemical Engineering Journal Advances, 2022, 10, 100285.	2.4	18
2282	Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coordination Chemistry Reviews, 2022, 459, 214440.	9.5	97
2283	Synthesis and characterizations of solid-solution i-MAX phase (W1/3Mo1/3R1/3)2AlC (RÂ=ÂGd, Tb, Dy, Ho,) Tj ET 213, 114596.	Qq1 1 0.75 2.6	84314 rgBT 9

#	Appticateresponses to hole defects in functionalized Ti <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e819" altimg="ci80 aug"s (mml:mgubs (mml:mguu)</mml:math 	IF	CITATIONS
2284	/> <mml:mrow> <mml:mn>3 </mml:mn> </mml:mrow> C < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e827"	3.1	4
2285	altimg="si81.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow>MXenes: An emerging 2D material. Carbon, 2022, 192, 366-383.</mml:mrow </mml:msub>	5.4	46
2286	Prospects of MXenes in energy storage applications. Chemosphere, 2022, 297, 134225.	4.2	50
2287	A systematic review on 2D materials for volatile organic compound sensing. Coordination Chemistry Reviews, 2022, 461, 214502.	9.5	20
2288	MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives. Coordination Chemistry Reviews, 2022, 462, 214518.	9.5	148
2289	Microstructure and properties of bilayered B4C-based ceramics. Journal of the European Ceramic Society, 2022, 42, 3404-3414.	2.8	6
2290	An overview of MXene-Based nanomaterials and their potential applications towards hazardous pollutant adsorption. Chemosphere, 2022, 298, 134221.	4.2	34
2291	Chemical vapor deposition of two-dimensional molybdenum nitride/graphene van der Waals heterostructure with enhanced electrocatalytic hydrogen evolution performance. Applied Surface Science, 2022, 589, 152934.	3.1	19
2292	Facile hydrothermal synthesis of MXene@antimony nanoneedle composites for toxic pollutants removal. Environmental Research, 2022, 210, 112904.	3.7	11
2293	Electrically conductive porous MXene-polymer composites with ultralow percolation threshold via Pickering high internal phase emulsion templating strategy. Journal of Colloid and Interface Science, 2022. 618, 290-299 Enhanced magnetic anisotropy in two-dimensional <mml:math< td=""><td>5.0</td><td>18</td></mml:math<>	5.0	18
2294	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e370" altimg="si3.svg"> <mml:mrow><mml:mn>2<mml:mi>H</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">â^^<mml:mi>T</mml:mi><mml:mi>a</mml:mi><mml:msub><mml:mrow><mm< td=""><td>1.0 l:mi>S<td>5 ml:mi></td></td></mm<></mml:mrow></mml:msub></mml:mo </mml:mn></mml:mrow>	1.0 l:mi>S <td>5 ml:mi></td>	5 ml:mi>
2295	by self-intercalation: A DFT study. Journal of Magnetism and Magnetic Materials, 2022, 553, 168988. From Stochastic Selfa€Assembly of Nanoparticles to Nanostructured (Photo)Electrocatalysts for Renewable Powerâ€toâ€X Applications via Scalable Flame Synthesis. Advanced Functional Materials, 2022, 32, .	7.8	12
2296	Phase-Controllable Synthesis of Ultrathin Molybdenum Nitride Crystals Via Atomic Substitution of MoS ₂ . Chemistry of Materials, 2022, 34, 351-357.	3.2	12
2297	Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti ₃ C ₂ MXenes. ACS Nano, 2022, 16, 813-822.	7.3	90
2298	Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies, 2021, 14, 8183.	1.6	9
2299	Room-Temperature Assembled MXene-Based Aerogels for High Mass-Loading Sodium-Ion Storage. Nano-Micro Letters, 2022, 14, 37.	14.4	49
2300	MXene─A New Paradigm Toward Artificial Nitrogen Fixation for Sustainable Ammonia Generation: Synthesis, Properties, and Future Outlook. , 2022, 4, 212-245.		20
2301	Ti3Si0.75Al0.25C2 Nanosheets as Promising Anode Material for Li-Ion Batteries. Nanomaterials, 2021, 11, 3449.	1.9	7

#	Article	IF	CITATIONS
2302	Advances and challenges in the development of nanosheet membranes. Reviews in Chemical Engineering, 2023, 39, 631-668.	2.3	4
2303	Piezoelectricity in Monolayer and Multilayer Ti ₃ C ₂ Tx MXenes: Implications for Piezoelectric Devices. ACS Applied Nano Materials, 2022, 5, 1034-1046.	2.4	19
2304	Synthesis of new <scp>twoâ€dimensional</scp> titanium carbonitride <scp>Ti₂C₀</scp> _. <scp>₅N₀</scp> _{.5and its performance as an electrode material for <scp>sodiumâ€ion</scp> battery. InformaÄnÃ-MateriÃily, 2021, 3, 1422-1430.}	sub>T <sub 8.5</sub 	>> <i>x</i>
2305	Architecting Nbâ€TiO _{2â^'} <i>_x</i> /(Ti _{0.9} Nb _{0.1}) ₃ C ₂ MXene Nanohybrid Anode for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022. 9	sub>T <i>< 1.9</i>	sub>x
2306	MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications. Surfaces, 2022, 5, 1-36.	1.0	25
2307	Recent Progress in Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Flexible Pressure Sensors. ACS Nano, 2021, 15, 18880-18894.	7.3	77
2308	Emerging Surface, Bulk, and Interface Engineering Strategies on BiVO ₄ for Photoelectrochemical Water Splitting. Small, 2022, 18, e2105084.	5.2	78
2309	Billiard Catalysis at Ti3c2 Mxene/Max Heterostructure for Efficient Nitrogen Fixation. SSRN Electronic Journal, 0, , .	0.4	1
2310	Electromagnetic and microwave absorption properties of Ag wrapped MXene composite with frequency selective surface incorporation. Diamond and Related Materials, 2022, 126, 108996.	1.8	9
2311	Size-controllable synthesis of 2D Mn3O4 triangular-shaped nanosheets by thermal chemical vapor deposition. Physica E: Low-Dimensional Systems and Nanostructures, 2022, , 115273.	1.3	1
2312	Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.	6.4	21
2313	Preparations and Applications of MXene–Metal Composites: A Review. Coatings, 2022, 12, 516.	1.2	14
2314	Heteroatom induced tailoring electronic and optical properties of V3C2 MXene through bandgap opening: A computational insight. Chemical Physics Letters, 2022, 799, 139639.	1.2	8
2315	Low-Pt Amount Supported Polypyrrole/MXene 1D/2D Electrocatalyst for Efficient Hydrogen Evolution Reaction. Electrocatalysis, 2022, 13, 469-478.	1.5	6
2316	Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics. Nano-Micro Letters, 2022, 14, 100.	14.4	53
2317	MXenes: An emergent materials for packaging platforms and looking beyond. Nano Select, 2022, 3, 1123-1147.	1.9	9
2318	Computational Investigation of Two-Dimensional Vanadium Boride Compounds for Na-Ion Batteries. ACS Omega, 2022, 7, 14765-14771.	1.6	9
2319	Principles and Materials of Mixing Entropy Battery and Capacitor for Future Harvesting Salinity Gradient Energy. ACS Applied Energy Materials, 2022, 5, 3979-4001.	2.5	6

#	Article	IF	CITATIONS
2320	Recent advances in two-dimensional MXenes for power and smart energy systems. Journal of Energy Storage, 2022, 50, 104604.	3.9	19
2322	An Assessment of MXenes through Scanning Probe Microscopy. Small Methods, 2022, 6, e2101599.	4.6	3
2323	Synthesis of Ti3alc2 Max Phase Under Vacuum, its Structural Characterisation and Using for Ti3c2tx Mxene Preparation. SSRN Electronic Journal, 0, , .	0.4	0
2324	MXene-based sulfur composite cathodes. , 2022, , 361-388.		0
2325	Vanadium Dioxide Nanosheets Supported on Carbonized Cotton Fabric as Bifunctional Textiles for Flexible Pressure Sensors and Zinc-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2326	Electrochemical ammonia synthesis: fundamental practices and recent developments in transition metal boride, carbide and nitride-class of catalysts. Materials Advances, 2022, 3, 5207-5233.	2.6	17
2327	Electrical and magneto-transport in the 2D semiconducting MXene Ti ₂ CO ₂ . Journal of Materials Chemistry C, 2022, 10, 9062-9072.	2.7	5
2328	Ti ₃ C ₂ T _{<i>x</i>} /rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm, 2022, 24, 4556-4563.	1.3	13
2329	Biochar-Derived Material Decorated by Mxene/Reduced Graphene Oxide Using One-Step Hydrothermal Treatment as High-Performance Supercapacitor Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
2330	Formation of the Ti2Alc Max-Phase in a Hydride Cycle From a Mixture of Titanium and Aluminum Carbohydride Powders. Russian Journal of Physical Chemistry B, 2022, 16, 76-83.	0.2	2
2331	Anion Identity and Time Scale Affect the Cation Insertion Energy Storage Mechanism in Ti ₃ C ₂ T _{<i>x</i>} MXene Multilayers. ACS Energy Letters, 2022, 7, 1828-1834.	8.8	4
2332	Greatly Enhanced Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of Polyaniline-Grafted Ti ₃ C ₂ T _{<i>x</i>} MXene–PVDF Composites. ACS Applied Materials & Interfaces, 2022, 14, 21521-21534.	4.0	31
2333	Carbon nanotubes modified MXene film as a high-performance electrode for supercapacitor. , 2022, , .		0
2334	In situ ice template approach to fabricate Ag modified 3D Ti3C2Tx film electrode for supercapacitors. Electrochimica Acta, 2022, 422, 140461.	2.6	6
2335	2D MXenes for combatting COVID-19 Pandemic: A perspective on latest developments and innovations. FlatChem, 2022, 33, 100377.	2.8	16
2336	Influence of Ti ₃ C ₂ T _x addition on the corrosion behaviour and tribological properties of electrodeposited Ni-W-Ti ₃ C ₂ T _x nanocomposite coatings. Materials Science and Technology, 2022, 38, 703-715.	0.8	6
2337	Synthesis of 2D material based Bi2O3/MXene nanohybrids and their applications for the removal of industrial effluents. Ceramics International, 2022, 48, 21676-21689.	2.3	16
2338	Phase-Selective Synthesis of Mo–Ta–C Ternary Nanosheets by Precisely Tailoring Mo/Ta Atom Ratio on Liquid Copper. Nanomaterials, 2022, 12, 1446.	1.9	1

#	Article	IF	CITATIONS
2339	Computational evaluation of ScB and TiB MBenes as promising anode materials for high-performance metal-ion batteries. Physical Review Materials, 2022, 6, .	0.9	4
2340	Enhancements of thermoelectric performance in n-type Bi2Te3-based nanocomposites through incorporating 2D Mxenes. Journal of the European Ceramic Society, 2022, 42, 4587-4593.	2.8	8
2341	2D/2D Nanoarchitectured Nb ₂ C/Ti ₃ C ₂ MXene Heterointerface for High-Energy Supercapacitors with Sustainable Life Cycle. ACS Applied Materials & Interfaces, 2022, 14, 21038-21049.	4.0	24
2342	Ultralow diffusion barrier of double transition metal MoWC monolayer as Li-ion battery anode. Journal of Materials Science, 2022, 57, 10702-10713.	1.7	8
2343	Preparation of Ni-P-Ti3C2Tx-Ce composite coating with enhanced wear resistance and electrochemical corrosion behavior on the surface of low manganese steel. Surface and Coatings Technology, 2022, 441, 128508.	2.2	11
2344	A Climpse on the plethora of applications of prodigious material MXene. Sustainable Materials and Technologies, 2022, 32, e00439.	1.7	9
2345	Lithium-ions uptake by MAX/graphene hybrid. , 2022, 7, 59-71.		1
2346	A review on MXene and its nanocomposites for the detection of toxic inorganic gases. Chemosphere, 2022, 302, 134933.	4.2	24
2347	Elementâ€Ðoped Mxenes: Mechanism, Synthesis, and Applications. Small, 2022, 18, e2201740.	5.2	43
2348	Morphotaxy of Layered van der Waals Materials. ACS Nano, 2022, 16, 7144-7167.	7.3	8
2349	Flexible MXene films for batteries and beyond. , 2022, 4, 598-620.		42
2350	Structural and optical characterization of titanium–carbide and polymethyl methacrylate based nanocomposite. Optical and Quantum Electronics, 2022, 54, .	1.5	1
2351	The future of energy materials: A case of MXenes-carbon dots nanocomposites. Journal of Energy Storage, 2022, 50, 104711.	3.9	9
2352	Wettability of MXene films. Journal of Colloid and Interface Science, 2022, 622, 759-768.	5.0	8
2353	Other nanocomposites of MOFs for supercapacitors. , 2022, , 461-484.		0
2354	Wet chemical synthesis of Gd+3 doped vanadium Oxide/MXene based mesoporous hierarchical architectures as advanced supercapacitor material. Ceramics International, 2022, 48, 24840-24849.	2.3	24
2355	Removal of Malachite Green Dye from Water Using MXene (Ti3C2) Nanosheets. Sustainability, 2022, 14, 5996.	1.6	8
2356	MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceramics International, 2022, 48, 24144-24156.	2.3	44

#	Article	IF	CITATIONS
2357	Localized surface plasmon resonances in a hybrid structure consisting of a mono-layered Al sheet and Ti ₃ C ₂ F MXene. Physical Chemistry Chemical Physics, 2022, 24, 12389-12396.	1.3	13
2358	Multilayer MXene Heterostructures and Nanohybrids for Multifunctional Applications: A Review. , 2022, 4, 1174-1206.		25
2359	Self-Supporting, Binder-Free, and Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Supercapacitor Electrode with Improved Electrochemical Performance. ACS Nano, 2022, 16, 9713-9727.	7.3	76
2361	Nanostructured Materials for Supercapacitors. Advances in Material Research and Technology, 2022, , 1-26.	0.3	1
2362	Recent Advances in 2D Material/Conducting Polymer Composites for Thermoelectric Energy Conversion. Macromolecular Materials and Engineering, 2022, 307, .	1.7	13
2363	Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Reports Physical Science, 2022, 3, 100908.	2.8	8
2364	Roll-to-roll processable MXene-rGO-PVA composite films with enhanced mechanical properties and environmental stability for electromagnetic interference shielding. Ceramics International, 2022, 48, 24898-24905.	2.3	13
2365	Progress of 2D MXenes based composites for efficient electromagnetic interference shielding applications: A review. Synthetic Metals, 2022, 287, 117095.	2.1	15
2366	Optimization of etching and sonication time to prepare monolayer Ti3C2T MXene flakes: A structural, vibrational, and optical spectroscopy study. , 2022, 167, 207256.		9
2367	2D Ti3C2@MoO3 composite as an efficient anode material for high-performance supercapacitors. Materials Research Bulletin, 2022, 153, 111902.	2.7	14
2368	MXene-based multifunctional smart fibers for wearable and portable electronics. Journal of Materials Chemistry A, 2022, 10, 12544-12550.	5.2	11
2369	Theoretical Study on Water Gas Shift Mechanism on Monatomic Transition Metal M Supporting Mos2 Catalyst (M=Co, Ni, Cu). SSRN Electronic Journal, 0, , .	0.4	0
2370	The Emergence of 2D MXenes Based Znâ€ion Batteries: Recent Development and Prospects. Small, 2022, 18,	5.2	76
2371	Inverse Design of MXenes for High-Capacity Energy Storage Materials Using Multi-Target Machine Learning. Chemistry of Materials, 2022, 34, 4964-4974.	3.2	21
2372	MXene (Ti ₃ C ₂ T _{<i>x</i>})-/Amine-Functionalized Graphene-Supported Self-Assembled Co ₉ S ₈ Nanoflower for Ultrastable Hybrid Supercapacitor. Industrial & Engineering Chemistry Research, 2022, 61, 7727-7738.	1.8	15
2373	Functionalized-MXene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells. Cell Reports Physical Science, 2022, 3, 100905.	2.8	17
2374	Recent Research Progress in the Structure, Fabrication, and Application of MXene-Based Heterostructures. Nanomaterials, 2022, 12, 1907.	1.9	15
2375	Thermally conductive MWCNTs/Fe3O4/Ti3C2T MXene multi-layer films for broadband electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 130, 75-85.	5.6	32

#	Article	IF	CITATIONS
2376	The Role of Vacancies in a Ti ₂ CT _x MXeneâ€Derived Catalyst for Butane Oxidative Dehydrogenation. ChemCatChem, 2022, 14, .	1.8	1
2377	Enhanced heat conductance and microwave absorption of 2D laminated Ti3C2Tx MXene microflakes via steering surface, defects, and interlayer spacing. Journal of Alloys and Compounds, 2022, 918, 165740.	2.8	17
2378	Lightweight and robust Ti3C2Tx/carbon nanotubes foam with tuneable and highly efficient microwave absorption performance. Ceramics International, 2022, 48, 31129-31137.	2.3	5
2379	Overview of MXene/conducting polymer composites for supercapacitors. Journal of Energy Storage, 2022, 52, 105008.	3.9	63
2380	Highly efficient and sustainable MXene based heterostructure composites filled with ferrites and MWCNTs to mitigate the radiation interference in X-band frequency region. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 282, 115798.	1.7	3
2381	Recent progress in emerging hybrid nanomaterials towards the energy storage and heat transfer applications: A review. Journal of Molecular Liquids, 2022, 360, 119443.	2.3	22
2382	Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene. Desalination, 2022, 537, 115847.	4.0	32
2383	Analytical methods to determine and sense heavy metal pollutants using MXene and MXene-based composites: Mechanistic prophecy into sensing properties. Chemosphere, 2022, 303, 135166.	4.2	8
2384	Recent progress in Ti3C2Tx-based materials: From fundamentals to emerging applications. Materials Science in Semiconductor Processing, 2022, 148, 106835.	1.9	9
2385	Effect of different precursors on the formation and physical properties of V2AlC MAX phase. Journal of Alloys and Compounds, 2022, 918, 165588.	2.8	5
2386	Engineered core-shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chemical Engineering Journal, 2022, 446, 137260.	6.6	100
2388	Flame-Retardant Coatings on Polyurethane Foams Deposited by Layer-by-Layer Assembly Approach. ACS Symposium Series, 0, , 105-119.	0.5	1
2389	Submicron Ti ₂ CT _{<i>x</i>} MXene particulates as high-rate intercalation anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2022, 10, 15474-15484.	5.2	7
2390	Fabricating flexible conductive structures by printing techniques and printable conductive materials. Journal of Materials Chemistry C, 2022, 10, 9441-9464.	2.7	22
2391	Novel boron nitride MXenes as promising energy storage materials. Nanoscale, 2022, 14, 9086-9096.	2.8	4
2392	Recent status and challenges in multifunctional electrocatalysis based on 2D MXenes. Catalysis Science and Technology, 2022, 12, 4413-4441.	2.1	16
2393	Stability and Degradation of MXene. Engineering Materials, 2022, , 87-107.	0.3	4
2394	Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. Journal of Materials Chemistry A, 2022, 10, 13190-13240.	5.2	137

#	ARTICLE	IF	CITATIONS
2397	Synthesis and Processing Strategies. Engineering Materials, 2022, , 17-36.	0.3	4
2398	Toward Room-Temperature Electrical Control of Magnetic Order in Multiferroic van der Waals Materials. Nano Letters, 2022, 22, 5191-5197.	4.5	25
2399	Electrochemical determination of hydrazine by using MoS2 nanostructure modified gold electrode. Nanofabrication, 0, 7, e002.	1.1	8
2400	Advances of MXenes; Perspectives on Biomedical Research. Biosensors, 2022, 12, 454.	2.3	22
2401	Room-temperature MXene-derived Ti3+ and rich oxygen vacancies in carbon-doped amorphous TiOx nanosheets for enhanced photocatalytic activity. Journal of Alloys and Compounds, 2022, 920, 165979.	2.8	8
2402	The Role of Antioxidant Structure in Mitigating Oxidation in Ti ₃ C ₂ T <i>_x</i> and Ti ₂ CT <i>_x</i> MXenes. Advanced Materials Interfaces, 2022, 9, .	1.9	16
2403	Constructing conductive titanium carbide nanosheet (MXene) network on natural rubber foam framework for flexible strain sensor. Journal of Materials Science: Materials in Electronics, 2022, 33, 15563-15573.	1.1	8
2404	Research advances in the light-driven conversion of CO2 to valuable chemicals by two-dimensional nanomaterials. Materials Today Energy, 2022, , 101065.	2.5	0
2405	Adsorptive Removal of Radioactive Cesium from Model Nuclear Wastewater over Hydroxyl-Functionalized Mxene Ti ₃ C ₂ T _{<i>x</i>} . Industrial & Engineering Chemistry Research, 2022, 61, 9054-9066.	1.8	17
2406	Combination of High pH and an Antioxidant Improves Chemical Stability of Two-Dimensional Transition-Metal Carbides and Carbonitrides (MXenes) in Aqueous Colloidal Solutions. Inorganic Chemistry, 2022, 61, 9877-9887.	1.9	23
2407	MXenes for magnesium-based hydrides: A review. Applied Materials Today, 2022, 29, 101570.	2.3	8
2408	MXene-based nanocomposites for solar energy harvesting. Sustainable Materials and Technologies, 2022, 33, e00462.	1.7	7
2409	Insights into MXenes-based electrocatalysts for oxygen reduction. Energy, 2022, 255, 124465.	4.5	15
2410	Flexible MXeneâ€Based Composite Films: Synthesis, Modification, and Applications as Electrodes of Supercapacitors. Small, 2022, 18, .	5.2	41
2411	MXene-based hydrogels towards the photothermal applications. Journal Physics D: Applied Physics, 2022, 55, 374003.	1.3	6
2412	Novel Two-Dimensional MC2N4 (MÂ=ÂCr, Mo, W) Monolayers for Overall Water Splitting with High Visible-Light Absorption. Solar Energy, 2022, 241, 416-427.	2.9	6
2413	MXenes for electrocatalysis applications: Modification and hybridization. Chinese Journal of Catalysis, 2022, 43, 2057-2090.	6.9	76
2414	MXene-mediated electron transfer in Cu(II)/PMS process: From Cu(III) to Cu(I). Separation and Purification Technology, 2022, 297, 121428.	3.9	13

#	Article	IF	CITATIONS
2415	Two-dimensional host materials for lithium-sulfur batteries: A review and perspective. Energy Storage Materials, 2022, 50, 696-717.	9.5	26
2416	Orderly Self-Stacking a High-Stability coating of MXene@Polydopamine hybrid onto textiles for multifunctional personal thermal management. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107038.	3.8	16
2417	Potential of MXene-based membranes in water treatment and desalination: A critical review. Chemosphere, 2022, 303, 135234.	4.2	31
2418	Exploring two-dimensional carbides as highly active catalysts for the oxygen reduction reaction: A density functional theory approach. Applied Surface Science, 2022, 599, 153907.	3.1	1
2419	Electrochemical "signal on/off―paper-based aptasensor for ochratoxin A detection based on MXene-Au and Pt@NiCo-LDH-catalyzed signal amplification. Sensors and Actuators B: Chemical, 2022, 368, 132161.	4.0	12
2420	Single Zn Atom Catalyst on Ti2cn2 Mxenes for Efficient Co. SSRN Electronic Journal, 0, , .	0.4	0
2421	Enhancing superconductivity in MXenes through hydrogenation. Nanoscale, 2022, 14, 9918-9924.	2.8	15
2422	Mxene Enhanced Ternary Molten Salt Heat Transfer Fluid for Parabolic Trough Collector Application. SSRN Electronic Journal, 0, , .	0.4	0
2423	Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications. RSC Advances, 2022, 12, 19590-19610.	1.7	35
2424	Recent progress in environmental remediation, colloidal behavior and biological effects of MXene: a review. Environmental Science: Nano, 2022, 9, 3168-3205.	2.2	6
2425	Theoretical Study on Water Gas Shift Mechanism on Mos2 Supported Single Transition Metal M (M=Co, Ni, Cu) Catalysts. SSRN Electronic Journal, 0, , .	0.4	0
2426	Two-dimensional carbide/nitride (MXene) materials in thermal catalysis. Journal of Materials Chemistry A, 2022, 10, 19444-19465.	5.2	25
2427	Synergistic Interface-Pillared Fe-Mof on 2d Ti3c2tx Mxene Electrode Coupling Toward High Energy Density. SSRN Electronic Journal, 0, , .	0.4	0
2428	Resonance Phenomena in MXene on PCL Nanocomposite. , 2022, , .		0
2429	Single-molecule DNA sequencing using two-dimensional Ti2C(OH)2 MXene nanopores: A first-principles investigation. Nano Research, 2022, 15, 9843-9849.	5.8	7
2430	Two-dimensional diamonds from sp2-to-sp3 phase transitions. Nature Reviews Materials, 2022, 7, 814-832.	23.3	28
2431	MXenes for advanced separator in rechargeable batteries. Materials Today, 2022, 57, 146-179.	8.3	38
2432	Layered Titanium Niobium Oxides Derived from Solid-Solution Ti–Nb Carbides (MXene) as Anode Materials for Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 8132-8142.	2.5	9

#	Article	IF	CITATIONS
2433	Printing of MXene-based materials and the applications: a state-of-the-art review. 2D Materials, 2022, 9, 042002.	2.0	3
2434	2D MXenes for Hot arrier Photodetection. Advanced Optical Materials, 2022, 10, .	3.6	7
2435	From MAX Phase Carbides to Nitrides: Synthesis of V ₂ GaC, V ₂ GaN, and the Carbonitride V ₂ GaC _{1–<i>x</i>} N <i>_x</i> . Inorganic Chemistry, 2022, 61, 10634-10641.	1.9	11
2436	Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2022, 5, 704-754.	9.9	133
2437	Fabrication of Delaminated 2D Metal Carbide MXenes (Nb ₂ CT <i>_x</i>) by CTABâ€based NO ₂ Gas Sensor with Enhanced Stability. Advanced Materials Interfaces, 2022, 9, .	1.9	17
2438	Thermoelectric properties of 2D semiconducting Pt ₂ CO ₂ . Physica Scripta, 2022, 97, 085706.	1.2	5
2439	Role of ZnO in ZnO Nanoflake/Ti ₃ C ₂ MXene Composites in Photocatalytic and Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 9319-9333.	2.4	29
2440	Dopamine monomer functionalized Ti3C2 nanosheets and their anticorrosion improvement for waterborne epoxy coatings. Journal of Materials Research and Technology, 2022, 20, 210-220.	2.6	10
2441	Tandem Nanostructures: A Prospective Platform for Photoelectrochemical Water Splitting. Solar Rrl, 2022, 6, .	3.1	2
2442	Delaminated V ₂ C MXene Nanostructures Prepared via LiF Salt Etching for Electrochemical Applications. ACS Applied Nano Materials, 2022, 5, 12117-12125.	2.4	10
2443	MXene as Emerging Low Dimensional Material in Modern Energy and Bio Application: A Review. Journal of Nano Research, 0, 74, 109-154.	0.8	0
2444	Ferroelectricity-Coupled 2D-MXene-Based Hierarchically Designed High-Performance Stretchable Triboelectric Nanogenerator. ACS Nano, 2022, 16, 11415-11427.	7.3	31
2445	Surface-Termination Groups' Tuning to Improve the Lithium-Ion-Storage Performance of Ti3C2Tx MXene. Coatings, 2022, 12, 1005.	1.2	3
2446	Billiard Catalysis at Ti3C2 MXene/MAX Heterostructure for Efficient Nitrogen Fixation. Applied Catalysis B: Environmental, 2022, 317, 121755.	10.8	17
2447	Application of MXenes in lithium-sulfur batteries. Science China Technological Sciences, 2022, 65, 2259-2273.	2.0	8
2448	Surface termination effects on the terahertz-range optical responses of two-dimensional MXenes: Density functional theory study. Materials Today Communications, 2022, 32, 103917.	0.9	1
2449	First-principles study on the electronic, magnetic, and Li-ion mobility properties of N-doped Ti2CO2. Solid State Ionics, 2022, 383, 115983.	1.3	1
2450	Na2MnPO4F/Ti3C2-CQDs composite cathode material with enhanced electrochemical properties for lithium/sodium hybrid ion battery. Diamond and Related Materials, 2022, 128, 109216.	1.8	5

#	Article	IF	CITATIONS
2451	Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Materials, 2022, 51, 500-526.	9.5	58
2452	A novel silicon-doped 2D Ti2C MXene monolayer as high capacity stable anode material for lithium ion batteries: Insight from density functional theory study. Applied Surface Science, 2022, 600, 154173.	3.1	18

Effects of soil colloids on the aggregation and degradation of engineered nanoparticles (Ti3C2Tx) Tj ETQq0 0 0 rgBT $\frac{1}{2}$ Overlock 10 Tf 50

2454	Metal Cation Pre-Intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene as Ultra-High Areal Capacitance Electrodes for Aqueous Supercapacitors. ACS Applied Energy Materials, 2022, 5, 9373-9382.	2.5	20
2455	Strain-tunable pure Hâ^' conduction in one-atom-thick hexagonal boron nitride for high-energy–density fuel cells. Chemical Engineering Journal, 2022, 450, 138223.	6.6	3
2456	Tailored architecture of molybdenum carbide/iron oxide micro flowers with graphitic carbon nitride: An electrochemical platform for nano-level detection of organophosphate pesticide in food samples. Food Chemistry, 2022, 397, 133791.	4.2	9
2457	MXene based nanocomposite films. Exploration, 2022, 2, .	5.4	10
2458	Patternable Nanocellulose/Ti ₃ C ₂ T <i>_x</i> Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances. ACS Applied Materials & Interfaces, 2022, 14, 35040-35052.	4.0	35
2459	NiS2 nanoparticles anchored on MXene conductive frameworks with enhanced lithium and sodium storage properties. Ionics, 2022, 28, 4621-4629.	1.2	6
2460	High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Frontiers of Physics, 2022, 17, .	2.4	8
2461	Accordion-like-Ti ₃ C ₂ MXene-Based Gas Sensors with Sub-ppm Level Detection of Acetone at Room Temperature. ACS Applied Electronic Materials, 2022, 4, 4094-4103.	2.0	27
2462	Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. Nanoscale, 2022, 14, 13018-13039.	2.8	22
2463	Impact of C/N Ratio within Armchair Chains on the Stability, Mechanical and Electronic Properties of Ticxn4-X: Using First-Principles Calculation. SSRN Electronic Journal, 0, , .	0.4	0
2464	Two-dimensional van der Waals: characterization and manipulation of superconductivity. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
2465	CHAPTER 3. Synthesis of Two-dimensional Hybrid Materials, Unique Properties, and Challenges. , 2022, , 64-125.		0
2466	Two-dimensional material membranes for gas separation and their applications. Chinese Science Bulletin, 2023, 68, 53-71.	0.4	1
2467	Multifunctional MXene/CNT-based layered film for icing detection, anti-icing, and deicing application. Ceramics International, 2022, 48, 32767-32776.	2.3	8
2468	<i>Ab-initio</i> analysis of zigzag stanene nanoribbons for lithium-ion batteries. International Journal of Modern Physics B, 0, , .	1.0	1

#	Article	IF	CITATIONS
2469	Ti2C-TiO2 MXene Nanocomposite-Based High-Efficiency Non-Enzymatic Glucose Sensing Platform for Diabetes Monitoring. Sensors, 2022, 22, 5589.	2.1	8
2470	A Decade of Germananes: Four Approaches to Their Functionalization. Inorganic Chemistry, 2022, 61, 12425-12432.	1.9	4
2471	Recent advances and trends in the applications of MXene nanomaterials for tissue engineering and regeneration. Journal of Biomedical Materials Research - Part A, 2022, 110, 1840-1859.	2.1	21
2472	MXene-based electrochemical (bio) sensors for sustainable applications: Roadmap for future advanced materials. Nano Materials Science, 2023, 5, 39-52.	3.9	22
2473	MXeneâ€Germanium Schottky Heterostructures for Ultrafast Broadband Selfâ€Driven Photodetectors. Advanced Electronic Materials, 2022, 8, .	2.6	11
2474	P-type ohmic contacts of MBenes with MoS ₂ for nanodevices and logic circuits. 2D Materials, 2022, 9, 045022.	2.0	5
2475	Bioinspired laminated bioceramics with high toughness for bone tissue engineering. International Journal of Energy Production and Management, 2022, 9, .	1.9	3
2476	Advancements in the photocatalytic activity of various bismuth-based semiconductor/Ti3C2 MXene interfaces for sustainable environmental management: A review. Journal of Industrial and Engineering Chemistry, 2022, 115, 26-47.	2.9	10
2477	A Family of 2D-MXenes: Synthesis, Properties, and Gas Sensing Applications. ACS Sensors, 2022, 7, 2132-2163.	4.0	30
2479	Influence of surfaces and interfaces on MXene and MXene hybrid polymeric nanoarchitectures, properties, and applications. Journal of Materials Science, 2022, 57, 14579-14619.	1.7	24
2480	Fundamentals of MXene synthesis. , 2022, 1, 601-614.		241
2481	Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Metals, 2022, 41, 3268-3300.	3.6	51
2482	Fluoride-free synthesis and long-term stabilization of MXenes. Journal of Materials Research, 2022, 37, 3988-3997.	1.2	6
2483	Manipulation of Intrinsic Quantum Anomalous Hall Effect in 2D MoYN ₂ CSCl Mxene. Chinese Physics B, 0, , .	0.7	0
2484	Advances in theoretical calculations of MXenes as hydrogen and oxygen evolution reaction (water) Tj ETQq0 0 0	rgßŢ /Over	lock 10 Tf 50
2485	Understanding the mechanism of Nb-MXene bioremediation with green microalgae. Scientific Reports, 2022, 12, .	1.6	9
2486	Advancements in MXene-Polymer Nanocomposites in Energy Storage and Biomedical Applications. Polymers, 2022, 14, 3433.	2.0	28

2488Theoretical Progress of 2D Sixâ€Memberedâ€Ring Inorganic Materials as Anodes for Nonâ€Lithiumâ€Ion5.26Batteries. Small, 2022, 18, .	Anodes for Nonâ€Lithiumâ€Ion 5.2 6
---	------------------------------------

#	Article	IF	CITATIONS
2489	Three birds with one stone: oxygen self-supply engineering palladium nanocluster/titanium carbide hybrid for single-NIR laser-triggered synergistic photodynamic-photothermal therapy. Nanophotonics, 2022, 11, 5061-5075.	2.9	10
2490	High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Oxidized Mo2TiC2 MXene. Catalysts, 2022, 12, 850.	1.6	11
2491	Wearable Fiber-Based Supercapacitors Enabled by Additive-Free Aqueous MXene Inks for Self-Powering Healthcare Sensors. Advanced Fiber Materials, 2022, 4, 1535-1544.	7.9	19
2492	Recent advances in MXenes and their composites for wearable sensors. Journal of Physics Condensed Matter, 2022, 34, 453001.	0.7	4
2493	MoS ₂ Transistor with Weak Fermi Level Pinning via MXene Contacts. Advanced Functional Materials, 2022, 32, .	7.8	13
2494	A facile pot synthesis of (Ti3AlC2) MAX phase and its derived MXene (Ti3C2Tx). Ceramics International, 2022, 48, 36156-36165.	2.3	11
2495	Nanoarchitectonics of integrated impedance gradient MXene/PPy/polyester composite fabric for enhanced microwave absorption performances. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107163.	3.8	16
2496	Large-Area Ultrastrong and Stiff Layered MXene Nanocomposites by Shear-Flow-Induced Alignment of Nanosheets. ACS Nano, 2022, 16, 12013-12023.	7.3	19
2497	Research Progress on MXene-Based Flexible Supercapacitors: A Review. Crystals, 2022, 12, 1099.	1.0	6
2498	Recent Developments in Titanium Carbide (Ti ₃ C ₂)-Based Layered Double Hydroxide (LDH) Nanocomposites for Energy Storage and Conversion Applications: A Minireview and Perspectives. Energy & Fuels, 2022, 36, 9821-9843.	2.5	14
2499	Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials. Nano-Micro Letters, 2022, 14, .	14.4	74
2500	Facile synthesis of Ti3C2 MXene-modified Bi2.15WO6 nanosheets with enhanced reactivity for photocatalytic reduction of Cr(VI). Advanced Powder Technology, 2022, 33, 103722.	2.0	3
2501	Solvothermal synthesis 2D ultrathin CdSe nanosheets and its photoelectrochemical properties. International Journal of Electrochemical Science, 0, , ArticleID:220913.	0.5	0
2502	Study on the effect of oxidation on the cycling stability of MXene for capacitive deionization. Chemical Physics Letters, 2022, 805, 139948.	1.2	6
2503	N-based single and double transition metal V2N/CrVN monolayers as high capacity anode materials for Li-ion batteries. Materials Chemistry and Physics, 2022, 290, 126531.	2.0	4
2504	Biochar-derived material decorated by MXene/reduced graphene oxide using one-step hydrothermal treatment as high-performance supercapacitor electrodes. Carbon, 2022, 199, 224-232.	5.4	11
2505	2D MXene/graphene nanocomposite preparation and its electrochemical performance towards the identification of nicotine level in human saliva. Journal of Hazardous Materials, 2022, 440, 129705.	6.5	29
2506	DFT study of the structural, electronic, and optical properties of bulk, monolayer, and bilayer Sn-monochalcogenides. Applied Surface Science Advances, 2022, 11, 100275.	2.9	5

#	Article	IF	CITATIONS
2507	Review on 2D MXene and graphene electrodes in capacitive deionization. Environmental Technology and Innovation, 2022, 28, 102858.	3.0	10
2508	Evolution of MXene and its 2D heterostructure in electrochemical sensor applications. Coordination Chemistry Reviews, 2022, 471, 214755.	9.5	29
2509	MXene-derived anatase-TiO2/rutile-TiO2/In2O3 heterojunctions toward efficient hydrogen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129881.	2.3	11
2510	Synergistic interface-pillared Fe-MOF on 2D Ti3C2TX MXene electrode coupling toward high energy density. Applied Surface Science, 2022, 602, 154386.	3.1	11
2511	Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors. Chemical Engineering Journal, 2023, 451, 138687.	6.6	49
2512	MXene nanosheet loaded gold nanocluster catalytic amplification–aptamer SERS quantitative assay platform for isocarbophos. Talanta, 2023, 251, 123771.	2.9	14
2513	Wearable nanofibrous tactile sensors with fast response and wireless communication. Chemical Engineering Journal, 2023, 451, 138578.	6.6	31
2514	MXenes as Emerging 2D Materials for Anticorrosive Application: Challenges and Opportunities. Advanced Materials Interfaces, 2022, 9, .	1.9	8
2515	In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chemical Engineering Journal, 2023, 452, 139392.	6.6	24
2516	Recent Advanced in MXene Research toward Biosensor Development. Critical Reviews in Analytical Chemistry, 0, , 1-18.	1.8	5
2517	MXenes and Other Two-Dimensional Materials for Membrane Gas Separation: Progress, Challenges, and Potential of MXene-Based Membranes. Industrial & Engineering Chemistry Research, 2023, 62, 2309-2328.	1.8	15
2518	Prediction of single-boron anchored on MXene catalysts for high-efficient electrocatalytic nitrogen reduction reaction. Molecular Catalysis, 2022, 531, 112658.	1.0	4
2519	Zirconia-decorated V2CT MXene electrodes for supercapacitors. Journal of Energy Storage, 2022, 55, 105721.	3.9	17
2520	Recent trends in MXenes hybrids as efficient 2D materials for photo- and electrocatalysis hydrogen production. Materials Today Chemistry, 2022, 26, 101108.	1.7	0
2521	Interplay of electronic structure, magnetism, strain, and defects in carbide MXenes. Vacuum, 2022, 206, 111489.	1.6	7
2522	The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor. Applied Surface Science, 2022, 606, 154817.	3.1	20
2523	Electrochemical performance of Ti3C2Tx MXenes obtained via ultrasound assisted LiF-HCl method. Materials Today Communications, 2022, 33, 104384.	0.9	2
2524	Black phosphorus quantum dots modified monolayer Ti3C2Tx nanosheet for field-effect transistor gas sensor. Sensors and Actuators B: Chemical, 2022, 373, 132696.	4.0	20

#	Article	IF	CITATIONS
2525	Poly(3,4-ethylenedioxythiophene) decorated MXene as an alternative counter electrode for dye-sensitized solar cells. Materials Today Chemistry, 2022, 26, 101113.	1.7	6
2526	Molten salt-assisted synthesis of carbo-nitride TiC0.5N0.5 and MAX phases Ti2AlC0.5N0.5 and Ti3AlCN at low temperature under different atmospheres. Materials Today Chemistry, 2022, 26, 101160.	1.7	0
2527	Strain tailored electronic structure and magnetic properties of Fe-doped Zr8C4T8 (TÂ=ÂF, O) monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 145, 115488.	1.3	2
2528	In situ growth of ZnO nanosheets on Ti3C2Tx MXene for Superior-Performance Zinc-Nickel secondary battery. Chemical Engineering Journal, 2023, 451, 139073.	6.6	15
2529	Ni-doped hybrids of TiO2 and two-dimensional Ti3C2 MXene for enhanced photocatalytic performance. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 145, 115476.	1.3	7
2530	The Effect of Electrode Thickness and Electrode/Electrolyte Interface on the Capacitive Deionization Behavior of the Mxene Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
2531	Adsorptive Removal of Sr (Ii) by Means of Multilayer Titanium Carbon Nitrogen (Ti3cntx) Mxene:Box-Behnken Modeling Design and Experimental Study. SSRN Electronic Journal, 0, , .	0.4	0
2532	2D non-carbide MXenes: an emerging material class for energy storage and conversion. Journal of Materials Chemistry A, 2022, 10, 20174-20189.	5.2	13
2533	MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications. Chinese Journal of Catalysis, 2022, 43, 2484-2499.	6.9	33
2534	Tuning the Magnetic Properties of Cr ₂ TiC ₂ T _x Through Surface Terminations: A Theoretical Study. SSRN Electronic Journal, 0, , .	0.4	0
2535	Nature Rubber Latex Templated Ti3c2t X Mxene Foam for Low Cost Producing High Performance Electrode. SSRN Electronic Journal, 0, , .	0.4	0
2536	MXenes: promising 2D materials for wound dressing applications – a perspective review. Materials Advances, 2022, 3, 7445-7462.	2.6	4
2537	Electrical and dielectric properties of nanoparticles-based polymer composites. , 2022, , 197-218.		0
2538	Hierarchical MXene/transition metal oxide heterostructures for rechargeable batteries, capacitors, and capacitive deionization. Nanoscale, 2022, 14, 11923-11944.	2.8	28
2539	Ultrahigh anisotropic carrier mobility in ZnSb monolayers functionalized with halogen atoms. RSC Advances, 2022, 12, 26994-27001.	1.7	2
2540	Exfoliation, delamination, and oxidation stability of molten salt etched Nb ₂ CT _{<i>z</i>} MXene nanosheets. Chemical Communications, 2022, 58, 10202-10205.	2.2	20
2541	Quantum Capacitance Modulation of Mxenes by Metal Atoms Adsorption. SSRN Electronic Journal, 0, ,	0.4	0
254 <u>2</u>	Tungsten Carbides. , 2022, , 11-829.		0

#	Article	IF	CITATIONS
2543	The nearly free electron states and the conductivity limited by electron–phonon scattering of an OH-terminated MXene material, a case study of the Hf ₂ C(OH) ₂ monolayer. Physical Chemistry Chemical Physics, 0, , .	1.3	1
2544	Adsorptive Removal of Sr (Ii) by Means of Multilayer Titanium Carbon Nitrogen (Ti3cntx) Mxene:Box-Behnken Modeling Design and Experimental Study. SSRN Electronic Journal, 0, , .	0.4	0
2545	MXene-Based Nanocomposite Photocatalysts for Wastewater Treatment. , 2022, , 53-81.		1
2546	MXene terminating groups O, –F or –OH, –F or O, –OH, –F, or O, –OH, –Cl?. Journal of Energy Chemistry, 2023, 76, 90-104.	7.1	38
2547	The quest for negative electrode materials for Supercapacitors: 2D materials as a promising family. Chemical Engineering Journal, 2023, 452, 139455.	6.6	34
2548	Selective Reduction of CO ₂ on Ti ₂ C(OH) ₂ MXene through Spontaneous Crossing of Transition States. ACS Applied Materials & amp; Interfaces, 2022, 14, 40913-40920.	4.0	8
2549	Dynamics of Photoexcitations in Ti ₃ C ₂ T _z , Mo ₂ Ti ₂ C ₃ T _z , and Nb ₂ CT _z 2D MXenes. , 2022, , .		0
2550	Ruthenium <scp>singleâ€atom</scp> modulated <scp>Ti₃C₂T_x MXene</scp> for efficient alkaline electrocatalytic hydrogen production. EcoMat, 2023, 5, .	6.8	14
2551	Interlayer and intralayer co-modified flexible V2CTX MXene@SWCNT films for high-power Li-ion capacitors. Journal of Energy Chemistry, 2023, 79, 101-109.	7.1	16
2552	In Silico Band-Gap Engineering of Cr ₂ C MXenes as Efficient Photocatalysts for Water-Splitting Reactions. Journal of Physical Chemistry C, 2022, 126, 14886-14896.	1.5	7
2553	Two-dimensional Functionalized Hexagonal Boron Nitride (2D h-BN) Nanomaterials for Energy Storage Applications. Current and Future Developments in Nanomaterials and Carbon Nanotubes, 2022, , 119-140.	0.1	0
2554	Metal Carbideâ€Based Cocatalysts for Photocatalytic Solarâ€ŧoâ€Fuel Conversion. Small Structures, 2022, 3, .	6.9	17
2555	Few-layer Ti3CN MXene for ultrafast photonics applications in visible band. Journal of Materiomics, 2023, 9, 44-55.	2.8	10
2556	Electric Field Guided Fast and Oriented Assembly of MXene into Scalable Pristine Hydrogels for Customized Energy Storage and Water Evaporation Applications. Advanced Functional Materials, 2022, 32, .	7.8	14
2557	Facile self-assembly of sandwich-like MXene V2CTx/Ag/rGO/MWCNTs layered multiscale structure nanocomposite. Ceramics International, 2023, 49, 1911-1921.	2.3	8
2558	Enzymatic Electrochemical Biosensor from Euâ€Doped SnO ₂ Embedded in MXene for High Performance Sensing Lactate. ChemElectroChem, 2022, 9, .	1.7	9
2559	Deep Learningâ€Enabled MXene/PEDOT:PSS Acoustic Sensor for Speech Recognition and Skinâ€Vibration Detection. Advanced Intelligent Systems, 2022, 4, .	3.3	7
2560	Recent Advances in 2Dâ€MXene Based Nanocomposites for Optoelectronics. Advanced Materials Interfaces, 2022, 9, .	1.9	20

#	Article	IF	CITATIONS
2561	MXene, silicene and germanene: preparation and energy storage applications. Materials Today Energy, 2022, 30, 101144.	2.5	10
2562	MXenes serving aqueous supercapacitors: Preparation, energy storage mechanism and electrochemical performance enhancement. Sustainable Materials and Technologies, 2022, 33, e00490.	1.7	7
2563	Effect of hydrochloric acid and hydrofluoric acid treatment on the morphology, structure and gamma permeability of 2D MXene Ti ₃ C ₂ T _x electrodes. Canadian Metallurgical Quarterly, 0, , 1-22.	0.4	0
2564	Recent Advances in Titanium Carbide MXene (Ti ₃ C ₂ T _{<i>x</i>}) Cathode Material for Lithium–Air Battery. ACS Applied Energy Materials, 2022, 5, 11933-11946.	2.5	9
2565	Recent advance in two-dimensional MXenes: New horizons in flexible batteries and supercapacitors technologies. Energy Storage Materials, 2022, 53, 783-826.	9.5	23
2566	Fast and Highâ€Yield Anhydrous Synthesis of Ti ₃ C ₂ T <i>_x</i> MXene with High Electrical Conductivity and Exceptional Mechanical Strength. Small, 2022, 18, .	5.2	6
2567	2D Xenes: Optical and Optoelectronic Properties and Applications in Photonic Devices. Advanced Functional Materials, 2022, 32, .	7.8	12
2568	Ordered Double Transition Metal MXenes. ChemNanoMat, 2022, 8, .	1.5	7
2569	Surface Structural Features of Two-Dimensional Layered Materials Ti3C2Tx (T = OH, O, F) Investigated by Infrared and Raman Spectroscopy. Journal of Applied Spectroscopy, 2022, 89, 644-651.	0.3	4
2570	Controllable Synthesis of Novel Two-Dimensional Nonlayered β-Bi ₂ Te ₄ O ₁₁ Flakes for Promising Optoelectronic Applications. Chemistry of Materials, 2022, 34, 8905-8916.	3.2	1
2571	Computational Studies on the Electrochemical Performance of Doped and Substituted Ti ₃ C ₂ T _x (T = O,OH) MXene. Journal of the Electrochemical Society, 2022, 169, 090525.	1.3	2
2572	Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. Chemical Record, 2022, 22, .	2.9	16
2573	Biomedical Applications of an Ultra-Sensitive Surface Plasmon Resonance Biosensor Based on Smart MXene Quantum Dots (SMQDs). Biosensors, 2022, 12, 743.	2.3	15
2574	Ultrahigh Energy and Power Densities of d-MXene-Based Symmetric Supercapacitors. Nanomaterials, 2022, 12, 3294.	1.9	4
2575	MXene ink hosting zinc anode for high performance aqueous zinc metal batteries. Journal of Energy Chemistry, 2023, 76, 187-194.	7.1	17
2576	Research Progress on Two-Dimensional Layered MXene/Elastomer Nanocomposites. Polymers, 2022, 14, 4094.	2.0	8
2578	A Critical Review on New and Efficient 2D Materials for Catalysis. Advanced Materials Interfaces, 2022, 9, .	1.9	7
2579	Large Area and Highâ€Efficiency MXene–Silicon Solar Cells by Organic Enhanced Dispersity and Work Function. Solar Rrl, 0, , 2200743.	3.1	1

#	Article	IF	CITATIONS
2580	Nitrogen-Doped Ti ₃ C ₂ MXene Quantum Dots/1D CdS Nanorod Heterostructure Photocatalyst of Highly Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 11540-11552.	2.5	8
2581	Attapulgite Nanorods Incorporated MXene Lamellar Membranes for Enhanced Decontamination of Dye Wastewater. Nanomaterials, 2022, 12, 3094.	1.9	1
2582	Ti-based MXenes for Energy Storage Applications: Structure, Properties, Processing Parameters and Stability. ECS Journal of Solid State Science and Technology, 2022, 11, 093008.	0.9	7
2583	Recent advance in MXenes: New horizons in electrocatalysis and environmental remediation technologies. Progress in Solid State Chemistry, 2022, 68, 100370.	3.9	9
2585	A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano, 2022, 16, 13370-13429.	7.3	142
2586	Mxene structure: A key parameter in corrosion barrier performance of organic coatings. Journal of Industrial and Engineering Chemistry, 2022, 116, 310-320.	2.9	12
2587	Design of single-atom catalysts on S-functionalized Mxenes for enhanced activity and selectivity in N2 electroreduction. Applied Catalysis A: General, 2022, 646, 118886.	2.2	6
2588	Nonlinear optical limiting property of the carboxyl-functionalized Ti₃C₂ MXene nanosheets . Journal of Chemical Physics, 0, , .	1.2	0
2589	Critical Analysis of MXene Production with Inâ€Situ HF Forming Agents for Sustainable Manufacturing. ChemElectroChem, 2022, 9, .	1.7	6
2590	Theoretical study on water gas shift mechanism on MoS2 supported single transition metal M (M=Co,) Tj ETQq1	1 0.78431 1.0	14 ₁ rgBT /Ove
2590 2591	Theoretical study on water gas shift mechanism on MoS2 supported single transition metal M (M=Co,) Tj ETQq1 Non-Negligible Role of Multifunctional MXene Hosts for Li–S Batteries: Anchoring and Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 17066-17075.	1 0.78431 1.0 1.5	14 ₁ gBT /Ove
2590 2591 2592	Theoretical study on water gas shift mechanism on MoS2 supported single transition metal M (M=Co,) Tj ETQq1 Non-Negligible Role of Multifunctional MXene Hosts for Li–S Batteries: Anchoring and Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 17066-17075. Removing roadblocks and opening new opportunities for MXenes. Ceramics International, 2023, 49, 24112-24122.	1 0.78431 1.0 2.3	4 ₁ rgBT /Ove 5 8
2590 2591 2592 2593	Theoretical study on water gas shift mechanism on MoS2 supported single transition metal M (M=Co,) Tj ETQq1 Non-Negligible Role of Multifunctional MXene Hosts for Liâ€"S Batteries: Anchoring and Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 17066-17075. Removing roadblocks and opening new opportunities for MXenes. Ceramics International, 2023, 49, 24112-24122. Prediction of Room-Temperature Ferromagnetic Semiconductors in CrMoA ₂ B ₂ (A = Se and Te; B = Br and I) Monolayers. Journal of Physical Chemistry C, 2022, 126, 17390-17397.	1 0.78431 1.5 2.3 1.5	4 ₁ rgBT /Ove 5 8 6
2590 2591 2592 2593	Theoretical study on water gas shift mechanism on MoS2 supported single transition metal M (M=Co,) Tj ETQq1Non-Negligible Role of Multifunctional MXene Hosts for Liâ€"S Batteries: Anchoring and Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 17066-17075.Removing roadblocks and opening new opportunities for MXenes. Ceramics International, 2023, 49, 24112-24122.Prediction of Room-Temperature Ferromagnetic Semiconductors in CrMoA ₂ B ₂ (A = Se and Te; B = Br and I) Monolayers. Journal of Physical Chemistry C, 2022, 126, 17390-17397.Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Materials, 2022, 53, 827-872.	1 0.78431 1.5 2.3 1.5 9.5	4rgBT /Ove 5 8 6 67
2590 2591 2592 2593 2594	Theoretical study on water gas shift mechanism on MoS2 supported single transition metal M (M=Co,) Tj ETQq1 Non-Negligible Role of Multifunctional MXene Hosts for Liã€"S Batteries: Anchoring and Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 17066-17075. Removing roadblocks and opening new opportunities for MXenes. Ceramics International, 2023, 49, 24112-24122. Prediction of Room-Temperature Ferromagnetic Semiconductors in CrMoA ₂ 8 ₂ (A = Se and Te; B = Br and I) Monolayers. Journal of Physical Chemistry C, 2022, 126, 17390-17397. Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage Materials, 2022, 53, 827-872. Recent advances in titanium carbide MXene-based nanotextures with influential effect of synthesis parameters for solar CO2 reduction and H2 production: A critical review. Journal of Energy Chemistry, 2023, 76, 295-331.	1 0.78431 1.5 2.3 1.5 9.5 7.1	4 rg BT /Ove 5 8 6 67 36
2590 2591 2592 2593 2594 2595	Theoretical study on water gas shift mechanism on MoS2 supported single transition metal M (M=Co,) Tj ETQq1 Non-Negligible Role of Multifunctional MXene Hosts for Liã€"S Batteries: Anchoring and Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 17066-17075. Removing roadblocks and opening new opportunities for MXenes. Ceramics International, 2023, 49, 24112-24122. Prediction of Room-Temperature Ferromagnetic Semiconductors in CrMoA ₂ 8 ₂ (A = Se and Te; B = Br and I) Monolayers. Journal of Physical Chemistry C, 2022, 126, 17390-17397. Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Materials, 2022, 53, 827-872. Recent advances in titanium carbide MXene-based nanotextures with influential effect of synthesis parameters for solar CO2 reduction and H2 production: A critical review. Journal of Energy Chemistry, 2023, 76, 295-331. MXene based hybrid materials for supercapacitors: Recent developments and future perspectives. Journal of Energy Storage, 2022, 55, 105765.	1 9.78431 1.5 2.3 1.5 9.5 7.1 3.9	4 rg BT /Ove 5 8 6 67 36 39
2590 2591 2592 2593 2594 2595 2595	Theoretical study on water gas shift mechanism on MoS2 supported single transition metal M (M=Co.) TJ ETQq1Non-Negligible Role of Multifunctional MXene Hosts for Liã€"S Batteries: Anchoring and Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 17066-17075.Removing roadblocks and opening new opportunities for MXenes. Ceramics International, 2023, 49, 24112-24122.Prediction of Room-Temperature Ferromagnetic Semiconductors in CrMoA ₂ 8 ₂ (A = Se and Te; B = Br and I) Monolayers. Journal of Physical Chemistry C, 2022, 126, 17390-17397.Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Materials, 2022, 53, 827-872.Recent advances in titanium carbide MXene-based nanotextures with influential effect of synthesis parameters for solar CO2 reduction and H2 production: A critical review. Journal of Energy Chemistry, 2023, 76, 295-331.MXene based hybrid materials for supercapacitors: Recent developments and future perspectives. Journal of Energy Storage, 2022, 55, 105765.Two dimensional (2D) MXenes as an emerging class of materials for antimicrobial applications: properties and mechanisms. Journal of Environmental Chemical Engineering, 2022, 10, 108663.	1 9.78431 1.5 2.3 1.5 9.5 7.1 3.9 3.3	4 rg BT /Ove 5 8 6 67 36 39 6

#	Δρτιςι ε	IF	CITATIONS
" 2599	Headway towards contemporary 2D MXene-based hybrid electrodes for alkali-ion batteries. Energy Advances, 2022, 1, 950-979.	1.4	3
2600	Understanding the tunable sodium storage performance in pillared MXenes: a first-principles study. Physical Chemistry Chemical Physics, 2022, 24, 27184-27194.	1.3	2
2601	Max phases and mxenes. , 2023, , 278-289.		0
2602	2D-Double transition metal MXenes for spintronics applications: surface functionalization induced ferromagnetic half-metallic complexes. Journal of Materials Chemistry C, 2022, 10, 17886-17898.	2.7	5
2603	Energy Materials: Fundamentals to Advanced Applications. , 2022, , 1-42.		0
2604	2D Metal Carbides as Components of Photocatalytic Systems for Hydrogen Production: A Review. Theoretical and Experimental Chemistry, 2022, 58, 151-180.	0.2	0
2605	МÐÐ¥ PHASE (MXENE) IN POLYMER MATERIALS. Polymer Journal, 2022, 44, 165-181.	0.3	0
2606	High-Capacity and Long-Lived Silicon Anodes Enabled by Three-Dimensional Porous Conductive Network Design and Surface Reconstruction. ACS Applied Energy Materials, 2022, 5, 13877-13886.	2.5	9
2607	Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metalâ€ion Hybrid Capacitors. Small, 2022, 18, .	5.2	29
2608	Stabilizing Ti ₃ C ₂ T _{<i>x</i>} in a Water Medium under Multiple Environmental Conditions by Scavenging Oxidative Free Radicals. Chemistry of Materials, 2022, 34, 9517-9526.	3.2	7
2609	Synthesis and Chemoresistive Properties of Single-Layer MXene Ti2CTx. Russian Journal of Inorganic Chemistry, 2022, 67, 1838-1847.	0.3	3
2610	MXenes in sulfur cathodes for lithium–sulfur batteries. Journal of Materials Research, 2022, 37, 3890-3905.	1.2	3
2611	Ti3C2Tx supercapacitors with a hexagonal boron nitride separator manufactured by spray coating. , 2022, 7, 81-89.		1
2612	Anchoring Metalâ€Organic Frameworkâ€Derived ZnTe@C onto Elastic Ti ₃ C ₂ T <i>_x</i> MXene with 0D/2D Dual Confinement for Ultrastable Potassiumâ€Ion Storage. Advanced Energy Materials, 2022, 12, .	10.2	18
2613	MXene-coated flexible PVDF membrane as wearable strain sensor. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	3
2614	MXene/Ferrite Magnetic Nanocomposites for Electrochemical Supercapacitor Applications. Micromachines, 2022, 13, 1792.	1.4	3
2615	Advances in Titanium Carbide (Ti ₃ C ₂ T _{<i>x</i>}) MXenes and Their Metal–Organic Framework (MOF)-Based Nanotextures for Solar Energy Applications: A Review. ACS Omega, 2022, 7, 38158-38192.	1.6	23
2616	Two-dimensional photonic MXene nanomedicine. Nanophotonics, 2022, 11, 4995-5017.	2.9	5
#	Article	IF	Citations
------	---	-----	-----------
2617	New Horizons for MXenes in Biosensing Applications. Biosensors, 2022, 12, 820.	2.3	20
2618	Formation of V2AIC MAX phase by SHS involving magnesium reduction of V2O5. Ceramics International, 2023, 49, 6063-6067.	2.3	5
2619	MXene-Based Porous Monoliths. Nanomaterials, 2022, 12, 3792.	1.9	3
2620	Fabrication Strategy of MXenes through Ionic-Liquid-Based Microemulsions toward Supercapacitor Electrodes. Langmuir, 0, , .	1.6	3
2621	Surface Oxygen Passivation-Driven Large Anomalous Hall Conductivity in Early Transition Metal-Based Nitride MXenes: Can AHC Be a Tool to Determine Functional Groups in 2D Ferro(i)magnets?. Journal of Physical Chemistry C, 2022, 126, 18404-18410.	1.5	0
2622	Molybdenum Carbide-Based Photocatalysts: Synthesis, Functionalization, and Applications. Langmuir, 2022, 38, 12739-12756.	1.6	43
2623	Advanced Two-Dimensional Materials for Green Hydrogen Generation: Strategies toward Corrosion Resistance Seawater Electrolysis─Review and Future Perspectives. Energy & Fuels, 2022, 36, 13417-13450.	2.5	18
2624	Recent progress in two dimensional Mxenes for photocatalysis: a critical review. 2D Materials, 2023, 10, 012001.	2.0	8
2625	MXene and functionalized graphene hybridized nanoflakes based silicone-oil nanofluids as new class of media for micro-cooling application. Ceramics International, 2023, 49, 5922-5935.	2.3	5
2626	Dual Protection Strategy by Constructing MXene-Coated Cu ₂ Se–Cu _{1.8} Se Heterojunction and CMK-3 Modification for High-Performance Aluminum-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 48780-48788.	4.0	2
2627	Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review. Inorganics, 2022, 10, 169.	1.2	35
2628	Two dimensional Zr ₂ CO ₂ /H-FeCl ₂ van der Waals heterostructures with tunable band gap, potential difference and magnetic anisotropy. Journal of Physics Condensed Matter, 2023, 35, 024001.	0.7	1
2629	MXenes: Advances in the synthesis and application in supercapacitors and batteries. Journal of Materials Research, 2022, 37, 3865-3889.	1.2	4
2630	MXene Nanosheet/Organics Superlattice for Flexible Thermoelectrics. ACS Applied Nano Materials, 2022, 5, 16872-16883.	2.4	5
2631	Constructing Fast Transmembrane Pathways in a Layered Double Hydroxide Nanosheets/Nanoparticles Composite Film for an Inorganic Anion-Exchange Membrane. ACS Applied Materials & Interfaces, 2022, 14, 51212-51221.	4.0	6
2632	In Situ Nitrogen Functionalization of 2D-Ti3C2Tx-MXenes for High-Performance Zn-Ion Supercapacitor. Molecules, 2022, 27, 7446.	1.7	22
2633	Regenerating MXene by a Facile Chemical Treatment Method. ACS Applied Materials & Interfaces, 2022, 14, 51487-51495.	4.0	4
2634	Integrated novel carbon materials/layered double metal hydroxides component and function towards enhanced electrochemical performance of supercapacitor. Electrochimica Acta, 2022, 435, 141367.	2.6	9

#	Article	IF	CITATIONS
2635	Defect engineered Ti3C2Tx MXene electrodes by phosphorus doping with enhanced kinetics for supercapacitors. Electrochimica Acta, 2022, 435, 141372.	2.6	9
2636	2D Materials towards sensing technology: From fundamentals to applications. Sensing and Bio-Sensing Research, 2022, 38, 100540.	2.2	27
2637	Advances in 2D MXenes-based materials for water purification and disinfection: Synthesis approaches and photocatalytic mechanistic pathways. Journal of Environmental Management, 2022, 324, 116387.	3.8	22
2638	MXenes: An exotic material for hybrid supercapacitors and rechargeable batteries. Journal of Energy Storage, 2022, 56, 105914.	3.9	10
2639	A realistic take on MXenes for electrochemical reduction of carbon dioxide. Diamond and Related Materials, 2022, 130, 109461.	1.8	8
2640	Room-temperature in situ synthesis of MOF@MXene membrane for efficient hydrogen purification. Journal of Membrane Science, 2022, 664, 121097.	4.1	23
2641	Recent advances in MXenes: new horizons in biomedical technologies. Materials Today Chemistry, 2022, 26, 101205.	1.7	5
2642	First-principles studies of the two-dimensional 1H-BeP2 as an electrode material for rechargeable metal ion (Li+, Na+, K+) batteries. Computational Materials Science, 2023, 216, 111868.	1.4	5
2643	Study of pristine and functionalized V2C and Mo2C MXenes as novel electrode material for supercapacitors. Journal of Molecular Graphics and Modelling, 2023, 118, 108366.	1.3	6
2644	Hydrogen trapping potential of a few novel molecular clusters and ions. , 2023, , 297-312.		0
2645	Recently emerging trends in MXene hybrid conductive polymer energy storage nanoarchitectures. Polymer-Plastics Technology and Materials, 2022, 61, 861-887.	0.6	16
2646	Enhanced pseudocapacitive energy storage and thermal stability of Sn ²⁺ ion-intercalated molybdenum titanium carbide (Mo ₂ TiC ₂) MXene. RSC Advances, 2022, 12, 31923-31934.	1.7	10
2647	INVESTIGATION OF THE FEATURES OF THE SURFACE STRUCTURE OF TWODIMENSIONAL LAYERED MATERIALS Ti3C2Tx (T — ОЕ О, F) BY INFRARED SPECTROSCOPY AND RAMAN SPECTROSCOPY METHODS. , 2022, 89, 4	77-484.	1
2648	MXene-Based Nucleic Acid Biosensors for Agricultural and Food Systems. Biosensors, 2022, 12, 982.	2.3	10
2649	MXene-Based Ceramic Nanocomposites Enabled by Pressure-Assisted Sintering. ACS Nano, 0, , .	7.3	3
2651	Realizing superior redox kinetics of metal-metal carbides/carbon coordination supported heterointerface for stable solid-state hybrid supercapacitor. Chemical Engineering Journal, 2023, 454, 140246.	6.6	22
2652	2D Functionalized Germananes: Synthesis and Applications. Advanced Materials, 2023, 35, .	11.1	10
2653	Electronic Nature Transition and Magnetism Creation in Vacancy-Defected Ti ₂ CO ₂ MXene under Biaxial Strain: A DFTB + U Study. ACS Omega, 2022, 7,	1.6	7

#	Article	IF	CITATIONS
2654	Two-dimensional transition metal carbides and nitrides (MXenes) based biosensing and molecular imaging. Nanophotonics, 2022, 11, 4977-4993.	2.9	4
2655	Chemically Exfoliated Titanium Carbide <i>MXene</i> for Highly Sensitive Electrochemical Sensors for Detection of 4-Nitrophenols in Drinking Water. ACS Omega, 2022, 7, 42644-42654.	1.6	9
2656	Emerging MXeneâ€Based Memristors for Inâ€Memory, Neuromorphic Computing, and Logic Operation. Advanced Functional Materials, 2023, 33, .	7.8	32
2657	Ultrafast Spectroscopy of Plasmons and Free Carriers in 2D MXenes. Advanced Materials, 2023, 35, .	11.1	13
2658	Synthesis in hydride cycle of Ti–Al–C based MAX phases from mixtures of titanium carbohydrides and aluminum powders. Ceramics International, 2023, 49, 24171-24178.	2.3	2
2659	Current Scenario of MXene-Based Nanomaterials for Wastewater Remediation: A Review. Chemistry, 2022, 4, 1576-1608.	0.9	8
2660	2D layered MXene/TiO2 nano-heterostructures for photocatalytic H2 generation. , 2022, 7, 91-106.		3
2661	MXene fibers for electronic textiles: Progress and perspectives. Chinese Chemical Letters, 2023, 34, 107996.	4.8	1
2662	Photothermal property investigation of V2CTx MXene and its use for all-optical modulator. Optical Materials, 2022, 134, 113198.	1.7	3
2663	Insights into electronic and magnetic properties of MXenes: From a fundamental perspective. Sustainable Materials and Technologies, 2022, 34, e00516.	1.7	4
2664	Recent advances in the development of MXene-based membranes for oil/water separation: A critical review. Applied Materials Today, 2022, 29, 101674.	2.3	5
2665	MXenes as heterogeneous Fenton-like catalysts for removal of organic pollutants: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108954.	3.3	31
2666	xmlns:mml="http://www.w3.org/1998/Math/MathML"altimg="si90.svg" display="inline" id="d1e1048"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> CO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si90.svg" display="inline"</mml:math 	1.5	2
2667	/> <mml:msub> <mml:mrow /> <mml:mrow> <mml:mn> 2 </mml:mn> </mml:mrow> </mml:mrow </mml:msub> < MXenes: trends, growth, and future directions. , 2022, 7, 75-79.		40
2668	In-situ synthesized gold nanoparticles modified Mo2C MXene for surface enhanced Raman scattering. , 2022, 7, 107-117.		2
2669	MXene-based chemical gas sensors: Recent developments and challenges. Diamond and Related Materials, 2023, 131, 109557.	1.8	12
2670	Recent advances in 2D metal carbides and nitrides (MXenes): synthesis and biological application. Journal of Materials Chemistry B, 2023, 11, 702-715.	2.9	10
2671	Layer-by-layer macroassembly of inorganic CNTs and MXenes with organic PVA for enhancing the interfacial properties of carbon fiber/epoxy composites. Composites Communications, 2023, 37, 101427.	3.3	10

щ.		IF	CITATIONS
#	ARTICLE Broadband Wide-Angle VElocity Selector (BWAVES) neutron spectrometer designed for the SNS	IF	CHATIONS
2672	Second Target Station. EPJ Web of Conferences, 2022, 272, 02003.	0.1	0
2673	Recent development in two-dimensional material-based advanced photoanodes for high-performance dye-sensitized solar cells. Solar Energy, 2023, 249, 606-623.	2.9	18
2674	Current progresses in two-dimensional MXene-based framework: prospects from superficial synthesis to energy conversion and storage applications. Materials Today Chemistry, 2023, 27, 101238.	1.7	8
2675	A novel highly stable two-dimensional boron phase with promising potentials in energy fields. Journal of Materials Chemistry A, 2023, 11, 828-837.	5.2	2
2676	Highly conductive and long-term stable films from liquid-phase exfoliated platinum diselenide. Journal of Materials Chemistry C, 2023, 11, 593-599.	2.7	4
2677	Exploring a novel class of Janus MXenes by first principles calculations: structural, electronic and magnetic properties of Sc ₂ CXT, X = O, F, OH; T = C, S, N. Physical Chemistry Chemical Physics, 2023, 25, 1881-1888.	1.3	5
2678	Titanium-based MAX-phase with sonocatalytic activity for degradation of oxytetracycline antibiotic. Ultrasonics Sonochemistry, 2023, 92, 106255.	3.8	12
2679	Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical Society Reviews, 2023, 52, 795-835.	18.7	18
2680	A review: Study of Mxene and graphene together. Measurement: Sensors, 2023, 25, 100592.	1.3	8
2681	A review of recent progress in 2D MXenes: Synthesis, properties, and applications. Diamond and Related Materials, 2023, 132, 109634.	1.8	8
2682	Design of a stable and porous MF/Ti3C2Tx/PEG composite for the integration of electromagnetic interference shielding and thermal management. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107333.	3.8	9
2683	Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107362.	3.8	66
2684	Screening of single transition metal substitution in two-dimensional Mo2CT MXene electrocatalyst with ultrahigh activity for oxygen reduction reaction. Surfaces and Interfaces, 2023, 36, 102585.	1.5	6
2685	High pressure mediated physical properties of Hf2AB (A = Pb, Bi) via DFT calculations. Materials Today Communications, 2023, 34, 105147.	0.9	2
2686	Next generation 2D materials for anodes in battery applications. Journal of Power Sources, 2023, 556, 232256.	4.0	15
2687	Single Zn atom catalyst on Ti2CN2 MXenes for efficient CO oxidation. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 147, 115595.	1.3	3
2688	Synthesis and characterization MXene-Ferrite nanocomposites and its application for dying and shielding. Inorganic Chemistry Communication, 2023, 148, 110319.	1.8	16
2689	Squaraine dye/Ti3C2Tx MXene organic-inorganic hybrids for photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2023, 633, 218-225.	5.0	10

#	Article	IF	CITATIONS
2690	Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coordination Chemistry Reviews, 2023, 478, 214981.	9.5	54
2691	Investigating suitable medium for the long-duration storage of Ti2CTx MXene. Journal of Alloys and Compounds, 2023, 938, 168471.	2.8	8
2692	Optimising 1T-NiS2 monolayer thermoelectric performance via valley engineering. Materials Today Communications, 2023, 34, 105169.	0.9	5
2693	SnS nanosheets firmly bound in alkali-treated wrinkled MXene framework with enhanced lithium-ion storage. Journal of Colloid and Interface Science, 2023, 633, 737-745.	5.0	6
2694	Polarization-resolved and helicity-resolved Raman spectra of monolayer XP3 (X=Ge and In). Physical Chemistry Chemical Physics, 0, , .	1.3	0
2695	A study of twoâ€dimensional single atomâ€supported <scp>MXenes</scp> as hydrogen evolution reaction catalysts using density functional theory and machine learning. International Journal of Quantum Chemistry, 2023, 123, .	1.0	4
2696	Multiscale Computational Approaches toward the Understanding of Materials. Advanced Theory and Simulations, 2023, 6, .	1.3	4
2697	Flexible Torsional Photoactuators Based on MXene–Carbon Nanotube–Paraffin Wax Films. ACS Applied Materials & Interfaces, 2022, 14, 57171-57179.	4.0	2
2698	MXenes for Sulfurâ€Based Batteries. Advanced Energy Materials, 2023, 13, .	10.2	24
2699	Tuning the Magnetic Properties of Cr2TiC2Tx through Surface Terminations: A Theoretical Study. Nanomaterials, 2022, 12, 4364.	1.9	1
2700	Effect of Ti2CTx MXene Oxidation on Its Gas-Sensitive Properties. Chemosensors, 2023, 11, 13.	1.8	7
2701	Electrically driven active VO2/MXene metasurface for the terahertz modulation. Applied Physics Letters, 2022, 121, .	1.5	4
2702	Double-layer stretching broadens the absorption range of the solar spectrum in XSi2N4. Physica B: Condensed Matter, 2023, 651, 414583.	1.3	1
2703	Electrochemical and Photoelectrochemical Detection of Hydrogen Peroxide Using		9
2,00	Cu ₂ 0/Cu Nanowires Decorated with TiO _{2â[~]<i>x</i>} Deriving from MXenes. ACS Applied Materials & Interfaces, 2022, 14, 57471-57480.	4.0	
2704	Cu ₂ O/Cu Nanowires Decorated with TiO _{2a²²<i>x</i>>} Deriving from MXenes. ACS Applied Materials & amp; Interfaces, 2022, 14, 57471-57480. Towards Greener and More Sustainable Synthesis of MXenes: A Review. Nanomaterials, 2022, 12, 4280.	4.0	35
2704 2705	Cu ₂ O/Cu Nanowires Decorated with TiO _{2a²²<i>>x</i>>} Deriving from MXenes. ACS Applied Materials & amp; Interfaces, 2022, 14, 57471-57480. Towards Greener and More Sustainable Synthesis of MXenes: A Review. Nanomaterials, 2022, 12, 4280. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. International Journal of Nanomedicine, 0, Volume 17, 6181-6200.	4.0 1.9 3.3	35
2704 2705 2706	Cu ₂ O/Cu Nanowires Decorated with TiO _{2a²²<i>x</i>>} Deriving from MXenes. ACS Applied Materials & amp; Interfaces, 2022, 14, 57471-57480. Towards Greener and More Sustainable Synthesis of MXenes: A Review. Nanomaterials, 2022, 12, 4280. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. International Journal of Nanomedicine, 0, Volume 17, 6181-6200. Advanced perspectives on MXene composite nanomaterials: Types synthetic methods, thermal energy utilization and 3D-printed techniques. IScience, 2023, 26, 105824.	4.0 1.9 3.3 1.9	35 8 4

#	Article	IF	CITATIONS
2708	Microwave-absorbing materials for stealth application: a holistic overview. Oxford Open Materials Science, 2023, 3, .	0.5	10
2709	Platinum nanoparticles decorated Nb2CT MXene as an efficient dual functional catalyst for hydrogen evolution and oxygen reduction reaction. International Journal of Hydrogen Energy, 2023, 48, 7698-7707.	3.8	8
2710	Lewis acid molten salts prepared Ti3C2Cl2 MXenes assembling with g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. Ceramics International, 2023, 49, 13042-13049.	2.3	6
2711	Twoâ€Dimensional MXenes for Energy Storage: Computational and Experimental Approaches. ChemistrySelect, 2022, 7, .	0.7	4
2712	Broadband Nonlinear Response and Ultrafast Photonics Applications in Few-Layer MBene. ACS Photonics, 2023, 10, 2353-2362.	3.2	6
2713	Applications of advanced MXene-based composite membranes for sustainable water desalination. Chemosphere, 2023, 314, 137643.	4.2	17
2714	Excitonic Effects in the Optical Properties of Scandium and Hafnium MXene Semiconductors from Firstâ€Principles Calculations. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	0
2715	Adsorption of Sr(II) in aqueous solution by multilayer titanium carbon nitrogen (Ti3CNTx) MXene: Box-Behnken modeling design and experimental study. Journal of Environmental Chemical Engineering, 2022, 10, 109019.	3.3	0
2716	A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage. Nano-Micro Letters, 2023, 15, .	14.4	29
2717	Ammonia Modified MXene/Aniline Copolymers Electrochemical Sensors for Ultrasensitive Sensing Glutathione. ChemElectroChem, 2022, 9, .	1.7	2
2718	Bioactive MXene Promoting Angiogenesis and Skeletal Muscle Regeneration through Regulating M2 Polarization and Oxidation Stress. Advanced Healthcare Materials, 2023, 12, .	3.9	12
2719	Metal Ion-Induced Porous MXene for All-Solid-State Flexible Supercapacitors. Nano Letters, 2023, 23, 283-290.	4.5	25
2720	Interfacial Engineering of Au@Nb ₂ CT _{<i>x</i>} -MXene Modulates the Growth Strain, Suppresses the Auger Recombination, and Enables an Open-Circuit Voltage of over 1.2 V in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 3961-3973.	4.0	5
2721	Study of the interaction mechanism between human serum albumin and Ti3C2Tx with different degrees of oxidation by multi-spectroscopic method and molecular docking. Journal of Hazardous Materials Advances, 2023, 9, 100236.	1.2	1
2722	Fiber-optic lead ion sensor based on MXene film integrated michelson interference structure. Physica Scripta, 2023, 98, 025708.	1.2	3
2723	Recent Trends in Metal Nanoparticles Decorated 2D Materials for Electrochemical Biomarker Detection. Biosensors, 2023, 13, 91.	2.3	11
2724	Construction of Hierarchical PdAgAu Nanorings/MXene–GO Electrocatalysts for Efficient and Ultrastable Hydrogen Evolution Reaction. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	2
2725	Firstâ€principles Density Functional Theory Elucidation of the Hydrogen Evolution Reaction on TMâ€promoted TiC ₂ (TM=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au). ChemPhysChem, 2023, 24, .	1.0	2

#	Article	IF	CITATIONS
2726	Two-dimensional MBenes with ordered metal vacancies for surface-enhanced Raman scattering. Nanoscale, 2023, 15, 2779-2787.	2.8	6
2727	photocatalytic degradation of TiO2 via incorporating Ti3C2 MXene for methylene blue removal from water. Catalysis Communications, 2023, 174, 106594.	1.6	15
2728	Recent Advances for the Synthesis and Applications of 2-Dimensional Ternary Layered Materials. Research, 2023, 6, .	2.8	8
2729	Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance. Frontiers of Physics, 2023, 18, .	2.4	5
2730	Vibrational properties of TiVC-based Mxenes by first-principles calculation and experiments. Materials Today Communications, 2023, 34, 105396.	0.9	0
2731	Ion-Selective Separation Using MXene-Based Membranes: A Review. , 2023, 5, 341-356.		25
2732	Recovery of oxidized two-dimensional MXenes through high frequency nanoscale electromechanical vibration. Nature Communications, 2023, 14, .	5.8	8
2733	Constructing Exfoliated, Ti ₃ C ₂ T _{<i>x</i>} MXene-Dispersed, LaCoO ₃ and pC ₃ N ₄ -Based Nanocomposites with In Situ Grown Titania through Etching/Oxidation for Stimulating Solar H ₂ Production. Energy & amp; Fuels, 2023, 37, 1421-1440.	2.5	8
2734	Application of SERS in Inâ \in Vitro Biomedical Detection. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
2735	Constructing MXene hydrogels and aerogels for rechargeable supercapacitors and batteries. Journal of Materials Chemistry C, 2023, 11, 2414-2429.	2.7	15
2736	Interconnected Metallic Membrane Enabled by MXene Inks Toward Highâ€Rate Anode and Highâ€Voltage Cathode for Liâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	5
2737	Recent Escalations in MXenes: From Fundamental to Applications. , 2023, , 205-239.		0
2738	Impact of C/N ratio within armchair chains on the stability, mechanical and electronic properties of TiC N4-: Using first-principles calculation. Solid State Communications, 2023, , 115079.	0.9	1
2739	Flexible two-dimensional MXene-based antennas. Nanoscale Horizons, 2023, 8, 309-319.	4.1	1
2740	MXenes Antibacterial Properties and Applications: A Review and Perspective. Small, 2023, 19, .	5.2	49
2741	Bifunctional electrocatalytic activity of two-dimensional multilayered vanadium carbide (MXene) for ORR and OER. Materials Chemistry and Physics, 2023, 296, 127272.	2.0	11
2742	Self-intercepting interference of hydrogen-bond induced flexible hybrid film to facilitate lithium extraction. Chemical Engineering Journal, 2023, 458, 141403.	6.6	11
2743	Recent advances in membrane-based materials for desalination and gas separation. Journal of Cleaner Production, 2023, 387, 135845.	4.6	19

#	Article	IF	CITATIONS
2744	Structural, optical, electronic, elastic properties and population inversion of novel 2D carbides and nitrides MXene: A DFT study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 289, 116230.	1.7	5
2745	Tribology of polymer-based nanocomposites reinforced with 2D materials. Materials Today Communications, 2023, 34, 105397.	0.9	7
2746	Emerging 2D MXene -based adsorbents for hazardous pollutants removal. Desalination, 2023, 549, 116314.	4.0	17
2747	MXenes-based nanomaterials for biosensing and biomedicine. Coordination Chemistry Reviews, 2023, 479, 215002.	9.5	28
2748	Improving the performance of lithium-ion batteries based on be-doped zigzag stanene nanoribbons: Ab-initio study. Inorganic Chemistry Communication, 2023, 149, 110371.	1.8	5
2749	Influence of N-doped concentration on the electronic properties and quantum capacitance of Hf2CO2 MXene. Vacuum, 2023, 210, 111826.	1.6	7
2750	In-situ grown metal-organic framework derived CoS-MXene pseudocapacitive asymmetric supercapacitors. Journal of Energy Storage, 2023, 60, 106537.	3.9	11
2751	Ti3C2 MXene supporting platinum nanoparticles as rapid electrons transfer channel and active sites for boosted photocatalytic water splitting over g-C3N4. Journal of Colloid and Interface Science,	5.0	23
2752	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si100.svg" display="inline" id="d1e1224"> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mn>2<td>1.9 1.9 1.9</td><td>nrgw></td></mml:mn></mml:mrow></mml:msub>	1.9 1.9 1.9	nrgw>
2753	Journal of Physics and Chemistry of Solids, 2023, 176, 111210. Recent Advances and Progress of Conducting Polymer-Based Hydrogels in Strain Sensor Applications. Gels, 2023, 9, 12.	2.1	6
2754	Synthesis of MXene Nano sheets and their modification for hydrogen sensing applications. International Journal of Hydrogen Energy, 2023, 48, 38118-38124.	3.8	3
2755	Enhanced Catalytic Effect of Ti2CTx-MXene on Thermal Decomposition Behavior of Ammonium Perchlorate. Materials, 2023, 16, 344.	1.3	2
2756	Nanocarbons (graphene, etc.), MXenes for energy storage applications. , 2023, , 275-320.		0
2757	Tera-hertz (THz) catalysis on MXene for enhanced selectivity from CO ₂ to CO. Inorganic Chemistry Frontiers, 0, , .	3.0	0
2758	The unexpected photoelectrochemical activity of MAX phases: the role of oxide impurities. Journal of Materials Chemistry A, 2023, 11, 3080-3090.	5.2	3
2759	Advanced materials for smart devices. , 2023, , 457-485.		0
2760	Green and scalable electrochemical routes for costâ€effective mass production of MXenes for supercapacitor electrodes. , 2023, 5, .		12
2761	Two-dimensional nanomaterial MXenes for efficient gas separation: a review. Nanoscale, 2023, 15, 4170-4194.	2.8	21

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2762	All-Inkjet-Printed Ti3C2 MXene Capacitor for Textile Energy Storage. Coatings, 2023, 13	, 230.	1.2	4
2763	MXene-Based Nanomaterials for Multifunctional Applications. Materials, 2023, 16, 1138	3.	1.3	25
2764	Two-Dimensional Ordered Double-Transition Metal Carbides for the Electrochemical Nite Reduction Reaction. ACS Applied Materials & Interfaces, 2023, 15, 6797-6806.	rogen	4.0	14
2765	Recent Progress in Metal Phosphorous Chalcogenides: Potential Highâ€Performance Ele Small, 2023, 19, .	ectrocatalysts.	5.2	39
2766	Cathode materials for lithium-sulfur battery: a review. Journal of Solid State Electrochem 27, 813-839.	nistry, 2023,	1.2	14
2767	Carbon Nanostructure Embedded Novel Sensor Implementation for Detection of Aroma Organic Compounds: An Organized Review. ACS Omega, 2023, 8, 4436-4452.	tic Volatile	1.6	21
2768	Applications of MXene-based memristors in neuromorphic intelligence applications. Cor Physics, 0, , 1-19.	itemporary	0.8	1
2769	3D printing of 2D nano-inks for multifarious applications. , 2023, , 91-124.			2
2770	Application of 2D MXene in Organic Electrode Materials for Rechargeable Batteries: Rec and Perspectives. Advanced Functional Materials, 2023, 33, .	ent Progress	7.8	13
2771	Fundamentals of supercapacitors. , 2023, , 83-100.			1
2772	Recent Advances in the Synthesis of MXene Quantum Dots. Chemical Record, 2023, 23	,.	2.9	7
2773	MXenes for energy applications. , 2023, , 475-502.			1
2774	Structural Stability and Electronic Transport Properties of Nb ₂ Câ€MXenes Pressure. Advanced Electronic Materials, 2023, 9, .	under High	2.6	1
2775	Role of Oxygen in the Ti ₃ AlC ₂ MAX Phase in the Oxide Forma Conductivity of Ti ₃ C ₂ -Based MXene Nanosheets. ACS Applied Interfaces, 2023, 15, 8393-8405.	tion and 1 Materials &	4.0	9
2776	Ti3C2Tx MXenes – An effective and long-storable oil lubricant additive. Tribology Inter 180, 108273.	mational, 2023,	3.0	4
2777	Influence of C-vacancy-line defect on electronic and optical properties and quantum cap Ti2CO2 MXene: A first-principles study. Journal of Physics and Chemistry of Solids, 2023	pacitance of 3, 176, 111254.	1.9	3
2778	Quantum capacitance modulation of MXenes by metal atoms adsorption. Applied Surfa 618, 156586.	ce Science, 2023,	3.1	10
2779	Advanced growth of 2D MXene for electrochemical sensors. Environmental Research, 20 115279.	023, 222,	3.7	25

#	Article	IF	CITATIONS
2780	MXene-based materials for removal of antibiotics and heavy metals from wastewater– a review. Water Resources and Industry, 2023, 29, 100202.	1.9	34
2781	Effects of surface compositions and interlayer distance on electrochemical performance of Mo2CTx MXene as anode of Li-ion batteries. Journal of Physics and Chemistry of Solids, 2023, 176, 111238.	1.9	16
2782	3D Printed Supercapacitors. Springer Series in Materials Science, 2023, , 143-166.	0.4	0
2783	Can magnetotransport properties provide insight into the functional groups in semiconducting MXenes?. Nanoscale, 2023, 15, 10254-10263.	2.8	1
2784	CNT–MXene Ultralight Membranes: Fabrication, Surface Nano/Microstructure, 2D–3D Stacking Architecture, Ion-Transport Mechanism, and Potential Application as Interlayer for Li–O2 Batteries. Nanoscale, 0, , .	2.8	1
2785	Recent advances in the synthesis and electrocatalytic application of MXene materials. Chemical Communications, 2023, 59, 3968-3999.	2.2	15
2786	Recent Progress in Emerging Novel MXenes Based Materials and their Fascinating Sensing Applications. Small, 2023, 19, .	5.2	19
2787	Enabling the transition to ductile MAX phases and the exfoliation to MXenes via tuning the A element. Journal of the American Ceramic Society, 2023, 106, 3765-3776.	1.9	4
2788	Ferroelectric Materials and Their Applications in Activation of Small Molecules. ACS Omega, 2023, 8, 6164-6174.	1.6	8
2789	MXene Derivatives for Energy Storage and Conversions. Small Methods, 2023, 7, .	4.6	12
2790	Computational Design of a Two-Dimensional Copper Carbide Monolayer as a Highly Efficient Catalyst for Carbon Monoxide Electroreduction to Ethanol. ACS Applied Materials & Interfaces, 2023, 15, 13033-13041.	4.0	3
2791	Rational design of flower-like MnO ₂ /Ti ₃ C ₂ T _x composite electrode for high performance supercapacitors. Nanotechnology, 2023, 34, 255602.	1.3	1
2792	MXenes and their interfaces for the taming of carbon dioxide & nitrate: A critical review. Coordination Chemistry Reviews, 2023, 483, 215094.	9.5	19
2793	Theoretical study of the mechanism of the hydrogen evolution reaction on the V2C MXene: Thermodynamic and kinetic aspects. Journal of Catalysis, 2023, 421, 252-263.	3.1	11
2794	Tuning the pore size distribution of Ti3C2T porous film for high capacity supercapacitor electrode. Journal of Electroanalytical Chemistry, 2023, 936, 117358.	1.9	3
2795	Structural, physical, wear and anticorrosive properties of electroactive polyamide/Ti3C2Tx MXene nanocomposite. Progress in Organic Coatings, 2023, 178, 107496.	1.9	3
2796	A holistic review of MXenes for solar device applications: Synthesis, characterization, properties and stability. FlatChem, 2023, 39, 100493.	2.8	6
2797	Smart free-standing film force-assembled by Ti3C2Tx/CNC with high sensitivity to humidity and near-infrared light. European Polymer Journal, 2023, 189, 111891.	2.6	0

#	Article	IF	CITATIONS
2798	Recent advances in MXene-based membrane for solar-driven interfacial evaporation desalination. Chemical Engineering Journal, 2023, 464, 142508.	6.6	31
2799	MXenes: from past to future perspectives. Chemical Engineering Journal, 2023, 463, 142351.	6.6	14
2800	Thinking green with 2-D and 3-D MXenes: Environment friendly synthesis and industrial scale applications and global impact. Renewable and Sustainable Energy Reviews, 2023, 178, 113238.	8.2	16
2801	A review on MXene and its' composites for electromagnetic interference (EMI) shielding applications. Carbon, 2023, 208, 170-190.	5.4	51
2802	MXenes for perovskite solar cells: Progress and prospects. Journal of Energy Chemistry, 2023, 81, 443-461.	7.1	3
2803	Graphite-ring-stacked carbon nanotubes synthesized during the rescue of Ti3C2Tx MXene for dual-peak electromagnetic wave absorption. Journal of Alloys and Compounds, 2023, 945, 169342.	2.8	5
2804	Development of high-capacity surface-engineered MXene composite for heavy metal Cr (VI) removal from industrial wastewater. Chemosphere, 2023, 326, 138448.	4.2	5
2805	Advances in MXenes synthesis and MXenes derived electrocatalysts for oxygen electrode in metal-air batteries: A review. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 292, 116400.	1.7	5
2806	The effect of electrode thickness and electrode/electrolyte interface on the capacitive deionization behavior of the Ti3C2Tx MXene electrodes. Journal of Alloys and Compounds, 2023, 947, 169701.	2.8	5
2807	Application of titanium carbide/nitride (MXene)-based NPs in adsorption of radionuclides and heavy metal ions for wastewater remediation: A review. Case Studies in Chemical and Environmental Engineering, 2023, 7, 100326.	2.9	3
2808	Room-temperature prepared MXene foam via chemical foaming methods for high-capacity supercapacitors. Journal of Alloys and Compounds, 2023, 945, 169279.	2.8	4
2809	Involvement of metal organic frameworks in wearable electrochemical sensor for efficient performance. Trends in Environmental Analytical Chemistry, 2023, 38, e00200.	5.3	22
2810	Two-dimensional transition metal carbide (Ti0.5V0.5)3C2Tx MXene as high performance electrode for flexible supercapacitor. Journal of Colloid and Interface Science, 2023, 639, 233-240.	5.0	11
2811	Two-dimensional MXene with multidimensional carbonaceous matrix: A platform for general-purpose functional materials. Progress in Materials Science, 2023, 135, 101105.	16.0	43
2812	Dual char-forming strategy driven MXene-based fire-proofing epoxy resin coupled with good toughness. Journal of Colloid and Interface Science, 2023, 640, 434-444.	5.0	11
2813	Engineering 3D graphene/siloxene hybrid membrane for flexible all-solid-state symmetric supercapacitors. Journal of Alloys and Compounds, 2023, 947, 169489.	2.8	3
2814	Bifunctional electrocatalytic water splitting augmented by cobalt-nickel-ferrite NPs-supported fluoride-free MXene as a novel electrocatalyst. Fuel, 2023, 346, 128305.	3.4	20
2815	Application of Ti3C2Tx in a C band Er-doped fiber laser. Optics and Laser Technology, 2023, 163, 109455.	2.2	2

#	Article	IF	CITATIONS
2816	Advances in the synthesis and applications of 2D MXene-metal nanomaterials. Surfaces and Interfaces, 2023, 38, 102873.	1.5	3
2817	Anti-stacking synthesis of MXene-reduced graphene oxide sponges for aqueous zinc-ion hybrid supercapacitor with improved performance. Journal of Materials Science and Technology, 2023, 154, 22-29.	5.6	3
2818	Insights into the impact of interlayer spacing on MXene-based electrodes for supercapacitors: A review. Journal of Energy Storage, 2023, 65, 107341.	3.9	11
2819	Time-of-flight photoconductivity investigation of high charge carrier mobility in Ti3C2Tx MXenes thin-film. Diamond and Related Materials, 2023, 135, 109879.	1.8	3
2820	Recent advances of flexible MXene physical sensor to wearable electronics. Materials Today Communications, 2023, 35, 106014.	0.9	3
2821	Humidity tuning CO oxidation on Ti decorated V2CO2 monolayer (MXene) catalyst: A density functional calculation study. Applied Surface Science, 2023, 616, 156497.	3.1	2
2822	Vertical porous Ti3CNTx/rGO hybrid aerogels with enhanced capacitive performance. Chemical Engineering Journal, 2023, 459, 141528.	6.6	5
2823	Theoretical study of M2CO2 MXenes stability and adsorption properties for heavy metals ions removal from water. Computational Materials Science, 2023, 220, 112042.	1.4	2
2824	Structural, optical, and mechanical characterization of PMMA-MXene composites functionalized with MEMO silane. Nanocomposites, 2022, 8, 215-226.	2.2	3
2825	Novel three-dimensional Ti3C2-MXene embedded zirconium alginate aerogel adsorbent for efficient phosphate removal in water. Chemosphere, 2023, 319, 138016.	4.2	7
2826	Deep ultraviolet optical limiting materials: 2D Ti ₃ C ₂ and Ti ₃ AlC ₂ nanosheets. Journal of Materials Chemistry C, 2023, 11, 2355-2363.	2.7	6
2827	2D Transition Metal Carbides (MXenes) for Third Order Nonlinear Optics: Status and Prospects. Laser and Photonics Reviews, 2023, 17, .	4.4	10
2828	Predicting chemical exfoliation: fundamental insights into the synthesis of MXenes. Npj 2D Materials and Applications, 2023, 7, .	3.9	10
2829	MXene-based nanocomposite for electrocatalytic reduction of CO2: Experimental and theoretical results. FlatChem, 2023, 38, 100481.	2.8	4
2830	MXene: fundamentals to applications in electrochemical energy storage. , 2023, 18, .		15
2831	Core–shell mechanism of etching V2AlC MAX phase to V2CTz MXenes. Journal of Materials Research, 2023, 38, 1527-1542.	1.2	4
2832	Densely Packed Fiber Electrodes Composed of Liquid Crystalline MXenes for Highâ€Arealâ€Density Supercapacitors. Energy Technology, 2023, 11, .	1.8	4
2833	Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment. Environmental Science and Pollution Research, 2023, 30, 39377-39417.	2.7	21

#	Article		CITATIONS
2834	In-situ-foaming synthesis of cheese-like Fe3S4/Ti3C2T electrode material with both high energy and power density for Al/Zn-ion supercapacitors. Journal of Materials Research and Technology, 2023, 23, 3547-3556.	2.6	4
2835	Freeing Fluoride Termination of Ti ₃ C ₂ T _{<i>x</i>} via Electrochemical Etching for High-Performance Capacitive Deionization. ACS Applied Materials & Interfaces, 2023, 15, 9203-9211.	4.0	8
2836	Electrochemical production of two-dimensional atomic layer materials and their application for energy storage devices. Chemical Physics Reviews, 2023, 4, .	2.6	0
2837	Scalable Synthesis of 2D Mo ₂ C and Thicknessâ€Dependent Hydrogen Evolution on Its Basal Plane and Edges. Advanced Materials, 2023, 35, .	11.1	24
2838	Emerging Trends and Recent Progress of MXene as a Promising 2D Material for Point of Care (POC) Diagnostics. Diagnostics, 2023, 13, 697.	1.3	6
2839	A Critical Review of Two-Dimensional Nanomaterial MXenes and their Applications in Water Treatment. Recent Patents on Engineering, 2024, 18, .	0.3	1
2840	Tunable band gap by chemical functionalization of the Sr2S monolayer from first-principles calculations. Inorganic Chemistry Communication, 2023, 150, 110529.	1.8	1
2841	Chemoresistive Properties of V2CTx MXene and the V2CTx/V3O7 Nanocomposite Based on It. Chemosensors, 2023, 11, 142.	1.8	7
2842	Deintercalation of Al from MoAlB by molten salt etching to achieve a Mo ₂ AlB ₂ compound and 2D MoB nanosheets. Journal of Advanced Ceramics, 2023, 12, 943-953.	8.9	7
2843	Beyond Ti-based MXenes: A review of emerging non-Ti based metal-MXene structure, properties, and applications. Materials Today, 2023, 63, 313-338.	8.3	39
2844	Enhancing the Chemical Stability of MXene Through Synergy of Hydrogen Bond and Coordination Bond in Aqueous Solution. Small Methods, 2023, 7, .	4.6	12
2845	Bis(2-hydroxyethyl) Terephthalate-Modified Ti ₃ C ₂ T _{<i>x</i>>/Sub>/Graphene Nanohybrids as Three-Dimensional Functional Chain Extenders for Polyurethane Composite Films with Strain-Sensing and Conductive Properties ACS Applied Materials & amp: Interfaces 2023, 15, 12403-12413}	4.0	5
2846	State-of-the-art: MXene structures in nano-oncology. , 2023, 147, 213354.		5
2847	NiO@MXene Nanocomposite as an Anode with Enhanced Energy Density for Asymmetric Supercapacitors. Energy & Fuels, 2023, 37, 4658-4670.	2.5	8
2848	A review of low-cost approaches to synthesize graphene and its functional composites. Journal of Materials Science, 2023, 58, 4359-4383.	1.7	5
2849	Synthesis of Ti3AlC2 max phase under vacuum, its structural characterization and using for Ti3C2Tx MXene preparation. Thin Solid Films, 2023, 771, 139759.	0.8	5
2850	High-Capacity Ion Batteries Based on Ti2C MXene and Borophene First Principles Calculations. Inorganics, 2023, 11, 95.	1.2	1
2851	Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. Nanomaterials, 2023, 13, 850.	1.9	14

#	Article		CITATIONS
2852	Improvement in <scp>alkaliâ€resistance</scp> of basalt <scp>fiberâ€reinforced</scp> polymer by <scp>Ti₃C₂T_X</scp> (MXene) modified matrix. Polymer Composites, 2023, 44, 2581-2591.	2.3	3
2853	Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	32
2854	Molten-salt assisted synthesis of two-dimensional materials and energy storage application. Materials Today Chemistry, 2023, 29, 101419.	1.7	3
2855	Recent Advances in Two-Dimensional MXene for Supercapacitor Applications: Progress, Challenges, and Perspectives. Nanomaterials, 2023, 13, 919.	1.9	10
2856	Roles of MXenes in biomedical applications: recent developments and prospects. Journal of Nanobiotechnology, 2023, 21, .	4.2	34
2857	In-situ growth of SnO2 nanoparticles on Nb2CTx nanosheets as highly sensitive electrochemical sensing platform for organophosphorus pesticide detection. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113238.	2.5	3
2858	Progress of high performance Ti ₃ C ₂ T _{<i>x</i>} MXene nanocomposite films for electromagnetic interference shielding. Nanoscale, 2023, 15, 5579-5597.	2.8	11
2859	Two-dimensional transition metal MXene-based gas sensors: A review. Chinese Chemical Letters, 2024, 35, 108286.	4.8	9
2860	The synthesis of MXenes. MRS Bulletin, 2023, 48, 245-252.	1.7	5
2861	SnSe quantum dots anchored on few-layered Ti ₃ C ₂ as anodes for sodium ion batteries with enhanced cycling stability. New Journal of Chemistry, 2023, 47, 6540-6550.	1.4	1
2862	Photo-response of water intercalated Ti ₃ C ₂ O ₂ MXene. Physical Chemistry Chemical Physics, 2023, 25, 9522-9531.	1.3	0
2863	Computational studies on functionalized Janus MXenes MM′CT ₂ , (M, M′ = Zr, Ti, Hf, M ≠M 2023, 13, 7972-7979.	′; T) Tj E 1.7	TQq1 1 0.7 3
2864	Retrospective on Exploring MXene-Based Nanomaterials: Photocatalytic Applications. Molecules, 2023, 28, 2495.	1.7	2
2865	Two-dimensional MXenes. MRS Bulletin, 2023, 48, 238-244.	1.7	21
2866	Interactions of Ti ₃ C ₂ MXene with Aqueous Zwitterionic Biological Buffers: Implications for Applications in Biological Systems. ACS Applied Nano Materials, 2023, 6, 4898-4909.	2.4	3
2867	Band Structure Engineering of MXenes for Lowâ€Loss Visible Epsilonâ€Nearâ€Zero Properties by Firstâ€Principles Calculation. Advanced Electronic Materials, 2023, 9, .	2.6	0
2868	Recent trends in bone defect repair and bone tissue regeneration of the two-dimensional material MXene. Ceramics International, 2023, 49, 19578-19594.	2.3	3
2869	2D Layered Nanomaterials as Fillers in Polymer Composite Electrolytes for Lithium Batteries. Advanced Energy Materials, 2023, 13, .	10.2	21

#	ARTICLE		CITATIONS
2870	Applications of MXene and its modified materials in skin wound repair. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	4
2871	In Situ Confined Growth of Co ₃ O ₄ –TiO ₂ /C S-Scheme Nanoparticle Heterojunction for Boosted Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2023, 127, 5289-5298.	1.5	6
2872	Multiscale Dotâ€Wireâ€Sheet Heterostructured Nitrogenâ€Doped Carbon Dotsâ€Ti ₃ C ₂ T _{<i>x</i>} /Silk Nanofibers for Highâ€Performance Fiberâ€Shaped Supercapacitors. Angewandte Chemie, 0, , .	1.6	1
2873	Multiscale Dotâ€Wireâ€Sheet Heterostructured Nitrogenâ€Doped Carbon Dotsâ€Ti ₃ C ₂ T _{<i>x</i>} /Silk Nanofibers for Highâ€Performance Fiberâ€Shaped Supercapacitors. Angewandte Chemie - International Edition, 2023, 62, .	7.2	29
2874	Electrostatic self-assembled MXene–graphene oxide composite electrodes for planar supercapacitors. Applied Physics Letters, 2023, 122, .	1.5	3
2875	Fusing a machine learning strategy with density functional theory to hasten the discovery of 2D MXene-based catalysts for hydrogen generation. Journal of Materials Chemistry A, 2023, 11, 8091-8100.	5.2	21
2876	Enhancing the electrochemical performance of d-Mo2CTx MXene in lithium-ion batteries and supercapacitors by sulfur decoration. Ceramics International, 2023, 49, 19737-19745.	2.3	7
2877	Ultrafast dynamics of photoexcitations in 2D Ti3C2Tz, Mo2Ti2C3Tz, and Nb2CTz MXenes. , 2023, , .		0
2878	Enhanced Adsorption Performance for Organic Materials by Electron Beam-Treated Ti3C2Tx MXene. Journal of the Korean Society for Precision Engineering, 2023, 40, 189-196.	0.1	0
2879	Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. Nano-Micro Letters, 2023, 15, .	14.4	24
2880	Textile Fabrics as Electromagnetic Shielding Materials—A Review of Preparation and Performance. Fibers, 2023, 11, 29.	1.8	9
2881	Molten salt derived Mo ₂ AlB ₂ with excellent HER catalytic performance. Materials Research Letters, 2023, 11, 571-577.	4.1	5
2882	Nonâ€van der Waals 2D Materials for Electrochemical Energy Storage. Advanced Functional Materials, 2023, 33, .	7.8	9
2883	MXene-Based Materials for Multivalent Metal-Ion Batteries. Batteries, 2023, 9, 174.	2.1	10
2884	MXene-based nanocomposite for the photocatalytic CO2 reduction: Comprehensive review. Molecular Catalysis, 2023, 541, 113085.	1.0	1
2885	Magnetic Ti ₃ C ₂ MXene Nanosheets Prepared for Enrichment of Phosphopeptides. ACS Applied Materials & amp; Interfaces, 2023, 15, 16505-16514.	4.0	5
2886	Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science, 2023, 379, 1242-1247.	6.0	133
2887	Reproducible 2D Ti ₃ C ₂ T _{<i>x</i>} for perovskite-based photovoltaic device. RSC Advances, 2023, 13, 9555-9562.	1.7	1

#	Article		CITATIONS
2888	Titanium–Tantalum Double-Ordered MXene Nanosheets as Supercapacitor Electrodes. ACS Applied Nano Materials, 2023, 6, 5224-5232.	2.4	3
2889	Recent Advances in MXene-Based Nanocomposites for Wastewater Purification and Water Treatment: A Review. Water (Switzerland), 2023, 15, 1267.	1.2	5
2890	Facile fabrication of Mxene coated metal mesh-based material for oil /water emulsion separation. Ecotoxicology and Environmental Safety, 2023, 255, 114824.	2.9	2
2891	Ti3CNT MXene/rGO scaffolds directing the formation of a robust, layered SEI toward high-rate and long-cycle lithium metal batteries. Energy Storage Materials, 2023, 58, 322-331.	9.5	10
2892	Synthesis and applications of MXene-based composites: a review. Nanotechnology, 2023, 34, 262001.	1.3	14
2893	Nitrogen adsorption <i>via</i> charge transfer on vacancies created during surfactant assisted exfoliation of TiB ₂ . Nanoscale, 2023, 15, 8204-8216.	2.8	7
2894	Exploration of Photocatalytic Overall Water Splitting Mechanisms in the Z-Scheme SnS ₂ /l̂²-As Heterostructure. Journal of Physical Chemistry C, 2023, 127, 6347-6355.	1.5	5
2895	Three-dimensional N-doped mesoporous carbon–MXene hybrid architecture for supercapacitor applications. RSC Advances, 2023, 13, 9983-9997.	1.7	8
2896	Recent progress in energy, environment, and electronic applications of MXene nanomaterials. Nanoscale, 2023, 15, 9891-9926.	2.8	16
2897	Functionalized Separator Strategies toward Advanced Aqueous Zinc″on Batteries. Advanced Energy Materials, 2023, 13, .	10.2	60
2898	MXeneâ€Based Flexible Sensors: Materials, Preparation, and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	7
2899	Strain effects on the electronic and magnetic properties of Cr2TaC2 and Cr2TaC2O2 monolayers. Applied Physics Letters, 2023, 122, .	1.5	5
2900	Metal sulfide-based nanomaterials for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 9300-9332.	5.2	5
2901	Recent progress of cocatalysts loaded on carbon nitride for selective photoreduction of CO ₂ to CH ₄ . Nanoscale, 2023, 15, 8548-8577.	2.8	10
2902	Self-Healing MXene- and Graphene-Based Composites: Properties and Applications. Nano-Micro Letters, 2023, 15, .	14.4	28
2903	Surface modification of CuSe:a first-principles study. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.2	0
2904	Photothermal regulated ion transport in nanofluidics: From fundamental principles to practical applications. Nano Research, 2023, 16, 10061-10071.	5.8	5
2905	Systematic Investigation on Supported Gold Catalysts Prepared by Fluorine-Free Basic Etching Ti3AlC2 in Selective Oxidation of Aromatic Alcohols to Aldehydes. Materials, 2023, 16, 3139.	1.3	1

#	Article	IF	CITATIONS
2906	Promising M2CO2/MoX2 (M = Hf, Zr; X = S, Se, Te) Heterostructures for Multifunctional Solar Energy Applications. Molecules, 2023, 28, 3525.	1.7	3
2907	Recent advances in the development of MXenes/cellulose based composites: A review. International Journal of Biological Macromolecules, 2023, 240, 124477.	3.6	6
2908	Shock Wave-Assisted Exfoliation of 2D-Material-Based Polymer Nanocomposites: A Breakthrough in Nanotechnology. Industrial & Engineering Chemistry Research, 2023, 62, 6584-6598.	1.8	6
2909	Recent progress in MXenes incorporated into electrospun nanofibers for biomedical application: Study focusing from 2017 to 2022. Chinese Chemical Letters, 2023, 34, 108463.	4.8	11
2910	Comparing the photocatalytic performance of GO/ZnO and g-C3N4/ZnO composites prepared using metallurgical waste as a source of zinc. Inorganic Chemistry Communication, 2023, 152, 110728.	1.8	3
2911	Nb2CTx-Based MXenes Most Recent Developments: From Principles to New Applications. Energies, 2023, 16, 3520.	1.6	9
2912	Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chemical Society Reviews, 2023, 52, 3215-3264.	18.7	36
2913	Electrochemical behavior and anti-corrosion property of Ti3C2Tx MXene/LDH heterostructured coating on aluminum alloy. Surface and Coatings Technology, 2023, 463, 129551.	2.2	13
2914	Stacking and layer dependence of magnetic properties in Ti ₂ C and Fe ₂ C. Journal Physics D: Applied Physics, 2023, 56, 345002.	1.3	2
2915	Open-ended exploration of ultrashort pulse lasers: an innovative design strategy for devices based on 2D materials. Photonics Research, 2023, 11, 1238.	3.4	3
2916	Twoâ€Ðimensional MXenes Derived from Medium/Highâ€Entropy MAX Phases M ₂ GaC (M =) Tj ETQ	9000 rgt 4.6	3T /Overlock
2934	Bioconjugated 2D-nanomaterials for environmental monitoring. Comprehensive Analytical Chemistry, 2023, , 163-201.	0.7	0
2935	A review on accelerated development of skin-like MXene electrodes: from experimental to machine learning. Nanoscale, 2023, 15, 8110-8133.	2.8	2
2940	2D nanomaterial aerogels integrated with phase change materials: a comprehensive review. Materials Advances, 2023, 4, 2698-2729.	2.6	4
2950	Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Research, 2023, 16, 9158-9178.	5.8	14
2951	Recent advances in MXenes: a promising 2D material for photocatalysis. Materials Chemistry Frontiers, 2023, 7, 4184-4201.	3.2	6
2962	MXene and Their Composites for Oxygen Evolution Reactions. , 2022, , 1-33.		0
2969	Recent advances and perspectives of emerging two-dimensional transition metal carbide/nitride-based materials for organic pollutant photocatalysis. Materials Chemistry Frontiers, 2023, 7, 4658-4682	3.2	10

#	Article	IF	CITATIONS
2973	Recent Advances in MXene-Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices Applications. ACS Applied Electronic Materials, 2023, 5, 4704-4725.	2.0	3
2993	Research progress of MXenes and layered double hydroxides for supercapacitors. Inorganic Chemistry Frontiers, 2023, 10, 4358-4392.	3.0	52
3002	Nano-engineered 2D Materials for CO2 Capture. Springer Series in Materials Science, 2023, , 409-439.	0.4	0
3003	Fabrication of Advanced 2D Nanomaterials Membranes for Desalination and Wastewater Treatment. Springer Series in Materials Science, 2023, , 245-268.	0.4	0
3020	Recent advances in MXenes: beyond Ti-only systems. Journal of Materials Chemistry A, 2023, 11, 13107-13132.	5.2	5
3028	Environmental Remediation of Heavy Metals Through MXene Composites. , 2023, , 229-248.		0
3029	MXene-Based Sodium-Ion Batteries. , 2023, , 127-135.		0
3031	Fabrication and Structural Design of MXene-Based Hydrogels. , 2023, , 61-81.		0
3045	MXene based materials for electrochemical sensing. , 2023, , 225-252.		0
3057	A new class of pseudocapacitive electrode materials for electrochemical energy storage in rechargeable batteries. , 2023, , 181-224.		0
3058	MXenes based 2D nanostructures for supercapacitors. , 2023, , 261-303.		0
3059	2D layered materials: structures, synthesis, and electrocatalytic applications. Green Chemistry, 2023, 25, 6149-6169.	4.6	2
3071	Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World?. ACS Omega, 2023, 8, 29859-29909.	1.6	5
3075	Optimization of reaction parameters for preparation of MXene-based polymer nanocomposites. , 2023, , .		0
3083	Advances in the synthesis and modification of two-dimensional antimonene. Physical Chemistry Chemical Physics, 2023, 25, 21773-21786.	1.3	1
3087	Heavy metals adsorption performance of Ti-MXenes synthesized via fluorinated etchants and their regeneration. Chemical Papers, 2023, 77, 5601-5621.	1.0	2
3104	MXene and their integrated composite-based acetone sensors for monitoring of diabetes. Materials Advances, 2023, 4, 3989-4010.	2.6	8
3118	Recent advances in two-dimensional nanomaterials as bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2023, 11, 18502-18529.	5.2	7

#	Article	IF	CITATIONS
3120	The metal–support interaction effect in the carbon-free PEMFC cathode catalysts. Journal of Materials Chemistry A, 2023, 11, 23106-23132.	5.2	1
3127	Solar-to-Fuel Conversion: Application of Two-Dimensional Ti ₃ C ₂ T _{ <i>x</i>} MXene as Cocatalyst. ACS Symposium Series, 0, , 83-103.	0.5	0
3131	Environmental Remediation: A MXenes Perspective. ACS Symposium Series, 0, , 147-167.	0.5	0
3132	Emerging Trends in Advanced Synthesis and Properties: Mxenes as Super Materials. ACS Symposium Series, 0, , 71-100.	0.5	1
3133	Progresses and Challenges in 2D MXenes: Synthesis, Intercalation/Delamination, and Storage. ACS Symposium Series, 0, , 101-141.	0.5	1
3134	MXenes: Synthetic Approaches and Sensing Advances. ACS Symposium Series, 0, , 185-212.	0.5	0
3136	The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Research, 0, , .	5.8	16
3139	2D-Transition Metal Carbides and Nitrides: Prospects and Challenges. ACS Symposium Series, 0, , 1-42.	0.5	0
3148	2D MXenes: A Promising Functionality as an Electrocatalyst. ACS Symposium Series, 0, , 43-58.	0.5	0
3150	Applications of the MXenes in Li-Ion Batteries. ACS Symposium Series, 0, , 51-79.	0.5	0
3151	An Extensive Review on MXenes as Emergent Photovoltaic Materials. ACS Symposium Series, 0, , 59-82.	0.5	0
3153	Emerging Nanoengineered 2D MXene-Based Architectures for Supercapacitor Application. ACS Symposium Series, 0, , 97-139.	0.5	0
3154	MXenes in Membrane-Based Water Treatment Applications. ACS Symposium Series, 0, , 121-139.	0.5	0
3155	The Flourishing Application of MXenes for Dielectric-Based Microwave Absorption. ACS Symposium Series, 0, , 141-176.	0.5	0
3158	2D-Transition Metal Carbides and Nitrides: Materials for the Next Generation. ACS Symposium Series, 0, , 1-25.	0.5	0
3165	Modeling and Simulation of Electrochemical, Thermoelectric, and Magnetic Properties of MXenes. ACS Symposium Series, 0, , 143-168.	0.5	0
3178	Role of MXene as a Catalyst for Hydrogen Synthesis. ACS Symposium Series, 0, , 105-119.	0.5	0
3183	Two-Dimensional Inorganic Materials for Energy Storage Applications. ACS Symposium Series, 0, , 1-25.	0.5	1

# 3232	ARTICLE The Evolution and Emergence of 2D Nanomaterial Based Electro-Chemical and Fluorescent Biosensors. , 2024, , 137-165.	IF	CITATIONS 0
3235	2D Planner MXene Nanocomposite Sensors. , 2024, , 1-37.		0
3236	The global expansion of MXenes. , 2023, 8, 39-41.		0
3270	Versatile MXenes as electrochemical sensors for heavy metal ions and phenolic moiety containing industrial chemicals: Recent development and prospects. Materials Advances, 0, , .	2.6	0
3282	MXenes-mining: a decade of discovery. , 0, , .		1
3290	Introduction to Green Supercapacitors: Fundamentals, Design, Challenges, and Future Prospects. , 2023, , 1-33.		0
3291	MXene-Based Functional Materials as Antibacterial and Antiviral Agents. ACS Symposium Series, 0, , 363-394.	0.5	0
3308	2D nanomaterial-based 3D hydrogels for anti-infection therapy. Journal of Materials Chemistry B, 0, , .	2.9	0
3315	Hybrid functional materials and their applications. , 2023, , .		0
3323	Flexible MXene/Ag nanowires composite film for high-performance electromagnetic shielding. , 2023, ,		0
3330	Recent progress of MXene as an energy storage material. Nanoscale Horizons, 2024, 9, 215-232.	4.1	2
3359	Humidity sensors based on solid-state metal-oxide hybrids. , 2024, , 347-392.		0
3360	Membrane technology. , 2024, , 285-309.		0
3370	Humidity Sensors Using 2D and 3D Nanomaterials: From Materials Selection to Technological Aspects. Transactions on Electrical and Electronic Materials, 2024, 25, 123-140.	1.0	0
3373	2D materials-based nanoarchitectonics for metal-ion batteries. , 2024, , 207-240.		0
3385	MXene-based electrodes for hybrid supercapacitor devices. , 2024, , 467-479.		0
3386	Nanomaterials for supercapacitors. , 2024, , 219-249.		0
3387	MXene-based hybrid nanomaterials for nitrogen reduction reaction. , 2024, , 481-499.		0

			CITATION REPO	ORT	
#	Article		I	F	Citations
3388	MXene-based hybrid nanomaterials for efficient removal of toxic heavy metals. , 2024,	, 75-95.			0
3389	Flame-retardant properties of MXene-based polymer nanocomposites. , 2024, , 287-32	20.			0
3390	MXene-based hybrid biosensors. , 2024, , 327-349.				0
3391	Synthesis of element-doped MXenes and MXene-based hybrid nanomaterials. , 2024, ,	13-53.			0
3421	MXene-based aerogels for electromagnetic interference shielding. , 2024, , 427-456.				0